
Jump, Robert

Working Paper

Results on the Stability of a Simple Wage Posting Model

School of Economics Discussion Papers, No. 1319

Provided in Cooperation with:
University of Kent, School of Economics

Suggested Citation: Jump, Robert (2013) : Results on the Stability of a Simple Wage Posting Model,
School of Economics Discussion Papers, No. 1319, University of Kent, School of Economics,
Canterbury

This Version is available at:
https://hdl.handle.net/10419/105707

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/105707
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

University of Kent 

School of Economics Discussion Papers  

 

 

 

 

Results on the Stability of a Simple 

Wage Posting Model 

 

 
 

Robert Jump 

 

 

November 2013 

 

KDPE 1319 

 

 

 

http://upload.wikimedia.org/wikipedia/en/8/8e/Kent_Coat_of_Arms.jpg
http://upload.wikimedia.org/wikipedia/en/8/8e/Kent_Coat_of_Arms.jpg


Results on the Stability of a Simple Wage Posting Model∗

Robert Jump†

School of Economics, University of Kent

November 2013

Abstract

This paper presents results on the stability of the wage dispersion model presented
in Mortensen (2003). Specifically, we test four “positive definite” learning processes on
a single parameterisation of the underlying model, and submit the most successful to
a thorough sensitivity analysis. The general result of existing studies of the stability
of price dispersion models is that learning processes can converge on limiting distri-
butions that qualitatively match the equilibrium distribution. In contrast, the most
successful process considered in this paper can converge on a limiting distribution that
quantitatively matches the equilibrium distribution.
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1 Introduction

This paper presents results on the stability of the simple wage posting model presented in
Mortensen (2003: 16 - 20), which is a simplification of Burdett and Mortensen (1998). The
model consists of a single period, in which m firms face n households. Each firm posts a
single wage offer to a randomly chosen household, and each household accepts the highest
offer received. The number of offers received by any given household is then binomially
distributed, with “probability of success” equal to 1/n, and “sample size” equal to m. This
environment, in which households cannot observe every wage offer on the market, but are
not confined to taking or leaving a single offer, means that firms have to trade off the
benefits of a higher wage offer (higher probability of acceptance) against those of a lower
wage offer (higher profit given acceptance). These opposing forces, in turn, give rise to a
non-degenerate wage offer distribution in equilibrium. Assuming a large market, such that
the binomial distribution can be approximated by the Poisson distribution, the probability
of acceptance is as follows:

P (F (w), λ) =
∞∑
x=0

e−λλx

x!
F (w)x = e−λ[1−F (w)]

∞∑
x=0

e−λF (w)(λF (w))x

x!
= e−λ[1−F (w)] (1)

Here, λ = m/n denotes market tightness, and F (w) the wage offer distribution. Expected
profit is then given by the difference between the marginal revenue product p and the wage
offer w given the probability of acceptance. If we suppose that there is a common reservation
wage b, the equilibrium offer distribution can be found by appealing to an equal profit
condition. As the reservation wage will only be accepted if it is the only offer received, the
expected profit of offering the reservation wage is independent of the offer distribution, and
determines the expected profit of all other offers:

π(p, w, 0) = (p− b)e−λ = (p− w)e−λ[1−F (w)] = π(p, w, F (w)) (2)

Solving eq 2 for F then yields the unique offer c.d.f., which can be solved for F = 1 to
yield the upper support of the distribution, w̄:

F (w) =
1

λ
ln

(
p− b

p− w

)
(3)

w̄ = p− e−λ(p− b) (4)

Thus the offer distribution is non-degenerate, with upper support less than the marginal
revenue product of a match1. Although this model is, in a structural sense, extremely simple,
the situation it describes is rather complex from the point of view of the individual firm. As

1See Mortensen (2003: 16 - 20) for the proof that the distribution described by eqs 3 and 4 is the unique
equilibrium.
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a lower wage offer trades off a higher profit given acceptance against a lower probability of
acceptance, an individual firm has to know the probability of acceptance, conditional on all
wage offers, in order to make an informed decision in regards to its individual offer ex ante.
Unless one assumes that this knowledge exists ex ante, it is not at all clear how the individual
firm should behave. As a result, the existing literature on the stability of price dispersion
models utilises general learning processes borrowed from the machine learning literature,
in particular, replicator dynamics and reinforcement learning. In terms of general results,
Hopkins and Seymour (1996) demonstrates that a class of “positive definite” dynamics, in
which a large economy assumption allows noise to be ignored, can result in the stability
of dispersed price equilibria under learning. A more recent paper explores the implications
of the large economy (or large population) assumption and the ability of finite population
learning mechanisms to match deterministic processes (Gao et al 2013).

Although these results are encouraging, they are not reflected in the literature examining
the ability of specific learning processes to match dispersed price equilibria. As with Hopkins
and Seymour (1996), Cason et al (2005) examines the stability of the price dispersion model
presented in Burdett and Judd (1983). Four different replicator dynamics are studied. The
limiting distributions to which the majority of processes tend are found to be qualitatively,
rather than quantitatively, similar to the equilibrium distribution. In addition, one process
does not converge at all, but tends to a limit cycle around the equilibrium. Waldeck and
Darimon (2006) conducts a fully specified microsimulation of a market in which individual
firms independently adapt via reinforcement learning, in the context of the price dispersion
model of Varian (1980). They consider a model with 1000 buyers and 20 sellers, where
each seller posts a price from a set of size 100. The computational cost of such a model is
relatively high, so that the authors only consider one learning process. As with Cason et al
(2005), they conclude that the learning process does not converge to the equilibrium, but
to a qualitatively similar limiting distribution.

The foregoing suggests that the stability of price dispersion models is sensitive to the
exact learning process employed. As such, it seems prudent to examine a number of differ-
ent processes, which largely precludes full microsimulation, as with Waldeck and Darimon
(2006)2. The approach taken in this paper, therefore, is to study a number of “positive
definite” processes, as with Hopkins and Seymour (1996) and Cason et al (2005). Section
2 presents four different processes, which are subjected to an initial test in section 3 for a
single fundamental parameterisation of the underlying model. The most successful process
is then subjected to a sensitivity analysis in section 4. The conclusion reached is that this
process can converge on a limiting distribution that quantitatively, rather than qualitatively,
matches the equilibrium distribution. This is a unique result in the literature. This result is
not sensitive to the fundamental parameterisation, but is sensitive to the parameterisation
of the learning process. Unfortunately, for certain parameterisations the process becomes
extremely unstable, which qualifies the results somewhat. Nevertheless, the conclusion is
encouraging for the stability of this class of models.

2 Candidate Learning Processes

Consider a large number of firms, facing a large number of households, such that the ratio of
firms to households is λ. The environment is analogous to that described by the Mortensen

2For this reason other approaches, such as genetic algorithms (e.g. McCarthy 2009), are also rejected.
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(2003) wage dispersion model: each firm posts a wage offer to a randomly picked household,
and each household subsequently accepts the highest offer received (if any). The marginal
revenue product of a match is p, and the reservation wage b is public knowledge. The set
of possible wage offers is an equally spaced grid: S = {w1, ..., wi, ..., wl}, with wi+1 > wi,
w1 = b, and wl = p. Given the above, assume that the number of firms and households is
much larger than l, such that there is, at any point in time, a large number of firms playing
each strategy. The time t average profit of each strategy is then given by the following:

πit(p, wi, F̃t) = (p− wi)e
−λ[1−F̃t(i)] (5)

Here, F̃t denotes the cumulative distribution of firms across the strategy set at time
t, which may or may not be different from the equilibrium distribution F . Likewise, F̃t(i)
denotes the value of F̃t evaluated at strategy i, ie the proportion of firms playing strategies 1
to i inclusive at time t. The processes that are examined here borrow from the reinforcement
learning literature in supposing that each strategy has a fitness measure associated with it,
and that these fitness measures determine the proportion of firms playing each strategy.
There are then two separate problems in constructing learning processes: first, how the
densities of firms playing each strategy are determined, given the fitness measures, and
second, how those fitness measures are determined.

Learning Process:

Suppose we have a function A to determine the densities of firms playing each of the l
strategies, and a function B to determine those strategies’ fitness measures. The general
learning process can then be described by the following pseudo-code:

1. f̃it = Aa[ϕ1t, ..., ϕit, ..., ϕlt]

2. F̃t ← f̃t

3. πit = (p− wi)e
−λ[1−F̃t(i)]

4. ϕit+1 = Bb[ϕ1t, ..., ϕit, ..., ϕlt, π1t, ..., πit, ..., πlt]

As above, F̃t denotes the cumulative distribution of firms over strategies, and f̃it denotes
the density of firms playing the ith strategy, at time t. This is determined by A, which takes
fitness measures as arguments, denoted ϕit. These fitness measures comprise the model’s l
state variables, and thus we require an initial distribution of fitness levels to fully specify the
model. Given these values, which determine F̃1, intra-period expected profits are updated
for each strategy, which allows the fitness measures to be updated. This is determined by
B, which allows f̃t+1 to be calculated. Hence, the process can be iterated, given initial
conditions, to examine its limiting distribution.
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Strategy Selection Functions:

Two possible functional forms for A are considered:

A1: f̃it =
ϕit∑l
i=1 ϕit

A2: f̃t =
eϕit/τ∑l
i=1 e

ϕit/τ

Denoting the space of vectors [ϕ1t, ..., ϕit, ..., ϕlt] as Φ, and by Z the space of vectors
[f̃1t, ..., f̃it, ..., f̃lt], A1 and A2 are mappings from Φ→ Z. With A1, in any given period, the
proportion of agents playing strategy i is equal to the relative fitness of that strategy. This
is straightforward, and follows the usual manner in which replicator dynamics and reinforce-
ment learning determine the proportion of agents over strategies. With A2, the proportion
of agents playing strategy i is exponentially related to strategy i’s relative fitness; that is,
a strategy i that is twice as fit as a strategy j is played by more than twice the number of
agents. The extent to which this is the case is determined by the intensity parameter τ , such
that a lower τ increases the rate at which agents choose relatively profitable strategies. This
is variously known as “softmax” selection (Sutton and Barto 1998: 30) or “logit dynamics”
(Cason et al op. cit.).

Fitness Updating Functions:

Two possible functional forms for B are considered:

B1: ϕit+1 =

{
ϕit + α(πit − ϕit) if ϕit + α(πit − ϕit) > 0
0 if ϕit + α(πit − ϕit) ≤ 0

B2: ϕit+1 =

{
ϕit + α(πit − π̄t) if ϕit + α(πit − π̄t) > 0
0 if ϕit + α(πit − π̄t) ≤ 0

Denoting the space of vectors [π1t, ..., πit, ..., πlt] as Π, B1 and B2 are mappings from
Φ×Π→ Φ. With B1, fitness levels are updated as per the standard reinforcement learning
rule, where the fitness measure of strategy i in any period is an exponentially weighted
moving average of past profitability. B2 is known as a “reinforcement comparison” algorithm
in the machine learning literature (Sutton and Barto 1998: 41), where the fitness measure
of strategy i is updated by comparing that strategy’s intra-period profit to the intra-period
arithmetic average of all strategies’ profits, π̄t. As we are considering an aggregated system,
this becomes a type of social learning, and similar in spirit to replicator dynamics. The
foregoing, by the different possible combinations of updating functions, gives four separate
learning processes, which will be referred to as processes A1B1, A1B2, A2B1, and A2B2.
We are interested primarily in the similarity between the limiting distributions to which
these processes tend and the equilibrium distribution described by eqs 3 and 4. Section 3
compares the convergence results of the four learning processes for a single parameterisation
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Figure 1: A1B1, α = 0.1
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Figure 2: A1B1, α = 0.5
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Figure 3: A1B1, α = 0.1
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Figure 4: A1B1, α = 0.5

of the underlying model. In general, their performance is as expected, given the results
of the existing literature. However, A2B1 is found to perform extremely well for certain
parameterisations, and this is the process that is subjected to a further sensitivity analysis
in section 4.

3 Results: Comparative Analysis

The four learning processes defined above are iterated numerically to generate their lim-
iting distributions (using Matlab code available upon request). In order to measure both
the similarity between the limiting distributions and the equilibrium distribution, and the
speed at which the processes converge on their respective limiting distributions, we use the
Kolmogorov-Smirnov (KS) statistic:

KSt = sup
i
|F (i)− F̃t(i)| (6)

The KS statistic is the supremum of the set of absolute differences between F and
F̃t in any given period, and the KS statistic at a process’s limiting distribution is the
greatest absolute difference between that distribution and the equilibrium distribution3.

3Alternative distance metrics could have been used here; the KS statistic is chosen to ensure comparability
with the relevant literature, e.g. Waldeck and Darimon (2006).
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Figure 5: A1B2, α = 0.1
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Figure 6: A1B2, α = 0.5
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Figure 7: A1B2, α = 0.1
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Figure 8: A1B2, α = 0.5

Thus qualitatively match is precisely defined only in a relative sense; that is, a process with
a lower KS statistic at its limiting distribution is more similar to the equilibrium distribution
than a process with a higher KS statistic. In turn, as the KS statistic approaches zero, the
limiting distribution approaches the equilibrium distribution. Sections 3.1 - 3.4 describe the
convergence results of the four learning processes, with the fundamental parameterisation
as follows: λ = 1, b = 1, and p = 2. Although we consider different learning parameters,
the size of the strategy set l = 1000 throughout, and initial fitness measures are uniform for
each strategy.

3.1 A1B1

Figures 1 - 4 illustrate the convergence properties of A1B1. Figures 1 and 2 show the limiting
distribution of the learning process (dashed line) against the equilibrium distribution (solid
line) for α = 0.1 and α = 0.5 respectively. Figures 3 and 4 show the evolution of the KS
statistic over iterations 1 - 1000 for the same parameter values. It is instantly apparent, from
visual inspection of figures 1 and 2, that the limiting distribution of A1B1 is not particularly
close to the equilibrium distribution, and does a particularly bad job of estimating w̄, with no
wage offers disappearing from the strategy set at all. Furthermore, the limiting distribution
is invariant to α, the sole effect of which is to determine the adjustment speed, and the
KS statistic at t = 1000 is approximately 0.21. Although A1B1 is very stable around its
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limiting distribution, therefore, it is not particularly successful at learning the equilibrium
distribution.

3.2 A1B2

Figures 5 - 8 illustrate the convergence properties of A1B2, for the same two parameteri-
sations as above. As with A1B1, the limiting distribution is invariant to the choice of α,
which governs the adjustment speed. With this learning process, however, the limiting dis-
tribution is much closer to the equilibrium distribution, with the KS statistic at t = 1000
approximately 0.085. Moreover, the process does a relatively good job of estimating w̄, with
the majority of wage offers above w̄ disappearing from the limiting distribution. However,
where A1B1 smoothly approaches its limiting distribution, A1B2 exhibits a degree of cyclical
adjustment in the KS statistic. This is indicated by the KS statistic rapidly falling to 0.1
in each parameterisation, after jumping up again and steadily approaching 0.085 over the
remaining iterations. Correspondingly, A1B2 takes a significantly greater number of itera-
tions to reach its minimum KS statistic than A1B1. Particularly, where A1B1 with α = 0.5
exhibits extremely rapid convergence, A1B2 takes approximately 600 iterations. Despite
this, we can conclude that A1B2 does a relatively good job of learning the equilibrium dis-
tribution, with particular success at estimating the upper support. This result is in line
with the existing literature referred to above.

3.3 A2B1

Unlike A1B1 and A1B2, A2B1 has two parameters governing the learning process: the
adjustment parameter α as before, and the strategy choice parameter τ . Figures 9 - 12
show the limiting distribution of the learning process for four parameter combinations:
{α = 0.1, τ = 0.5}, {α = 0.1, τ = 0.05}, {α = 0.005, τ = 0.05}, and {α = 0.005, τ = 0.005}.
As before, α does not affect the limiting distribution. However, the strategy choice pa-
rameter does have an effect on the limiting distribution, and a judicious choice can greatly
improve the ability of this learning process to match the equilibrium distribution. In gen-
eral, it is the case that the KS statistic decreases with τ ; that is, the ability of A2B1 to
learn the equilibrium distribution improves as τ decreases. This is an interesting result, as
the rate of flow of agents from low to high fitness strategies increases as τ decreases. Intu-
itively, it is this extra “degree of freedom” which improves the performance of this process
relative to A1B1 and A1B2. Unfortunately, as τ passes a certain threshold, the process fails
to converge at all, and can display extremely chaotic behaviour. An example is given in
figure 13, which plots the KS statistic over iterations 1 - 150 for {α = 0.5, τ = 0.02}. Fur-
thermore, the threshold value of τ at which the process becomes unstable is dependent on
α, and figure 14 provides a stability plot for different combinations of α and τ , from which
the relatively large region of unstable parameterisations is immediately apparent4. Despite
this, the success of the stable parameterisations of A2B1 is unambiguously greater than the
processes examined thus far. In fact, jointly decreasing α and τ results in an arbitrarily low
KS statistic - the parameterisation illustrated in figure 12, for example, has a KS statistic

4In figure 14, instability is defined as an absolute difference of 0.001 or more between the KS statistics
at iterations 999 and 1000.
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Figure 9: A2B1, α = 0.1, τ = 0.5

b p
0

0.2

0.4

0.6

0.8

1

W
ag

e 
O

ffe
r 

D
is

tr
ib

ut
io

n
Figure 10: A2B1, α = 0.1, τ = 0.05
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Figure 11: A2B1, α = 0.005, τ = 0.05
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Figure 12: A2B1, α = 0.005, τ = 0.005
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Figure 13: A2B1, α = 0.5, τ = 0.02
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Figure 14: A2B1 Stability Plot
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Figure 15: A2B2, α = 0.1, τ = 0.3
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Figure 16: A2B2, α = 0.5, τ = 0.5

of 0.0115 at its limiting distribution. At this point, therefore, we can tentatively conclude
that A2B1 has the ability to quantitatively match the equilibrium distribution described by
eqs 3 and 4.

3.4 A2B2

The final positive definite learning process that we consider incorporates “logit dynam-
ics” into the “reinforcement comparison” fitness updating algorithm. As incorporating the
former into the basic fitness updating algorithm significantly improved its performance, it
might be imagined that A2B2 would emerge as the most successful process. Unfortunately,
the tendency of A2 towards instability appears to interact with the cyclical adjustment of
B2 in such a way that A2B2 does not converge to a limiting distribution for any combi-
nation of parameter values. Instead, the process produces explosive cyclical motion in the
KS statistic. Figures 15 and 16 illustrate this for the parameterisations {α = 0.1, τ = 0.3}
and {α = 0.5, τ = 0.5}, respectively. Finally, therefore, we can conclude that A2B2 is not
successful as a learning process in the context of the wage dispersion model considered here.

3.5 Discussion

To summarise, A1B1 is stable around its limiting distribution, but that distribution is rel-
atively dissimilar to the equilibrium distribution, with a KS statistic of 0.21. At the other
extreme, A2B2 produces explosive cyclical motion for all parameterisations, and thus fails
completely as a learning process. The two relatively successful processes are A1B2 and A2B1.
The former converges reliably, albeit slowly, with a KS statistic of 0.085 at its limiting dis-
tribution. In comparison, A2B1 can achieve an arbitrarily low KS statistic by reducing α
and τ jointly. This is a delicate process, however, as after a certain threshold any reduction
in τ with α fixed causes extreme instability. Despite this, the apparent match between the
limiting distribution of A2B1 and the equilibrium is a unique result in the literature. As
such, this is the process that is subjected to a more rigorous sensitivity analysis in section
4. Particularly, we test its ability to the learn the equilibrium for four different fundamental
parameterisations, and the region of unstable {α, τ} combinations for those parameterisa-
tions.
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4 Results: A2B1 Sensitivity Analysis

As demonstrated above, the KS statistic corresponding to the limit distribution of A2B1

decreases with τ . Given this, the threshold value of τ at which the process becomes un-
stable increases with α; hence for the fundamental parameterisation considered above, the
KS statistic is minimised in the most south-westerly corner of the stable region of figure 14.
When considering the sensitivity of the performance of this learning process, therefore, the
primary question of interest is whether the region of unstable {α, τ} combinations signif-
icantly differs for different fundamental parameterisations. The four parameterisations of
the underlying model that A2B1 are tested against are as follows:

P1: λ = 0.5, p = 2, b = 1

P2: λ = 1.5, p = 2, b = 1

P3: λ = 1, p = 3, b = 1

P4: λ = 1, p = 2, b = 1.5

That is, in comparison to the parameterisation considered in section 3, P1 decreases λ,
P2 increases λ, P3 increases (p − b), and P4 decreases (p − b). Figures 17 - 20 present
stability plots for each of these parameterisations, calculated in the same way as figure
14, above. As can be seen in figures 17 and 18, varying λ with p and b fixed does have
an effect on the region of unstable {α, τ} combinations, but the effect is not particularly
pronounced. In contrast, varying (p − b) with λ fixed has a significant effect; reducing the
difference between the marginal revenue product and the reservation wage decreases the
unstable region substantially, whilst increasing this difference enlarges the region. It is not
clear what the economic intuition for this result is, although it is worth noting that the
instability generated still corresponds to cyclical motion in the KS statistic, as in figure 13,
so that the process does not halt at any point.

The foregoing indicates that the success of the learning process is relatively unaffected
by the choice of λ, and rather more sensitive to the choice of p and b. However, for an
appropriate choice of α and τ , the limiting distribution to which A2B1 converges can still
achieve an arbitrarily low KS statistic for both P3 and P4. This is illustrated in figures
21 and 22, which compare the limiting distribution and equilibrium distribution for P3 and
P4, with {α = 0.005, τ = 0.01} and {α = 0.003, τ = 0.003}, respectively. The KS statistic
for the former is 0.0154, and the KS statistic for the latter is 0.0146. Finally, although we
do not present the results here, the process is largely unaffected by the size of the strategy
set. Reducing l substantially (ie < 100) does affect the stability properties, but mainly in
the time taken to convergence rather than the fact of convergence itself. Increasing l past
1000, on the other hand, has no material effect on the results. Similarly, randomising the
initial distribution of fitness measures, rather than specifying uniformity, has no effect on
the limiting distribution.

The conclusions of this section are, it is fair to say, mixed. Not only is the most successful
process considered in section 3 unstable over a relatively large parameter region, but this
region itself is affected by the fundamental parameterisation of the underlying model. An
important consequence of this is that, for a given parameterisation of A2B1, this learning
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Figure 17: P1 Stability Plot
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Figure 18: P2 Stability Plot
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Figure 19: P3 Stability Plot
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Figure 20: P4 Stability Plot
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Figure 21: P3, α = 0.005, τ = 0.01
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Figure 22: P4, α = 0.003, τ = 0.003
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process will not dominate the alternative processes examined in section 3 for any random
fundamental parameterisation. Thus there is an issue, so far unexamined here, concerning
learning under parameter uncertainty. Despite this, it remains the case that for a judicious
{α, τ} combination, A2B1 can achieve an arbitrarily low KS statistic at its limiting distri-
bution for a variety of fundamental parameterisations. As such, the justification remains for
concluding that the most successful process considered here can converge on a limiting dis-
tribution that quantitatively matches the equilibrium distribution of the Mortensen’s simple
version of the Burdett and Mortensen (1998) wage dispersion model. This is an encouraging
result for this class of models, and suggests that the exercise might be profitably repeated
for different price dispersion models. At the same time, variants of A2B1 might be found
that can achieve its convergence success without the associated problem of instability.

5 Concluding Remarks

The four candidate learning processes considered in this paper vary widely in their ability to
learn the equilibrium distribution of Mortensen’s simple wage posting model. The two basic
processes, A1B1 and A1B2, are in line with results reached by Cason et al (2005) andWaldeck
and Darimon (2006); that is, convergence to a limiting distribution qualitatively similar
to the equilibrium distribution. The least successful process, A2B2, generates explosive
cyclical motion for every parameterisation, which is a failure that has not been reported in
the existing literature. The most successful process, on the other hand, can converge on a
limiting distribution that can quantitatively match the equilibrium distribution. The word
“can” should be emphasised here, as the similarity between the limiting distribution of A2B1

and the equilibrium distribution is sensitive to the learning parameters. Moreover, although
simultaneously decreasing α and τ improves learning success, there is a threshold ratio of the
two parameters at which the process generates severe instability. This problem is magnified
by the ratio being sensitive to the fundamental parameterisation of the underlying model,
which leads to a significant problem concerning learning under parameter uncertainty.

Despite these qualifications, it remains the case that a judicious choice of α and τ allows
A2B1 to learn the equilibrium distribution to an arbitrarily high degree of accuracy regard-
less of the fundamental parameterisation. This is a unique result in the literature, and is
encouraging for further work in this field. Two avenues immediately suggest themselves.
First, the exercise might be profitably repeated for different models in this class - so far,
only three models have been examined (the model examined here, and the models exam-
ined in Cason et al (2005) and Waldeck and Darimon (2006)). Second, variants on A2B1

might be found which can achieve similar learning success whilst avoiding the problem of
instability. This is necessary to deal with the issue of parameter uncertainty, and a possible
line of attack would be real-time control of τ . Particularly, if τ were permitted to react to
volatility in the distance metric, a learning process that ensures convergence regardless of
the fundamental parameterisation might be found.
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