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Abstract

A modification of the self-perturbed Kalman filter of Park and Jun (1992) is proposed
for the on-line estimation of models subject to parameter instability. The perturbation
term in the updating equation of the state covariance matrix is weighted by the measure-
ment error variance, thus avoiding the calibration of a design parameter. The standardiza-
tion leads to a better tracking of the dynamics of the parameters compared to other on-line
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1 Introduction

Over the past two decades, time-varying parameter (TVP) models have attracted increasing

interest in econometrics as tools for understanding and predicting the presence of structural

breaks in macroeconomic and financial time series. In particular, TVP models are attractive

since they allow for empirical insights which are not available with the traditional, constant

coefficient models. Recently, TVP models are proved to be successful in macroeconomics by

Primiceri (2005), Cogley and Sargent (2005) and Koop and Strachan (2009), among others.

For example, Primiceri (2005) and Cogley and Sargent (2005) use time-varying VAR models to

study the dynamic effects of alternative monetary policies on the real outcomes. Alternatively,

Watson and Stock (2007), Cogley et al. (2010) and Grassi and Proietti (2010) focus on the

US inflation series. They all find a strong evidence for a reduction of the variance in the

last 25 years, a well known phenomenon called Great Moderation. Moreover, the coefficients

on the predictors of inflation are also found to vary over time being subject to structural

breaks. This phenomenon is called time-varying Phillips curve. In finance, the successful class

of ARCH-GARCH models of Engle (1982) and stochastic volatility models could be tough as

alternative ways to generate time-varying standard deviations of returns. Dangl and Halling

(2012) propose a time-varying predictive regression, finding that a non-negligible portion of

the out-of-sample total return variance can be predicted when the coefficients are allowed to

change over time. Unfortunately, although TVP models proved to be successful in describing

the changing behaviour of the US economics and of the stock returns, the estimation methods

employed are extremely computationally intensive, as they generally require simulation based

algorithms as MCMC.

A solution to this problem has been proposed by Raftery et al. (2010) and Koop and

Korobilis (2012). Following Fagin (1964) and Jazwinsky (1970), they suggest to estimate the

TVP models with a modified Kalman filter algorithm by an approximation of the updating step

of the latent states covariance matrix. The updating equation of the states covariance matrix

is assumed to follow a decay function that depends on an additional parameter, the forgetting

factor. This simplifying assumption avoids to resort on computationally intensive algorithms

based on simulations. The main drawback of this methodology is related to the nature of the

forgetting factor, that is calibrated and assumed fixed over time. Recently Koop and Korobils
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(2013) allow the forgetting factor to be time varying and dynamically selected.

The contribution of this paper is threefold. First, a new method for the on-line estimation

of the TVP models is proposed. The new estimation procedure is an extension of the self-

perturbing Kalman filter of Park and Jun (1992). Differently from the method based on the

forgetting factor, the method of Park and Jun (1992) induces dynamics in the parameters by

means of a perturbation term that is a function of the squared prediction errors. A modification

of the perturbation function is introduced, as the squared prediction errors are standardized

by their variance, thus avoiding the calibration of a design parameter. In other words, the new

updating function dynamically calibrates the perturbation mechanism since the contribution of

the squared prediction errors is weighted by the measurement error variance, which is allowed

to vary according to an exponential weighted moving average.

Second, the proposed estimation procedure is compared to other methods by means of Monte

Carlo simulations. The main advantage of the new methodology over other on-line methods is

that it does not require to specify the forgetting factor, i.e. the decay rate of the covariance

matrix of the latent states. The variation in the coefficients is instead endogenously determined

by the standardized squared residuals. It emerges that the standardized self-perturbing Kalman

filter has the best performance in tracking the variability of the parameters when the series at

hand is noisy. This makes the new method particularly appealing in forecasting financial time

series, which are typically characterized by an high noise-to-signal ratio.

Third, the TVP-HAR model with explanatory variables is proposed to forecast the realized

volatility series. As noted by Koop and Korobilis (2012), the main advantage of the on-line

estimation algorithms is the possibility of selecting between a large number of potential predic-

tors at each point in time. The optimal set of predictors of realized volatility is selected at each

point in time by means of the predictive likelihood as in Koop and Korobilis (2012) and Koop

and Korobils (2013). The on-line nature of the self-perturbing Kalman filter allows to dynami-

cally select between a large number of potential models. The use of predictive measures of fit,

as explained in Eklund and Karlsson (2007), offers protection against in-sample over-fitting and

improves the forecast performance. We find that the proposed perturbation method, combined

with a dynamic model selection technique, provides superior forecasting performances, in terms

of the predicted likelihood, root mean square forecast error (RMFE) and continuous ranked
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probability score (CRPS), see Groen et al. (2013). The good performance is mainly due to the

fact that only few predictors are chosen at each point in time, as a consequence of the precision

in tracking the dynamics of the parameters, thus reducing the uncertainty on the selection of

the relevant variables.

The paper is organized as follows. Section 2 introduces the general model and discusses the

old and new estimation methods. Section 2.4 presents a Monte Carlo exercise that shows the

usefulness of the proposed estimation strategy. The technique for an optimal dynamic forecast

combination is discussed in Section 3. The empirical application to the S&P500 realized

volatility series is presented in Section 4. Finally Section 5 draws some conclusions.

2 Online Methods for TVP models

The state-space representation of a generic TVP model is:

yt = Ztθt + εt, εt ∼ N(0,Ht),

θt = θt−1 + ηt, ηt ∼ N(0,Qt),

(1)

where yt is the observed time series, Zt is an 1×m vector containing explanatory variables and

θt is an m×1 vector of time varying parameters (states), which are assumed to follow random-

walk dynamics. Finally the errors, εt and ηt are assumed to be mutually independent at all leads

and lags. The model (1) is used in a number of recent paper, see Primiceri (2005), Koop and

Strachan (2009), Koop and Korobilis (2012) and Koop and Korobils (2013). Traditionally, the

model in equation (1) is estimated with both classical and Bayesian approaches. In the first case,

the likelihood is efficiently calculated with the Kalman filter routine, see Durbin and Koopman

(2001) and Harvey and Proietti (2005) for an introduction, and the time-varying parameters

are automatically filtered as latent state variables, once that Ht and Qt are estimated. The

Bayesian estimation method, which requires simulation based methods, such as the MCMC,

involves the specification of Ht and Qt together with the initial condition, θ0|0, of the model

parameters, see for an introduction Koop (2003). Although classical and Bayesian algorithms

are reliable in this context, they become computational intensive as the number of parameters

increases.
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For this reason, Raftery et al. (2010) and Koop and Korobilis (2012) propose a fast al-

gorithm, adopting the on-line methodology of Fagin (1964), to extract the dynamics of the

parameters in a linear state-space framework. Next section presents alternative on-line proce-

dures to capture the evolution of the parameters of model (1).

2.1 Online Estimation with the Forgetting Factor

A standard recursive estimation of model (1) proceeds as follows. Starting from a initial

values θ0|0 and P0|0 (the updated covariance matrix of the state), the Kalman filter routine is

constituted by a prediction and an updating step.

Prediction

θt|t−1 = θt−1|t−1

Pt|t−1 = Pt−1|t−1 +Qt

νt = yt − Ztθt|t−1

Ft|t−1 = Ztθt|t−1Z
′

t +Ht.

(2)

Updating

θt|t = θt|t−1 + Pt|t−1Z
′

tF
−1
t|t−1νt

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t|t−1ZtPt|t−1.

(3)

where the term Pt|t−1Z
′

tF
−1
t|t−1 is the well known Kalman gain. As mentioned in the previous sec-

tion, the m×m matrix Qt requires computational intensive algorithms in order to be estimated,

especially when the number of state variables is large.

Raftery et al. (2010) suggest to substitute Pt|t in the updating equation (2) with an approx-

imation:

Pt|t−1 =
1

λ
Pt−1|t−1, (4)

where λ ∈ [0; 1] is the forgetting factor. This implies that there is no longer need to esti-

mate or simulate Qt, while the latter is simply obtained from the following relation Qt =

(λ−1 − 1) Pt−1|t−1. This method is called Kalman filter with constant forgetting factor (KF-

CFF henceforth).
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The tuning parameter λ plays a crucial role in adjusting the effective memory of the algo-

rithm, leading to a weighted estimation where data at i time points in the past has weight λi.

For example, in the case of daily data, setting λ = 0.99 implies that observations ten days ago

will receive 90% as much weight as last periods observation. Whereas for λ = 0.92, observa-

tions ten days ago will receive 43% as much weight as last periods observation. The first case,

λ = 0.99, is consistent with models where changes in θt are gradual, the second, λ = 0.92, is

consistent with models where changes in θt are quite rapid and abrupt.

Finally, the measurement error variance Ht needs also to be estimated, as it is well known

that both macroeconomic and financial time series are characterized by heteroskedastic ef-

fects. Therefore, following Koop and Korobilis (2012) Ht is assumed to follow an exponentially

weighted moving average (EWMA henceforth):

Ht = κHt−1 + (1− κ) ν2t . (5)

The EWMA estimator requires to select a value for κ. As suggested in Koop and Korobilis

(2012), the value of κ is set to 0.94 for daily data.

2.2 Kalman Filter with Time-Varying Forgetting Factor

The estimation procedures outlined above assumes the forgetting factor λ to be time invariant,

this is a restrictive assumption that can be relaxed. For example, Koop and Korobils (2013)

propose to estimate λ and κ at each point in time, by selecting their optimal values, over a grid

of possible values, by means of the predictive likelihood. Alternatively, following Park et al.

(1991), the parameter λ can be assumed to vary according to the following law of motion:

λt|t−1 = λmin + (1− λmin) 2
Lt ,

Lt = −NINT
[

ρν2t−1

]

,

(6)

where NINT [·] rounds the argument to the nearest integer, ρ is a design parameter which

controls the width of a unity zone. In this case the prediction (2) and the updating (3) equations
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do not change. The only term that evolves is the Pt|t matrix that becomes:

Pt|t−1 =
1

λt|t−1

Pt−1|t−1. (7)

Equation (6) relates the magnitude of forgetting factor, at each point in time, to the squared

prediction errors ν2t−1. The minimum value of the forgetting factor is obtained as ν2t−1 tends to

infinity, while as ν2t−1 decreases to zero, the forgetting factor converges to unity at an exponential

rate controlled by the parameter ρ. For small values of ρ, the parameter vector θt evolves

smoothly, since λt remains close to 1. On the other hand, if ρ is high, such that λt = λmin then

the parameters tend to be updated at a fast rate. The main disadvantage of this method is

that ρ and λmin are unknown quantities and they need to be calibrated. This method is named

Kalman filter with time varying forgetting factor, henceforth KF-TFF.

2.3 Standardized Self-Perturbing Kalman Filter

Following Park and Jun (1992), the estimation of the TVP models can be carried out also by a

modification of the updating equation of the covariance matrix Pt|t. In particular, the updating

equation of Pt|t in (3) is perturbed by a function of the squared prediction errors. Formally,

the prediction equation (2) for Pt|t−1 is replaced by

Pt|t−1 = Pt−1|t−1, (8)

while the updating step (3) becomes

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t|t−1ZtPt|t−1 + β · NINT

[

γν2t
]

· I (9)

where β is a design constant, γ is the sensitivity gain parameter and I is the identity matrix.

The term added to the updating equation of Pt|t acts as a feedback driving force and it is

interpreted as a self-perturbation in the sense that it revitalizes the adaptation gain perturbing

the Pt|t. Indeed, the squared prediction error, ν2t , plays a crucial role in the algorithm. If

γν2t < 0.5, the self-perturbing term is set to zero by the round-off operator. Hence, γ controls

the maximum error bound set up for starting the self-perturbing action. If γ is low, such that
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NINT [γν2t ] = 0 for t = 1, . . . , T , then the parameters remain constant. Conversely, when γ is

large, such that NINT [γν2t ] 6= 0 for t = 1, . . . , T , then the parameters tend to change rapidly.

Substituting equation (9) in equations (2)-(3), under the assumption that Pt|t−1 = Pt−1|t−1, it

follows that Qt = βNINT [γν2t ] · I. In other words, the matrix Qt is assumed to be diagonal and

dependent on the squared prediction errors through two design parameters, β and γ. Indeed,

the setup of the self-perturbing Kalman filter requires that two parameters, γ and β, need to

be calibrated, for example by means of a grid search. This can be cumbersome, especially when

many models are estimated and averaged by dynamic model averaging, henceforth DMA, see

Section 3.

Therefore, the equation (9) is modified as follows:

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t|t−1ZtPt|t−1 + β ·MAX

[

0,FL

(

ν2t
Ht

− 1

)]

· I (10)

where νt = yt − ztθt|t−1, β ≥ 0 and FL (·) is the floor operator rounding to the smallest

integer. This setup is called standardized self-perturbing Kalman filter, SSP-KF henceforth.

The quantity ξt =
ν2t
Ht

− 1 plays a crucial role in the proposed estimator. Indeed, the squared

innovation is weighted by the innovation variance, avoiding the need to calibrate the sensitivity

parameter γ. More specifically, the sensitivity parameter is replaced by the ratio
ν2t
Ht

that

measures the relative impact of the squared innovation to the innovation variance. If the squared

innovation is small relative to the variance, i.e. ξt ≤ 0, then the self-perturbing term is null by

the round off operator, and there is no updating of the parameters. Alternatively, when ξt > 1,

the updating of the parameters is activated. Substituting equation (5) in the denominator of ξt

and rearranging the terms, it follows that ξt =
κ(ν2

t
−Ht−1)

Ht

. Hence, if κ(ν2t − Ht−1) is such that

ξt is larger than 1, then the updating is activated. In other words, if the size of the shock at

time t, as measured by ν2t , is larger than the past innovation variance Ht−1, then ξt is positive.

Interestingly, the updating mechanism provides protection against outliers. Indeed, if νt at

time t is affected by an outlier, it follows that, with high probability, κ(ν2t −Ht−1) will be large

relative to Ht. Therefore, the perturbation mechanism is activated at time t. However, in t+1

and in absence of large shocks, the term κ(ν2t+1 − Ht) will be small or negative, such that the

perturbation mechanism is not activated. On the other hand, if the the parameters are subject

to a structural break at time t, then the term FL

(

ν2t
Ht

− 1

)

is expected to be larger than zero
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until the effect of the structural break is offset by the evolution of the parameters. The speed

of adjustment is determined by the parameter β, the larger the β, the faster is the adaptation

once a structural break hits the system. The SSP-KF method requires the calibration of the

parameter β. In the rest of the paper, the parameter β is chosen with a grid search procedure.

2.4 Monte Carlo Simulations

The ability of the KF-TFF and SSP-KF to correctly capture the evolution of the parameters

is analysed by means of a Monte Carlo study. The data generating process is

yt = Xtθt + εt, εt ∼ N (0,Ht) , (11)

where Xt is a 1 × 2 vector of iid standard Gaussian variates, and θt is the vector of time-

varying parameters. Several specifications are considered for the variations in θt. In particular,

we consider the constant specification, i.e. 0 breaks, as well as specifications with 1, 4 and 8

structural breaks. Finally, also the random walk dynamics for θt are considered.

Given that the main assumption of the on-line estimation methods is that the variation in

the parameters is driven by the measurement error, then a crucial quantity in this context is

the noise-to-signal ratio, τ , i.e. the ratio between the variance of νt, Ht, and the signal, Xtθt.

Therefore, the Monte Carlo simulations are conducted for moderate values of τ , i.e. 0.1 and

1, and for extreme values of τ , i.e. 5 or 10. In particular, the variance Ht is set according to

the following formula Ht = τ · V ar (Xtθt), where V ar(·) denotes the sample variance. In other

words, the error variance, Ht, is assumed proportional to the variance of the signal.

Table 1 reports the average RMSFE of several on-line estimators relative to the OLS for

different sample sizes, T = 500, 1000, 2000, based on M = 1000 Monte Carlo replications.

As expected, the OLS estimator provides the lowest RMSFE for all values of τ , when the

parameters, θt, are constant. Indeed, in this case, the RMSFE of the other estimator relative

to that of OLS is always larger than 1. On the other hand, the on-line methods over-perform

the OLS, in terms of RMSFE, when the parameters are subject to structural breaks or vary as

a random walk process. More precisely, it emerges that the on-line methods with a constant

forgetting factor often under-perform with respect to the OLS, especially when λ = 0.75.

Indeed, when λ = 0.75, the parameters are expected to vary significantly in each period t,
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so that their trajectories are extremely noisy. This evidence becomes particularly clear as τ

increases, since most of the variability in the error term is transferred to the parameters. On

the other hand, both KF-TFF and SSP-KF provide excellent performances for moderate values

of τ , while for large values of τ only SSP-KF performs slightly better than the OLS. When τ is

10, the data do not provide sufficient information to extract the dynamics in the parameters,

so that the on-line methods provide similar results to those obtained with the OLS.

Figure 1 plots the true parameters, θ1 and θ2, when they are subject to 1 structural break

with τ is equal to 1. The figures report the on-line estimates obtained respectively with recursive

OLS, Panel a), KF-TFF, Panel b), and with SSP-KF, Panel c).1 It clearly emerges that the

recursive OLS are poorly designed for this kind of problems, as they adapt too smoothly after

the structural break. On the other hand, both KF-TFF and SSP-KF provide a good tracking of

the variation in the parameters. The point estimates obtained with the SSP-KF are smoother

than those obtained with the KF-TFF and, the confidence interval of the SSP-KF is slightly

larger than that obtained with the KF-TFF. However, in both cases, the variation in the

parameters is well captured by the on-line methods.

Finally, in order to assess the robustness of the on-line methods to deviations from the

Gaussian state space in (1), we add an outliers process to model (11). Hence yt is generated as

yt = Xtθt +Ψt + εt εt ∼ N (0,Ht) , (12)

where Ψt = sign(x) · Ber(p) · ψ. The operator sign(·) returns the sign of the argument. In

this case, x is extracted from a standard Gaussian distribution such that there is the same

probability of obtaining negative or positive signs. Ber(p) is a Bernoulli random variable,

where p = 0.015 in the simulations. Finally, ψ determines the size of the outlier and it is set

equal to 3. Table A.1 in the Appendix reports the results of the Monte Carlo simulations when

yt is contaminated by additive outliers. The evidence of Table 1 is confirmed also when outliers

are present. The RMSFE of the SSP-KF is generally the lowest compared to the other methods.

Figure 2 reports the estimates of the parameter θ1 when the latter is constant and the series is

contaminated by outliers. It emerges that the parameter estimate obtained with the KF-TFF

method over-react after the occurrence of an outlier, while the SSP-KF seems more robust to

1The hyper-parameters ρ and β are calibrated according to a grid search at each point in time.
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the presence of outliers.

3 Model Averaging and Model Selection

One of the advantages of the on-line Kalman filter is the possibility to carry out the DMA

and the dynamic model selection, henceforth DMS, in a computationally feasible way. Define

Lt ∈ {1, 2, . . . , K} the set of possible models at each point in time t, where K = 2m, m is

the number of variables included in the model. Since the model can change over time, then

L = 1, 2, . . . , G is the set of possible models over time where G = 2mT and T is the number of

observations. Define YT = {y1, . . . , yt} the information set, then the state space form can be

written as follows:

yt = Z
(k)
t θ

(k)
t + ε

(k)
t , ε

(k)
t ∼ N

(

0,H
(k)
t

)

,

θ
(k)
t+1 = θ

(k)
t + η

(k)
t , η

(k)
t ∼ N

(

0,Q
(k)
t

)

,

(13)

where k = 1, . . . , K indicates what is the selected model at time t. At each different k cor-

responds a different set of predictors and parameters. For example, the SSP-KF for the k-th

model becomes:

θ
(k)
t|t = θ

(k)
t|t−1 + P

(k)
t|t−1Z

(k)′

t

(

H
(k)
t + Z

(k)
t P

(k)
t|t−1Z

(k)′

t

)−1

ν
(k)
t (14)

P
(k)
t|t = P

(k)
t|t−1 − P

(k)
t|t−1Z

(k)′

t

(

H
(k)
t + Z

(k)
t P

(k)
t|t−1Z

(k)′

t

)−1

Z
(k)
t P

(k)
t|t−1 + β ·MAX

[

0,FL

(

ν
2,(k)
t

H
(k)
t

− 1

)]

· I.

(15)

Following Koop and Korobilis (2012) the DMA and DMS proceed as follows. Define Θt =

{θ
(1)
1 , . . . , θ

(k)
t } the set of parameters at time t then it holds that

p
(

Θt−1|t−1 | Yt−1

)

=

K
∑

k=1

p
(

θ
(k)
t−1|t−1 | Lt−1 = k,Yt−1

)

p (Lt−1 = k | Yt−1) (16)
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where p
(

θ
(k)
t−1|t−1 | Lt−1 = k,Yt−1

)

is given by:

Θt−1|t−1 | Lt−1 = k,Yt−1 ∼ N(θ̂
(k)
t−1|t−1,P

(k)
t−1|t−1) (17)

and p(Lt−1 = k | Yt−1) is the probability to be at model k at time t − 1. Define πt|s,k =

p (Lt = k | Ys) such that right-hand-side of equation (16) is πt−1|t−1,k then we get

πt|t−1,k =

K
∑

l=1

πt−1|t−1,lpkl, (18)

where pkl is the element of the transition probability in P with elements pkl.

Using the same approximation as in Raftery et al. (2010) and Koop and Korobilis (2012),

it follows that

πt|t−1,k =
πα
t−1|t−1,k

∑K

l=1 π
α
t−1|t−1,l

(19)

where 0 < α ≤ 1 is set to a fixed value slightly less than one and is interpreted in a similarly

to λ in Section 2.1. The updating equation of (19) is then given by:

πt|t,k =
πt|t−1,kp

(k) (yt | Yt−1)
∑K

l=1 πt|t−1,lp(l) (yt | Yt−1)
(20)

where p(l) (yt | Yt−1) is the predictive likelihood for model l, given by

p(yt | Yt−1) ∼ N(Z
(l)
t θ̂

(l)
t−1|t−1,H

l
t + Zl

tP
(l)
t|t−1Z

(l),′

t ). (21)

The predictive likelihood of DMA is a weighted average of each of the individual model predic-

tive likelihoods

p (yt | Yt−1) =

K
∑

l=1

p(l) (yt | Yt−1)πt|t−1,l, (22)

similarly, the predictive mean of yt is a weighted average of model specific predictions, where

12



the weights are equal to the posterior model probabilities

E [yt | Yt−1] =

K
∑

l=1

Z
(l)
t θ

(l)
t|t−1πt|t−1,l. (23)

On the other hand DMS involves selecting at each point in time the single model with the

highest value for p(Lt = k | Ys) and using this to forecast. Koop and Korobilis (2012) find that

both DMA and DMS forecast inflation very well.

The KF-TFF and SSP-KF methods require the parameters ρ and β to be calibrated.2 One

possibility is to select a grid of values where all possible model combinations are estimated. Then

the model with the smallest prediction error, ν
(k)
t = yt−Z

(k)
t θ

(k)
t|t−1 is selected. Although the grid

search for ρ and β is one dimensional, the calibration becomes computationally cumbersome as

the number of models grows, because the grid search must be carried out at each time point t

for each model k.

The following strategy in therefore used in the forecasting exercise presented in Section 4:

1. In t = 1, initialize the inclusion probabilities to π1|1,k = 1/2m ∀k and the design parame-

ters β = 0.001 and ρ = 1.

2. At time t > 1, equation (20) is used to compute the updated inclusion probabilities and

to find the best performing model.

3. Conditional on Yt and the exogenous variable corresponding to the best selected model,
{

Z
(∗)
1 , . . . ,Z

(∗)
t

}

, find by means of a grid search an estimate of β and ρ. Denote them by

β̂ and ρ̂.

4. Use the values β̂ and ρ̂ for the other models.

5. Iterate points 2-4 for t = 1, ..., T .

This allows the parameters ρ̂ and β̂ to adjust with time as the best model changes.

4 Online Forecast of Realized Volatility

Predicting the extent of the fluctuations of the stock prices is a primary issue in finance.

Strong empirical evidence, dating back to the seminal papers of Engle (1982) and Bollerslev

2The parameter λmin for the KF-TFF is set equal to 0.94 for all t = 1, ..., T .
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(1986), supports the idea that the volatility of financial returns is time varying, stationary and

long-range dependent. This evidence is confirmed by the statistical analysis of the ex-post

volatility measures, such as realized volatility, RV henceforth, which are precise estimates of

latent integrated variance and are obtained from intradaily returns, see Andersen and Bollerslev

(1998), Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) among many others.

For instance, Andersen et al. (2003), Giot and Laurent (2004), Lieberman and Phillips (2008)

and Martens et al. (2009) report evidence of long memory and model RV as a fractionally

integrated process. As noted by Ghysels et al. (2006) and Forsberg and Ghysels (2007) mixed

data sampling approaches are also empirically successful in accounting for the observed strong

serial dependence. In particular, Corsi (2009) approximates long range dependence by means

of a long lagged autoregressive process, called heterogeneous-autoregressive model (HAR). The

main feature of the HAR model is its interpretation as a volatility cascade, where each volatility

component is generated by the actions of different types of market participants with different

investment horizons. HAR type parameterizations are also suggested by Corsi et al. (2008),

Andersen et al. (2007) and Andersen et al. (2011). In its simplest version, the HAR model of

Corsi (2009) is defined as

yt = α + φdyt−1 + φwywt−1 + φmymt−1 + εt, εt ∼ N(0, σ2
ε), (24)

where yt = log(RVt), y
w
t = 1

5

∑4
j=0 yt−j, y

m
t = 1

22

∑21
j=0 yt−j , and θ =

[

φd, φw, φm
]

.

In light of the recent global financial crisis, and the different behaviour of RV series during

periods of high and low trading activity, a time-varying coefficients model may lead to a better

understanding of the volatility dynamics. The HAR parameters φd, φw and φm in equation

(24) are assumed to follow random walk dynamics, so that they measure the proportion of the

total variance that is captured by each volatility component at time t. Hence, the TV-HAR

parameters are interpreted as time varying weights for each volatility component and the model

is given by

yt = ct + φd
t yt−1 + φw

t y
w
t−1 + φm

t y
m
t−1 + εt, εt ∼ N(0,Ht)

ct = ct−1 + ηαt , φd
t = φd

t−1 + ηφ
d

t ,

φw
t = φw

t−1 + ηφ
w

t , φm
t = φm

t−1 + ηφ
m

t ,

(25)
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where ηt ≡ [ηαt , η
φd

t , η
φ2w
t , ηφ

m

t ] ∼ N(0,Qt), Qt is the 4 × 4 covariance matrix of the state

innovations while Ht is the time-varying variance of εt, see equation (5), which reflects the

dynamics in the volatility of volatility. In contrast to Liu and Maheu (2008) and McAleer and

Medeiros (2008), model (25) allows for a potentially large number of changing points of the

HAR parameters.

Apart from the pure autoregressive structure of the HAR, we are interested in evaluating if

some key financial and macroeconomic variables have additional explanatory power for S&P

500 realized volatility. Therefore, a number of predictors is added as explanatory variables to

equation (25). Following Fernandes et al. (2007), the lags of the following explanatory variables

are supposed to carry incremental information for the future values of RV: the foreign value of

the US dollar, St , the term spread, TSt, the difference between the effective and target Federal

Fund rates, FFt, the credit default swap of the US bank sector, CDSt, the CBOE VIX index,

V IXt, the trading volume on the S&P 500 index, Vt, the negative returns of the S&P 500

index, r−t .
3

With three autoregressive terms and seven explanatory variables, the number of potential

models is K = 210 = 1024 at each point in time. This calls for some simplifying assumptions.

In particular, we assume that the three autoregressive terms are always included, thus reducing

the number of potential models to K = 27 = 128. Hence, the predictions for each model are

combined with DMA or DMS as described in Section 3, with different values of the parameter

α. Table 2 reports a description of all the 45 models/methods that have been considered for

forecasting realized volatility. The performances are compared at different forecasting horizons,

short h = 1, medium h = 5, 10 and long h = 22. When forecasting h > 1 periods ahead, the

direct forecasting method is used. Therefore, the TV-HAR-X model for a given h and for a

given set of predictors, Xt, has the following form

yt+h = ct + φd
t yt + φw

t y
w
t + φm

t y
m
t + ζtXt + εt+h, t = 1, . . . , T − h (26)

where ζt is an 1 × N vector where N is the number of columns of Xt. The following criteria

are adopted to evaluate the quality of the out-of-sample forecasts:

1. The root-mean squared error, RMSE.

3All the explanatory variables are included with logarithmic transformation.

15



2. Log of predictive likelihood log(PL), see equation (22);

3. Continuous ranked probability score (CRPS), see the recent article of Groen et al. (2013)

for a discussion.4

The empirical analysis is carried out on the RV series of the S&P 500 index computed from

returns sampled at 5-minutes intervals. The sample period starts on January 2, 2004 and it ends

on December 31, 2012 for a total of 2256 daily observations. Tables 3 and 4 report the values of

the performance criteria for all models at all forecasting horizons for the out-of-sample period

that starts on January 03, 2007. This out-of-sample period includes the subprime financial

crisis, with an high probability of occurrence of one or more structural breaks in the HAR

model. From Table 3 it emerges that, at short forecasting horizons, the exogenous variables

have small predictive power, especially when they are not optimally combined, by DMA. For

example, for h = 1, the value of log(PL) of the TVP-HAR model without explanatory variables

(first row) is close to that of the TVP-HAR with the explanatory variables (rows 2-8). This

suggests that the relative contribution of the explanatory variables to the forecast is negligible.

The same conclusion holds when looking at other criteria and at longer forecasting horizons.

When focusing on the performance of the forecast combination obtained with DMA for different

values of α, it emerges a slightly better forecasting accuracy, especially at longer horizons, than

that obtained without averaging. It should be noted that, the best performance in terms of

forecasting accuracy for DMA is achieved when the SSP-KF method is employed for h > 1.

This result is independent of the choice of α. It is also interesting to note that the DMA at short

horizons does not produce better predictions than those obtained without forecast combination.

This is probably due to the fact that many models, with a small predictive power, are averaged

at each point in time thus increasing the prediction uncertainty.

The forecasting performances improve substantially, both at short and long horizons, when

the predictions of the best model, out of the 128 considered at each point in time, are obtained

by DMS with different values of α, see Table 4. Indeed, the DMS with α = 0.95 is always

contained in the model confidence set, see Hansen et al. (2011). For short forecasting horizons,

the best performance is obtained with DMS and KF-CFF when λ is set at high values, i.e.

λ = 0.99. This means that the trajectories of the parameters need to be smooth in order to

4The prediction with the smallest CRPS is preferred.
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compensate the noise emerging from the innovations in the measurement equations.

At longer forecasting horizons there is a strong evidence that the best performance is ob-

tained when the SSP-KF is employed to capture the evolution of the parameters, and the best

model is chosen by DMS with α = 0.95. Relatively to the case without explanatory variables

and forecast combination, i.e. case 1, the point values of the forecast evaluation criteria are

always below by a factor larger than 20%. This gives an idea of the additional power of the

financial covariates when they are correctly included in the model. It should also be noted

that the DMS provides good forecasts also for other values of α when the SSP-KF method

is adopted. This evidence is robust to the choice of the forecasting period. Indeed, the re-

sults do not change when the out-of-sample window starts on January 2, 2009, thus excluding

most part of the sub-prime crisis, see Tables A.2 and A.3 in the Appendix. The best forecast-

ing performance is achieved when DMS with α = 0.95 is adopted together with the SSP-KF

method.

4.1 Which Variables Are Good Predictors of Realized Volatility?

A great benefit of DMA and DMS over standard forecasting methods is that they allow the

forecasting model to change over time. Moreover, the inclusion probabilities give important

insights on which are the relevant predictors of the dependent variable. Although the TV-

HAR-X model presented in Section 4 has 7 potential predictors, DMA and DMS generally

select more parsimonious models with only a subset of all the included predictors. Following

Koop and Korobilis (2012), a measure of the dimension of the selected model is given by the

expected size, E(St). The expected size, i.e. the expected optimal number of predictors,5 is

obtained at each point in time by the following formula

E(St) =
K
∑

k=1

πt|t−1,kSt,k (27)

where St,k is the number of predictors in the k-th model and πt|t−1,k is the inclusion probability

defined in equation (19). In other words, the expected size is the weighted average of the

size of each individual model, and it carries important information for the degree of shrinkage

achieved by DMA. On the other hand, DMS only selects the model with the highest inclusion

5Excluding the intercept and the HAR parameters.
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probability. Hence, the measure of the size that is relevant for DMS is

SB
t = St,k∗ with k∗ such that πt|t−1,k∗ = max(πt|t−1,k) ∀k = 1, . . . , K (28)

where SB
t is the size of the best model. Figure 3 plots the evolution over time of E(St) and

SB
t for different forecasting horizons, h = 1, 5, 10, 22. 6 When h = 1 there is a strong evidence

that 3 predictors are selected by both DMA and DMS. As the forecasting horizon increases,

more predictors are selected. E(St) generally ranges between 3 and 5, and more predictors

are selected during the period of the sub-prime crisis until the beginning of 2009. A similar

evidence emerges also when looking at the dimension of the best model. It is interesting to note

that SB
t , although more noisy than E(St) by construction, remains constant for long periods.

This evidence may suggest that an high probability is generally associated to the best model,

such that the same number of predictors are selected for long periods. This is confirmed by a

visual inspection of Figure 4. Indeed, the inclusion probability of the best model when h = 1

is very high and it is higher than 0.85 after 2009. When the forecasting horizon increases, the

choice of the best model becomes less sharp, πt|t−1,k∗ ≈ 0.15. However, during the sub-prime

financial crisis, the probability of the best model increases up to 0.45 for h = 5. This is a very

high value obtained for a single model, considering that 128 competing models are evaluated

and contrasted. This may explain the good forecasting performance of the DMS compared to

DMA, as reported in Tables 3-4, since the uncertainty on the selection of the optimal model is

reduced when there is an high probability associated to a single model.

Figure 5 reports the inclusion probabilities for the seven explanatory variables obtained with

DMS for the four forecasting horizons considered. The plot for h = 1 confirms the evidence

arising from Figures 3 and 4 depicting a situation where, after the 2007-2008 financial crisis,

only 3 variables have predictive power for log(RV ). These variables are the dollar index, the

VIX and the past negative returns, thus confirming the importance of the market expectations

and the leverage effect in forecasting volatility. On the other hand, variables like FF and CDS

decrease their predicting power throughout the sample and they are almost excluded from the

model at the end of the period. At longer horizons is difficult to find clear dynamic patterns

6The reported values of E(St) and SB
t are relative to the TV-HAR-X model (26) estimated by SSP-KF with

α = 1. The large value of α guarantees an high degree of smoothness in the inclusion probabilities and hence
in the model size.
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for the inclusion probabilities of the explanatory variables. It appears that the dollar index,

the trading volume and the CDS have high inclusion probability when h > 1, especially during

the period 2008-2009.

Finally, Figure 6 reports the dynamic evolution of the HAR parameters obtained with the

SSP-KF. There is a marked difference between the estimates obtained with the baseline TV-

HAR model without explanatory variables, red line, and those obtained with DMS, blue line.

Interestingly, the estimates of the HAR parameters obtained with DMS are more stable than

those obtained with a pure autoregressive specification. For example, the parameter loading

the weekly volatility factor, φw
t , is rather constant under DMS, while it has noisy trajectories

and fluctuates significantly when the explanatory variables are not included in the model.

The variation in the autoregressive parameters, when the relevant explanatory variables are

not included, compensates the predictive power of the missing variables and the gap between

the two line is relevant. This confirms once more the role of the macro-financial variables in

predicting realized volatility.

5 Conclusion

This paper introduces a novel method to estimate TVP models in economics and finance. In

particular, a new estimation procedure is proposed, the standardized self-perturbed Kalman

filter, extending the on-line method proposed by Park and Jun (1992). This method has the

advantage, over the traditional Kalman filter routine that it is computationally very fast, as

the innovation in the parameters is driven by a non-linear function of the innovations in the

measurement equation. With respect to other on-line methods, such as the Kalman filter with

time-varying forgetting factor, there is no need to specify a low of motion for the forgetting

factor, λt. In the self-perturbed Kalman filter, the perturbation enters directly in the updating

step, so that the updating process of the parameters is endogenous. The updating mechanism

induces the parameters to change gradually, as it is also assessed via Monte Carlo simulations.

The proposed estimator is used to forecast the realized variance series of the S&P 500 index.

The self-perturbed Kalman filter allows to precisely extract the variation in the parameters and,

hence, to provide better signals for the optimal selection of the relevant explanatory variables.

It is found that the dollar index, the negative returns and VIX have predictive power for realized

19



volatility at short horizons.
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Table 1: Monte Carlo results for T = 500, 1000, 2000. The table reports the average RMSFE, relative to OLS, for several online estimation methods. For the SSP-KF
and KF-TFF, the hyper-parameters γ and ρ are selected according to a grid search at each point in time. The KF-FF is calculated for two values of λ. Criteria: RMSFE
(ratio to OLS).

T = 500 T = 1000 T = 2000

No break 1 break 4 breaks 8 breaks RW No break 1 break 4 breaks 8 breaks RW No break 1 break 4 breaks 8 breaks RW
τ = 0.1
KF-TFF 1.0140 0.5374 0.4306 0.4306 0.7607 1.0052 0.4068 0.4039 0.4035 0.7188 1.0024 0.3334 0.3716 0.3745 0.3477

SSP-KF 1.0886 0.4611 0.4285 0.4412 0.7647 1.0968 0.3991 0.3940 0.3968 0.7322 1.0263 0.3319 0.3625 0.3661 0.3490
KF-CFF λ = 0.75 1.4627 0.4865 0.4767 0.4858 0.9537 1.4882 0.4549 0.4669 0.4611 0.9331 1.4376 0.4121 0.4467 0.4399 0.4551
KF-CFF λ = 0.99 1.0933 1.2005 0.8218 0.9158 0.8857 1.1012 0.8951 0.7176 0.7688 0.8791 1.0397 0.6339 0.5849 0.6417 0.4099

τ = 1
KF-TFF 1.0114 0.8033 0.8076 0.8165 0.9838 1.0064 0.7518 0.7841 0.7850 0.9734 1.0027 0.7145 0.8076 0.7580 0.7510
SSP-KF 1.0268 0.8029 0.8097 0.8227 0.9901 1.0246 0.7607 0.7827 0.7837 0.9775 1.0134 0.7217 0.8097 0.7560 0.7500

KF-CFF λ = 0.75 1.4162 1.0352 1.0397 1.0455 1.3377 1.4308 1.0122 1.0394 1.0315 1.3321 1.4294 0.9807 1.0397 1.0130 1.0380
KF-CFF λ = 0.99 1.0338 0.9215 0.9115 0.9501 0.9975 1.0335 0.8317 0.8408 0.8693 0.9925 1.0193 0.7480 0.9115 0.8040 0.7570

τ = 5
KF-TFF 1.0093 0.9609 0.9840 0.9993 1.0124 1.0061 0.9406 0.9773 0.9902 1.0154 1.0032 0.9216 0.9840 0.9755 1.0035
SSP-KF 1.0174 0.9632 0.9666 0.9762 1.0116 1.0138 0.9433 0.9533 0.9554 1.0067 1.0083 0.9252 0.9666 0.9413 0.9359

KF-FF λ = 0.75 1.4117 1.3017 1.3035 1.3066 1.3971 1.4252 1.3002 1.3125 1.3086 1.3987 1.4275 1.2893 1.3035 1.3037 1.3152
KF-FF λ = 0.99 1.0211 0.9768 0.9829 0.9944 1.0127 1.0180 0.9492 0.9591 0.9678 1.0096 1.0146 0.9255 0.9829 0.9455 0.9362

τ = 10
KF-TFF 1.0093 1.0009 1.0109 1.0093 1.0119 1.0076 0.9899 1.0092 1.0079 1.0113 1.0032 0.9774 1.0109 1.0051 1.0190
SSP-KF 1.0143 0.9893 0.9909 0.9977 1.0111 1.0113 0.9762 0.9820 0.9841 1.0074 1.0069 0.9646 0.9909 0.9746 0.9698

KF-CFF λ = 0.75 1.4105 1.3524 1.3527 1.3548 1.4040 1.4241 1.3570 1.3642 1.3618 1.4074 1.4270 1.3529 1.3527 1.3605 1.3683
KF-CFF λ = 0.99 1.0181 0.9937 0.9959 1.0017 1.0128 1.0167 0.9776 0.9829 0.9866 1.0099 1.0128 0.9646 0.9959 0.9753 0.9706
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Table 2: Model used in the analysis. TVPHAR is the time varying HAR model. TVPHARX is the time varying HAR with explanatory variables. DMA is the dynamic
model average and DMS is the dynamic model selection. DMA and DMS are reported with time varying forgetting factor (TFF), standardized self-perturbed kalman
filter (SSP) and with a constant forgetting factor (CFF). For the CFF case we report the results for different values of λ and α.

Set of Forecasts Considered

1 TVPHAR: Time-varying parameter HAR model with CFF and λ = 0.99. 24 DMA with λ = 0.99 and α = 1.

2 TVPHARX1: TV-HAR model with lags of △St, with CFF and λ = 0.99 25 DMA-CFF with λ = 1 and α = 1.

3 TVPHARX2: TV-HAR model with lags of FFt, with CFF and λ = 0.99. 26 DMA-KF-TFF with α = 1.

4 TVPHARX3: TV-HAR model with lags of TSt, with CFF and λ = 0.99. 27 DMA-SSP-KF with α = 1.

5 TVPHARX4: TV-HAR model with lags of CDSt, with CFF and λ = 0.99. 28 DMS-CFF with λ = 0.95 and α = 0.95.

6 TVPHARX5: TV-HAR model with lags of (V IXt) , with CFF and λ = 0.99. 29 DMS-CFF with λ = 0.98 and α = 0.95.

7 TVPHARX6: TV-HAR model with lags of log(Vt), with CFF and λ = 0.99. 30 DMS-CFF with λ = 0.99 and α = 0.95.

8 TVPHARX7: TV-HAR model with lags of r−t , with CFF and λ = 0.99. 31 DMS-CFF with λ = 1 and α = 0.95.

9 TVPHARX1-7: TV-HAR model with lags of all explanatory variables and λ = 0.99. 32 DMS-KF-TFF with α = 0.95.

10 DMA-CFF with λ = 0.95 and α = 0.95. 33 DMS-SSP-KF with α = 0.95.

11 DMA-CFF with λ = 0.98 and α = 0.95. 34 DMS-CFF with λ = 0.95 and α = 0.99.

12 DMA-CFF with λ = 0.99 and α = 0.95. 35 DMS-CFF with λ = 0.98 and α = 0.99.

13 DMA-CFF with λ = 1 and α = 0.95. 36 DMS-CFF with λ = 0.99 and α = 0.99.

14 DMA-KF-TFF with α = 0.95. 37 DMS-CFF with λ = 1 and α = 0.99.

15 DMA-SSP-KF with α = 0.95. 38 DMS-KF-TFF with α = 0.99.

16 DMA-CFF with λ = 0.95 and α = 0.99. 39 DMS-SSP-KF with α = 0.99.

17 DMA-CFF with λ = 0.98 and α = 0.99. 40 DMS-CFF with λ = 0.95 and α = 1.

18 DMA-CFF with λ = 0.99 and α = 0.99. 41 DMS-CFF with λ = 0.98 and α = 1.

19 DMA-CFF with λ = 1 and α = 0.99. 42 DMS-CFF with λ = 0.99 and α = 1.

20 DMA-KF-TFF with α = 0.99. 43 DMS-CFF with λ = 1 and α = 1.

21 DMA-SSP-KF with α = 0.99. 44 DMS-KF-TFF with α = 1.

22 DMA-CFF with λ = 0.95 and α = 1. 45 DMS-SSP-KF with α = 1.

23 DMA-CFF with λ = 0.98 and α = 1.
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Table 3: Out-of-sample forecast performances with DMA. The table reports the measures of forecasting perfor-
mance relative to several online predictions, including forecast combinations by means of DMA with alternative
values of α. The out-of-sample period begins on January 3, 2007 and includes 1400 daily observations. An
asterisk (∗) implies that the model belongs to the 5% model confidence set of Hansen et al. (2011).

log(PL) CRPS RMSE log(PL) CRPS RMSE log(PL) CRPS RMSE log(PL) CRPS RMSE

h = 1 h = 5 h = 10 h = 22

TVPHAR -0.8041 0.3136 0.5735 -0.9903 0.3846 0.7101 -1.0706 0.4221 0.7862 -1.1529 0.4667 0.8885

TVPHARX1 -0.8039 0.3129 0.5724 -0.9816 0.3793 0.6988 -1.0527 0.4120 0.7643 -1.1073 0.4408 0.8344

TVPHARX2 -0.8081 0.3150 0.5766 -0.9929 0.3849 0.7098 -1.0700 0.4202 0.7818 -1.1494 0.4626 0.8774

TVPHARX3 -0.8080 0.3142 0.5749 -0.9922 0.3847 0.7106 -1.0672 0.4189 0.7806 -1.1323 0.4545 0.8618

TVPHARX4 -0.8060 0.3135 0.5736 -0.9858 0.3815 0.7030 -1.0658 0.4185 0.7789 -1.1403 0.4569 0.8622

TVPHARX5 -0.7932 0.3099 0.5671 -0.9846 0.3815 0.7063 -1.0597 0.4168 0.7792 -1.1388 0.4601 0.8808

TVPHARX6 -0.8031 0.3133 0.5724 -0.9905 0.3843 0.7102 -1.0674 0.4201 0.7829 -1.1465 0.4642 0.8814

TVPHARX7 -0.7866 0.3068 0.5617 -0.9928 0.3843 0.7111 -1.0737 0.4221 0.7862 -1.1566 0.4681 0.8898

TVPHARX1-7 -0.7762 0.3024 0.5523 -0.9770 0.3759 0.6916 -1.0445 0.4047 0.7474 -1.0997 0.4270 0.7853

α = 0.95

DMA-λ = 0.95 -0.8704 0.3317 0.5820 -0.9739 0.3726 0.6540 -0.9954 0.3815 0.6717 -0.9825 0.3756 0.6597

DMA-λ = 0.98 -0.7967 0.3120 0.5601 -0.9587 0.3744 0.6715 -1.0043 0.3929 0.7065 -1.0063 0.3934 0.7045

DMA-λ = 0.99 -0.7783 0.3070 0.5539 -0.9649 0.3768 0.6833 -1.0249 0.4022 0.7330 -1.0446 0.4112 0.7452

DMA-λ = 1 -0.7902 0.3113 0.5668 -0.9779 0.3835 0.7002 -1.0568 0.4195 0.7746 -1.1395 0.4641 0.8781

DMA-KF-TFF -0.7772 0.3064 0.5546 -0.9653 0.3764 0.6802 -0.9975 0.3877 0.6906 -0.9830 0.3806 0.6751

DMA-SSP-KF -0.8100 0.3126 0.5662 -0.8938 0.3414 0.6167 -0.8928 0.3399 0.6128 -0.8980 0.3412 0.6151

α = 0.99

DMA-λ = 0.95 -0.8540 0.3278 0.5826 -0.9642 0.3717 0.6596 -0.9856 0.3806 0.6793 -0.9728 0.3742 0.6669

DMA-λ = 0.98 -0.7908 0.3094 0.5588 -0.9632 0.3774 0.6787 -1.0080 0.3955 0.7163 -1.0136 0.3980 0.7191

DMA-λ = 0.99 -0.7723 0.3039 0.5516 -0.9695 0.3795 0.6907 -1.0298 0.4056 0.7439 -1.0533 0.4178 0.7607

DMA-λ = 1 -0.7885 0.3110 0.5666 -0.9811 0.3857 0.7051 -1.0633 0.4240 0.7840 -1.1515 0.4713 0.8960

DMA-KF-TFF -0.7736 0.3042 0.5522 -0.9687 0.3785 0.6866 -0.9976 0.3884 0.6974 -0.9852 0.3830 0.6864

DMA-SSP-KF -0.8032 0.3109 0.5644 -0.8923 0.3412 0.6166 -0.8891 0.3386 0.6117 -0.8948 0.3400 0.6147

α = 1

DMA-λ = 0.95 -0.8442 0.3198 0.5805 -0.9675 0.3710 0.6670 -0.9898 0.3794 0.6857 -0.9762 0.3761 0.6765

DMA-λ = 0.98 -0.7816 0.3045 0.5564 -0.9683 0.3780 0.6818 -1.0109 0.3949 0.7192 -1.0153 0.3999 0.7239

DMA-λ = 0.99 -0.7684 0.3016 0.5503 -0.9762 0.3819 0.6962 -1.0371 0.4091 0.7511 -1.0571 0.4216 0.7682

DMA-λ = 1 -0.7862 0.3094 0.5654 -0.9855 0.3862 0.7102 -1.0692 0.4266 0.7910 -1.1614 0.4765 0.9084

DMA-KF-TFF -0.7716 0.3022 0.5509 -0.9734 0.3805 0.6890 -1.0020 0.3886 0.7025 -0.9881 0.3845 0.6930

DMA-SSP-KF -0.7958 0.3085 0.5611 -0.8948 0.3419 0.6205 -0.8915 0.3388 0.6154 -0.8976 0.3409 0.6199
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Table 4: Out-of-sample forecast performances with DMS. The table reports the measures of forecasting performance relative to several online predictions with forecast
combinations by means of DMS with alternative values of α. The out-of-sample period begins on January 3, 2007 and includes 1400 daily observations. An asterisk (∗)
implies that the model belongs to the 5% model confidence set of Hansen et al. (2011).

log(PL) CRPS RMSE log(PL) CRPS RMSE log(PL) CRPS RMSE log(PL) CRPS RMSE

h = 1 h = 5 h = 10 h = 22

α = 0.95

DMS-λ = 0.95 -0.7776 0.2954 0.5338 -0.8787
(∗)

0.3307
(∗)

0.6009 -0.8977 0.3374 0.6094 -0.8918 0.3353
(∗)

0.6107

DMS-λ = 0.98
(∗)

−0.7205
(∗)

0.2826

(∗)
0.5172 -0.8800 0.3376 0.6183 -0.9254 0.3547 0.6515 -0.9309 0.3558 0.6524

DMS-λ = 0.99
(∗)

−0.7147

(∗)
0.2835

(∗)
0.5193 -0.9015 0.3480 0.6390 -0.9589 0.3707 0.6847 -0.9779 0.3769 0.6980

DMS-λ = 1 -0.7490 0.2969 0.5445 -0.9303 0.3618 0.6679 -1.0101 0.3966 0.7393 -1.0889 0.4381 0.8341

DMS-KFTFF -0.7212
(∗)

0.2868 0.5255 -0.8964 0.3451 0.6333 -0.9151 0.3481 0.6369 -0.8993 0.3414 0.6246

DMS-SSP-KF -0.7685 0.2995 0.5454
(∗)

−0.8486

(∗)
0.3244

(∗)
0.5914

(∗)
−0.8495

(∗)
0.3242

(∗)
0.5896

(∗)
−0.8505

(∗)
0.3233

(∗)
0.5894

α = 0.99

DMS-λ = 0.95 -0.8228 0.3132 0.5695 -0.9351 0.3532 0.6429 -0.9526 0.3611 0.6584 -0.9448 0.3579 0.6549

DMS-λ = 0.98 -0.7650 0.2976 0.5446 -0.9296 0.3580 0.6554 -0.9758 0.3765 0.6924 -0.9851 0.3816 0.7035

DMS-λ = 0.99 -0.7510 0.2950 0.5403 -0.9438 0.3659 0.6734 -1.0079 0.3927 0.7292 -1.0286 0.4014 0.7452

DMS-λ = 1 -0.7714 0.3040 0.5567 -0.9656 0.3761 0.6943 -1.0485 0.4143 0.7739 -1.1360 0.4627 0.8847

DMS-KF-TFF -0.7527 0.2960 0.5411 -0.9403 0.3627 0.6670 -0.9642 0.3687 0.6766 -0.9556 0.3654 0.6695

DMS-SSP-KF -0.7865 0.3052 0.5564 -0.8772 0.3338 0.6077 -0.8738 0.3324 0.6042 -0.8792 0.3332 0.6074

α = 1

DMS-λ = 0.95 -0.8442 0.3189 0.5807 -0.9615 0.3649 0.6671 -0.9845 0.3738 0.6882 -0.9716 0.3705 0.6812

DMS-λ = 0.98 -0.7801 0.3034 0.5555 -0.9611 0.3689 0.6763 -1.0046 0.3877 0.7162 -1.0081 0.3904 0.7220

DMS-λ = 0.99 -0.7680 0.3010 0.5506 -0.9691 0.3747 0.6896 -1.0334 0.4034 0.7485 -1.0494 0.4113 0.7670

DMS-λ = 1 -0.7858 0.3084 0.5649 -0.9834 0.3837 0.7105 -1.0666 0.4219 0.7887 -1.1539 0.4721 0.9031

DMS-KF-TFF -0.7699 0.3013 0.5499 -0.9677 0.3723 0.6845 -0.9987 0.3824 0.7018 -0.9797 0.3770 0.6943

DMS-SSP-KF -0.7950 0.3081 0.5605 -0.8919 0.3393 0.6184 -0.8907 0.3381 0.6145 -0.8943 0.3393 0.6172
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(a) Recursive OLS
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(b) Estimates based on KF-TFF
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(c) Estimates based on SSP-KF

Figure 1: Online estimation of time-varying parameter model. The black solid line is the true parameter. The
red line is the Monte Carlo average for each t, while the blue solid lines are the 90% Monte Carlo confidence
bands.
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Figure 2: Online estimation of time-varying parameter model when the series is subject to additive outliers.
The top panel reports a simulated trajectory of yt from equation (13) with τ = 0.1. The parameter estimates are
reported in the middle and in the bottom panels. The red dotted line is the true parameter, θ1 = 0.1. The black
solid line is the estimated parameter obtained with KF-TFF (middle panel) and with SSP-KF (bottom panel).
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(b) h = 5
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(d) h = 22

Figure 3: Expected size, E(St), and size of the best model, SB
t , for different forecasting horizons, h = 1, 5, 10, 22.
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Figure 4: Probability of the best model. The model reports the probability of the best model for
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Figure 5: Inclusion probabilities for DMS with h = 1, 5, 10, 22. The plot reports the inclusion probabilities for
the seven explanatory variables. The inclusion probabilities are relative to the DMS model with α = 1. Each
coloured line corresponds to the inclusion probability of the each explanatory variable. The colors are: Blue-St;
Green-FFt; Red-TSt; Azure-CDSt; Purple-V IXt; Black-Vt; Yellow-r

−
t .
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Figure 6: Time Varying HAR parameters for h = 1. The plots report the evolution of the HAR parameters. In
each figure, the blue solid line is the estimate obtained with DMS with α = 1. The red solid line is the estimate
obtained with the TV-HAR model without explanatory variables.
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1 Appendix

This appendix contains additional results relative to the paper ”Forecasting with the Standard-

ized Self-Perturbed Kalman Filter” by Stefano Grassi, Nima Nonejad and Paolo Santucci de

Magistris.

1



Table 1: Monte Carlo results for T = 500, 1000, 2000 when the process yt contains outliers and it is generated as in equation (12). The table reports the average RMSFE,
relative to OLS, for several online estimation methods. For the SSP-KF and KF-TFF, the hyper-parameters γ and ρ are selected according to a grid search at each point
in time. The KF-FF is calculated for two values of λ. Criteria: RMSFE (ratio to OLS).

T=500 T=1000 T=2000

No break 1 break 4 break 8 break RW No break 1 break 4 break 8 break RW No break 1 break 4 break 8 break RW

τ = 0.1

KF-TFF 1.0048 0.6627 0.5252 0.5214 0.8385 0.9985 0.6049 0.5138 0.4924 0.8641 0.9998 0.5931 0.5070 0.4783 0.5230

SSP-KF 1.0317 0.6438 0.5277 0.5284 0.8470 1.0206 0.6108 0.5117 0.4881 0.8709 1.0024 0.5887 0.5015 0.4717 0.5225

KF-CFF-λ = 0.75 1.2282 0.7238 0.6045 0.6005 1.0227 1.2096 0.6984 0.6049 0.5704 1.0963 1.2017 0.6909 0.6101 0.5701 0.6680

KF-CFF-λ = 0.99 1.0332 1.0635 0.8408 0.9070 0.9184 1.0211 0.8757 0.7452 0.7813 0.9154 1.0038 0.7166 0.6427 0.6739 0.5945

τ = 1

KF-TFF 1.0094 0.7972 0.8185 0.8008 0.8910 1.0043 0.7743 0.7934 0.7942 0.9857 1.0021 0.7776 0.7895 0.7885 0.8635

SSP-KF 1.0236 0.8016 0.8112 0.7993 0.9025 1.0252 0.7890 0.7802 0.7784 0.9438 1.0050 0.7776 0.7669 0.7594 0.8564

KF-CFF-λ = 0.75 1.3841 1.0289 1.0511 1.0160 1.1079 1.3851 1.0271 1.0260 1.0163 1.2884 1.3801 1.0369 1.0330 1.0168 1.1498

KF-CFF-λ = 0.99 1.0262 0.9186 0.9005 0.9439 1.0139 1.0309 0.8534 0.8423 0.8664 0.9492 1.0098 0.8034 0.7952 0.8044 0.8820

τ = 5

KF-TFF 1.0108 1.0191 1.0137 1.0258 0.9919 1.0097 1.0243 1.0153 1.0167 1.0067 1.0034 1.0250 1.0112 1.0095 1.0171

SSP-KF 1.0190 0.9492 0.9617 0.9614 0.9825 1.0162 0.9387 0.9457 0.9479 0.9958 1.0056 0.9319 0.9370 0.9374 0.9696

KF-CFF-λ = 0.75 1.4216 1.2865 1.3079 1.2907 1.3091 1.4144 1.2806 1.2915 1.2883 1.3926 1.4201 1.2936 1.3003 1.2960 1.3455

KF-CFF-λ = 0.99 1.0215 0.9671 0.9755 0.9886 1.0122 1.0214 0.9479 0.9552 0.9634 0.9962 1.0117 0.9333 0.9392 0.9422 0.9707

τ = 10

KF-TFF 1.0115 1.0209 1.0109 1.0179 1.0310 1.0144 1.0170 1.0124 1.0128 1.0059 1.0025 1.0125 1.0070 1.0060 1.0096

SSP-KF 1.0167 0.9822 0.9884 0.9909 1.0023 1.0128 0.9725 0.9772 0.9799 1.0018 1.0061 0.9674 0.9712 0.9725 0.9892

KF-CFF-λ = 0.75 1.4218 1.3470 1.3598 1.3488 1.3614 1.4169 1.3417 1.3483 1.3466 1.4082 1.4231 1.3526 1.3567 1.3547 1.3834

KF-CFF-λ = 0.99 1.0193 0.9878 0.9920 0.9993 1.0168 1.0199 0.9756 0.9802 0.9851 1.0030 1.0121 0.9681 0.9716 0.9733 0.9894
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Table 2: Out-of-sample forecast performances with DMA. The table reports the measures of forecasting perfor-
mance relative to several online predictions, including forecast combinations with alternative values of α. The
out-of-sample period begins on January 2, 2009 and includes 901 daily observations. An asterisk (∗) implies
that the model belongs to the 5% model confidence set of Hansen et al. (2011).

log(PL) CRPS RMSE log(PL) CRPS RMSE log(PL) CRPS RMSE log(PL) CRPS RMSE

h = 1 h = 5 h = 10 h = 22

TVPHAR -0.8243 0.3190 0.5825 -0.9658 0.3735 0.6883 -1.0319 0.4037 0.7492 -1.0893 0.4309 0.8050

TVPHARX1 -0.8243 0.3185 0.5820 -0.9604 0.3704 0.6813 -1.0187 0.3968 0.7326 -1.0463 0.4086 0.7577

TVPHARX2 -0.8263 0.3198 0.5837 -0.9668 0.3735 0.6887 -1.0297 0.4019 0.7445 -1.0815 0.4252 0.7878

TVPHARX3 -0.8272 0.3197 0.5835 -0.9645 0.3724 0.6861 -1.0272 0.4010 0.7450 -1.0740 0.4242 0.7959

TVPHARX4 -0.8260 0.3190 0.5830 -0.9643 0.3720 0.6861 -1.0268 0.4003 0.7431 -1.0822 0.4258 0.7957

TVPHARX5 -0.8151 0.3160 0.5765 -0.9655 0.3727 0.6872 -1.0283 0.4012 0.7479 -1.0866 0.4287 0.8029

TVPHARX6 -0.8237 0.3194 0.5820 -0.9635 0.3724 0.6874 -1.0274 0.4013 0.7447 -1.0868 0.4296 0.8011

TVPHARX7 -0.8086 0.3139 0.5728 -0.9686 0.3738 0.6902 -1.0349 0.4044 0.7499 -1.0925 0.4316 0.8069

TVPHARX1-7 -0.7977 0.3097 0.5633 -0.9574 0.3686 0.6785 -1.0082 0.3896 0.7207 -1.0411 0.4036 0.7477

α = 0.95

DMA-λ = 0.95 -0.8855 0.3368 0.5920 -0.9618 0.3672 0.6457 -0.9727 0.3714 0.6521 -0.9801 0.3739 0.6561

DMA-λ = 0.98 -0.8181 0.3184 0.5723 -0.9406 0.3664 0.6601 -0.9724 0.3784 0.6834 -0.9810 0.3825 0.6880

DMA-λ = 0.99 -0.8023 0.3140 0.5670 -0.9514 0.3696 0.6751 -1.0010 0.3911 0.7177 -1.0167 0.3991 0.7299

DMA-λ = 1 -0.8097 0.3159 0.5742 -0.9596 0.3740 0.6831 -1.0243 0.4034 0.7424 -1.0754 0.4286 0.7945

DMA-KF-TFF -0.7992 0.3128 0.5662 -0.9502 0.3690 0.6709 -0.9655 0.3728 0.6643 -0.9725 0.3754 0.6658

DMA-SSP-KF -0.8333 0.3188 0.5770 -0.8822 0.3353 0.6045 -0.8880 0.3366 0.6035 -0.8950 0.3374 0.6050

α = 0.99

DMA-λ = 0.95 -0.8706 0.3336 0.5924 -0.9564 0.3677 0.6533 -0.9640 0.3706 0.6596 -0.9744 0.3742 0.6642

DMA-λ = 0.98 -0.8143 0.3171 0.5709 -0.9436 0.3683 0.6649 -0.9742 0.3796 0.6901 -0.9874 0.3861 0.7000

DMA-λ = 0.99 -0.7972 0.3119 0.5640 -0.9522 0.3707 0.6772 -1.0015 0.3919 0.7233 -1.0206 0.4021 0.7394

DMA-λ = 1 -0.8076 0.3153 0.5731 -0.9594 0.3734 0.6838 -1.0283 0.4053 0.7474 -1.0870 0.4349 0.8061

DMA-KF-TFF -0.7952 0.3112 0.5631 -0.9504 0.3699 0.6726 -0.9633 0.3723 0.6677 -0.9748 0.3775 0.6748

DMA-SSP-KF -0.8272 0.3173 0.5751 -0.8809 0.3352 0.6038 -0.8853 0.3357 0.6034 -0.8916 0.3365 0.6040

α = 1

DMA-λ = 0.95 -0.8632 0.3269 0.5913 -0.9626 0.3685 0.6638 -0.9702 0.3711 0.6667 -0.9771 0.3744 0.6727

DMA-λ = 0.98 -0.8058 0.3119 0.5684 -0.9501 0.3698 0.6680 -0.9806 0.3816 0.6965 -0.9884 0.3885 0.7031

DMA-λ = 0.99 -0.7930 0.3093 0.5620 -0.9558 0.3727 0.6802 -1.0056 0.3942 0.7281 -1.0220 0.4042 0.7447

DMA-λ = 1 -0.8043 0.3140 0.5705 -0.9607 0.3722 0.6852 -1.0324 0.4062 0.7529 -1.0977 0.4399 0.8166

DMA-KF-TFF -0.7944 0.3097 0.5617 -0.9523 0.3718 0.6701 -0.9723 0.3759 0.6766 -0.9783 0.3793 0.6803

DMA-SSP-KF -0.8215 0.3151 0.5721 -0.8824 0.3367 0.6089 -0.8838 0.3347 0.6043 -0.8912 0.3368 0.6086
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Table 3: Out-of-sample forecast performances with DMS. The table reports the measures of forecasting performance relative to several online predictions with forecast
combinations by means of DMS with alternative values of α. The out-of-sample period begins on January 2, 2009 and includes 901 daily observations. An asterisk (∗)
implies that the model belongs to the 5% model confidence set of Hansen et al. (2011).

α = 0.95

DMS-λ = 0.95 -0.7903 0.3005 0.5423 -0.8666
(∗)

0.3261
(∗)

0.5924 -0.8775 0.3296 0.5929 -0.8912 0.3350
(∗)

0.6085

DMS-λ = 0.98
(∗)

−0.7485
(∗)

0.2916

(∗)
0.5330 -0.8671 0.3327 0.6106 -0.8988 0.3456 0.6355 -0.9105 0.3495 0.6414

DMS-λ = 0.99
(∗)

−0.7482

(∗)
0.2944

(∗)
0.5376 -0.8972 0.3468 0.6378 -0.9444 0.3660 0.6782 -0.9564 0.3710 0.6873

DMS-λ = 1 -0.7749 0.3039 0.5559 -0.9180 0.3569 0.6575 -0.9810 0.3838 0.7123 -1.0266 0.4054 0.7582

DMS-KF-TFF
(∗)

−0.7520
(∗)

0.2964 0.5412 -0.8870 0.3413 0.6279 -0.8843 0.3361 0.6145 -0.8898 0.3372 0.6156

DMS-SSP-KF -0.7962 0.3074 0.5584
(∗)

−0.8448

(∗)
0.3218

(∗)
0.5855

(∗)
−0.8461

(∗)
0.3220

(∗)
0.5824

(∗)
−0.8561

(∗)
0.3231

(∗)
0.5859

α = 0.99

DMS-λ = 0.95 -0.8367 0.3180 0.5760 -0.9254 0.3492 0.6352 -0.9327 0.3523 0.6406 -0.9442 0.3572 0.6504

DMS-λ = 0.98 -0.7903 0.3059 0.5574 -0.9089 0.3496 0.6394 -0.9442 0.3633 0.6688 -0.9618 0.3716 0.6844

DMS-λ = 0.99 -0.7781 0.3032 0.5530 -0.9287 0.3589 0.6592 -0.9816 0.3819 0.7113 -1.0002 0.3897 0.7254

DMS-λ = 1 -0.7932 0.3097 0.5651 -0.9474 0.3672 0.6767 -1.0155 0.3981 0.7408 -1.0719 0.4254 0.7964

DMS-KF-TFF -0.7778 0.3041 0.5529 -0.9233 0.3552 0.6520 -0.9292 0.3536 0.6476 -0.9456 0.3606 0.6579

DMS-SSP-KF -0.8138 0.3125 0.5683 -0.8656 0.3286 0.5964 -0.8691 0.3300 0.5963 -0.8753 0.3300 0.5967

α = 1

DMS-λ = 0.95 -0.8632 0.3257 0.5916 -0.9593 0.3649 0.6678 -0.9629 0.3632 0.6625 -0.9739 0.3688 0.6735

DMS-λ = 0.98 -0.8058 0.3117 0.5684 -0.9452 0.3618 0.6635 -0.9770 0.3769 0.6956 -0.9813 0.3797 0.7024

DMS-λ = 0.99 -0.7921 0.3086 0.5618 -0.9482 0.3662 0.6724 -1.0044 0.3916 0.7282 -1.0183 0.3983 0.7453

DMS-λ = 1 -0.8044 0.3130 0.5703 -0.9597 0.3716 0.6847 -1.0311 0.4042 0.7532 -1.0939 0.4356 0.8171

DMS-KF-TFF -0.7920 0.3085 0.5599 -0.9439 0.3613 0.6600 -0.9713 0.3703 0.6757 -0.9671 0.3701 0.6761

DMS-SSP-KF -0.8216 0.3153 0.5720 -0.8797 0.3340 0.6074 -0.8840 0.3341 0.6037 -0.8882 0.3353 0.6058
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