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Abstract

An information-theoretic thought experiment is developed to clarify why
the maximum entropy methodology is appropriate for predicting the equi-
librium state of economic systems. As a first step, object allocation prob-
lems, modeled as knapsack problems, are shown to be equivalent to conges-
tion games under weak assumptions. This proves the existence of finite im-
provement paths linking initial conditions and Nash equilibria. The existence
of these improvement paths is precisely what enables the use of maximum
entropy to make predictions concerning the equilibrium state. Finally an il-
lustration of this predictive power is provided through an application to the
Schelling model of segregation.

JEL classification: C02, C11, C63, D80.

Keywords: Information entropy, knapsack problem, potential function,
Schelling segregation.

1 Introduction

A central fact of economics, pointed out by Hayek (1945), is that an observer’s knowl-

edge of the state of the economy is vanishingly small. Even when some economic

∗This paper integrates and extends two previous papers released under the title ‘Ignorance is
bliss: rationality, information and equilibrium’ and ‘Back to the Future: A Simple Solution to
Schelling Segregation’, respectively School of Economics Discussion Papers 11/03 and 11/04.

†The author wishes to acknowledge the suggestions received at the ESHIA 2010 and 2011 confer-
ences, as well as thank the GREQAM seminar participants for suggesting the Schelling application
for the MaxEnt methodology. Particular thanks goes to Jagjit Chadha, Mishael Milaković, Alexis
Akira Toda and Alan Kirman for their helpful advice, and to Sonia Moulet for tirelessly providing
a sounding board for the author’s ideas. Any errors are the author’s.
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data is available, it does not completely describe the state of the economy. Given

such a setting, Jaynes (1957a,b) shows that the correct measure of the observer’s ig-

norance is the information-theoretic Shannon (1948) entropy. This measure in turn

provides the objective function of the maximum entropy (MaxEnt) methodology

which can be used to make predictions about the aggregate behaviour of a system

in situations where little detailed information is available.

Within economics MaxEnt has been used by Foley (1994) and Toda (2010) to

prove the existence of a statistical market equilibrium when agents have offer sets

of transactions they are willing to accept and meet in a random fashion. While in

their framework the ignorance relates to the sequence of transactions carried out

by agents, this will be extended here to include a much more fundamental form of

uncertainty, where a social planner is unable to even observe the preference rankings

of agents. Applied investigations using the MaxEnt methodology include Castaldi

and Milaković (2007), which investigates the distribution of wealth using information

on turnover in portfolios and Alfarano and Milaković (2008) which similarly explores

the origin of the Laplace distribution of firm growth rates.

A related use of information entropy in economics is the rational inattention

literature developed by Sims (2003, 2006). In this setting, as explained by Tutino

(2011), while information is freely available, agents are limited in their ability to

process it, typically through an upper bound on the bits per unit of time that can

be processed. Within this literature, MaxEnt can be seen as the limit case where

the processing capacity is zero, or equivalently the communication channel is closed.

Jaynes’ original motivation is that the methodology is “maximally noncomittal

with regard to missing information” (Jaynes, 1957a, p. 623), providing a general-

isation of Laplace’s principle of insufficient reason. Foley (1994) and Toda (2010)

provide a related combinatorial argument, which is that MaxEnt provides “the trans-

action distribution that can be realised in the largest number of ways” (Foley, 1994,

p. 322). Finally, the most rigorous treatment, by Shore and Johnson (1980), proves
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that it is the only method of inference satisfying three key axioms: the prediction

unique; it is independent of the coordinate system used; and it does not depend

on whether information about independent systems or sub-systems is accounted for

jointly or separately.

Regardless of these justifications, MaxEnt potentially suffers from one key prob-

lem when directly transposed to an economic setting. If the preferences and be-

haviour of agents are unobserved, then the predictions obtained with MaxEnt do

not depend on them, as by construction they are independent from any missing

information. This feature is most visible in the kinetic models used in econophysics,

as picked up by Gallegati et al. (2006), in which the aggregate distributions result

from assuming agents trade randomly chosen quantities, in an analogy to molecules

in a gas model.1 Chakrabarti and Chakrabarti (2009) attempt to address this issue

by providing a kinetic model where agents trade to maximise Cobb-Douglas utility,

but in order to conserve random interaction, they have to assume that the elastic-

ities with respect to commodities are randomly drawn from a uniform distribution

at each point in time, which is not consistent with the stable preferences used in

standard economic theory.

The first purpose of this paper is therefore to provide a stronger motivation for

the use of MaxEnt in economics. This is achieved by using a thought experiment in

which the problem of resource allocation is presented as a variant of the knapsack

problem. This is a well known combinatorial optimisation problem where one has

a set of objects with given values and weights and the objective is to pick the

combination of objects with the highest value without exceeding fixed a weight

limit, i.e. the capacity of the knapsack. In contrast to the extensive literature on

object allocation mechanisms and mechanism design initiated by Hurwicz (1973),

Harris and Raviv (1981) or Myerson (1981), the aim is not to provide a practical

solution to, or an optimal design for, this allocation problem, but rather to clarify

1See Chatterjee et al. (2005) for a good illustration of how kinetic models can be used to describe
the key features of wealth distributions.
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the sequence of steps required to solve the problem in theory in order to derive its

key properties.

The key finding of this thought experiment is that under standard assumptions

on preferences the knapsack allocation problem is equivalent to a congestion game.

In such games, identified by Rosenthal (1973), a single potential function encodes

changes in payoffs when agents switch strategies and attains an extremum for Nash

equilibria. This implies the existence of a set of finite improvement paths linking any

initial state to a Nash equilibrium. It is shown that these two properties provide a

strong rationale for the use of MaxEnt in economics, as it becomes possible to treat

the reversed improvement path like a noise process, which can then be described by

information-theoretic methods.

Following this, the second purpose of the paper it to illustrate how MaxEnt can

be used to predict the outcome of a simple agent-based model, namely the model

of urban segregation developed by Schelling (1969, 1971). The simplicity of the

framework, and crucially the presence of a potential function for the model make

it ideally suited as a test bed for the methodology. Indeed, in the physical analog

to the Schelling model proposed by Vinkovic and Kirman (2006), particles on a

lattice systematically rearrange themselves to reduce the internal energy of their

configuration, and the overall energy of the system provides the potential function.

Very recent analysis of the model by Grauwin et al. (2011) confirms that it possess

a potential function when bounded neighbourhoods are used.

The rest of the paper is structured as follows. Section 2 presents the the knapsack

framework used to model the allocation problem facing a social planner and shows

that under reasonable assumptions on preferences this is equivalent to a congestion

game. The implications for predicting aggregate distributions using the MaxEnt

methodology are clarified in section 3, and an application on to the Schelling model

of segregation is shown in section 4. Section 5 discusses these findings and concludes.
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2 Finite improvement paths in object allocation

2.1 Object allocation as a simple knapsack problem

The allocation problem facing a social planner is modeled using the multichoice

multi-dimensional variant of the knapsack problem (MMKP). Compared to a stan-

dard knapsack problem the MMKP enlarges both the number of choices and con-

straints, thus making the choice framework more general. In this variant several

groups of objects are available, with each object providing a specific value and re-

quiring a particular subset of several distinct sets of resources. The objective is

to pick a single object from each of the groups, maximising their aggregate value

while ensuring the multi-dimensional resource constraint is met. For instance, in

the allocation problem each agent is faced with a group of bundles and the optimi-

sation requires picking a single bundle for each agent. The MMKP has already been

used in the operational research literature to model practical allocation problems,

for example allocating nurses with different skills and time preferences to different

types of shifts (Dowsland and Thompson, 2000), or allocating distinct computing

resources such as memory and CPU cycles to several networked users with different

session preferences (Khan et al., 2002).

There are N agents in the economy, labeled i ∈ {1, 2, ..., N}, and the social plan-

ner has to allocate Q different units amongst those agents. Although this does not

influence the general problem, it will be convenient in the discussion to distinguish

K types of commodities, labeled k ∈ {1, 2, ..., K} for which qk ∈ N units are avail-

able, in which case Q =
∑

k qk. The allocation problem can be solved, in principle,

with the following four steps.

• Step 1: The social planner labels all the possible bundles that can be built

with the Q units available and lists them in a 2Q × Q binary identifier table

B, shown in table 1. The binary string formed by each row provides a unique
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identifier for the bundle as well as the bundle’s composition.

Table 1: Binary bundle identifiers

B j = 1 j = 2 j = 3 j = 4 ... j = Q
b = 1 0 0 0 0 ... 0
b = 2 1 0 0 0 ... 0
b = 3 0 1 0 0 ... 0
... ... ... ... ... ...

b = 2Q 1 1 1 1 ... 1

• Step 2: The social planner sends the B-table to the N agents who, assum-

ing completeness, rank the 2Q bundles according to their preferences. The

rankings are returned to the social planner who then builds a 2Q ×N ranking

table U , shown in table 2. Under the usual assumptions of transitivity and

monotonicity, all agents will rank the full bundle highest and the empty bundle

lowest.

Table 2: Bundle preference ranking

U i = 1 i = 2 i = 3 i = 4 ... i = N
b = 1 1 1 1 1 ... 1
b = 2 ... ... ... ... ... ...
... ... ... ... ... ...

b = 2Q 2Q 2Q 2Q 2Q ... 2Q

• Step 3: The social planner must pick a bundle for each agent, using a 2Q ×N

choice matrix X, where the choice variables are Xb,i ∈ {0, 1}. Importantly,

each agent only receives a single bundle, i.e.
2Q∑
b=1

Xb,i = 1 ∀i ∈ N .2 The goal

of the social planner is to maximise the sum of the ranks over agents while

remaining within the resource constraint. Formally, this can be expressed as

the following MMKP:

2One can see that even if the agent is allocated two bundles a and b from B, then a+ b is also
a bundle in B.
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max tr (UX ′)

s.t. :B′X1N = 1Q

(1)

Here 1N and 1Q are the N and Q-length unit vectors respectively. Choosing an

objective function for the MMKP is directly related to the problem of choosing

a social welfare function. The standard approach of knapsack problems is to

maximise the sum of the values of the objects, therefore maximising the sum of

the individual rankings is equivalent to a standard Benthamite social welfare

function.3 The constraint ensures that the sum of the binary identifiers for

each selected bundle equals the unit vector, i.e. each unit in Q is selected only

once. Expressed in scalar notation, this corresponds to the standard MMKP

as presented by Hifi et al. (2004); Sbihi (2007). The only differences compared

to the more general framework in the operational research literature is that

the resource requirement per bundle in B is the same for all i agents and the

available capacity is restricted to one for all dimensions in Q:

max
N∑
i=1

2Q∑
b=1

Ub,iXb,i

s.t. :
N∑
i=1

2Q∑
b=1

Bb,jXb,i = 1 ∀j ∈ Q

(2)

• Step 4: Once the optimal choice table X∗ is obtained, the social planner can

build a Q × N allocation table A∗ = B′X∗, shown in table 3. This table

uniquely assigns every unit in Q to an agent in N , and can therefore be used

for the purpose of selecting goods one by one and dispatching them to their

allocated owner.

In theory all four steps of the MMKP are feasible and A∗ exists. The problem is

not tractable in practice, however, and one of the main advantages of the framework

3Given that a utility function is never uniquely defined, it is possible to change the social welfare
function within the linear sum framework of the MMKP by applying monotonic transformations
to the rankings expressed by the agents in table U.
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Table 3: Allocation table

A∗ i = 1 i = 2 i = 3 i = 4 ... i = N
j = 1 0 0 1 0 ... 0
j = 2 1 0 0 0 ... 0
j = 3 0 1 0 0 ... 0
... ... ... ... ... ...

j = Q 0 0 0 1 ... 0

is that it neatly separates the types of hurdles facing a social planner. The first the

choice of the correct social welfare function, followed, as pointed out by Hayek

(1945), by a high and potentially unfeasible informational requirement (Step 2)

and by a large computationally complex combinatorial optimisation (Step 3).4 As a

result, although it exists, the optimal allocation A∗ is unknown to the social planner.

2.2 Knapsacks, congestion games and improvement paths

As explained in section 2.1, the operational research literature has used the MMKP

to model resource allocation on a network. Similar network allocation frameworks

also serve as illustrations of congestion games, for example the road congestion set-

ting presented by Rosenthal (1973), where road users attempt to select routes so as

to minimise the congestion they experience. We now show that the two are equiva-

lent under standard assumptions on preferences, which has important implications

in terms of convergence to a decentralised allocation.

The allocation of Q goods over N agents with preferences given by U is modeled

as a road congestion game where qk ∈ N users of K different types have to choose a

route i in an N -edge multigraph between start point s and finish point f , in order

to maximise their payoff V k
b,i. Elaborating on Rosenthal (1973), one could imagine

that the K different types represent different categories of vehicles, such as cars,

trucks, etc. who each generate different congestion costs. This choice of graph as,

4The knapsack problem is known to be NP-complete, in other words solutions to the problem
can be verified efficiently (in polynomial time), but there is no known algorithm for calculating the
solutions efficiently in the first place.
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Figure 1: Multigraph congestion game

illustrated by Figure 1, implies that distinct routes follow separate edges i.e. there

are no externalities between routes, where the benefit of a user choosing a route

might depend on the number of users choosing another route.

As is standard in congestion games, the payoffs V k
b,i for choosing an edge are

a function of the number of users already on the edge. These are derived from

the ranking information returned in table 2. Specifically, let us define ∆kUb,i =

Ub,i − Ub{−k},i as the change in ranks at the margin, following the addition of the

last k-type good to bundle b. In terms of notation, b{−k} is the bundle obtained

by removing a k-type good from bundle b. Similarly, in the following, b{+k} will

refer to the bundle obtained by adding a k-type good to bundle b.5 This allows the

derivation of a 2Q ×N ×K payoff array V which is set as V k
b,i = ∆kUb,i.

The following two assumptions on the rankings in the table 2 are required in order

to show equivalence between the MMKP and the congestion game frameworks:

Monotonicity: ∆kUb,i > 0 ∀k, i, b.

Concavity: Given two bundles a and b, ∀i ∈ N if Ub,i > Ua,i then ∆kUb,i <

∆kUa,i.

Monotonicity, which was already implicity assumed in the description of the rank-

ings table 2 ensures that all the congestion game payoffs in V are strictly positive.

Concavity intuitively means that the bundle rankings exhibits decreasing marginal

5∆kUb,i is of course undefined for the empty bundle and whenever bundle b contains no k-type
units.
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values, as adding extra units of k-type goods to a bundle, keeping the rest of the

bundle constant, will bring successively smaller increases in the ranking. Together

with monotonicity, this is required in order to ensure that the payoff of choosing

a particular edge is decreasing with the number of users on that edge, as in the

basic congestion game framework of Rosenthal (1973).6 We now prove that if the

rankings table U satisfies these two assumptions, the MMKP and congestion game

formulations are equivalent.

Proposition: If the ranking table U displays monotonicity and concavity, the

optimal solution to the MMKP problem is a Nash equilibrium for the corresponding

multigraph congestion game based on payoff table V.

Proof: By contradiction. Let X∗ be the decision table that satisfies the MMKP

(1) and A∗ = B′X∗ the corresponding allocation of the Q users over the N edges of

the multigraph. Let us assume that A∗ is not a Nash equilibrium for the Q users. If

b and a are the bundles allocated to edges i and x respectively by X∗, this implies:

∃ i, x, k : V k
a{+k},x > V k

b,i

Let Y be the decision table resulting from the switch of the k-type agent from

edge i to x. Y is identical to X∗, except for edges i and x, which receive bundles

b{−k} and a{+k} respectively. Using the definition of V k
b,i:

∆kUa{+k},x > ∆kUb,i

Ua{+k},x + Ub{−k},i > Ua,x + Ub,i

tr (UY ′)> tr
(
UX∗′)

X∗ does not satisfy the MMKP, which is a contradiction. �
6In the standard framework of Rosenthal (1973), congestion costs on an edge are increasing

with the numbers of users on the edge, and the aim of the network users is to choose the edge with
the lowest cost. This is equivalent to the framework used here, where the benefit of using an edge
falls with the numbers of users on the edge, and users choose the edge with the highest benefit.

10



Corollary: If the ranking table U displays monotonicity and concavity, the ob-

jective function of the MMKP is an exact potential function for the corresponding

multigraph congestion game based on payoff table V.

Proof: Immediate from the previous proof and the definition of the payoffs V k
b,i.

The change in payoff to a k-type user for switching from edge i to x is V k
a{+k},x−V k

b,i.

Given V k
b,i = ∆kUb,i and one thus has:

V k
a{+k},x − V k

b,i = ∆kUa{+k},x −∆kUb,i = tr (UY ′)− tr
(
UX∗′

)

The objective function of the MMKP is an exact potential for the congestion

game based on the corresponding V k
b,i payoffs. �

As was shown by Monderer and Shapely (1996), the equivalence of the MMKP

and congestion game framework and the existence of a potential implies the existence

of the finite improvement property (FIP). Starting from any initial state a simple

best response path will lead to a Nash equilibrium in a finite number of steps.7 In

particular, agent pairs meeting randomly and trading goods with low marginal utility

∆kUb,i against goods with higher marginal utility would satisfy the requirement, as

the potential function tr(UX ′) would increase following such trades.8 The central

implication of this result is that if the rankings expressed by the N agents are

monotonic and concave, then even though the MMKP cannot be solved centrally, the

social planner can be confident that the system will eventually reach a decentralised

allocation. In itself, this is no surprise and only duplicates the findings of the objet

alllocation literature mentioned in section 1. Nevertheless, it is shown below that

the existence of the FIP has implications for the use of the MaxEnt methodology in

economic systems.

7As pointed out by Rosenthal (1973), the equilibrium obtained in such a manner will not
necessarily be the one that maximises the potential.

8Clearly, the switching process used in the proof is simplistic: one does not expect goods to
choose their owners in order to maximise a payoff! A trade, however, can be broken down into a
sequence of such switches: a k-type good moves from agent i to agent x, immediately followed by
a another commodity switching from x to a.
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3 Information-theoretic consistent prediction

The FIP implies that any initial state I is linked to a Nash equilibrium F by a finite

sequence of intermediate states I → F , where each transition is the result of agents

making welfare increasing trades. For each commodity k we define hI
k(ε) and hF

k (ε)

as share of the N agents with endowment level ε ∈ {0, 1, 2, ..., qk} in the initial and

final states, respectively. hI
k and hF

k refer to the overall frequency distributions.

Assuming that only the initial endowment distribution hI
k is known and that the

intermediate states in the path I → F are not observable, a reasonable criterion

for the social planner to use in predicting the equilibrium distribution hF
k is to

maximise the posterior probability given the knowledge of the initial frequency, i.e.

argmaxhF
k
p
(
hF
k |hI

k

)
. Bayes’ rule states that this can be expressed as the product of

a prior on hF
k and the likelihood p(hI

k|hF
k ), normalised by the evidence p(hI

k):

p
(
hF
k |hI

k

)
= p

(
hF
k

) p (hI
k|hF

k

)
p (hI

k)
(3)

The likelihood p(hI
k|hF

k ) can be rewritten using the log-likelihood ℓ(hI
k|hF

k ):

p
(
hI
k|hF

k

)
=

exp
(
−ℓ
(
hI
k|hF

k

))
Zℓ

At this point one might think that finding the maximum of (3) is a matter of

maximising the likelihood, effectively treating the prior p(hF
k ) as constant. However,

in this case, because hF
k and hI

k are simply histograms on the same discrete support

{0, 1, 2, ..., qk}, there are as many ‘parameters’ to determine in hF
k as there are ‘data

points’ in hI
k. As a result the problem is likely to be degenerate and the choice of

prior will have an effect on the prediction. In such cases, Jaynes (1957a) and Shore

and Johnson (1980) advocate the use of an entropic prior of the form:

p
(
hF
k

)
=

exp
(
αS
(
hF
k |hI

k

))
ZS

(4)
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Here α is a regularisation parameter and S
(
hF
k |hI

k

)
is the information entropy of

the distribution. Many applications, including those mentioned in section 1 directly

use the Shannon (1948) entropy.

S
(
hF
k

)
= −

qk∑
ε=0

hF
k (ε) lnh

F
k (ε) (5)

The justification for this, epitomised in Foley (1994), is that S
(
hF
k

)
is in fact

the logarithm of the multiplicity, i.e the number of ways a distribution can be re-

alised. This implies that the prior probability (4) of a given distribution hF
k is simply

proportional to its multiplicity.

The existence of the FIP for well-behaved preferences provides an additional

information-theoretic justification for the following relative entropy measure, which

is more general and is used in particular in Bayesian image reconstruction. This

measure is equal to minus the Kullback-Leibler (KL) divergence from hI
k to hF

k , and

measures the similarity between two distributions hI
k to hF

k .
9 It reaches a global

maximum of zero for hI
k = hF

k and is strictly negative for hI
k ̸= hF

k .

S
(
hF
k |hI

k

)
= −

qk∑
ε=0

hF
k (ε) ln

hF
k (ε)

hI
k (ε)

(6)

As stated above, changes in endowments on the improvement path I → F re-

sult from agents systematically trading to improve their welfare. If, however, the

sequence of states forming the improvement path is view in reverse, F → I, changes

in endowments reflect a systematic sequence of errors as agents transition from op-

timal to sub-optimal states. The key consequence is that the known state I can be

considered to be the result of a particular noise process applied to the unobserved

state F . Therefore, the observer’s absolute uncertainty as to the distribution of

9Formally, the KL divergence measures how many bits of information are gained by learning
that the true distribution is hF

k rather than hI
k. As explained by Cover and Thomas (1991) it

is often used as a measure of the distance between two distributions, and its additive inverse is
therefore a measure of similarity. The reader is referred to Skilling and Gull (1991) for a discussion
of this entropy measure in an image reconstruction context.

13



endowments hF
k that occurs in the final state F , measured by (5), must be corrected

by the knowledge of hI
k, given that in theoretical terms it can be considered to be a

noisy version of hF
k itself.10

The posterior probability (3) can now be expressed as:

p
(
hF
k |hI

k

)
=

exp
(
αS
(
hF
k |hI

k

)
− ℓ
(
hI
k|hF

k

))
p (hI

k)ZSZℓ

(7)

One can see from (7) that finding the distribution hF
k with the highest a posterior

probability is therefore equivalent to solving a maximum entropy program with

respect to hF
k :

argmax
hF
k

p
(
hF
k |hI

k

)
⇔ argmax

hF
k

(
αS
(
hF
k |hI

k

)
− ℓ
(
hI
k|hF

k

))
The general prediction is given by the expression below, where α plays the role

of a Lagrange multiplier.

hF
k (ε) = hI

k (ε) exp

(
− 1

α

∂ℓ
(
hI
k|hF

k

)
∂hF

k (ε)

)
(8)

As an illustration, let us suppose that the noise process F → I is such that

agents can access all endowment levels in the initial state I with equal probability,

regardless of their endowment level in the final state F . This effectively implies as-

suming ergodicity, with a uniform distribution hI
k(ε) over the support {0, 1, 2, ..., qk},

frequencies given by hI
k(ε) = (qk + 1)−1 and a likelihood given by (qk + 1)−N . How-

ever, in a pure allocation problem such as the MMKP outlined above, the amount

of objects to be allocated qk is constant, therefore ℓ(h
I
k|hF

k ) must reflect the fact that

qk is constrained to be equal to the aggregate endowments in the final state:

N

qk∑
ε=0

εhF
k (ε) = qk (9)

10One can see that the two forms of entropy (5) and (6) are equivalent in a maximisation problem
if hI

k is a uniform distribution. This case is examined later.
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The maximum entropy program for the prediction is therefore:

argmax
hF
k

(
αS
(
hF
k |hI

k

)
−N ln (qk + 1)

)
(10)

Maximising (10) with respect to hF
k , using (9) for the value of qk, one obtains

the following predicted distribution:

hF
k (ε) =

e−λε

qk + 1
, with λ =

N2

α (qk + 1)

This replicates the MaxEnt prediction made in Foley (1994) of exponential en-

dowment distributions in a pure exchange economy. However, it is important to

point out that using relative (6) rather than the Shannon (5) entropy allows addi-

tional flexibility through the integration of the information provided by the initial

state I. In the ergodic case presented above, the noise process F → I results in all

endowment levels in the initial state I being equally accessible to any agent. As a

result, I contains no information about F and using relative entropy (6) produces

the same result as using (5). However, if it is not the case that the system is ergodic,

i.e. the noise process obtained by reversing agent trades does not lead to a uniform

hI
k, this should be reflected in the prediction (8). For instance, let us suppose that

the initial state I is arbitrarily close to a Nash equilibrium, such that resulting im-

provement path I → F is very short. With such a short path, hI
k will contain very

little noise compared to hF
k , and one would expect intuitively that the best predic-

tion for hF
k displays a strong around hI

k, which is what would be expected from (8).

The relationship between the width of the distribution in the denominator of the

relative entropy term (6) and the implicit length of the improvement path is investi-

gated in a companion paper, Barde (2012) which applies the MaxEnt methodology

to two well-known agent based models. The central finding is that the width of the

model term around the initial condition does indeed control the time-horizon of the

prediction.
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4 Application to the Schelling model of segrega-

tion

4.1 The Schelling model of segregation

In the standard setting of the Schelling model two types of agents live in a city

made up of discrete locations, and each type has a slight preference for living in a

neighbourhood composed of agents of the same type. When agents are allowed to

move, segregated neighborhoods will emerge from an integrated initial condition as

agents relocate to unoccupied locations in the city that are more attractive. This

is because the attractiveness of a location to an agent is a function of the number

of similar agents in the vicinity, which usually determined by counting the number

of similar agents within a neighbourhood of given width. If B is a N × N binary

matrix which identifies the neighbours for all N locations, and lc is the binary vector

for the location of c-type agents, this similarity for each location i is given by:

(B × lc)i =
∑

j
Bi,jl

c
j (11)

As is the case with the work of Grauwin et al. (2011), it is assumed that the space

occupied by the city is toroidal, so that the top/bottom and left/right edges are in

contact. This simplification allows the neighbourhood matrix B to be encoded as a

circulant matrix, which greatly facilitates the analysis. A further assumption used

here is that the utility of an agent is directly proportional to the number of similar

neighbors. This is contrast to original Schelling (1969, 1971) model, where utility

is a unimodal function of similarity, initially increasing with similarity, peaking for

a balanced neighbourhood composed of 50% of agents of each type, then declining

as similarity increases further. Indeed, Grauwin et al. (2011) show that in the case

of continuous neighborhoods such as the (11), the existence of a potential function

- critical to the argument in section 4.2 - requires utility functions that are linear
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Emergence of segregation in the Schelling model

functions of the number of similar agents.

Because it is assumed that relocation opportunities arrive as a Poisson process,

simulation is usually the method of choice for investigating this model. Grauwin

et al. (2011) themselves point out that most analyses of this model rely on agent-

based simulations and lack analytical solutions. Such a simulation is therefore pro-

vided as a point of reference for the MaxEnt prediction methodology. 11

11The parameters for the benchmark simulation are as follows: the city is 200 pixels across and
each pixel represents a location, so there are N = 2002 = 40000 locations. There are NR = NG =
16000 red and green agents and NW = 8000 free spaces. The continuous neighborhood agents
consider when assessing the desirability of a given location is a 7× 7 square area centered on that
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The sequence of images in Figure 2 (a)→(i) provides a time-lapse of the simu-

lation process. The random initial state is given in Figure 2 (a) , while Figure 2

(i) represents the state of the city after 44841 individual moves have occurred. The

final state in 2 (i), which exhibits the segregated outcomes typical of the Schelling

model, is stable as no further utility-improving relocations exist.

4.2 MaxEnt prediction

The Schelling model provides a simple yet effective setting for showcasing the use

of MaxEnt as an information-theoretic prediction methodology. In particular, the

sequence of images in Figure 2 provides an illustration of the FIP resulting from

the presence of a potential function. As stated in section 4.2, viewing the finite

improvement sequence in reverse, from (i)→(a), provides a situation where a well

defined and coherent image gradually becomes more and more noisy and decays until

most of the information content has disappeared. Thus, predicting 2 (i) from 2 (a)

is equivalent to retrieving a clean image 2 (i) from a noisy one 2 (a). The MaxEnt

methodology has a long history in addressing such problems in image processing

and astronomy, where the noise process involved in measurement is similar to the

(i)→(a) sequence of Figure 2. As a result, the specific algorithm used to obtain

the MaxEnt predictions of the Schelling model is a modified version of the image

reconstruction algorithm of Skilling and Gull (1991).

Within the setting described above in 4.1, let pci be the probability that the

ith location is occupied by an agent of the cth colour, with c ∈ {R,G,W} and∑
c p

c
i = 1. Given this, relative entropy (6) measures the expected information

content of a message revealing the final state of a randomly picked location, relative

to prior information on location of agents:

S (pi|mi) = − 1

N

∑
i

∑
c
pci ln

(
pci
mc

i

)
(12)

location.
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As outlined in Section 4.2, relative entropy (12) encodes prior information through

the underlying model mc
i . In the setup of the Schelling model, however, agent sat-

isfaction does not depend on absolute location, but on location relative to other

agents. As a result, there is no prior information regarding the probability of a sin-

gle location being occupied by a particular type of agent, and mc
i in expression (12)

is not particularly useful. This is dealt with by following Skilling and Gull (1987)

and considering the expected information content of a message revealing the state

{c, d} of two randomly picked locations {i, j}.12 Using expression (13) enables the

integration of a two-dimensional model mc,d
i,j which can contain knowledge of corre-

lations across locations.13 This is better suited to the prior information provided in

the Schelling model, in which one expects neighbouring locations to have a relatively

high probability of being occupied by similar agents.

S (pi, pj|mi,j) =
1

N

(
−2
∑

i

∑
c
pci ln p

c
i +

1

N

∑
i,j

∑
c,d

pcip
d
j lnm

c,d
i,j

)
(13)

The second important piece of information required for the MaxEnt prediction is

the initial condition of the system, which provides the data entering the likelihood in

(7). With the reversed FIP, where Figure 2 (i) decays to a noisy state in Figure 2 (a),

this represents the information that has not been wiped out in the decayed image.

Within the Schelling setting, this intuitively represents the key stable locations that

are initially most attractive and are not modified as the segregated outcome emerges.

This information is revealed by taking the convolutions of the initial state in order

to determine the initial attractiveness (11) for each type of population, shown in

Figure 3.

As a further simplification we assume, following the standard image recon-

12The derivation of the double entropy specification is detailed in appendix A.
13This structure also allows correlations across agent types, for example if agents were to evaluate

the attractiveness of a location not only by the number of similar agents but also by the number
of agents of a different type. This is not the case here as in the basic Schelling model, agents only
consider their own type in their location decision, in other words mc,d

i,j = 0 ∀d ̸= c.
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(a) initial green state (b) initial green convolu-
tion

(c) initial red state (d) initial red convolution

Figure 3: Initial condition information

struction literature, that the divergence between the prediction pc and the initial

attractiveness data dc is normally distributed. This implies that the likelihood

p(dc|pc) = exp(−ℓ(dc|pc))/Zℓ is gaussian, and therefore the log-likelihood ℓ(dc|pc) is

directly related to the chi-squared deviation between the initial data available and

the prediction, where (σc)2 is the variance of the dc data.

ℓ (dc|pc) =
∑

i

((B ∗ pc)i − dci)
2

(σc)2
=

χ2 (pc)

2
(14)

The the information theoretic problem is therefore to maximise the ignorance of

an observer (13) subject to the information provided by the likelihood (14), normal-

ising to ensure that the predicted number of agents of each colour equals the initial

amount N c. As pointed out by Skilling and Gull (1991), the value of the implicit

Lagrange parameter α is used to constrain the noise level measured by (14) to be

equal to number of degrees of freedom controlled by noise, i.e. the overall number

20



of locations N minus the number of good locations Γc in the initial data.14

The first order condition of the problem directly provides the best prediction for

the distribution of agents over the locations:

pci =
µc
i

Zc
exp

(
− 1

2αc

∂χ2 (pc)

∂pci

)
(15)

The effective model µc
i and the normalisation parameter Zc are given by:

µc
i = exp

(
1

2N

∑
j

∑
c,d

pdj lnm
c,d
i,j

)
and Zc =

1

N c

∑
i
µc
i exp

(
− 1

2αc

∂χ2 (pc)

∂pci

)

One can see that the effective model for a location µc
i is simply the geometric

mean of the individual correlations mi,j, weighted by the probability vector. As

pointed out by Skilling and Gull (1987), this is effectively a convolution of the

probability vector pc with the logarithm of the N×N model matrix, similar to (11).

15 It is important to point out that expression (15) only provides an implicit solution

for the probability distribution pci as both the model term µc
i and noise term χ2(pc)

are themselves functions of pci . The predicted distributions are therefore obtained

using a gradient-based algorithm, outlined in appendix B.

Figures 4 (c) and (f) provide the MaxEnt prediction (15) given the information

from the initial condition in Figure 3. As a point of comparison, Figures 4 (a)

and (d) are the colour-specific results of the simulation shown in Figure 2, and

Figures 4 (b), (e) provide the colour-specific frequencies obtained by running 1000

Monte-Carlo (MC) iterations of the Schelling model on the same initial condition.

Intuitively, these indicate the percentage of simulations that result in a particular

location being occupied by a green or red agent.

14The relation between α and the number of noisy degrees of freedom as well as the calculation
of Γc are explained in appendix B.

15In practice the convolution used in the prediction algorithm is different: instead of calculating
pdj lnm

c,d
i,j the algorithm uses mc,d

i,j ln p
d
j . This is done for computational reasons. Most of the entries

in the model M are very small as one expects the correlations across locations to exist only over
short distances. As a result they are truncated out of the matrix, which can be stored efficiently as
a sparse matrix with many zero elements. Taking the logarithm of this sparse matrix thus becomes
problematic, therefore in practice it is easier to take the logarithm of the pc.
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(a) Final green state (b) Monte Carlo green fre-
quency

(c) MaxEnt Green proba-
bility density

(d) Final red state (e) Monte Carlo red fre-
quency

(f) MaxEnt Red probabil-
ity density

Figure 4: MaxEnt predictions vs. Monte Carlo frequencies

The central finding is that although the initial information in Figure 3 is very

noisy and therefore seems of limited use, comparing Figures 4 (b), (c) and (e), (f)

respectively suggests that the MaxEnt methodology can extract it effectively and

thus provide a reliable prediction for the expected outcome of the model. This is

confirmed by the large and highly significant Spearman rank correlation in Table

4. Two measures of relative mean square error (MSE) are also provided: the first

measures the sum of squared deviations between the MaxEnt prediction and the MC

frequency relative to the variance of the MC frequency and the second provides the

same measure using standardised MaxEnt and MC distributions. The standardised

MSE supports the good predictive power of the MaxEnt procedure, but the regular

MSE measure suggests that the MaxEnt prediction is only slightly better than the

expectation NC/N . What this difference indicates is that although MaxEnt cor-

rectly predicts the sign of the deviation from NC/N , the predictions (15) are much
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Table 4: Goodness of fit tests, Monte Carlo vs. MaxEnt

Spearman’s ρ p-value MSE/σ2 Standardised MSE/σ2

Green 0.910 0 0.9879 0.2292
Red 0.8190 0 0.9888 0.4546

flatter than the empirical MC frequencies. This is to be expected given that the

reconstructed image (15) only controls a very small number of degrees of freedom Γc,

the rest being controlled by the noise level, as measured by the chi-squared deviation

(14).

5 Discussion and Conclusion

The justification provided for using MaxEnt in economics formally rests on the struc-

tural similarity between simple object allocation, as modeled by the MMKP, and

congestion games frameworks. In fact, the only requirement for the optimal MMKP

allocation to also be a Nash equilibrium in a corresponding congestion game is con-

cavity in the bundle rankings, allowing the MMKP objective function to become

an exact potential for the game. Assuming this is the case, the system displays

the FIP, i.e. from any initial state there exists a finite path to a Nash equilibrium

under even the simplest adjustment dynamics. It is the presence of the FIP and

the corresponding improvement path that then provides the key motivation for the

MaxEnt methodology in such a system, as well as a clarification of the link with

the kinetic models mentioned in the introduction. This is because the sequence of

states forming the improvement path can be interpreted in two ways, depending the

direction in which it is viewed.

If the improvement path is viewed forward, starting at the initial state and finish-

ing at the equilibrium, the picture one has is of a system that gradually self-organises

as agents perform welfare-increasing trades. This is analogous to the definition of
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biological entities as entropy-reducing systems, following in particular the initial

insight of Schrödinger (1967). The information entropy measures the ignorance

of the observer as to sequence of trades that occur, in particular the underlying

preferences of agents. If, however, the improvement path is played backwards, i.e.

starting at the equilibrium and traveling back towards the initial condition, then

a physical analogy is more appropriate. In this setting agents systematically make

welfare decreasing trades, in other words systematic errors. With this reverse view,

the initially ordered state gradually decays through contamination by noise. This

corresponds to the direct physical interpretation of entropy increases: An initially

ordered system, say an ice cube in a glass of water, which gradually decays into

a disordered thermal equilibrium. In this case the information entropy measures

ignorance as to the amount and type of noise that has been introduced.

The central finding is therefore that if a system possesses the FIP, then predicting

its equilibrium from a known initial state is formally equivalent to reconstructing

an unobserved clean signal out of an observed noisy one. Not only does this provide

a stronger justification for the use of MaxEnt and information-theoretic methods

in economics, but it also suggests that image reconstruction algorithms, designed

specifically for the purpose of removing noise from a signal, could become useful

tools in economic prediction. This is illustrated by the application to the Schelling

model, where such an algorithm is shown to be able to predict the emergence and

location of segregated neighbourhoods with a good level of accuracy.
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A Information-theoretic framework

The key difference between the standard relative information content (12) typically

used in the image processing literature and the specification (13) used here is the

use of the double space entropy suggested by Skilling and Gull (1987) to integrate

prior knowledge of relative rather than absolute positions of agents. Formally, the

relative entropy is the same as (12), except that it encodes the information content

of a message revealing the colours {c, d} of a randomly chosen pair of locations {i, j},

relative to what would be expected given prior knowledge of correlations mc,d
i,j :

S (pi, pj|mi,j) = − 1

N2

∑
i,j

∑
c,d

pc,di,j ln

(
pc,di,j

mc,d
i,j

)

S (pi, pj|mi,j) = − 1

N2

∑
i,j

∑
c,d

pc,di,j ln p
c,d
i,j +

1

N2

∑
i,j

∑
c,d

pc,di,j lnm
c,d
i,j

Treating the joint probability as the product of the marginal probabilities pc,di,j =

pcip
d
j , and recognising that

∑
i

∑
c p

c
i ln p

c
i =

∑
j

∑
d p

d
j ln p

d
j , one obtains the specifi-

cation used in equation (13). Although the existence correlations in the model mc,d
i,j

means that the probabilities are not in fact independent, this assumption allows the

relative entropy to measure the extra information required to treat probabilities pci

and pdj as independent when they are in fact related by the underlying model.

Given the specifications for the entropy (13) and the the likelihood (14), max-

imising the posterior distribution involves solving the following maximum entropy

problem. It is assumed that the αc parameter integrates the multiplicative 2/N

term in (13).

argmax
pci

(
αcS (pi, pj|mi,j)−

χ2 (pc)

2

)
(A-1)

This leads to the following first order condition with respect to pci :
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αc (− ln pci − 1 + lnµc
i)−

1

2

∂χ2 (pc)

∂pci
= 0

pci ∝ µc
i exp

(
− 1

2αc

∂χ2 (pc)

∂pci

)
(A-2)

Because N c, the total number of agents of a particular colour, is given in the

initial condition and does not change over time, it is possible to derivate a partition

function Zc which serves to normalise the distribution over locations:

∑
i
pci = N c ⇒ Zc =

1

N c

∑
i
µc
i exp

(
− 1

2αc

∂χ2 (pc)

∂pci

)

B Maximum entropy algorithm

The algorithm used to obtain the probability distribution (15) follows from Skilling

and Gull (1991).16 The initial probability and model vectors are given by the uniform

distribution pci = mc
i = sc. Prior to running the algorithm, the initial conditions are

processed in order to extract the relevant data for calibrating the model constraints:

• The initial attractiveness data vector dc is calculated as a convolution of initial

state vector lc0, i.e. d
c = B × lc0.

• The initially most attractive locations G are determined as those where dci ≷

dc ± 2σc. Because these good locations are clustered, the number of distinct

clusters Γc is obtained by convolving the initial attractive locations G with B

a second time to identify those which most attractive because located closest

to each other. This provides ΓR = 14 and ΓG = 11.

16The code for the Schelling simulation and the MaxEnt reconstruction algorithm is available
from the author on request, as well as the initial condition matrix required for replicating the
figures shown here.
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• Finally the expected radius of a cluster b =
√
G/(Γc ∗ π) is calculated. This

is used to calibrate the model M c, which is assumed to be a circulant matrix

containing a gaussian convolution of standard deviation b.

B.1 Newton method iteration

The iterative algorithm is uses the Newton method. Referring to Qc as the argument

of the maximisation in (A-1), the Jacobian vector and Hessian matrix are given by:

 ∇Qc = αc∇S (pi, pj|mi,j)−∇ℓ (dc|pc)

∇∇Qc = αc∇∇S (pi, pj|mi,j)−∇∇ℓ (dc|pc)
(A-3)

The step change in the probability vector at each iteration can be calculated

using the standard Newton method:

∆pc = − (∇∇Qc)−1 .∇Qc (A-4)

Given that the Hessian matrix ∇∇Qc is symmetric by construction, calculation

of the iteration step (A-4) can be carried out efficiently by using the Preconditioned

Conjugate Gradient method (PCG) to solve −∇∇Qc.∆pc = ∇Qc without inverting

the Hessian ∇∇Qc. Once this is done, the prediction is updated: pc + ∆pc. The

model is also updated at this point using ∆µc = [µc] [pc]−1 M c∆pc.

B.2 Control and termination

Two related control issues must be solved as the Newton iterations proceed. First of

all, the value of the αc parameter has to be determined and adjusted, and secondly

the iteration must be terminated at some point. The main advantage of the Skilling

and Gull (1991) approach is that it is the optimal value of αc which both controls

the iteration process and provides this termination condition. By integrating αc into

the hypothesis space of the Bayesian problem, they show that the most probable α̂c
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satisfies:

−2αcS ( p̂i, p̂j|mi,j) = tr
(
(αcI + L)−1 L

)
where αcI + L = [pc]

1
2 ∇∇Qc [pc]

1
2

(A-5)

If λi are the eigenvalues of L, then tr
(
(αcI + L)−1 L

)
=
∑

i λi/(α
c + λi). The

trace term is therefore a measure of the number of good observations in the data,

i.e. the number of dimensions for which λi >> αc, and the role of α is to identify the

number of good observations and hence the amount of noise, as −2αcS + χ2 = N .

If r is a N × 1 vector of N(0, 1) errors, then the trace term can be estimated by:

tr
(
(αcI + L)−1 L

)
=
⟨
r′ [pc]−

1
2 (∇∇Qc)−1 . [pc]−

1
2 Lr

⟩
(A-6)

This implies that the tr
(
(αcI + L)−1 L

)
term can be calculated by using PCG

to solve ∇∇Qc.Y = [pc]−
1
2 Lr, then calculating r′ [pc]−

1
2 Y . Given the similarity of

(A-6 ) and the step-size problem (A-4), this is carried out in parallel to the main

iteration at very little extra cost. This provides control by providing a target value

α̃c = −trace/(2S) towards which the αc parameter can be adjusted at each iteration.

In the original Skilling and Gull (1991) algorithm, equation (A-5) also provides

the following termination condition for the algorithm, which is satisfied when Ω ≈ 1.

Ω = −
tr
(
(αcI + L)−1 L

)
2αcS (pi, pj|mi,j)

(A-7)

Given that the number of distinct good locations Γc is known in advance, (A-

5) and (A-7) are modified to take this into account, by rescaling αc with a free

parameter θ, shown below. This parameter ensures that when the Ω ≈ 1 termi-

nation condition is reached α̂c = α̃c. More importantly, it also ensures 2(α̂cθ)S =

tr((α̂cI + L)−1L) = Γc and χ2(p̂c) = N − Γc.
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θ = −2αcS (pi, pj|mi,j)

Γc

α̃c = −θ
tr
(
(αcI + L)−1 L

)
2S (pi, pj|mi,j)

Ω = −θ
tr
(
(αcI + L)−1 L

)
2αcS (pi, pj|mi,j)
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C Colour figures

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Emergence of segregation in the Schelling model
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(a) initial green state (b) initial green convolu-
tion

(c) initial red state (d) initial red convolution

Figure 3: Initial condition information

(a) Final green state (b) Monte Carlo green fre-
quency

(c) MaxEnt Green proba-
bility density

(d) Final red state (e) Monte Carlo red fre-
quency

(f) MaxEnt Red probabil-
ity density

Figure 4: MaxEnt predictions vs. Monte Carlo frequencies
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