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Interpreting the Hours-Technology time-varying

relationship∗

Cristiano Cantore Filippo Ferroni Miguel A. León-Ledesma

January 18, 2012

Abstract

We investigate the time variation in the correlation between hours and tech-

nology shocks using a structural business cycle model. We propose an RBC

model with a Constant Elasticity of Substitution (CES) production function

that allows for capital- and labor-augmenting technology shocks. We estimate

the model using US data with Bayesian techniques. In the full sample, we find

(i) evidence in favor of a less than unitary elasticity of substitution (rejecting

Cobb-Douglas) and (ii) a sizable role for capital augmenting shock for business

cycles fluctuations. In rolling sub-samples, we document that the impact of

technology shocks on hours worked varies over time and switches from negative

to positive towards the end of the sample. We argue that this change is due to

the increase in the elasticity of factor substitution. That is, labor and capital

became less complementary throughout the sample inducing a change in the

sign and size of the the response of hours. We conjecture that this change may

have been induced by a change in the skill composition of the labor input.
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1 Introduction

One of the most controversial issues in business cycle theory regards the impact of

technology shocks on hours worked. The sign and size of the hours response to a pro-

ductivity shock can have important consequences for policy analysis. The estimated

response has also been interpreted as shedding light on the ability of contrasting macro

models to explain features of the business cycle. The focus of most of this literature

has been on the analysis of the response of hours in full samples.1 However, recent

business cycle literature has shifted attention to the changing nature of some key data

moments since the works of Kim and Nelson (1999), McConnell and Perez-Quiros

(2000), and Stock and Watson (2003). Specifically concentrating on the time-varying

relationship between productivity and hours worked, Gambetti (2006), Stiroh (2009),

and Gaĺı and Gambetti (2009) unveil important changes in the sign and size of these

responses in the US economy since the post-war era. Technology shocks appear to

have a strong negative effect before the 1980s and positive or non significant af-

terwards, although this increase is not monotonic. Fernald (2007) also finds that,

after allowing for trend breaks in productivity, hours tend to fall when technology

improves.2 Hence, time-varying structures have been considered as a possible statis-

tical explanation for the instability of the full sample SVAR estimates. Most of this

literature, however, focuses on reduced form representations that allow for limited

structural interpretations in terms of deep model parameters.

In this paper, we propose a structural explanation for the time-varying nature

of the reaction of hours to technology shocks. We first provide further evidence

on the changes in the impulse-response of hours to technology shocks for the US

economy using a standard SVAR with long-run restrictions. We then propose and

estimate a parsimonious model that is potentially able to capture this observed

time variation. Specifically, we propose a simple RBC model where we introduce

a Constant Elasticity of Substitution (CES) production function. As shown by

Cantore, León-Ledesma, McAdam and Willman (2010), the sign of the response of

hours to a technology shock depends crucially on the relative magnitude of the

1There is a large literature on this issue that we do not aim to survey here. For comprehensive

reviews, see Gaĺı and Rabanal (2005) and Whelan (2009).
2Kahn and Rich (2007) and Roberts (2001) amongst other document two changes in labor pro-

ductivity in US. One in early 70’s and one during the mid 90’s. Fernald (2007) finds two breaks in

private-business labor productivity growth: 1973:2 and 1997:2. He finds also that the mean growth

is similar before 1973 and after 1997. Hansen (2001), using a simple first-order autoregressive model

finds a break in February 1992.
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elasticity of capital-labor substitution and the capital intensity in production. The

model contains a preference shock and two technology shocks: labor- and capital-

augmenting. These shocks can be distinguished when the elasticity of capital-labor

substitution differs from one (the Cobb-Douglas case). We first study the proper-

ties of our specification over the full sample. Several results stand out. First, we

show that the proposed specification, despite its parsimony, fits the postwar US data

on productivity and hours worked reasonably well, especially when compared to a

standard Cobb-Douglas specification. Second, the elasticity of substitution between

capital and labor is statistically well below unity, supporting the increasing consensus

in the empirical literature (see Chirinko (2008)). Third, by looking at the historical

decomposition of hours worked, we find a sizable role for capital augmenting shocks

in explaining business cycles fluctuations. In particular, the level of productivity is

mostly explained by the labor augmenting shock, and the level of hours worked is

mostly explained by the capital augmenting shock.

We then estimate the model on rolling samples of the same length as our SVAR,

and find that there is a significant sign variation of the response of hours worked to

a positive technology shock. We also find that the time-varying impulse responses to

a labor-augmenting shock obtained from the estimated model track satisfactorily the

changes observed in the data-based SVAR. Such variation is driven by a change in

the magnitude of the elasticity of factor substitution which, in our model, governs the

sign of the hours response. In particular, we observe an increase in the degree of factor

substitution along the sample. That is, labor and capital became less complementary

through time. We conjecture that these changes may be associated to the changing

skill composition of the labor force.3 With heterogeneous labor, an increase in the

share of skilled workers or their relative productivity can lead to an increase in the ag-

gregate elasticity of substitution. We further explore the robustness of our claim that

the time varying response of hours crucially depends on the magnitude of the elastic-

ity of capital-labor substitution. Following Chari, Kehoe and McGrattan (2008), we

study whether SVAR estimates on data simulated from our structural model would

lead to impact responses similar to the ones obtained using actual data. We find lit-

tle support for a significant difference between the two. Finally, we complement our

analysis by analyzing the robustness of the results to alternative data construction

and the introduction of investment adjustment costs. It is also important to highlight

that, to the best of our knowledge, this is the first attempt at directly estimating the

3An equivalent argument is structural change towards more skill-intensive sectors.
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(time-varying) elasticity of capital-labor substitution in a fully fledged DSGE model

accounting for both supply and demand blocks.4

It is worth emphasizing, however, that we do not view our interpretation as exclud-

ing other potential sources of structural changes that may have led to time-variation in

the hours-technology correlation. One explanation that has received much attention

is the well known change in monetary policy at the beginning of the 80’s.5 How-

ever, this explanation is not free from criticism. For instance, Canova and Gambetti

(2009) find little support for the role of monetary policy changes in driving output

and inflation dynamics and point towards the potential importance of changes in pri-

vate sector behavior. Changes in the labor market can be another important source

of time-variation. Along these lines, Nucci and Riggi (2009) attribute changes in

the response of hours to an increase in performance-related pay schemes during the

1980s. Their model, however, can account for a reduction in the negative response of

hours to a technology shock but not for a sign switch. In parallel to increased labor

market flexibility we also observe another important change in the labor market that

may have shaped aggregate hours responses. As reported by Acemoglu (2002) and

Acemoglu and Autor (2011), the US labor market experienced significant changes in

its skill composition. These changes can affect the elasticity of capital-labor substi-

tution and hence the response of hours to technology shocks.6 Equivalently, changes

in the composition of output towards sectors with higher skill requirements may have

contributed to a change in the aggregate elasticity of substitution. These effects,

however, have received little attention as potential sources of time-variation in labor

market data moments. Our setup is deliberately parsimonious since the time varia-

tion of the response of hours can be seized by the change in the relative magnitude of

the parameters entering the production function. For this reason, we analyze how far

changes in few crucial parameters can go to explain the time-variation of hours re-

sponses. We do not go as far as claiming, however, that frictions and macroeconomic

policies cannot potentially play an important role.

The paper in organized as follows. Section 2 presents some empirical evidence.

4The literature on the estimation of CES parameters has focused almost exclusively on supply

side static models as in León-Ledesma, McAdam and Willman (2010).
5See amongst other Clarida, Gaĺı and Gertler (2000), Gaĺı, Lopez-Salido and Valles (2003) and

Cogley and Sargent (2005).
6During this period, we can also observe an important process of de-unionization, although this

may well be the consequence of changes in skill composition of the labor force due to the introduction

of skill-biased technologies as argued by Acemoglu, Aghion and Violante (2001).
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Section 3 presents the model and study the response of hours with a sensible cal-

ibration exercise. Section 4 describes the estimation strategy and presents the full

sample estimates. The dynamics of hours worked and productivity are reported in

Section 5. Section 6 offers a theoretical discussion of potential sources of changes in

capital-labor substitutability. Finally, Section 7 concludes.

2 Empirical Evidence

While there is a large literature documenting the changes in the second moments of

various US times series, here we focus on response of hours worked to a technology

shock. Data ranges from 1948:Q1 until 2006:Q1 and were obtained from the FRED

database. The times series include output in the non-farm business sector (OUT-

NFB), and hours of all persons in the non-farm business sector (HOANBS). Both

series are normalized by the the civilian non-institutional population of 16 years and

over (CNP16OV). Labor productivity is computed as the ratio between the measure

of output and hours, and we take logarithms of both series. We indicate with pt labor

productivity and with hobst hours.
7

To identify a technology shock we adopt the long-run restriction proposed by

Blanchard and Quah (1989) where we assume that only the technology shock has a

permanent effect on the level of productivity (as in Gaĺı (1999)). We estimate the

structural VAR (SVAR) model on rolling windows of fixed length, starting from the

sample [1948Q1,1967Q4], and repeating the estimation moving the starting date by

one year. We obtain 39 estimates of the coefficients of the reduced from VAR and of

the identified impact matrix (one for each window) and compute the impulse response

of hours to a technology shock. We considered different lag lengths for the VAR and

rolling windows sizes and the results remained unchanged.8 We report here the results

with 80 quarters and four lags in the VAR. More formally, the reduced form VAR of

can be represented as

xt = A0 + A1xt−1 + ...+ Apxt−p + ut

where ut are i.i.d. zero mean normal shocks with covariance matrix Σ. We assume

that ut = Kǫt where ǫt = [ǫst , ǫ
d
t ] is a normal i.i.d. shock with E(ǫtǫ

′
t) = I, and

7In appendix A we carry out a comprehensive analysis of the robustness of the results to alter-

native data definitions. More details on data construction are also available there.
8We used rolling windows of 60, 70, 80, and 90 quarters and four lag lengths.
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where ǫst is the technology shock and ǫdt a non technology shock. It follows from the

assumptions that Σ = KK ′.

We consider xt = [∆pt, hobst] in estimation.9 For exposition purposes it is more

convenient to rewrite the system in a companion form

zt = µ+Bzt−1 + et

where zt = [x′t, x
′
t−1, ..., x

′
t−p+1]

′, et = [u′t, 0, ..., 0]
′, µ = [A′

0, 0, ..., 0]
′, and B is the

companion form matrix. The long run restriction implies that the impact matrix

of cumulative effects of the shock on labor productivity has a Cholesky factor, i.e.

the matrix F =
∑∞

k=0 S2,2(B
k) K has a lower triangular structure where S2,2(.) is a

selection matrix that picks the first two rows and columns of matrix Bk.

Figure 1 plots the response of hours worked to a technology shock. The response
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Figure 1: Response of hours worked to a technology shock. The level of hours is used

in estimation.

of hours worked displays significant time variations. In fact, the impact response is

9We also considered hours in first difference, i.e. xt = [∆pt,∆hobst]. While we find time varia-

tions, we do not detect any sign switch. This result is due to the fact that first differencing removes

the long run frequencies of hours worked. As shown in Canova, Lopez-Salido and Michelacci (2010),

if secular cycles are removed from the raw series of hours worked, hours respond negatively to

technology.
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negative in early samples, increases up until the mid-1970s, then falls, and then in-

creases steadily thereafter. These results are similar to those of a more parameterized

set up, as in Gaĺı and Gambetti (2009), using a VAR with time-varying coefficients

and stochastic volatility, the same specification of hours, and the same identifica-

tion scheme.10 To ease the visual analysis, figure 2 reports the impulse responses
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Figure 2: Response of the growth rate of productivity and of hours worked to a

technology shock for selected sub-samples. The level of hours is used in estimation.

for selected sub-samples. As it clearly stands out, the response of hours worked to

an identified technology shock has changed over time. In particular, while it was

negative during the 60s on impact, hours increase following a technology shock if we

consider the sample including the 1990s for estimation. In all, these results confirm

the existence of important changes in the short-run technology-hours correlations in

the US over the post-war period.

10We replicated the time-varying coefficients model of Gaĺı and Gambetti (2009) on our data and

it yielded almost identical outcomes. Results are available on request.
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3 The Structural Model

We consider a closed economy Real Business Cycles (RBC) model. The novelty is that

it features a Constant Elasticity of Substitution (CES) production function, which

is characterized by two sources of fluctuations, a labor- and a capital-augmenting

stochastic shift to the production frontier. The model is otherwise standard, it is a

single good optimizing agent framework. The advantage of this model is that, with

an elasticity of capital-labor substitution that differs from unity (the Cobb-Douglas

case), even in the canonical RBC model the response of hours to a labor-augmenting

technology shock can be positive or negative. Cantore et al. (2010) show analytically

that the sign of the response depends on the relative magnitudes of the elasticity of

substitution and the capital share.11

The representative household is characterized by the following preferences12

Ut = lnCt − Vtξ
H1+γ
t

1 + γ
, (1)

where Ct denotes consumption, Ht hours worked, β is the discount factor, γ is the

inverse of the Frisch elasticity, ξ affects the marginal rate of substitution between

consumption and leisure and determines the steady state hours and Vt is a preference

shock process that has an AR(1) representation, i.e. (in log deviations from the steady

state)

vt = ρvvt−1 + ηvt ηvt ∼ N(0, σv). (2)

The production is CES and presented in normalized form as in Cantore et al. (2010)13

Yt = y

[

α

(

Zk
tKt−1

k

)

σ−1

σ

+ (1− α)

(

Zh
t ht
h

)

σ−1

σ

]

σ

σ−1

(3)

where, as usual, output is produced by a combination of two factors: Kt−1, the

installed physical capital at time t, and ht, the number of hours worked. y and k

are the steady state values of output and capital re-scaled by the labor augmenting

11The response also depends on the reaction of consumption. Cantore et al. (2010) also show that

a similar change in the sign of responses can occur in a New Keynesian model, but in this case for

a capital-augmenting shock.
12We assume a log preference in consumption to guarantee a balanced growth path.
13Normalization is required to compare responses when we change the elasticity of substitution.

Also, it allows us to interpret directly the share parameter α as the capital income share at the point

of normalization (the steady state in this case).
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process, and h is the steady state value for hours. α and σ are parameters controlling

the capital intensity in production and the degree of substitutability between factors.

As σ → 0, factors are net complements, and the production function is Leontief.

If σ → ∞ factors are net substitutes and the production function is linear. As σ

approaches 1, we have a Cobb-Douglas production function. The CES production

function encompasses two types technological change, i.e. the capital augmenting,

Zk
t , and the labor augmenting technological process, Zh

t . We assume that capital-

augmenting technology has an AR(1) representation, i.e. (in log deviations from the

steady state)

zkt = ρkz
k
t−1 + ηkt ηkt ∼ N(0, σk), (4)

where ρk < 1 to ensure the existence of a balanced growth path. For the labor-

augmenting shock we adopt a flexible specification following an AR(2) process, i.e.14

zht = ψ1,h(1− ψ2,h)z
h
t−1 + ψ2,hz

h
t−2 + ηht , (5)

with zht = lnZH
t −lnZH

0 and the original autoregressive processes is rewritten in terms

of partial autocorrelations ψ1,h and ψ2,h.
15 If ψ1,h = 1, then labor-augmenting tech-

nology shocks have a permanent effect and the labor-augmenting technology process

is stationary in first differences with autoregressive coefficient −ψ2,h. If 0 < ψ1,h < 1

and ψ2,h = 0, then the labor-augmenting technology process is persistent but station-

ary and follows an AR(1) process. The model is then closed by assuming that capital

depreciates at rate δ and that the economy’s resource constraint is given by:

Yt = Ct +Kt − (1− δ)Kt−1. (6)

As mentioned, this model has the property that the capital intensity in production

and the elasticity of factor substitution, α and σ, are the main drivers of the dynamics

14See Rı́os-Rull, Schorfheide, Fuentes-Albero, Kryshko and Santaeulália-Llopis (2009).
15By assuming

(lnZH
t − lnZH

0
) = ρ1,h(lnZ

H
t−1

− lnZH
0
) + ρ2,h(lnZ

h
t−2

− lnZh
0
) + ηht

if ρ1,h + ρ2,h = 1, then technology has a unit root and the serial correlation of its growth rates is

−ρ2,h. We can re-parameterize them in terms of partial autocorrelations ψ1,h and ψ2,h by setting:

ρ1,h = ψ1,h(1− ψ2,h)

ρ2,h = ψ2,h
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of output and hours worked conditional on a labor augmenting technology shock. The

intuitive reason for this is that α determines the output effect of a labor augmenting

shock on labor demand, whereas σ determines the substitution effect. Depending on

their relative magnitudes, the shock can increase or decrease labor demand.

By means of a sensible calibration exercise, we can study the impact of a labor

augmenting technology shock to hours worked for different values of the capital-labor

elasticity. Without loss of generality, we assume that the labor augmenting technology

process is stationary, i.e. ψ2,h = 0 and ψ1,h = 0.8. Moreover, we set the time discount

factor, β, to 0.99, and the depreciation rate, δ, to 0.025, and the inverse of the Frisch

elasticity, γ, to 1. We let the capital-labor elasticity vary between 0.1 and 1, and we

fix the capital intensity in production to 0.33. Figure 3 (left panel) reports the impulse

response of hours worked to a labor-augmenting technology shock for different values

of σ and keeping the value of α fixed at 0.33. Approximately, when σ > α the response

of hours to a labor augmenting technology shock is positive. However, hours worked

decrease if σ < α, which essentially replicates the results of Cantore et al. (2010).

The right panel of Figure 3 displays the instantaneous response of hours worked to a

labor-augmenting technology shock for different values of σ and α. We let the value

of capital intensity vary between 0.2 to 0.6. Thus, for values of σ larger than 0.7 and

close to the Cobb-Douglas specification, the response of hours is positive regardless

of the values of α.

As we are not aware of previous work attempting to estimate σ within a dynamic

general equilibrium model, we first study whether the parameter is empirically iden-

tifiable. To this end, we perform a controlled simulation experiment in appendix B.

Our results show that the information contained in hours worked and productivity is

sufficient to identify σ in estimation.

4 Full sample estimates with a CES production

technology.

We now analyze the behavior of the model when confronted with observed data on US

productivity and hours worked. In particular, we are interested on verifying that the

model fits the data reasonably and that its performance is comparable with the fit of

a more standard specification. Hence, we confront two specifications: an RBC model

with a CES production function and an RBC model with a Cobb-Douglas production

technology (i.e. σ = 1 and only the labor-augmenting technological process). We

9



0.1

0.3

0.5

0.7

0.9

2

4

6

8

10
−6

−4

−2

0

2

4

x 10
−3

σ

Response of Hours

Quarters

0.1

0.3

0.5

0.7

0.9

0.2

0.3

0.4

0.5

0.6
−10

−8

−6

−4

−2

0

2

4

x 10
−3

σ

Instantaneous Response of Hours

α

Figure 3: Impulse response of hours worked to a labor-augmenting technology shock

for different values of σ and α = 0.33 (Top panel). Instantaneous response of hours
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tom Panel).

verify whether data favors a less parameterized model and thus the CES specification

is redundant, or whether the latter helps characterize the data better.

Since the raw series of labor productivity displays a clear upward trend, we bridge

the model to the data by imposing a permanent labor-augmenting technology shock.

Hence, real variables grow at the rate of the technological process and hours worked

10



are stationary.16 These assumptions imply that ψ1,h = 1 and that the following

measurement equations hold17

∆pt = ∆(yt − ht) + ∆zht

hobst = ht

Table 1 reports prior and posteriors statistics for the full sample. The choice of

the priors is standard. We assume inverse gammas for standard deviations, beta

distributions for the autoregressive parameters, a normal distribution for the inverse

of the Frisch elasticity, γ, and for the capital intensity in production, α. The prior

for σ follows a gamma distribution centered around one and with a loose precision.

While posterior distributions of σ are very similar using a flat prior (i.e. the posterior

mean is centered around 0.15 and has a tight credible set), we prefer to use a proper

priors for marginal likelihood comparisons.

A few things are worth noting. First, for many parameters, posterior distributions

have different locations, spread and shape relative to the priors. This is indicative

that data provide relevant information for estimation. Moreover, in most cases, the

mean and median coincide ruling out asymmetric posterior distributions (not shown

here). Third, the standard deviations of technology shocks are a posteriori significant

implying that data favor the mechanisms induced by the CES production function.

Concerning the parameters of interest, the posterior median of the elasticity of

factor substitution is centered around 0.13 and the posterior distribution is quite

tight in absolute terms and relative to the prior. This suggests that the data favor a

more general specification for the production function. The capital share is estimated

around the standard value in the RBC literature, i.e. 0.34, thus larger than the

elasticity of substitution. This implies that, assuming no time-variation along the full

sample, the point estimate of the correlation between hours worked and productivity

is negative conditional on a labor augmenting technology shock. A formal comparison

between the two models is reported at the bottom of Table 1 where we contrast the log

of the marginal likelihood using the modified harmonic mean (see Geweke (1999)). If

the two sources of technological progress and a non-unitary elasticity of substitution

16If we assume that innovations to the labor-augmenting technology process have a permanent

effect on the economy, we need to generate stationary variables in the model using the following

transformations: Yt

ZH
t

Kt

ZH
t

Ct

ZH
t

Wt

ZH
t

Ht Rt where Wt is the real wage and Rt is the rental price of

capital.
17Both series are demeaned to guarantee consistency with the log-linearized variables in the model

that fluctuate around a value of 0 in steady-state.
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Prior CD CES 3 CES 2

Distr mean sd median sd median sd median sd

α Normal 0.30 0.05 0.29 0.0373 0.33 0.051 0.35 0.041

σ Gamma 1.00 1.00 - - 0.14 0.031 0.13 0.023

γ Normal 1.00 0.10 1.04 0.0949 1.00 0.100 0.98 0.100

ρv Beta 0.50 0.20 0.97 0.0113 0.95 0.019 - -

ρk Beta 0.70 0.20 - - 0.96 0.016 0.96 0.013

ψ2,h Beta 0.50 0.20 0.04 0.0220 0.07 0.037 0.05 0.027

σh Igamma 0.010 2.00 0.01 0.0010 0.010 0.001 0.010 0.001

σk Igamma 0.010 2.00 - - 0.019 0.002 0.018 0.001

σv Igamma 0.010 2.00 0.01 0.0010 0.012 0.004 - -

Log ML 1424 1430 1432

Table 1: Prior, posterior statistics and marginal likelihoods across specifications.

Igamma stands for the inverse gamma distribution. CES 3 and 2 refers to the number

of shocks.

between inputs were not important to characterize the dynamics of output and hours,

a more parsimonious model would be preferred by means of marginal likelihood.

In order to favor a Cobb-Douglas production function we need a prior probability

for the model with Cobb-Douglas 403 (= e6) times larger than the one associated

with a CES production function (in other words, CES beats the CD production

function with posterior model probabilities of 0.9975:0.0025). Moreover, we find that,

regardless of the number of shocks, the CES structure is preferred to the Cobb-

Douglas production specification.18 Given the feeble role of preference shocks in our

CES setting, we expect to observe a completely different historical decomposition of

the observable variables among specifications. Figure 4 reports the decomposition of

hours worked in terms of structural residuals. Under the Cobb-Douglas specification,

where the capital augmenting shock is absent, the preference shock plays the most

important role in the historical evolution of hours worked. When we turn to the CES,

the contribution of the preference shock vanishes and the capital-augmenting shock

contributes significantly to the observed levels of hours worked. A reason for this

change is that, when σ is constrained to unity, the preference shock, which directly

enters the labor supply equation, has to vary more to capture the variation of hours.

18 We notice that the difference in terms log marginal likelihood is not sufficient to strictly prefer

the CES specification with two shocks to the specification with three shocks. The literature adopts

as a cutoff value 3, see amongst others Jeffries (1996) and Kass and Raftery (1995)).
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Figure 4: Historical decomposition of hours. Top panel CES specification, bottom

panel Cobb-Douglas specification.

When σ is unconstrained and we introduce a capital augmenting shock, there is more

variability in the labor demand equation, which now captures most of the variation

13



in hours. The decomposition of productivity is similar across the two settings (not

shown here), where the labor-augmenting shock represents the dominant source of the

observed fluctuations of productivity. Hence, if we adopt a more general specification

of the production function, we obtain that the full set of technological shocks account

for the entire portion of historical fluctuations of productivity and hours experienced

by the US economy within this RBC setting.

5 Time-varying dynamics

We want to investigate the dynamics of hours and technology over time through the

lens of the structural model. To this end, we estimate the model on rolling windows

of the same fixed length of our SVAR and we look closely at propagation mechanism

of the structural shocks. Let the solution of the DSGE model be of the from,

y†t+1 = Φ(ϑ)y†t +Ψ(ϑ)ηt+1,

where the the vector y†t contains the endogenous variables of the model and ηt the

structural vector of innovations with zero mean and diagonal covariance matrix Ση.

Φ and Ψ are matrices which are non-linear functions of the structural parameters

of the model, ϑ. Since we have a unique mapping from the structural parameters

of the model to the reduced form matrix, we can back out the ‘deep’ parameters

responsible for the changes (if any) in the transmission of shocks. Then, we look

closely at the time pattern of the estimated structural parameters and try to provide

intuition for such changes. Finally, we perform a ‘reverse’ exercise in the same spirit

of Chari et al. (2008). We ask whether the estimates of the SVAR on data simulated

from our structural model are in line with the impact results of the SVAR on actual

data. We find little support for a difference between the two.

5.1 The transmission of technology shocks

One key fact that our setup would like to explain is the time varying relationship

between hours worked and technology shocks and, in particular, if the model is able

to reproduce the patterns found using the SVAR model. Figure 5 plots the response

of hours worked to a labor augmenting technology shock.19 The response of hours

19While there are variations in the level of the response, we do not detect any changes in the

pattern of the response of hours to a capital augmenting technology shock (not shown here). Thus,

we do not report it.
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Figure 5: Impulse responses of hours to a positive labor augmenting technology shock.

worked shows clear shape and sign variations along the sample. Taken literally, the

very early samples are characterized by a negative response. Then, for samples that

include mainly the 1970s hours react positively to technology shocks. Then, the

reaction of hours turns negative and positive again in the last ten rolling windows.

15



On impact, the resemblance with the SVAR evidence is striking. The signs of the

response of hours appear to be correctly identified. Figure 6 plots the 68% credible
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Figure 6: On the top panel credible sets of the contemporaneous impact of hours to

a technology shock in the SVAR (solid line) and in the RBC with CES (dotted line).

On the bottom panel, the median estimates of σ, α and the instantaneous impact of

technology shock on hours across windows.

sets around the instantaneous response of hours with the SVAR estimates and the

RBC-CES. If the instantaneous response of hours were different in the two settings,

we would observe windows with non overlapping bands. Looking at Figure 6, we

detect no significant difference of the contemporaneous response of hours between the

estimates of the SVAR and the estimates of the RBC model with CES production
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function.20

The natural question that follows is what are the driving parameters behind the

change in the propagation mechanism. Since the impulse response is computed as the

marginal impact of a structural innovation to a variable, we can rule out changes in the

standard deviations of the structural shocks as responsible for such variations. Even

if the model is very stylized, the CES production function allows us to disentangle

the scenarios where hours increase (decrease) in response to a technology innovation

because the degree of factor substitution is larger (smaller) than the capital share

in production. We find that there are large variations in the posterior estimates

of the elasticity of factor substitution, in absolute terms and relative to the capital

share parameter in production, α which remains stable throughout. Figure 6 (right

panel) plots the posterior mean of the elasticity of substitution and the capital share

in each of the sub-samples. Changes in the hours-technology conditional correlation

on impact are associated with changes in the elasticity of capital-labor substitution,

which varies between a low value close to 0.1 to a high 0.8 but always below 1.

Two things are worth mentioning. First, changes in the estimate of σ are signifi-

cant but abrupt. This is partly due to the non parametric approach we adopt and to

the uniform weighting scheme we impose on each window. One way to smooth the

estimates of σ is to downsize the impact of sub-sample endpoints. As in the sam-

ple spectrum estimation (see Priestley (1982), Ch.7), we could design a bell shape

distribution so that break points would have milder impact on structural estimates.

However, we preferred to be agnostic and to give priority to the observables without

imposing any ad hoc weighting scheme. The other approach is to parameterize the

changes in σ by assuming that the capital-labor elasticity follows a slow moving ex-

ogenous process (i.e. an autoregressive process). Since first order approximations are

insufficient to capture such process, higher order approximations are required. With

higher order solutions, the implied state space system is neither linear nor gaussian,

and we need to move to particle filters to extract the likelihood. Despite important

advances in this direction (see Fernández-Villaverde and Rubio-Ramı́rez (2008)), the

estimation of time-varying structures is still computationally burdensome and diffi-

cult to handle. Given these constraints, and for comparison with our SVAR results,

we study what a computationally less intensive yet intuitively appealing structural

20It is worth noting, however, that the lack of persistence of the structural model has to do with

the lag structure of the solution of the DSGE model, which makes it difficult to replicate the hump

shaped response of a four lags VAR.
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method could tell us about the time varying relation between hours and productiv-

ity.21

The second observation has to do with the interpretation of the changes in σ.

In our estimates, we find periods where the sign of the response of hours switches

sing. These periods coincide with episodes of relatively large estimates of σ. We

observe a spike in two windows that includes the 1970s (i.e. the window from 1962

to 1982 and the one from 1963 to 1983) and a protracted period in the final part of

the sample, i.e. the last 10 windows with data starting since the mid-1970s. The

two sub-samples that include the 1970s contain very eventful years. In fact, during

the 1970s the US economy was hit by a sequence of negative oil price shocks. And

the beginning of the 1980s is characterized by the change in the monetary policy

stance. As a consequence, we suspect that the variation in σ during these windows

is contaminated by the turbulence of the seventies. After 1982, however, the US

economy entered a relatively quiet period, where either ‘good policy’ or ‘good luck’

(or both) contributed to render the macroeconomic environment less volatile and

more predictable. We thus believe that neither policy nor changes in the structure

of the shocks are corrupting the estimated changes in the capital-labor elasticity in

the latest samples. However, during this period, the US was experiencing important

changes in the labor market and the sectoral structure of production. The literature

has documented a sizable increase in the relative supply of skilled workers over time

as well as a decline in the importance of manufacturing. We are inclined to interpret

these changes as the source of the observed changes in the estimates of the capital-

labor elasticity of substitution. We will return to this issue in Section 6.

5.2 Is the story of change in capital-labor elasticity consis-

tent with a SVAR ?

The time-varying relationship between hours and technology identified by a SVAR

with long-run restrictions is very similar to the one obtained from our RBC model

with CES production function. However, Chari et al. (2008), amongst others, express

concerns about the ability of SVARs with long-run restrictions to identify model

shocks. This may then cast doubts about whether comparisons of model-based and

SVAR-based impulse-responses constitute a reliable way to evaluate our model. To

address this issue, we follow Chari et al. (2008) and simulate 50 sets of data of 100

21See Canova and Ferroni (2012) for further discussion on the advantages of rolling subsample

estimates of DSGE models.
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observations from the RBC model with CES production function using the mean

parameter estimates in each window. For each simulated dataset we estimate a SVAR

with 4 lags and compute the impulse response. We then compare the data-based

SVAR with the SVAR with model-simulated data.
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Figure 7: Impulse responses of hours to a positive labor augmenting technology shock.
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Figure 7 reports the median impulse responses of hours for the SVAR (on the left

panel) with simulated data, and those obtained by a SVAR with actual data. A visual

inspection reveals that the instantaneous response of hours obtained with a SVAR on

simulated data is similar to the one obtained with SVAR using actual data.22 Figure
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Figure 8: Credible sets of the contemporaneous impact of hours to a technology shock

in the SVAR on actual data (dotted line) and in the SVAR with simulated data (solid

line).

6 plots the credible sets around the instantaneous response of hours in the SVAR on

actual data (solid line) and in the SVAR with simulated data (dotted line). As in the

previous case, we detect no significant difference of the contemporaneous response of

hours between the estimates of the SVAR and the estimates of the RBC with CES

production function. Overall, the evidence supports the hypothesis that changes in

the elasticity of capital-labor substitution are able to generate the observed time

varying path of a SVAR with long-run restrictions.

22Note, as commented in a previous footnote, that the persistence properties are not satisfactorily

captured because of the lag structure of the solution to the model.
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5.3 Robustness: adjustment costs

As a robustness exercise, we also studied the role of investment adjustment costs. As

adjustment costs can generate negative hours responses, changes in these could also

be a driving force behind the changing response of hours. We thus analyzed a version

of the model with CES production technology and adjustment costs. The model and

calibration results are presented in appendix C. The results show that changes to

investment adjustment costs are a priori unable to track the observed changes in the

response of hours.

6 Rationalizing changes in the elasticity of substi-

tution

Our estimation results suggest that the driving factor behind the change in the re-

sponse of hours is the increase in the elasticity of capital-labor substitution σ. Changes

in deep parameters, such as e.g. the degree of risk aversion, are commonly used to

explain the existence of instabilities in macroeconomic relationships. However, we

devote further attention to the observed evolution of σ by analyzing some conjectures

about the driving forces behind this change. We leave detailed testing strategies for

future research while we keep here the focus on the change in the hours-technology

correlation.

Changes in the elasticity of substitution have been associated with economic

growth since La Grandville (1989). Parameter σ, nevertheless, was treated as ex-

ogenous in that context. Hicks (1932), however, hypothesized that the elasticity of

substitution may be variable and a by-product of economic development. Along these

lines, Miyagiwa and Papageorgiou (2007) present a multisector growth model where

σ is endogenously determined and positively related to economic development. Sim-

ilarly, Álvarez-Cuadrado and Van Long (2011) present a multisector model of struc-

tural change where the aggregate elasticity of substitution is endogenous as capital

intensity increases in the more flexible sectors (i.e. those with higher elasticity of sub-

stitution). Since the aggregate elasticity is a weighted average of sectoral elasticities,

growth and structural change can lead to changes in aggregate σ.

These forces would naturally lead to slow and protracted increases in σ, contrast-

ing with the more pronounced changes we observe in our estimates. The 1970s and

1980s, however, witnessed an accelerated process of technological change as reported
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by Greenwood and Yorukoglu (1997). This process was also associated with rapid

structural change, with a fast decline in manufacturing and an increase in the share

of business services. The structural change hypothesis has gained relevance in re-

cent years as an explanation of changes in output volatility in the US, as reported in

Carvalho and Gabaix (2010) and Moro (2011). These changes are also closely asso-

ciated with the important changes occurring in the US labor market, especially since

the mid-1970s, that could potentially drive the increase in σ observed in the latter

parts of our rolling sample.23

One such relevant change is the increased importance of skilled workers in pro-

duction. The evolution of skilled to unskilled employment and wages has been widely

documented in papers such as Acemoglu (2002) and Acemoglu and Autor (2011).

Figure 9 reproduces the observed trends by level of skills in the US economy. It

displays the share of skilled workers as a percentage of all workers using two mea-

sures. The first is the share of non-production workers in US manufacturing for the

1958-2005 period from the Annual Survey of Manufactures. The second is the share

of hours of workers with college education or above, as a percentage of total hours by

workers with at least high school education coming from Autor, Katz and Kearney

(2008) for the whole economy and the 1963-2005 period. Although both measures

differ substantially, they both show positive trends. In the case of manufacturing,

however, the share falls towards the end of the sample. As mentioned above, this is

not independent from the process of structural change in the US economy, as sectors

using skilled workers more intensively tend to grow faster since the 1970s.24

The question is then whether these changes in the composition of the labor force

could have affected the aggregate elasticity of substitution. In a two-factor CES

production function, σ is constant. However, in the presence of heterogeneous labor

23Gaĺı and van Rens (2010) also point towards changes in the labor market to explain the de-

creased procyclicality of labor productivity and the increased volatility of the real wage. They, how-

ever, focus on improved matching due to increased labor market flexibility. We note that Rotemberg

(2008) shows that the volatility of wages is a positive function of the elasticity of capital-labor sub-

stitution within a search and bargaining model. Also, Sargent and Wallace (1974) show that the

elasticity is a key parameter to understand the cyclical behavior of productivity and wages.
24Using the EU-Klems Growth and Productivity database (www.euklems.net), we decomposed

changes in the share of skilled workers in employment for 54 SIC sectors in the US for the 1970-2004

period. We found that around 20% of the increase in the share of skilled workers is due to structural

change alone. For the 1970s, however, the contribution of structural change is around 30%. This is,

however, bound to be a very low estimate, as it does not take into account inter-sectoral linkages

and the level of disaggregation is relatively small. Nevertheless, it is consistent with the results of

Hendricks (2010).

22



1958 1968 1978 1988 1998 2008
0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

Share non−production workers (Man)
Share college in HS + college (All)

Figure 9: Shares of non-production workers (manufacturing) and college-plus hours

in high-school-plus hours (aggregate economy).

(i.e. skilled and unskilled), the aggregate capital-labor elasticity of substitution is not

constant and will depend, among other things, on the share of skilled labor hours in

total hours input. We focus here on the case of a CES with three factors of production

(capital, skilled labor, and unskilled labor) and use the common specification of a two-

level nested CES function. Here, the effects of changes in the share of skilled workers

will depend on the (constant) elasticities of substitution between the three factors,

and the type of nesting specified for the CES.25 Thus, we analyze the effect of changes

in the proportion of skilled workers under three possible nestings.26

Without loss of generality, and for simplicity, we ignore technological process terms

and time subscripts and assume all variables are measured at the normalization point.

We denote skilled labor as S and unskilled labor as U . The first nesting corresponds

25Papageorgiou and Saam (2008) also show that, within this kind of CES specification, the ag-

gregate elasticity is a negative function of capital intensity. This may also help explain some of the

shorter-run changes observed in our estimates.
26Note that, as will be apparent below, analyzing the effect of changes in the proportion of

skilled workers on σ is equivalent to analyzing the effects of changes in skilled-saving relative to

unskilled-saving technical change (which is skill-biased technical change if both are gross substitutes

in production). Under equal elasticities of substitution, it would also be equivalent to a change in

the proportion of workers towards skill-intensive sectors.
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to:

Y =
[

πXX
ψ + (1− πX)U

ψ
]1/ψ

(7)

X =
[

πKK
θ + (1− πK)S

θ
]1/θ

, (8)

where ψ and θ are the inter- and intra-class substitution parameters, πX is the income

share parameter for aggregator X at the point of normalization, and πK is the share

parameter of capital in X (also at the normalization point). The corresponding

elasticities of substitution are σK,S = 1
1−θ

and σK,U = σS,U = 1
1−ψ

with −∞ < θ < 1

and −∞ < ψ < 1. It is worth noting that the Cobb-Douglas case occurs when ψ (θ)

= 0, the Leontief case when ψ (θ) = −∞, and the perfect substitutes case when ψ

(θ) = 1. The second nesting is:

Y =
[

πXX
ψ + (1− πX)S

ψ
]1/ψ

(9)

X =
[

πKK
θ + (1− πK)U

θ
]1/θ

, (10)

where parameters have the same interpretation as in (7)-(8), but now σK,U = 1
1−θ

and

σK,S = σS,U = 1
1−ψ

. And the third nesting is:

Y =
[

πXX
ψ + (1− πX)K

ψ
]1/ψ

(11)

X =
[

πSS
θ + (1− πS)U

θ
]1/θ

, (12)

where we have σS,U = 1
1−θ

and σK,S = σK,U = 1
1−ψ

.

The nestings differ in terms of the assumptions imposed about the value of the

elasticity of substitution across factors. While in the first nesting both K and

S are equally substitutable for U but not between them, in nesting two both K

and U are equally substitutable with S but not between them. Nesting (7)-(8)

has been widely used in the capital-skill complementarity literature as discussed in

Krusell, Ohanian, Rı́os-Rull and Violante (2000). Capital-skill complementarity in

this nesting simply implies that ψ > θ. In nesting two, however, capital-skill comple-

mentarity implies that θ > ψ such that capital is more substitutable with U than with

S. Note, however, that the third nesting does not allow for capital-skill complemen-

tarity as both skilled and unskilled workers are assumed to substitute capital the same

way. In fact, it is easy to show analytically that, in this case, the aggregate elasticity

of substitution between labor and capital is simply 1
1−ψ

which is constant. Hence, we

leave aside the third nesting as, by construction, it cannot generate time-variation of

σ.
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In order to analyze the effect of changes in the proportion of skilled workers in

the first two nestings, we define n = U
U+S

as the fraction of unskilled workers. Since

total labor input is H = U + S, we can write U = nH and S = (1 − n)H . Now, we

use the definition of the aggregate elasticity of substitution σ:

σ =

w/r
K/H

∂(w/r)
∂(K/H)

, (13)

where r is the rental price of capital. Note also that, at the normalization point,
w
r
= 1−πXπK

πXπK

K
H
. Using this and expression (13), Papageorgiou and Saam (2008) show

that the aggregate elasticity of substitution between H and K is a harmonic mean of

the elastcities of substitution in the nested CES functions that can be expressed as:

σ =
1

(1− θ) + (θ − ψ)g
, (14)

g =
πK

1−πK
1−πX

+ πK
. (15)

Since θ and ψ are constants, we can analyze the effect of a change in (1 − n) on

σ by obtaining the derivative of g with respect to (1− n). We are then in a position

to state the following lemma:

Lemma 1 The aggregate capital-labor elasticity of substitution σ is a positive func-

tion of the share of skilled workers (1− n) (and the productivity of skilled relative to

unskilled workers) if:

1. |θ| > |ψ| for the first three-factor CES nesting (X,U);

2. |θ| < |ψ| for the second three-factor CES nesting (X,S).

Proof. See Appendix D.

Take the first nesting. This condition would imply that if capital and skills are

complements (within the X aggregator), i.e. θ < 0, and unskilled workers and K and

U substitutes (ψ > 0), the degree of complementarity between K and S has to be

stronger than the degree of substitutability between U and the other two factors. On

the other hand, this would also be the case if all factors are substitutes (θ > 0 and

ψ > 0) but U is less substitutable for X than S and K are between each other. The

same conclusions apply for the other nesting bearing in mind that, in this case, θ > ψ

implies capital-skill complementarity.
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The question is, of course, how likely is this to be the case? Estimates of the

skilled-unskilled workers substitution parameter ψ usually range between 0.25 and

0.5.27 Regarding substitution between capital and skilled workers, estimates differ

by study and are less abundant. Krusell et al. (2000) find and elasticity of 0.67

(θ ≃ −0.5). However, given that aggregate σ is estimated to be substantially below

unity (see Chirinko (2008)) and our estimates for the full sample are below 0.2, this

elasticity is likely to be even lower. Hence, the conditions for a positive effect of 1−n

on σ are plausible.

Based on this, we carry out a simple numerical exercise. We calibrate ψ to a

value of 0.33 (corresponding to an elasticity of 1.5). Baseline values for the shares are

πX = 0.6 and πK = 0.5, corresponding to a an aggregate capital income share of 0.27

and a skilled income share of 0.33. The initial share of skilled workers as a proportion

of total workers is 20% (n = 0.2). To be compatible with our low σ estimate, we then

set θ = −3 corresponding to a plausible elasticity of 0.25. The value of the aggregate

elasticity of substitution yields 0.32. We then analyze the impact of an increase of

the share of skilled workers of 0.25 (25 percentage points) similar to that observed in

the data. The corresponding new value for σ is almost 0.9. This large change is thus

compatible with that observed in our estimates.28

Within reasonable bounds, hence, the effect of the change in the relative propor-

tion of skilled workers is compatible with our conjecture and may have driven the

change in the response of hours to technology shocks observed in the data. Similar

conclusions could be drawn by considering changes in the skill-bias content of tech-

nical change or structural change towards skill-intensive sectors. Indeed, these well

documented changes in the US labor market can plausibly have an important effect

on how shocks are transmitted into the economy.

27For evidence on the elasticity of substitution between workers by skill level see, amongst many

others, Katz and Murphy (1992), Autor, Katz and Krueger (1998), Ciccone and Peri (2005) and

Autor et al. (2008). Most of these estimates range between 1.3 and 2.5, with consensus estimates

around 1.5, corresponding to ψ = 0.33.
28Recently, Balleer and van Rens (2009) analyze the effect of skill-biased technology shocks on

the labor market using a SVAR identification scheme. Their findings show that the response of

the wage premium to investment-specific shocks is incompatible with capital-skill complementarity.

Their preferred model would display a strong capital-skill substitutability such that θ > ψ > 0. This

would also be compatible with the results from Lemma 1. Nevertheless, we note that this would

imply an aggregate σ much larger than 1, which clashes with a large body of evidence for the US

where σ ≪ 1. Also, this would imply a strongly pro-cyclical aggregate labor share. The correlation

of the private sector labor share with output growth in the data, however, is about -0.4.
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7 Conclusions

We analyze the time variation of the response of hours worked to technology shocks

observed in the US economy over the last 60 years. We first report evidence based on a

SVAR model with long-run restrictions estimated on rolling samples. Consistent with

previous results, the correlation between hours and the technological process condi-

tional on technology shocks increases over the sample in a non-monotonic fashion.

We then propose a structural interpretation of this time variation using a parsimo-

nious RBC model with a Constant Elasticity of Substitution production function.

Within this setting, the sign of the response of hours crucially depends on the rela-

tive magnitudes of the elasticity of capital-labor substitution and the capital income

share.

We estimated the model using Bayesian methods. For the whole sample, the

proposed specification fits the postwar US data on productivity and hours worked

reasonably well, especially when compared to a standard Cobb-Douglas specification.

We then estimate the model on rolling samples of the same length as our SVAR and

find that there is a significant sign variation in the response of hours worked to a

positive labor-augmenting technology shock. We find that the time-varying impulse

responses to a labor-augmenting shock obtained from the estimated model track sat-

isfactorily the changes observed in the data-based SVAR in spite of its parsimonious

nature. Such variation is driven by a change in the magnitude of the elasticity of

factor substitution: we observe an increase in the elasticity of capital-labor substitu-

tion towards the end of the sample that leads to a change in the sign and size of the

response of hours.

We conjecture that the observed increase in the aggregate elasticity of substitution

driving our results may be associated to the changing skill composition of the labor

force, a change in the skill content of technological change, or structural change

towards skill-intensive sectors. With heterogeneous labor, an increase in the share of

skilled workers or their relative productivity can lead to an increase in the aggregate

elasticity of substitution that is quantitatively compatible with that observed in the

time-varying estimates. This highlights the importance of further research on the role

of changes in the skill composition of the labor force and skill-biased technical change

for the transmission of macroeconomic shocks.

Our analysis also brings two other important byproducts. First, as a first attempt

to estimate the elasticity of factor substitution in a general equilibrium setup, our
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findings show a low estimated value around 0.15 over the full sample. We thus find

little support for the Cobb-Douglas aggregate production function. A more general

specification of the production side is preferred to better characterize the evolution of

hours and productivity in the US economy. Second, capital-augmenting technology

shocks are found to be the main driving force of the fluctuations of hours over the

full sample.
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Álvarez-Cuadrado, F. and Van Long, N.: 2011, Capital-labor substitution, structural

change and growth, mimeo, McGill University.

Autor, D. H., Katz, L. F. and Kearney, M. S.: 2008, Trends in u.s. wage inequality:

Revising the revisionists, The Review of Economics and Statistics 90(2), 300–323.

Autor, D. H., Katz, L. F. and Krueger, A. B.: 1998, Computing inequality:

Have computers changed the labor market?, The Quarterly Journal of Economics

113(4), 1169–1213.

Balleer, A. and van Rens, T.: 2009, Cyclical Skill-Biased Technological Change, IZA

Discussion Papers 4258, Institute for the Study of Labor (IZA).

Blanchard, O. J. and Quah, D.: 1989, The Dynamic Effects of Aggregate Demand

and Supply Disturbances, American Economic Review 79(4), 655–73.

Canova, F. and Ferroni, F.: 2012, The dynamics of us inflation: can monetary policy

explain the changes?, Journal of Econometrics (forthcoming).

Canova, F. and Gambetti, L.: 2009, Structural changes in the US economy: Is there a

role for monetary policy?, Journal of Economic Dynamics and Control 33(2), 477–

490.

Canova, F., Lopez-Salido, D. and Michelacci, C.: 2010, The Effects of Technology

Shocks on Hours and Output: A Robustness Analysis, Journal of Applied Econo-

metrics 25(5), 755–773.

29



Cantore, C., León-Ledesma, M. A., McAdam, P. and Willman, A.: 2010, Shock-

ing stuff: technology, hours, and factor substitution, Working Paper Series 1278,

European Central Bank.

Carvalho, V. M. and Gabaix, X.: 2010, The great diversification and its undoing,

NBER Working Papers 16424, National Bureau of Economic Research, Inc.

Chang, Y., Doh, T. and Schorfheide, F.: 2007, Non-stationary Hours in a DSGE

Model, Journal of Money, Credit, and Banking 69(6), 1357–1373.

Chari, V., Kehoe, P. J. and McGrattan, E. R.: 2008, Are structural VARs with long-

run restrictions useful in developing business cycle theory?, Journal of Monetary

Economics 55(8), 1337–1352.

Chirinko, R. S.: 2008, σ: The Long and Short of It, Journal of Macroeconomics

30(2), 671–686.

Ciccone, A. and Peri, G.: 2005, Long-Run Substitutability Between More and Less

Educated Workers: Evidence from U.S. States, 1950-1990, The Review of Eco-

nomics and Statistics 87(4), 652–663.
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Llopis, R.: 2009, Methods versus Substance: Measuring the Effects of Technology

Shocks on Hours, NBER Working Papers 15375, National Bureau of Economic

Research, Inc.

Roberts, J. M.: 2001, Estimates of the Productivity Trend Using Time-Varying Pa-

rameter Techniques, The B.E. Journal of Macroeconomics 0(1).

Rotemberg, J. J.: 2008, Cyclical Wages in a Search-and-Bargaining Model with Large

Firms, NBER International Seminar on Macroeconomics 2006, NBER Chapters,

National Bureau of Economic Research, Inc, pp. 65–114.

Sargent, T. J. and Wallace, N.: 1974, The Elasticity of Substitution and Cyclical

Behavior of Productivity, Wages, and Labor’s Share, American Economic Review

64(2), 257–63.

Stiroh, K. J.: 2009, Volatility accounting: A production perspective on increased

economic stability, Journal of the European Economic Association 7(4), 671–696.

Stock, J. H. and Watson, M. W.: 2003, Has the Business Cycle Changed and Why?,

NBER Macroeconomics Annual 2002, Volume 17, NBER Chapters, National Bu-

reau of Economic Research, Inc, pp. 159–230.

Whelan, K. T.: 2009, Technology shocks and hours worked: Checking for robust

conclusions, Journal of Macroeconomics 31(2), 231–239.

33



A Data construction

We explore the robustness of the empirical estimates to alternative databases. For

all databases the time span covers the period from 1948:Q1 until 2006:Q1 and the

series were obtained from the FRED database. Labor productivity is computed as

the ratio between the measure of output and hours, and we take logarithms of both

series. We indicate with pjt labor productivity and with hobsjt hours of database j. In

parenthesis, we indicate the ID series in the FRED database of the Federal Reserve

Bank of Saint Louis.

The first database (GG) follows closely the data construction in Gaĺı and Gambetti

(2009) which is used in the main body of the paper. We consider output in the non-

farm business sector (OUTNFB), and hours of all persons in the non-farm business

sector (HOANBS) and the civilian non-institutional population of 16 years and over

(CNP16OV). We thus have

∆pGGt = ∆

(

ln
OUTNFBt

CNP16OVt

)

hobsGGt = ln
HOANBSt
CNP16OVt

An second database is considered following the work in Chang, Doh and Schorfheide

(2007). We employ Average Weekly Hours of the non-farm Business Sector (PRS85006023),

total non-farm employees (PAYEMS), Civilian non institutional population of 20

years and over (CNP20OV = LNU00000025 (men) + LNU00000026(women)), real

GDP (GDPC96). The database (CDS) is

∆pCDSt = ∆

(

ln
GDPC96t
CNP20OVt

)

hobsCDSt = ln
PRS85006023t ∗ PAY EMSt

CNP20OVt

The third data set is constructed following Rı́os-Rull et al. (2009), where the series

are similar to CDS but normalized by a different population structure, i.e. the civilian

non-institutional population of 16 years and over (CNP16OV). The database (RR) is

∆pRRt = ∆

(

ln
GDPC96t
CNP16OVt

)

hobsRRt = ln
PRS85006023t ∗ PAY EMSt

CNP16OVt
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Finally, we borrow the last dataset form the work by Francis and Ramey (2009),

where they propose a new measure of hours per capita and a new measure of produc-

tivity. Both series are adjusted for sectoral shifts and for changes in the composition

of the age structure of the working population. The authors have kindly shared the

data and are available at: http://weber.ucsd.edu/∼vramey.
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Figure 10: Growth rate of productivity and hours worked in different databases

Figure 10 reports the growth rate of productivity and the evolution of hours

worked across different data sets. While there are minor differences in the growth

rate of productivity, the pattern of hours worked looks distinct across measures. In

particular, the series constructed using Average Weekly Hours and total non-farm

employees (as in CDS and RR) display a more pronounced upward trend then the

one constructed in GG or in FR. This is clearly visible at the beginning and at

the end of the sample. This suggests that the series display different properties at

long run frequencies. Table 2 presents some sample moments. All measures of hours

worked display very similar autoregressive properties. However, there are important

differences in the volatility both in terms of magnitude and in terms of location across

frequencies of the spectrum. While the measures built with Average Weekly Hours

and total non-farm employees are more volatile, most of their volatility is located

outside business cycle frequencies, which is not the case for the series of hours worked
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Database ar sd % of vol at BC freq % of vol at medium term freq

GG 0.97 0.039 36 47

CDS 0.98 0.059 15 20

RRetal 0.99 0.057 16 21

FR 0.98 0.036 27 36

Table 2: AR, Standard deviations and Percentage of volatility at selected frequencies

for different measures of hours worked. BC fluctuations are obtained by carving out

fluctuations with a periodicity less then 32 quarters. Medium term fluctuations are

obtained by carving out fluctuations with periodicity less then 48 quarters.

constructed in GG or FR. Moreover, the data where most of the volatility is located

at typical business cycles frequencies is the measure used in GG. Hence, without

a strong a priori preference for a particular measure we tend to prefer the measure

where most of the power spectrum is located between 2 and 32 quarters.

Despite these differences, the (time varying) response of hours worked to an iden-

tified technology shock looks similar across data series. Figure 11 reports the response

of hours across different settings on 39 overlapping windows of 20 years length and

with the long run restriction identification scheme. While there are differences in

selected sub samples, the broad picture that hours worked responded to technology

negatively in early samples and positively in recent samples is consistent across dif-

ferent measures of hours worked.

B Identification of σ

This section verifies whether data can carry enough information to pin down σ in

estimation.29 Without loss of generality, we assume that the model is stationary, i.e.

0 < ψ1,h < 1 and ψ2,h = 0. We simulate 100 observations for output and productivity

assuming that α = 0.4 and σ = 0.2 in one case (Case A) and that α = 0.4 and σ = 0.99

in the other case (Case B). We then estimate the structural parameters of the model

using Bayesian techniques. Prior elicitation is pretty standard. We assume inverse

gamma for standard deviations, beta distributions for the autoregressive parameters,

a normal distribution for the inverse of the Frisch elasticity, γ and for the capital

intensity in production, α. All priors are centered at the true values. For the capital-

labor elasticity of substitution, σ, we assume a uniform prior with 0 and 1.5 as

29The estimation of σ presents some econometric challenges, especially when combined with esti-

mates of factor-augmenting technical change. See León-Ledesma et al. (2010).
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Figure 11: Impulse responses of hours to a positive labor augmenting technology

shock using different database.

boundaries. Posterior medians and credible sets are reported in Table 3. Data on

productivity and hours worked appear informative about the parameters and shocks

of interest. Typically, posterior credible sets include the parameter value used to

simulate data. Even for σ, where we postulate a flat prior, the likelihood peaks very

close to the true population value meaning that, if the model is correctly specified,

we are able to pin down in estimation the parameters governing the CES production

function.

Since the estimate of these parameters are not far off the ‘true’ population value,

and since their relative magnitude determines the sign of the conditional and uncondi-

tional correlations, we expect to be able to track the correct sign of such correlations.

In particular, the last row of Table 3 displays the unconditional correlation between
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true Case A Case B

α 0.40 0.39[0.31,0.47] 0.41 [0.35,0.48]

σ 0.20/0.99 0.27 [0.18,0.37] 1.13 [0.86,1.48]

γ 1.00 1.01 [0.85,1.18] 1.00 [0.85,1.15]

ρv 0.60 0.61 [0.43,0.77] 0.52 [0.42,0.62]

ρk 0.60 0.49 [0.34,0.63] 0.60 [0.36,0.83]

ψ1,h 0.60 0.65 [0.56,0.75] 0.61 [0.46,0.76]

σv 0.01 0.0110 [0.0095,0.0125] 0.0093 [0.0064,0.012]

σk 0.01 0.0090 [0.0066,0.0102] 0.0108 [0.066,0.0149]

σh 0.01 0.0096 [0.0061,0.0128] 0.0094 [0.008,0.0108]

corr(pt, ht) -0.15/0.15 -0.30 [-0.06,-0.49] 0.14 [-0.04,0.29]

Table 3: Prior and Posterior estimates with simulated data. Median and the credible

sets in parenthesis.

hours and productivity and its estimates.30 On average, the signs are correctly iden-

tified for both cases. Similarly, Figure 12 reports the (true and estimates) impulse

response of hours worked to a labor-augmenting technology shock. The estimated

impulse response correctly captures the the sign and the persistence of the response.

Regardless of the relative magnitude of σ and α, the response of productivity to a

labor-augmenting technology shocks is positive and correctly estimated (not shown

here). Hence, the sign of the correlation of hours and productivity conditional on an

labor-augmenting technology shock crucially depends on the estimated relative mag-

nitude of σ and α. We conclude that data on productivity and hours worked contain

enough information to correctly capture conditional and unconditional moments of

productivity and hours worked in our model.

C RBC model with investment adjustment costs

We consider a Real Business Cycles (RBC) model with Constant Elasticity of Substi-

tution (CES) production function and with investment adjustment costs. We model

those cost so that

Kt = (1− δ)Kt−1 + (1− s(Xt))It

30The bands of the estimated correlation are obtained by simulating 50 times the model using the

mean, and for each simulated data sets we compute the correlation.
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Figure 12: Impulse response (true and estimates) of hours worked to a labor-

augmenting technology shock. Left panel Case A, where 0.2 = σ < α = 0.4 and

right panel Case B, where 0.4 = α < σ = 0.99.

where s(1) = s′(1) = 0 and s′′(1) 6= 0 and Xt = It/It−1; Kt is capital and It is

investment. The rest of the model follows the one presented in the text.

The system of equilibrium condition is given by

Vth
γ
t =

Wt

Ct

1 = qt (1− s(Xt)− s′(Xt)Xt) + βEt

(

qt+1
Ct
Ct+1

s′(Xt+1)X
2
t+1

)

qt = Etβ
Ct
Ct+1

(rt+1 + qt+1(1− δ))

Yt = y

[

α

(

Zk
tKt−1

k

)

σ−1

σ

+ (1− α)

(

Zh
t ht
h

)

σ−1

σ

]

σ

σ−1

Wt = (1− α)
(

Zh
t

y

h

)
σ−1

σ

(

Yt
ht

)
1

σ

rt = α
(

Zk
t

y

k

)
σ−1

σ

(

Yt
Kt−1

)
1

σ

Kt = (1− δ)Kt−1 + (1− s(Xt))It

Yt = Ct + It

Xt = It/It−1

where qt is Tobin q, or equivalently the ratio between the multipliers of the household
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constraints. Assuming ψ1 = 1, Zh
t is not stationary and the dynamics of the model

are explosive. In order to have a well defined steady state, we need to re-scale the

real variables by the non stationary process.

At the non stochastic steady state we have hγ = w
c
, 1 = q, 1 = β (r + 1− δ),

y = y, w = (1−α) y
h
, r = α y

k
, i = δk, y = c+ i, x = 1. The log linearized equilibrium

conditions, around the non-stochastic steady-state, of the variables rescaled by the

non stationary process are (for simplicity, we indicate with small case letters the log

deviation of a variable from its steady state)

yt = i/y it + c/y ct (C.1)

kt = (1− δ)(kt−1 − zht + zht−1) + δit (C.2)

yt = αkt−1 + αzkt + (1− α)ht − α(zht − zht−1) (C.3)

qt = ct − ct+1 − zht+1 + zht + βrrt+1 + β(1− δ)qt+1 (C.4)

qt = s′′(1)(xt + (zht − zht−1))− βs′′(1)(xt+1 + (zht+1 − zht )) (C.5)

wt = vt + γht + ct (C.6)

wt = 1/σ(yt − ht) (C.7)

rt = (σ − 1)/σzkt + 1/σ(yt − kt−1) + 1/σ(zht − zht−1) (C.8)

xt = it − it−1 (C.9)

C.1 A priori sensitivity analysis

By means of a sensible calibration exercise, we can study the impact of a labor aug-

menting technology shock on hours worked for different values of the elasticity of

capital-labor substitution and investment adjustment costs, the parameters of inter-

est. Without loss of generality, we assume that the labor augmenting technology

process is non stationary, i.e. ψ1,h = 1. The rest of the parameters are calibrated

as in section 3. We considered first the case where the production function is Cobb-

Douglas (σ → 1) and the capital adjustment cost varies from 0 to 20 (Figure 13 left

panel). We then fix the adjustment cost parameter to a value of 2 and vary σ be-

tween 0.1 and 2 (Figure 13 right panel). A few things are worth noting. First, there

is a sign switch in the response of hours due to a change in investment adjustment

cost. However, this change in sign occurs only on impact. Indeed, regardless of the

value of the investment adjustment cost, the response of hours turns positive after

few quarters. Hence, while investment adjustment costs are able to generate nega-

tive hours responses on impact, they are unable to produce a long-lasting negative
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response of hours worked to a technology shock.31 Second, with positive adjustment

costs the elasticity of substitution is the crucial parameter which generates a long

lasting positive or negative response of hours. However, the threshold is no longer

uniquely determined by value of α. Third, the support of σ able to generate positive

and negative response of hours has opened.
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Figure 13: Impulse response of hours worked to a labor-augmenting technology shock

for different values of s′′ with σ → 1 and α = 0.33 (Left panel). Instantaneous

response of hours worked to a labor-augmenting technology shock for different values

of σ and s′′ = 2 and α = 0.33 (Right Panel).

D Proof of Lemma 1

We prove Lemma 1 for the first nesting corresponding to the Krusell et al. (2000)

two-level CES, which we denote as (X,U) nesting. The results for the second nesting

easily follow through from these. We first need to use the following results:

∂πX
∂X

=
ψ

X
πX(1− πX), (D.1)

∂X

∂(1 − n)
=

1− πK
1− n

X, (D.2)

∂πK
∂(1 − n)

= −θ
πK(1− πK)

1− n
, (D.3)

which, since, for any variables (z, q, s), ∂z/∂q = (∂z/∂s)(∂s/∂q), immediately implies

∂πX
∂(1− n)

= ψ
πX(1− πX)(1− πK)

1− n
. (D.4)

31This result is insensitive to different calibration of the remaining structural parameters and

also introducing endogenous persistence with habits in consumption. We obtain similar results for

γ = {0.5, 1.0, 1.5, 2, 2.5, 3.0} and for different parameterizations of the exogenous processes.
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With these results we can then calculate the partial derivative of g = πK
1−πK

1−πX
+πK

.

After some tedious algebra, we can write this expression as:

∂g

∂(1 − n)

∣

∣

∣

∣

X,U

=
− πK(1−πK)

(1−n)(1−πX )
(θ + ψ)

[

1−πK
1−πX

+ πK

]2 , (D.5)

Since ∂σ
∂(1−n)

= ∂σ
∂g

∂g
∂(1−n)

we can derive, again after some algebra, the expression:

∂σ

∂(1 − n)

∣

∣

∣

∣

X,U

= −Π
(ψ2 − θ2)

[(1− θ) + (θ − ψ)g]2
, (D.6)

where Π > 0 is a function of share parameters:

Π =
πK(1− πK)

(1− n)(1− πX)
[

1−πK
1−πX

+ πX

]2 (D.7)

Given that Π > 0 and that the denominator of (D.6) is positive, the effect of a

change in 1− n will be positive if θ2 > ψ2. Hence, in the (X,U) nesting, an increase

in the share of skilled workers will increase aggregate σ if |θ| > |ψ|. Following the

same logic, in the (X,S) nesting, the effect will be positive as long as |θ| < |ψ|.
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