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Abstract

Koop, Pesaran and Smith (2011) suggest a simple diagnostic indicator for the
Bayesian estimation of the parameters of a DSGE model. They show that, if
a parameter is well identified, the precision of the posterior should improve as
the (artificial) data size T" increases, and the indicator checks the speed at which
precision improves. It does not require any additional programming; a researcher
just needs to generate artificial data and estimate the model with different 7.
Applying this to Smets and Wouters’ (2007) medium size US model, we find that
while exogenous shock processes are well identified, most of the parameters in the

structural equations are not.
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1 Introduction

Many macroeconomists have expressed concern about the extent to which identification
of DSGE models may or may not have been achieved during estimation. Reflecting the
rapid progress of Bayesian estimation techniques, it is now increasingly more common
to estimate DSGE models than to simply calibrate them. The problem is, however,
that if a parameter is not identified, this means that the data (and the prior) cannot
pin down the value of this parameter, and if a parameter is only weakly identified,
this means that a small change in, say, the sample variation causes a large change
in the parameter estimate. Compared with standard linear identification problems in
econometrics, the estimation of DSGE models involves nonlinear estimation under many
theoretical parameter restrictions and so the identification is much harder.

Much worse, in the Bayesian framework the prior often masks the problem of non-
or weak identification by the data.! That is, even if data provide little or no information
of a parameter, it still can be seemingly identified solely because of its prior. Koop et al.
(2011) discuss, from a pure Bayesian perspective, this observation may not necessarily be
problematic and we might simply want to thank our informative priors. However, some
(or perhaps most) researchers may regard this as rather embarrassing, as econometric-
based inference may only then rely only on researchers’ initial beliefs and not on the
data. In this respect, Canova and Sala (2009) among others, warn against the current
practice of comparing the prior and posterior densities of a parameter to check the
informativeness of data: since a parameter may be identified only jointly with others and
not individually, even if these densities have different shapes, still there is a significant
possibility that any given parameter may be unidentified.

As a result of these problems, two strands of diagnostic indicators have been
developed. The first line of indicators sets an intermediate target and investigates the
Jacobian of such a target with respect to the deep parameters of a model. This line of
indicators has been pioneered by Iskrev (2010a), Iskrev and Ratto (2010) and Komunjer

and Ng (2009). Typically, this intermediate target is a set of data moments. If the

!See Canova and Sala (2009) and Koop et al. (2011) among others.



Jacobian of the data moments is column rank deficient, there are two possibilities; (i)
one or more parameters do not affect any data moments at all; and (ii) a change in one
parameter is totally offset by changes in other parameters and hence again may not affect
any moments. The latter case, which is presumably more common than the former, is
often referred to as partially identified or perfect collinearity among parameters. Iskrev
(2010a) also proposes a check of the Jacobian of the reduced form parameters with
respect to the deep parameters, so-called Iskrev’s J5.2 Though this proposal only checks
whether a necessary condition of non-identification is satisfied, as it does not rely on
any data, it is often convenient especially when we have no a priori information about
the identification. Also, it is useful to detect the source of non- or weak identification:
if the Jacobian is column full rank but a parameter is only weakly identified or not at
all identified, it is evident that non or weak identification is because of data limitations
and not because of the model structure.

The second line of indicators, such as Koop et al. (2011, KPS henceforth) and
Iskrev (2010Db), exploits the Information matrix, which is the expectation of the Hessian.
This idea is very straightforward: if the likelihood function is flat along a particular
direction at a likelihood mode, i.e. the Hessian is singular, the value of the likelihood
(or posterior density) does not change along this direction and hence there are infinitely
many combinations of parameters that achieve the mazimum likelihood. The main
difference between KPS and Iskrev (2010b) is that the former is mainly interested in
the identification by data, whereas Iskrev (2010b) checks the identification by both the
prior and data. This point is very important and we will discuss this more deeply in our
main analysis. One practical weakness of this second approach is that, as opposed to the
Jacobian based methods, if the Hessian is singular, it may be hard, if not impossible, to
pin down the maximum point. This is because practically most maximizing algorithm
require a non-singular (i.e., strictly negative definite) Hessian; otherwise, the likelihood
mode is not well defined. This Catch-22 problem seems to be common for most Hessian

based approaches. Importantly this means that this class of indicators work only for

’In this case, the intermediate target is the coefficients of the reduced form model solved by, say,
Sims’ (2002) QZ method.



weakly identified parameters; a researcher has to obtain a priori information about
the parameters that are totally unidentified before implementing this class of indicator.
However, as opposed to the Jacobian-based approach, the Hessian-based approach is
a full information approach, in the sense that it exploits the likelihood (or posterior
density), which contains all the information that is available.?

The purpose of this article is to investigate the KPS indicator. KPS suggest
two separate methods for checking the presence and strength of identification of the
parameters of DSGE models. Their first indicator is based on Bayesian theory. Suppose,
for example, that it is not known if a parameter is identified or not. If it is unidentified,
“the marginal posterior of this parameter will equal the posterior expectation of the
prior of this parameter conditional on the identified parameters”. The second method,
relying on the asymptotic theory, says that the precision of a parameter estimate will
increase at the rate of the data size T, if it is identified. One merit of this second
method lies in the simplicity of its implementation: in practice, it does not require any
additional (time consuming) programming or simulations because it just examines the
Hessian (or posterior variances) for (artificial) data sets with different sizes. What a
researcher then has to do, when estimating any model, is simply to check the speed at
which the parameter precision increases.

As the second method is more widely applicable, we apply this method to analyse
the identification of a popular DSGE model of Smets and Wouters (2007) for the US.
As many researchers use Smets and Wouters (2007), or its variants, as a testing ground
for their identification methods, we are thus able to compare our results with theirs.
Although we need to investigate other key models as well to be conclusive, broadly
speaking our finding on the Smets and Wouters model is consistent with others, such
as Iskrev (2010a) and Iskrev and Ratto (2010), in that we should be cautious about
whether estimated parameters are indeed identified or not. In this paper, we discuss
several practical issues in computing and interpreting the KPS indicator.

The rest of the paper is organized as follows: Section 2 briefly introduces the idea of

3Note though that both the Jacobian- and Hessian-based approaches are local rather than global
indicators.



KPS and the design of our experiment, Section 3 summarizes our main findings, Section
4 is reserved for a brief discussion of the methodology of the KPS in light of our results

and finally Section 5 concludes.

2 Identification based on Asymptotic Precision

2.1 The KPS Idea

For completeness, we start with reviewing the intuition of the KPS indicator.* Consider
the Bayesian estimation of a DSGE model. Let 6 = (04, 05...0,,) be a parameter vector
and T be the size of the data. Suppose that the posterior density is well approximated
by a normal distribution. In this case, the posterior mode, 0, is the average of the prior
mode 6 and the data likelihood mode, @T, weighted by their respective precision H and
TSy. That is,

or = Hy' (TSrb+ Ho)., (1)

Hr = TSr+H, (2)

where Hyp is the posterior Hessian. Note that as T — oo, H;' asymptotes to the true
variance-covariance matrix of parameter estimates.

Now suppose that all parameters are identified. In this case, 7' Hp converges to Sy
as T' — oo,

T_IHT = gT + T_lﬂ — ST.

At the limit, Sr (data precision, TST, divided by T') converges to a certain point, while
the prior precision, H, is dwarfed. That is, the data dominates the prior as T" increases.
Since T~ Hy converges to a certain value, it is clear that posterior precision Hp improves
at rate T

Let us focus on one specific parameter, say, the first parameter #;. Under the

normality assumption, its mean is #;7 and its precision, hi;, is given as hy; =

4See Koop et al. (2011) for a comprehensive analysis.



Hy — H12ﬂ2—21H21.5 Hence, we get
17 & 1 & 1 & 1 e 1
Ty = (Su+ T Hyy )= (S + T Hyo ) (Soa + T Ha ) (S0 + T Hay) - (3)
Following the same analysis as above, at the limit,
_ . e o1
711H1 T_lhll = 511 - S1252_21521 = <Sl_11> )

which is the inverse of the (1,1) element of g;im. Since the prior is dominated at the
limit, let us focus on T'Sy. From the standard, or frequentist, econometric theory, it is
easy to see, if 0, is well identified, 5'1’11 approaches a certain number as 7" — oo; in other
words, the variance Tflgl_l1 of 0, shrinks at rate 7. Intuitively, this means that, when
there is more data, the estimation becomes more precise. These observations lead KPS
to recommend a check on the behaviour of hy; for different data size 7.

In sum, for a parameter, 6, and its posterior precision, hi1:

_ 0 (hy; improves at rate slower than 7))  if unidentified
Jim T hy =

a number (hy; improves at rate 7)) if identified

Putting it in a simpler form, H; can be inverted to obtain following diagnostic value:
T th; = T‘lﬁigl where Hj; is the i-th diagonal element of Hit (4)

Although the covariance structure provides some important information, our baseline
task is to check the reciprocal of the diagonal elements of Hrp for different data size
T, where Hy is the inverse of the posterior Hessian, Hy. More specifically, we check if
H;;! increases at rate T. Alternatively, we can use variances computed from the entire

posterior density, say, by using the Markov Chain Monte Carlo (MCMC) Method. Since

the Hessian shows the asymptotic precision, which is the inverse of the variance, using

®The number subscripts indicate submatrices: e.g., Hys is Hy eliminating its first row and first
column. To avoid overly messy notation, we omit subscript T to show data size T, when we discuss
submatrices.



the Hessian or (exact) posterior variance are almost equivalent for a large T (though
not exactly equivalent for finite 7). However, in practice we do not need additional
computation to obtain Hr, as almost all gradient-based maximizing algorithms compute
it automatically,’ while the use of the MCMC typically requires additional computation,
which is itself often time consuming.

Note that the KPS indicator focuses on identification by the data as it effectively
excludes help by any chosen prior, which is dwarfed as 7' — oo. This feature is
distinct from other existing diagnostics, in which most cases data is either irrelevant
or considered jointly with the prior, and forms a strong motivation in our view for the

applied researcher to use KPS.

2.2 Design of Experiment

We investigate the extent to which the key parameters of the Smets and Wouters’ (2007)
US model are identified. The model equations are listed in Table 1 and the priors and

definitions of parameters are presented by Table 2. Our baseline exercise is as follows:

1. Given estimated parameters 0, we simulate the model to generate artificial data

for, say, 10,000 periods (7" = 10,000);

2. We re-estimate the model with 7" = 10, 100, 1,000 and 10,000. Every larger

sample encompasses the previous smaller sample(s);

3. We check the convergence of the posterior variance of each parameter. Specifically,

a parameter is said to be identified, if its variance shrinks faster than or at the

2
T=n %7T—pn

same rate of the sample size T'. In this case 1 < F=¢ =
=N 0r=N

, where n is the shorter
sample size with, say, 7' = 10, and 100 and N is the largest sample size, in this
case T' = 10, 000.

In step 1, the artificial data set is generated by simulating the model to give the

time series of output, consumption, investment, hours worked, inflation, the real wage

6For low dimension problems, often non-gradient-based algorithms, such as grid search type methods,
are much more efficient. However, since the dimension of estimated parameter is typically large (say,
more than 3) for typical DSGE estimations, it is rather exceptional to use an algorithm that does not
rely on the Hessian.



and the nominal interest rate as in Smets and Wouters (2007). We have used both the
MCMC algorithm and the inverse of the Hessian to obtain the posterior variances.” We
then examine the rate at which the posterior variance falls, normalized by the increase
the sample size of the estimates. We use variance, rather than precision, because, given
non-normality, it is not an easy task to recover the precision from MCMC exact variance.

Then using the results of this baseline experiment, we impose several restrictions
on certain weakly identified parameters. These restrictions allow us to assess how the
result is affected, since fixing some weakly (and non-) identified parameters is common
econometric practice. For some parameters, we impose ad hoc parameter restrictions
such as ¢, = 1, and §, = §,,, which can be regarded as cross parameter restrictions, where

we simply assume wage and price share the same degree of indexation and stickiness.

3 Results

Throughout our exercises, following Smets and Wouters (2007), we fix the capital
depreciation, 0, the wage markup in steady-state, ¢,, the government consumption
to output ratio in steady-state, g,, the Kimball curvature parameter for goods price
elasticity, €,, and the Kimball curvature for wage elasticity, €,.* It is well known
that these parameters are not identified; i.e., with these parameters, the maximization
algorithms cannot find the posterior mode. In this respect, we can avoid the Catch 22
problem because we know this fact; in general, however, we have to do some trial and

error process to find totally unidentified parameters.

"There are a couple of further technical notes here. First, in this experiment, we use Dynare; with
it, it is easy to compute the KPS indicator. Second, in some preliminary simulations, the maximization
algorithms cannot find the maximum posterior points. Often, this cannot be resolved even after trying
several different initial values with different maximization algorithms. In this case, we use a different
part of the artificially generated data. More practically, in all exercises, we discard the first 10% of the
artificial data to eliminate the effects of the initial state. If, however, the Dynare programme cannot find
the maximum point of the posterior, we redo all the exercises by discarding the first 10% plus 1 of the
artificial data (keeping T' = 10,100, 1000, 10000). In our exercise, longer data sets include shorter ones,
and we redo all estimations if the algorithm does not converge. One possible concern is that this shows
a lack of robustness in our estimations. However, given the nature of the artificial data, the estimation
results are almost identical whichever part of the data is used, especially for large T'. Although it is not
clear why the convergence depends on such a minor difference in the data sets, it seems unlikely that
our estimation results are sensitive to this shift in the artificial data.

8See Table 2 for the definitions of the symbols, their priors and posterior results.



3.1 Baseline Exercise

We have checked the identification of 36 parameters of this prototypical DSGE model.
The first four columns of Table 3 and 4 report the normalized posterior variances of
the estimated parameters generated by the MCMC algorithm and the posterior Hessian
respectively. First of all, to check whether variance falls more quickly than sample size we
compute the ratio of the normalized variances in the right hand columns of each Table,
and find that, if we mechanically apply the cut-off point of 1, only 5 parameters are well-
identified. These parameters are the trend growth rate, v, the AR term of government
spending shock, p,, the AR term of productivity shock, p,, the AR term of wage mark-
up shock, p,, and the MA term of wage mark-up shock, w,. However, a number of
parameters: p,, 04, 0, and o, are close to 1 and could be classified as identified.
On the other hand, the worst identified parameters are the inflation coefficient of the
monetary policy rule, r., the steady state growth rate of inflation, 7, and the steady
state growth rate of hours worked, [. At face value, this is a highly problematic result
for researchers who wish to estimate DSGE models.

Second, the results from the posterior variance generated by MCMC and from the
Hessian are nearly identical. This supports the use of Hessian, because the additional
computational burden to obtain the Hessian is effectively zero. Note that we show
the results from the inverse of the Hessian for the comparison sake, but we can use
the Hessian as a precision matrix in practice (in this case, divide the Hessian by 7).
Third, the exogenous shock processes tend to be somewhat better identified; this is a
rather common finding in most identification literature (see, for example, KPS (2011)
and Iskrev and Ratto (2010)). Fourth, our finding about identified or nearly identified
parameters are in line with other papers, such as Iskrev (2010a) and Iskrev and Ratto
(2010). In our opinion, weakly identified parameters can be classified as follows:

(a) Level parameters that mainly affect the first moments:

The subjective discount factor, 3, hours worked in the steady state, [, inflation rate
in the steady state, 7, are poorly identified. One exception is v, the parameter governing

output growth trend, which is an outlier in the sense that it is too well identified. Since



the variables in Smets and Wouters (2007) are log-linearised around the steady state level
and hence there are no constant terms in their equilibrium equations, the information
about the first moment is discarded. As Canova and Sala (2009) pointed out, having
constant terms changes the identification in general. Our conjecture is that, if we do not
subtract the means from the log-linearized variables and instead add constant terms in
the equations, the identification of these parameters could improve significantly.

(b) Monetary policy parameters:

Most coefficients in the Taylor rule are weakly identified: the interest rate weight on
inflation, 7, the interest rate weight on the output gap, r,, the weight on the change in
output gap, ray, and the persistence in interest rates, p,. This is perhaps not surprising
because, as discussed extensively in the literature, a simplified Taylor rule that reacts
only to inflation often performs as well as the full Taylor rule as in Smets and Wouters
(2007). Since inflation and output are highly correlated, it may not matter whether
nominal interest rates react to inflation or the output gap.

(c) Price and wage stickiness related parameters:

The probability that price cannot be reset, ,, the degree of price indexation, ¢, the
probability that wage cannot be reset, £, and the degree of wage indexation, ¢,,, are
also weakly identified. One possibility is there are strong collinearities between £, and
t, and between £, and ¢, as Iskrev (2010b) suggests, but another possibility is those
between ¢, and £, and between ¢, and ¢, as Canova and Sala (2009) find. In any case,
it seems that the nominal rigidity is too densely parameterized or the formulation of
nominal rigidity does not capture the data very well.

(d) Other parameters:

The investment adjustment cost, ¢, and the elasticity of labour supply, o;, are highly
colinear pairwise. If we look at the eigenvectors of the Hessian that correspond to the
second and third smallest eigenvalues, they are the two dominating members, with the
smallest eigenvalue is almost solely related to [.° However, it is not totally clear why

these two economically distinct parameters seem to be colinear.

9Some preliminary results of the eigenvector analysis are available upon request.
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3.2 Applying Restrictions

Using the results of the baseline experiment, we have imposed certain restrictions to the
benchmark DSGE model in order to assess whether a significantly greater number of
parameters become identified. Specifically, we have considered the following restrictions:
we fixed (a) level parameters [, 3, 7, (b) monetary policy parameters r,, ra, and p,,
and (d) investment adjustment cost parameter ¢ at their posterior mean. Furthermore,
motivated by Canova and Sala (2009), we set ¢, = 1, = ¢ and §, = £, = . We estimate
7., perhaps the most important parameter in the monetary policy rule. These parameter
restrictions, of course, reduce the number of free parameters to be estimated. In the
similar vein to this, one possible approach to deal with weakly identified parameters is
the reduction of parameters by constructing a profile likelihood, in which we represent
some parameters as functions of other parameters.'’

The parameter identification of the restricted model is presented by Table 5. The
main findings are as follows. First, as expected, now 7, is fairly well identified, which
supports the view that monetary policy parameters are collinear, perhaps because of the
high correlation between output gap and inflation in the data. Second, the indicators
of + and & do not improve very much; while the speed of precision improvement of ¢ is
slightly higher than ¢, and +,,, that of £ is somewhere between {, and £,,. Third, there is
a slightly positive effect on other parameters; that is, there is some improvement in the
rate at which precision improves, though such a effect is rather small. Fourth, we have
checked the second moments and IRFs, but fixing weakly identified parameters changes
them only negligibly. This is not surprising because we fix them at their posterior mean
in the original estimation. All in all, fixing some weakly identified parameters does not
change the model behaviour very much and at the same time it does not so helpful to
the identification of most of the parameters in this model. Figures 1 and 2 respectively
show the impulse responses of the model to a monetary policy shock with and without
restrictions in place, showing there is no significant difference in the model properties.

That said, it is also clear in both cases that we remain at some distance from full

10We thank Hashem Pesaran for this suggestion, which we will pursue in future work.
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identification.

4 Discussion

In this section, we briefly discuss some additional issues. First, in terms of the choice
between the Hessian and the posterior variance, we find that the use of the Hessian is
to be preferred. As we have shown in Tables 3 and 4, the results are almost identical
but the additional computational burden to obtain the Hessian is almost zero but to
obtain the posterior variance we typically have to employ time consuming MCMC re-
sampling, which can take several hours in each case. Also, for the comparison sake, we
the Hessian is inverted in Table 4, due to the difficulty in computing the MCMC based
precision. However, to avoid unnecessary inversion, it may be better to treat the Hessian
as the precision; i.e., treat the Hessian without inverting it. This can be particularly
important because weak identification implies that the Hessian is near singular (i.e., ill
conditioned). In this case, we can check the normalized precision, which is the diagonal
elements of the Hessian divided by the sample size T'.

Second, the initial sample size for our analysis of identification can alter the results.
Tables 3 to 4, suggest that it would seem preferable to use the results of the increase
in precision between T = 100 and 7" = 10,000 rather than the comparison between
T = 10 and T" = 10,000. This is partly because the variance estimates with a sample
size of T" = 10 seems to be unstable. In fact, if we repeat this experiment several
times, we have fairly consistent asymptotic variance estimation for 7" = 100 but it
fluctuates to a considerable degree for 7" = 10. This observation is hardly surprising
as the estimation of variance is not likely to be well determined with such a short data
span. More importantly, it seems that there is a systematic bias for T" = 10; that is,
since, for T' = 10, the impact of the prior is stronger than when 7" = 100. However, as
we discussed, one of the distinct features of the KPS indicator is that it solely focuses on
the identification by data (i.e., identification without relying the prior), but the effect of

the precision of the prior is not negligible for small 7. Hence, the precision for T = 10

12



can be too high because of the prior and as a result the improvement appears to be
slow. In our experiment, however, as is clear in Tables 3 and 4, the relative order of
identifiability does not change very much when we move from 7' = 10 to 7" = 10, 000.!

Third, we might be wary in applying a mechanical cut-off rule. We claim that, if a
parameter exhibits a precision improvement greater that 1, it is perhaps safe to judge it
is well identified. However, even if its speed is slightly lower than 1, it may be still well
identified. The KPS method is not a test but an indicator, so we must be cautious in
its application, as it is possible that it may sentence too many culprits.

Fourth, these observations lead us to conjecture that it may ultimately be better if we
do the same experiment with the data likelihood, rather than with the posterior density.
However, separating the data likelihood from the posterior density is quite difficult, and

this may not be practical. Accordingly, we leave this exercise to future work.

5 Conclusions

While several identification indicators have been developed for DSGE models, the KPS
method is highly attractive in the sense that only it focuses on the data identification, i.e.
identification without the help of the prior. There may be some use in combining KPS
with other methods, for example, Iskrev’s (2010a) Jo, which relies only on the model
structure without referring to the data availability. Hence combining these distinct
indicators helps us to detect the source of the identification failure. For example, if a
parameter of a model passes the .Jy criterion but not the KPS, then we know such an
identification problem is because of the lack of sufficient data. In addition, like other
Hessian based indicators, the KPS method is also subject to the Catch 22 problem;
without a priori knowledge about the parameters that are perfectly unidentified, some
trial and error may be required to obtain the likelihood (or posterior) mode. In this
respect, again, it may be wise to combine it with Jacobian based methods, which often

do not rely on the data.

11'We note a similar improvement in the ratio for 7= 1,000 vs. T = 10,000. However, the relative
order does not change much.

13



In our simple experiments, we find that many parameters in the Smets and Wouters
(2007) model, which now works as a benchmark in many DSGE applications, are weakly
identified: especially, parameters related to (a) level, (b) monetary policy rule and (c)
price and wage stickiness. These findings are rather similar to those in the emerging
literature and are also clearly demonstrated by the KPS measure of posterior precision.

In practice, we recommend to using the Hessian (rather than the posterior variance)
in KPS method, because of the computational consideration. Also, it may be better to
check the change between 7' = 100 and 7" = 10,000, rather than that between 7" = 10
and 7" = 10,000. Finally, given the tendency in KPS, even if a parameter exhibits a
precision improvement slower than the order that is theoretically suggested, mechanically
judging it as poorly identified may not be the best strategy, as some restrictions may be
brought to bear from economic theory to aid identification. To conclude a parameter is
poorly identified, its speed of precision improvement must be low and stubbornly so with
respect to various model restrictions. That said, the simplicity of the KPS indicator and
the extent to which such a widely used workhorse model seems less than fully identified

must form a concern for those using Bayesian estimation techniques on DSGE models.
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Table 1: Log-linearized equations of the DSGE model of Smets and Wouters (2007)

(1) ye = cyer + iyl + zy2ze + €7

(2) o= %Ct—l + (1 - %)Etct-&-l - M(lt — Eili41)

(1_}/ ) a'c(l+h/’7)
+uEne, (1~ Brme + )

3) = H&Y%%itq +(1- W)Etit-l—l + m(h + €
@) @ = mras Bt + (1= syt — (re = meg1 +€))

() b= oy + (1= i+ (1 - 01+ By

(6) ki=Fki1+2z

(1) 2z =507

(8)  rf=—(k =) +wy

9 ye=olaki+ (1 - )l +€f)

o v Byl—c 1 (1-By'77¢¢,)(1-¢,) p p
(10) ™ = megt=ey, -1 + Wayee, B + Wmmey, - (@, De g, M T

(11)  pf = a(kf - 1) - we + €f

l1—0oc¢
(12) we = th—l + (1 — W)(Etw“_l + Etﬂ't.t,_l) - 11_5;,),1—/;“) Tt +
. 1 (A=py'7706,)(160) yw | cw

T ")t (b DewtDE, Ht T

L
T M1

(13)  pf =we — (Ullt—Fﬁ(Ct—)\Ct—l))

(14) 7o = pore1+ (L= p)(rame + 7y (ye — u7)) + ray[(we = v8) + (Y1 —yf1)] + €
(15) € = paei_1 +nf

(16) €f = pyei_y +ni + pnt

(17) € = pei_y + 1}

(18) ¢ = pyeh_y + 1}

(19) €’ = puei’s +n + puny’

(20) € = pyer_y + 0% + pnyt

(21) e =peeiatn;

Note:The model has fourteen endogenous variables: y, output, ¢, consumption, 4, investment, g, price
of installed capital, k, total capital stock, k°, the amount of capital used in production, z, capital
utilisation rate, 7*, rental rate of capital, 7, inflation, w, wages, r, nominal interest rate, u*, wage
mark up and p*, price mark up. And the responses of fourteen endogenous variables are driven by
seven shocks: €, total factor productivity, €', aggregate investment, €, consumer spending, €”, price
mark-up, €, wage mark-up, and €, monetary policy shock. As standard, the key behavioural
equations are obtained by deriving optimality conditions for household and firm behaviour. These
decision rules are then linearised around their steady-state in standard fashion.This model and the set

of exogenous shock processes are estimated on time series data using Dynare.
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Table 2: Prior and posterior distributions

Prior Posterior
Par Definition Density Mean Std. Mode Mean Std.
%) Investment adj. cost N 4.00 1.50 5.47 5.7 1.03
o Inv. elats. intert. subst. N 1.50 0.37 1.42 1.38 0.14
h Consump. habit B 0.70 0.10 0.73 0.71 0.04
Ew Calvo wage B 0.50 0.10 0.73 0.70 0.07
oy Elast. labour supply N 2.00 075 1.87 1.77 0.61
&p Calvo price B 0.50 0.10 0.65 0.65 0.06
L Index. of wages B 0.50 0.15 0.60 0.57 0.13
lp Index. of prices B 0.50 0.15 0.22 0.25 0.09
U Capital utilization B 0.50 0.15 0.54 0.55 0.12
1) Fixed cost N 1.25 0.12 1.60 1.61 0.08
T Response to inflation N 1.50 0.25 2.02 2.04 0.18
Pr Interest rate smooth. N 0.75 0.10 0.81 0.81 0.02
Ty Response to output N 0.12 0.05 0.09 0.09 0.02
TAy Response to outp. gap N 0.12 0.05 0.22 0.23 0.03
T SS inflation G 0.62 0.10 0.76 0.78 0.11
100(3~' —1) Discount factor G 0.25 0.10 0.14 0.17 0.06
1 SS hours worked N 0 2.00 0.72 0.63 1.07
100(y — 1) Trend growth N 0.40 0.10 0.43 0.43 0.01
Q Share of capital N 0.30 0.05 0.19 0.19 0.02
) Depreciation rate n.a 0.025 n.a. n.a. n.a. n.a.
Gy Government/Output n.a 0.18 mn.a. n.a. n.a. n.a.
D Wage mark-up n.a 1.5 n.a. n.a. n.a. n.a.
€w Kimball (wage) n.a. 10 n.a. n.a. n.a. n.a.
[ Kimball (price) n.a. 10 n.a. n.a. n.a. n.a.
Pa AR prod. shock Beta 0.50 0.20 0.96 0.96 0.01
Pb AR risk premium Beta 0.50 0.20 0.18 0.23 0.08
Pg AR government spend. Beta 0.50 0.20 0.98 0.98 0.01
Pys AR invest. demand Beta 0.50 0.20 0.70 0.71 0.06
Prms AR monetary policy Beta 0.50 0.20 0.12 0.14 0.06
P AR price mark-up Beta 0.50 0.20 0.91 0.14 0.05
P AR wage mark-up Beta 0.50 0.20 0.97 0.97 0.01
Wp MA price mark-up Normal 0.50 0.20 0.74 0.72 0.09
Wy Prod. shock in G Normal 0.50 0.25 0.52 0.52 0.09
W MA wage mark-up Normal 0.50 0.20 0.89 0.85 0.05
Oa Std. prod. shock 1G 0.10 2.00 0.45 0.46 0.03
op Std. risk premium 1G 0.10 2.00 0.24 0.24 0.02
Og Std. government 1G 0.10 2.00 0.52 0.53 0.03
Ogs Std. investment 1G 0.10 2.00 0.45 0.45 0.05
Oms Std. mon. pol. 1G 0.10 2.00 0.24 0.24 0.01
Ox Std. price mark-up 1G 0.10 2.00 0.14 0.14 0.02
Ow Std. wage mark-up 1G 0.10 2.00 0.25 0.24 0.02
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