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Abstract

Koop, Pesaran and Smith (2011) suggest a simple diagnostic indicator for the

Bayesian estimation of the parameters of a DSGE model. They show that, if

a parameter is well identi�ed, the precision of the posterior should improve as

the (arti�cial) data size T increases, and the indicator checks the speed at which

precision improves. It does not require any additional programming; a researcher

just needs to generate arti�cial data and estimate the model with di¤erent T .

Applying this to Smets and Wouters�(2007) medium size US model, we �nd that

while exogenous shock processes are well identi�ed, most of the parameters in the

structural equations are not.
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1 Introduction

Many macroeconomists have expressed concern about the extent to which identi�cation

of DSGE models may or may not have been achieved during estimation. Re�ecting the

rapid progress of Bayesian estimation techniques, it is now increasingly more common

to estimate DSGE models than to simply calibrate them. The problem is, however,

that if a parameter is not identi�ed, this means that the data (and the prior) cannot

pin down the value of this parameter, and if a parameter is only weakly identi�ed,

this means that a small change in, say, the sample variation causes a large change

in the parameter estimate. Compared with standard linear identi�cation problems in

econometrics, the estimation of DSGE models involves nonlinear estimation under many

theoretical parameter restrictions and so the identi�cation is much harder.

Much worse, in the Bayesian framework the prior often masks the problem of non-

or weak identi�cation by the data.1 That is, even if data provide little or no information

of a parameter, it still can be seemingly identi�ed solely because of its prior. Koop et al.

(2011) discuss, from a pure Bayesian perspective, this observation may not necessarily be

problematic and we might simply want to thank our informative priors. However, some

(or perhaps most) researchers may regard this as rather embarrassing, as econometric-

based inference may only then rely only on researchers� initial beliefs and not on the

data. In this respect, Canova and Sala (2009) among others, warn against the current

practice of comparing the prior and posterior densities of a parameter to check the

informativeness of data: since a parameter may be identi�ed only jointly with others and

not individually, even if these densities have di¤erent shapes, still there is a signi�cant

possibility that any given parameter may be unidenti�ed.

As a result of these problems, two strands of diagnostic indicators have been

developed. The �rst line of indicators sets an intermediate target and investigates the

Jacobian of such a target with respect to the deep parameters of a model. This line of

indicators has been pioneered by Iskrev (2010a), Iskrev and Ratto (2010) and Komunjer

and Ng (2009). Typically, this intermediate target is a set of data moments. If the

1See Canova and Sala (2009) and Koop et al. (2011) among others.
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Jacobian of the data moments is column rank de�cient, there are two possibilities; (i)

one or more parameters do not a¤ect any data moments at all; and (ii) a change in one

parameter is totally o¤set by changes in other parameters and hence again may not a¤ect

any moments. The latter case, which is presumably more common than the former, is

often referred to as partially identi�ed or perfect collinearity among parameters. Iskrev

(2010a) also proposes a check of the Jacobian of the reduced form parameters with

respect to the deep parameters, so-called Iskrev�s J2.2 Though this proposal only checks

whether a necessary condition of non-identi�cation is satis�ed, as it does not rely on

any data, it is often convenient especially when we have no a priori information about

the identi�cation. Also, it is useful to detect the source of non- or weak identi�cation:

if the Jacobian is column full rank but a parameter is only weakly identi�ed or not at

all identi�ed, it is evident that non or weak identi�cation is because of data limitations

and not because of the model structure.

The second line of indicators, such as Koop et al. (2011, KPS henceforth) and

Iskrev (2010b), exploits the Information matrix, which is the expectation of the Hessian.

This idea is very straightforward: if the likelihood function is �at along a particular

direction at a likelihood mode, i.e. the Hessian is singular, the value of the likelihood

(or posterior density) does not change along this direction and hence there are in�nitely

many combinations of parameters that achieve the maximum likelihood. The main

di¤erence between KPS and Iskrev (2010b) is that the former is mainly interested in

the identi�cation by data, whereas Iskrev (2010b) checks the identi�cation by both the

prior and data. This point is very important and we will discuss this more deeply in our

main analysis. One practical weakness of this second approach is that, as opposed to the

Jacobian based methods, if the Hessian is singular, it may be hard, if not impossible, to

pin down the maximum point. This is because practically most maximizing algorithm

require a non-singular (i.e., strictly negative de�nite) Hessian; otherwise, the likelihood

mode is not well de�ned. This Catch-22 problem seems to be common for most Hessian

based approaches. Importantly this means that this class of indicators work only for

2In this case, the intermediate target is the coe¢ cients of the reduced form model solved by, say,
Sims�(2002) QZ method.
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weakly identi�ed parameters; a researcher has to obtain a priori information about

the parameters that are totally unidenti�ed before implementing this class of indicator.

However, as opposed to the Jacobian-based approach, the Hessian-based approach is

a full information approach, in the sense that it exploits the likelihood (or posterior

density), which contains all the information that is available.3

The purpose of this article is to investigate the KPS indicator. KPS suggest

two separate methods for checking the presence and strength of identi�cation of the

parameters of DSGE models. Their �rst indicator is based on Bayesian theory. Suppose,

for example, that it is not known if a parameter is identi�ed or not. If it is unidenti�ed,

�the marginal posterior of this parameter will equal the posterior expectation of the

prior of this parameter conditional on the identi�ed parameters�. The second method,

relying on the asymptotic theory, says that the precision of a parameter estimate will

increase at the rate of the data size T , if it is identi�ed. One merit of this second

method lies in the simplicity of its implementation: in practice, it does not require any

additional (time consuming) programming or simulations because it just examines the

Hessian (or posterior variances) for (arti�cial) data sets with di¤erent sizes. What a

researcher then has to do, when estimating any model, is simply to check the speed at

which the parameter precision increases.

As the second method is more widely applicable, we apply this method to analyse

the identi�cation of a popular DSGE model of Smets and Wouters (2007) for the US.

As many researchers use Smets and Wouters (2007), or its variants, as a testing ground

for their identi�cation methods, we are thus able to compare our results with theirs.

Although we need to investigate other key models as well to be conclusive, broadly

speaking our �nding on the Smets and Wouters model is consistent with others, such

as Iskrev (2010a) and Iskrev and Ratto (2010), in that we should be cautious about

whether estimated parameters are indeed identi�ed or not. In this paper, we discuss

several practical issues in computing and interpreting the KPS indicator.

The rest of the paper is organized as follows: Section 2 brie�y introduces the idea of

3Note though that both the Jacobian- and Hessian-based approaches are local rather than global
indicators.
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KPS and the design of our experiment, Section 3 summarizes our main �ndings, Section

4 is reserved for a brief discussion of the methodology of the KPS in light of our results

and �nally Section 5 concludes.

2 Identi�cation based on Asymptotic Precision

2.1 The KPS Idea

For completeness, we start with reviewing the intuition of the KPS indicator.4 Consider

the Bayesian estimation of a DSGE model. Let � = (�1; �2:::�n) be a parameter vector

and T be the size of the data. Suppose that the posterior density is well approximated

by a normal distribution. In this case, the posterior mode, ��T , is the average of the prior

mode � and the data likelihood mode, �̂T , weighted by their respective precision H and

T ŜT . That is,

��T = �H�1
T

�
T ŜT �̂ +H�

�
; (1)

�HT = T ŜT +H; (2)

where �HT is the posterior Hessian. Note that as T ! 1, �H�1
T asymptotes to the true

variance-covariance matrix of parameter estimates.

Now suppose that all parameters are identi�ed. In this case, T�1 �HT converges to ŜT

as T !1,

T�1 �HT = ŜT + T
�1H ! ŜT :

At the limit, ŜT (data precision, T ŜT , divided by T ) converges to a certain point, while

the prior precision, H, is dwarfed. That is, the data dominates the prior as T increases.

Since T�1 �HT converges to a certain value, it is clear that posterior precision �HT improves

at rate T .

Let us focus on one speci�c parameter, say, the �rst parameter �1. Under the

normality assumption, its mean is ��1T and its precision, �h11, is given as �h11 =

4See Koop et al. (2011) for a comprehensive analysis.
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�H11 � �H12 �H
�1
22
�H21.5 Hence, we get

T�1�h11 =
�
Ŝ11 + T

�1H11

�
�
�
Ŝ12 + T

�1H12

��
Ŝ22 + T

�1H22

��1 �
Ŝ21 + T

�1H21

�
: (3)

Following the same analysis as above, at the limit,

lim
T!1

T�1�h11 = Ŝ11 � Ŝ12Ŝ�122 Ŝ21 =
�
Ŝ�111

��1
;

which is the inverse of the (1; 1) element of Ŝ�1T=1. Since the prior is dominated at the

limit, let us focus on T ŜT . From the standard, or frequentist, econometric theory, it is

easy to see, if ��1 is well identi�ed, Ŝ�111 approaches a certain number as T !1; in other

words, the variance T�1Ŝ�111 of ��1 shrinks at rate T . Intuitively, this means that, when

there is more data, the estimation becomes more precise. These observations lead KPS

to recommend a check on the behaviour of �h11 for di¤erent data size T .

In sum, for a parameter, �1, and its posterior precision, �h11:

lim
T!1

T�1�h11 =

8><>: 0 (�h11 improves at rate slower than T ) if unidenti�ed

a number (�h11 improves at rate T ) if identi�ed
:

Putting it in a simpler form, �HT can be inverted to obtain following diagnostic value:

T�1�hii = T
�1 ~H�1

ii where ~Hii is the i-th diagonal element of �H�1
T : (4)

Although the covariance structure provides some important information, our baseline

task is to check the reciprocal of the diagonal elements of ~HT for di¤erent data size

T , where ~HT is the inverse of the posterior Hessian, �HT . More speci�cally, we check if

~H�1
ii increases at rate T . Alternatively, we can use variances computed from the entire

posterior density, say, by using the Markov Chain Monte Carlo (MCMC) Method. Since

the Hessian shows the asymptotic precision, which is the inverse of the variance, using

5The number subscripts indicate submatrices: e.g., �H22 is �HT eliminating its �rst row and �rst
column. To avoid overly messy notation, we omit subscript T to show data size T , when we discuss
submatrices.
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the Hessian or (exact) posterior variance are almost equivalent for a large T (though

not exactly equivalent for �nite T ). However, in practice we do not need additional

computation to obtain �HT , as almost all gradient-based maximizing algorithms compute

it automatically,6 while the use of the MCMC typically requires additional computation,

which is itself often time consuming.

Note that the KPS indicator focuses on identi�cation by the data as it e¤ectively

excludes help by any chosen prior, which is dwarfed as T ! 1. This feature is

distinct from other existing diagnostics, in which most cases data is either irrelevant

or considered jointly with the prior, and forms a strong motivation in our view for the

applied researcher to use KPS.

2.2 Design of Experiment

We investigate the extent to which the key parameters of the Smets and Wouters�(2007)

US model are identi�ed. The model equations are listed in Table 1 and the priors and

de�nitions of parameters are presented by Table 2. Our baseline exercise is as follows:

1. Given estimated parameters ��, we simulate the model to generate arti�cial data

for, say, 10; 000 periods (T = 10; 000);

2. We re-estimate the model with T = 10, 100, 1; 000 and 10; 000. Every larger

sample encompasses the previous smaller sample(s);

3. We check the convergence of the posterior variance of each parameter. Speci�cally,

a parameter is said to be identi�ed, if its variance shrinks faster than or at the

same rate of the sample size T . In this case 1 � T=n
T=N

�2T=n
�2T=N

, where n is the shorter

sample size with, say, T = 10, and 100 and N is the largest sample size, in this

case T = 10; 000.

In step 1, the arti�cial data set is generated by simulating the model to give the

time series of output, consumption, investment, hours worked, in�ation, the real wage
6For low dimension problems, often non-gradient-based algorithms, such as grid search type methods,

are much more e¢ cient. However, since the dimension of estimated parameter is typically large (say,
more than 3) for typical DSGE estimations, it is rather exceptional to use an algorithm that does not
rely on the Hessian.
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and the nominal interest rate as in Smets and Wouters (2007). We have used both the

MCMC algorithm and the inverse of the Hessian to obtain the posterior variances.7 We

then examine the rate at which the posterior variance falls, normalized by the increase

the sample size of the estimates. We use variance, rather than precision, because, given

non-normality, it is not an easy task to recover the precision fromMCMC exact variance.

Then using the results of this baseline experiment, we impose several restrictions

on certain weakly identi�ed parameters. These restrictions allow us to assess how the

result is a¤ected, since �xing some weakly (and non-) identi�ed parameters is common

econometric practice. For some parameters, we impose ad hoc parameter restrictions

such as �p = �w and �p = �w, which can be regarded as cross parameter restrictions, where

we simply assume wage and price share the same degree of indexation and stickiness.

3 Results

Throughout our exercises, following Smets and Wouters (2007), we �x the capital

depreciation, �, the wage markup in steady-state, �w, the government consumption

to output ratio in steady-state, gy, the Kimball curvature parameter for goods price

elasticity, �p, and the Kimball curvature for wage elasticity, �w.8 It is well known

that these parameters are not identi�ed; i.e., with these parameters, the maximization

algorithms cannot �nd the posterior mode. In this respect, we can avoid the Catch 22

problem because we know this fact; in general, however, we have to do some trial and

error process to �nd totally unidenti�ed parameters.

7There are a couple of further technical notes here. First, in this experiment, we use Dynare; with
it, it is easy to compute the KPS indicator. Second, in some preliminary simulations, the maximization
algorithms cannot �nd the maximum posterior points. Often, this cannot be resolved even after trying
several di¤erent initial values with di¤erent maximization algorithms. In this case, we use a di¤erent
part of the arti�cially generated data. More practically, in all exercises, we discard the �rst 10% of the
arti�cial data to eliminate the e¤ects of the initial state. If, however, the Dynare programme cannot �nd
the maximum point of the posterior, we redo all the exercises by discarding the �rst 10% plus 1 of the
arti�cial data (keeping T = 10; 100; 1000; 10000). In our exercise, longer data sets include shorter ones,
and we redo all estimations if the algorithm does not converge. One possible concern is that this shows
a lack of robustness in our estimations. However, given the nature of the arti�cial data, the estimation
results are almost identical whichever part of the data is used, especially for large T . Although it is not
clear why the convergence depends on such a minor di¤erence in the data sets, it seems unlikely that
our estimation results are sensitive to this shift in the arti�cial data.

8See Table 2 for the de�nitions of the symbols, their priors and posterior results.
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3.1 Baseline Exercise

We have checked the identi�cation of 36 parameters of this prototypical DSGE model.

The �rst four columns of Table 3 and 4 report the normalized posterior variances of

the estimated parameters generated by the MCMC algorithm and the posterior Hessian

respectively. First of all, to check whether variance falls more quickly than sample size we

compute the ratio of the normalized variances in the right hand columns of each Table,

and �nd that, if we mechanically apply the cut-o¤point of 1, only 5 parameters are well-

identi�ed. These parameters are the trend growth rate, 
, the AR term of government

spending shock, �g, the AR term of productivity shock, �a, the AR term of wage mark-

up shock, �w and the MA term of wage mark-up shock, !w. However, a number of

parameters: ��, �qs, �w and �g, are close to 1 and could be classi�ed as identi�ed.

On the other hand, the worst identi�ed parameters are the in�ation coe¢ cient of the

monetary policy rule, r�, the steady state growth rate of in�ation, ��, and the steady

state growth rate of hours worked, �l. At face value, this is a highly problematic result

for researchers who wish to estimate DSGE models.

Second, the results from the posterior variance generated by MCMC and from the

Hessian are nearly identical. This supports the use of Hessian, because the additional

computational burden to obtain the Hessian is e¤ectively zero. Note that we show

the results from the inverse of the Hessian for the comparison sake, but we can use

the Hessian as a precision matrix in practice (in this case, divide the Hessian by T ).

Third, the exogenous shock processes tend to be somewhat better identi�ed; this is a

rather common �nding in most identi�cation literature (see, for example, KPS (2011)

and Iskrev and Ratto (2010)). Fourth, our �nding about identi�ed or nearly identi�ed

parameters are in line with other papers, such as Iskrev (2010a) and Iskrev and Ratto

(2010). In our opinion, weakly identi�ed parameters can be classi�ed as follows:

(a) Level parameters that mainly a¤ect the �rst moments:

The subjective discount factor, �, hours worked in the steady state, �l, in�ation rate

in the steady state, ��, are poorly identi�ed. One exception is 
, the parameter governing

output growth trend, which is an outlier in the sense that it is too well identi�ed. Since

9



the variables in Smets andWouters (2007) are log-linearised around the steady state level

and hence there are no constant terms in their equilibrium equations, the information

about the �rst moment is discarded. As Canova and Sala (2009) pointed out, having

constant terms changes the identi�cation in general. Our conjecture is that, if we do not

subtract the means from the log-linearized variables and instead add constant terms in

the equations, the identi�cation of these parameters could improve signi�cantly.

(b) Monetary policy parameters:

Most coe¢ cients in the Taylor rule are weakly identi�ed: the interest rate weight on

in�ation, r�, the interest rate weight on the output gap, ry, the weight on the change in

output gap, r�y, and the persistence in interest rates, �r. This is perhaps not surprising

because, as discussed extensively in the literature, a simpli�ed Taylor rule that reacts

only to in�ation often performs as well as the full Taylor rule as in Smets and Wouters

(2007). Since in�ation and output are highly correlated, it may not matter whether

nominal interest rates react to in�ation or the output gap.

(c) Price and wage stickiness related parameters:

The probability that price cannot be reset, �p, the degree of price indexation, �p, the

probability that wage cannot be reset, �w, and the degree of wage indexation, �w, are

also weakly identi�ed. One possibility is there are strong collinearities between �p and

�p and between �w and �w, as Iskrev (2010b) suggests, but another possibility is those

between �p and �w and between �p and �w, as Canova and Sala (2009) �nd. In any case,

it seems that the nominal rigidity is too densely parameterized or the formulation of

nominal rigidity does not capture the data very well.

(d) Other parameters:

The investment adjustment cost, ', and the elasticity of labour supply, �l, are highly

colinear pairwise. If we look at the eigenvectors of the Hessian that correspond to the

second and third smallest eigenvalues, they are the two dominating members, with the

smallest eigenvalue is almost solely related to �l.9 However, it is not totally clear why

these two economically distinct parameters seem to be colinear.

9Some preliminary results of the eigenvector analysis are available upon request.
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3.2 Applying Restrictions

Using the results of the baseline experiment, we have imposed certain restrictions to the

benchmark DSGE model in order to assess whether a signi�cantly greater number of

parameters become identi�ed. Speci�cally, we have considered the following restrictions:

we �xed (a) level parameters �l, �, ��, (b) monetary policy parameters ry, r�y and �r,

and (d) investment adjustment cost parameter ' at their posterior mean. Furthermore,

motivated by Canova and Sala (2009), we set �p = �w = � and �p = �w = �. We estimate

r�, perhaps the most important parameter in the monetary policy rule. These parameter

restrictions, of course, reduce the number of free parameters to be estimated. In the

similar vein to this, one possible approach to deal with weakly identi�ed parameters is

the reduction of parameters by constructing a pro�le likelihood, in which we represent

some parameters as functions of other parameters.10

The parameter identi�cation of the restricted model is presented by Table 5. The

main �ndings are as follows. First, as expected, now r� is fairly well identi�ed, which

supports the view that monetary policy parameters are collinear, perhaps because of the

high correlation between output gap and in�ation in the data. Second, the indicators

of � and � do not improve very much; while the speed of precision improvement of � is

slightly higher than �p and �w, that of � is somewhere between �p and �w. Third, there is

a slightly positive e¤ect on other parameters; that is, there is some improvement in the

rate at which precision improves, though such a e¤ect is rather small. Fourth, we have

checked the second moments and IRFs, but �xing weakly identi�ed parameters changes

them only negligibly. This is not surprising because we �x them at their posterior mean

in the original estimation. All in all, �xing some weakly identi�ed parameters does not

change the model behaviour very much and at the same time it does not so helpful to

the identi�cation of most of the parameters in this model. Figures 1 and 2 respectively

show the impulse responses of the model to a monetary policy shock with and without

restrictions in place, showing there is no signi�cant di¤erence in the model properties.

That said, it is also clear in both cases that we remain at some distance from full

10We thank Hashem Pesaran for this suggestion, which we will pursue in future work.
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identi�cation.

4 Discussion

In this section, we brie�y discuss some additional issues. First, in terms of the choice

between the Hessian and the posterior variance, we �nd that the use of the Hessian is

to be preferred. As we have shown in Tables 3 and 4, the results are almost identical

but the additional computational burden to obtain the Hessian is almost zero but to

obtain the posterior variance we typically have to employ time consuming MCMC re-

sampling, which can take several hours in each case. Also, for the comparison sake, we

the Hessian is inverted in Table 4, due to the di¢ culty in computing the MCMC based

precision. However, to avoid unnecessary inversion, it may be better to treat the Hessian

as the precision; i.e., treat the Hessian without inverting it. This can be particularly

important because weak identi�cation implies that the Hessian is near singular (i.e., ill

conditioned). In this case, we can check the normalized precision, which is the diagonal

elements of the Hessian divided by the sample size T .

Second, the initial sample size for our analysis of identi�cation can alter the results.

Tables 3 to 4, suggest that it would seem preferable to use the results of the increase

in precision between T = 100 and T = 10; 000 rather than the comparison between

T = 10 and T = 10; 000. This is partly because the variance estimates with a sample

size of T = 10 seems to be unstable. In fact, if we repeat this experiment several

times, we have fairly consistent asymptotic variance estimation for T = 100 but it

�uctuates to a considerable degree for T = 10. This observation is hardly surprising

as the estimation of variance is not likely to be well determined with such a short data

span. More importantly, it seems that there is a systematic bias for T = 10; that is,

since, for T = 10, the impact of the prior is stronger than when T = 100. However, as

we discussed, one of the distinct features of the KPS indicator is that it solely focuses on

the identi�cation by data (i.e., identi�cation without relying the prior), but the e¤ect of

the precision of the prior is not negligible for small T . Hence, the precision for T = 10
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can be too high because of the prior and as a result the improvement appears to be

slow. In our experiment, however, as is clear in Tables 3 and 4, the relative order of

identi�ability does not change very much when we move from T = 10 to T = 10; 000.11

Third, we might be wary in applying a mechanical cut-o¤ rule. We claim that, if a

parameter exhibits a precision improvement greater that 1, it is perhaps safe to judge it

is well identi�ed. However, even if its speed is slightly lower than 1, it may be still well

identi�ed. The KPS method is not a test but an indicator, so we must be cautious in

its application, as it is possible that it may sentence too many culprits.

Fourth, these observations lead us to conjecture that it may ultimately be better if we

do the same experiment with the data likelihood, rather than with the posterior density.

However, separating the data likelihood from the posterior density is quite di¢ cult, and

this may not be practical. Accordingly, we leave this exercise to future work.

5 Conclusions

While several identi�cation indicators have been developed for DSGE models, the KPS

method is highly attractive in the sense that only it focuses on the data identi�cation, i.e.

identi�cation without the help of the prior. There may be some use in combining KPS

with other methods, for example, Iskrev�s (2010a) J2, which relies only on the model

structure without referring to the data availability. Hence combining these distinct

indicators helps us to detect the source of the identi�cation failure. For example, if a

parameter of a model passes the J2 criterion but not the KPS, then we know such an

identi�cation problem is because of the lack of su¢ cient data. In addition, like other

Hessian based indicators, the KPS method is also subject to the Catch 22 problem;

without a priori knowledge about the parameters that are perfectly unidenti�ed, some

trial and error may be required to obtain the likelihood (or posterior) mode. In this

respect, again, it may be wise to combine it with Jacobian based methods, which often

do not rely on the data.

11We note a similar improvement in the ratio for T = 1; 000 vs. T = 10; 000. However, the relative
order does not change much.
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In our simple experiments, we �nd that many parameters in the Smets and Wouters

(2007) model, which now works as a benchmark in many DSGE applications, are weakly

identi�ed: especially, parameters related to (a) level, (b) monetary policy rule and (c)

price and wage stickiness. These �ndings are rather similar to those in the emerging

literature and are also clearly demonstrated by the KPS measure of posterior precision.

In practice, we recommend to using the Hessian (rather than the posterior variance)

in KPS method, because of the computational consideration. Also, it may be better to

check the change between T = 100 and T = 10; 000, rather than that between T = 10

and T = 10; 000. Finally, given the tendency in KPS, even if a parameter exhibits a

precision improvement slower than the order that is theoretically suggested, mechanically

judging it as poorly identi�ed may not be the best strategy, as some restrictions may be

brought to bear from economic theory to aid identi�cation. To conclude a parameter is

poorly identi�ed, its speed of precision improvement must be low and stubbornly so with

respect to various model restrictions. That said, the simplicity of the KPS indicator and

the extent to which such a widely used workhorse model seems less than fully identi�ed

must form a concern for those using Bayesian estimation techniques on DSGE models.
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Table 1: Log-linearized equations of the DSGE model of Smets and Wouters (2007)
(1) yt = cyct + iyit + zyzt + �

g
t

(2) ct =
h=

1+h=
 ct�1 + (1�

h=

1+h=
 )Etct+1 �

(�c�1)(WL=C)
�c(1+h=
)

(lt � Etlt+1)
+ (1�h=
)
(1+h=
)�c

(rt � Et�t+1 + �bt)

(3) it =
1

1+�
1��c it�1 + (1�
1

1+�
1��c )Etit+1 +
1

(1+�
1��c )
2'qt + �
i
t

(4) qt =
1��

Rk+(1��)Etqt+1 + (1�
1��

Rk+(1��) )r
k
t+1 � (rt � �t+1 + �bt)

(5) kt =
1��

 kt�1 + (1�

1��

 )it + (1�

1��

 )(1 + �


1��c)
2'�it

(6) kst = kt�1 + zt

(7) zt =
1�	
	 rkt

(8) rkt = �(kt � lt) + wt

(9) yt = �(�k
s
t + (1� �)lt + �at )

(10) �t =
�p

(1+�
1��c )�p
�t�1 +

�
1��c

1+�
1��c �p
Et�t+1 +

1
(1+�
1��c )�p

(1��
1��c�p)(1��p)
((�p�1)�p+1)�p

�pt + �
p
t

(11) �pt = �(k
s
t - lt) - wt + �

a
t

(12) wt =
1

1+�
1��c wt�1 + (1�
1

1+�
1��c )(Etwt+1 + Et�t+1)�
1+�
1��c �w
1+�
1��c �t +

�w
1+�
1��c �t�1

� 1
(1+�
1��c )�w

(1��
1��c�w)(1��w)
((�w�1)�w+1)�w

�wt + �
w
t

(13) �wt = wt � (�llt + 1
1�� (ct � �ct�1))

(14) rt = �rrt�1 + (1� �)(r��t + rY (yt � y
p
t )) + r�y[(yt � y

p
t ) + (yt�1 � y

p
t�1)] + �

R
t

(15) �at = �a�
a
t�1 + �

a
t

(16) �gt = �g�
g
t�1 + �

g
t + ��

a
t

(17) �it = �i�
i
t�1 + �

i
t

(18) �bt = �b�
b
t�1 + �

b
t

(19) �wt = �w�
w
t�1 + �

w
t + �w�

w
t

(20) �pt = �p�
p
t�1 + �

p
t + �p�

p
t

(21) �rt = �r�
r
t�1 + �

r
t

Note:The model has fourteen endogenous variables: y, output, c, consumption, i, investment, q, price

of installed capital, k, total capital stock, ks, the amount of capital used in production, z, capital

utilisation rate, rk, rental rate of capital, �, in�ation, w, wages, r, nominal interest rate, �w, wage

mark up and �w, price mark up. And the responses of fourteen endogenous variables are driven by

seven shocks: �a, total factor productivity, �i, aggregate investment, �b, consumer spending, �p, price

mark-up, �w, wage mark-up, and �r, monetary policy shock. As standard, the key behavioural

equations are obtained by deriving optimality conditions for household and �rm behaviour. These

decision rules are then linearised around their steady-state in standard fashion.This model and the set

of exogenous shock processes are estimated on time series data using Dynare.
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Table 2: Prior and posterior distributions

Prior Posterior
Par. De�nition Density Mean Std. Mode Mean Std.
' Investment adj. cost N 4.00 1.50 5.47 5.75 1.03
�c Inv. elats. intert. subst. N 1.50 0.37 1.42 1.38 0.14
h Consump. habit B 0.70 0.10 0.73 0.71 0.04
�w Calvo wage B 0.50 0.10 0.73 0.70 0.07
�l Elast. labour supply N 2.00 0.75 1.87 1.77 0.61
�p Calvo price B 0.50 0.10 0.65 0.65 0.06
�w Index. of wages B 0.50 0.15 0.60 0.57 0.13
�p Index. of prices B 0.50 0.15 0.22 0.25 0.09
	 Capital utilization B 0.50 0.15 0.54 0.55 0.12
� Fixed cost N 1.25 0.12 1.60 1.61 0.08
r� Response to in�ation N 1.50 0.25 2.02 2.04 0.18
�r Interest rate smooth. N 0.75 0.10 0.81 0.81 0.02
ry Response to output N 0.12 0.05 0.09 0.09 0.02
r�y Response to outp. gap N 0.12 0.05 0.22 0.23 0.03
� SS in�ation G 0.62 0.10 0.76 0.78 0.11
100(��1 � 1) Discount factor G 0.25 0.10 0.14 0.17 0.06
l SS hours worked N 0 2.00 0.72 0.63 1.07
100(
 � 1) Trend growth N 0.40 0.10 0.43 0.43 0.01
� Share of capital N 0.30 0.05 0.19 0.19 0.02
� Depreciation rate n.a. 0.025 n.a. n.a. n.a. n.a.
gy Government/Output n.a. 0.18 n.a. n.a. n.a. n.a.
�w Wage mark-up n.a. 1.5 n.a. n.a. n.a. n.a.
�w Kimball (wage) n.a. 10 n.a. n.a. n.a. n.a.
�p Kimball (price) n.a. 10 n.a. n.a. n.a. n.a.
�a AR prod. shock Beta 0.50 0.20 0.96 0.96 0.01
�b AR risk premium Beta 0.50 0.20 0.18 0.23 0.08
�g AR government spend. Beta 0.50 0.20 0.98 0.98 0.01
�qs AR invest. demand Beta 0.50 0.20 0.70 0.71 0.06
�ms AR monetary policy Beta 0.50 0.20 0.12 0.14 0.06
�� AR price mark-up Beta 0.50 0.20 0.91 0.14 0.05
�w AR wage mark-up Beta 0.50 0.20 0.97 0.97 0.01
!p MA price mark-up Normal 0.50 0.20 0.74 0.72 0.09
!g Prod. shock in G Normal 0.50 0.25 0.52 0.52 0.09
!w MA wage mark-up Normal 0.50 0.20 0.89 0.85 0.05
�a Std. prod. shock IG 0.10 2.00 0.45 0.46 0.03
�b Std. risk premium IG 0.10 2.00 0.24 0.24 0.02
�g Std. government IG 0.10 2.00 0.52 0.53 0.03
�qs Std. investment IG 0.10 2.00 0.45 0.45 0.05
�ms Std. mon. pol. IG 0.10 2.00 0.24 0.24 0.01
�� Std. price mark-up IG 0.10 2.00 0.14 0.14 0.02
�w Std. wage mark-up IG 0.10 2.00 0.25 0.24 0.02
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