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Abstract

We provide two methods to compute the largest subset of a set of observations that is 
consistent with the Generalised Axiom of Revealed Preference. The algorithm provided 
by Houtman and Maks (1985) is not computationally feasible for larger data sets, while 
our methods are not limited in that respect. The fi rst method is a variation of Gross 
and Kaiser’s (1996) approximate algorithm and is only applicable for two-dimensional 
data sets, but it is very fast and easy to implement. The second method is a mixed 
-integer linear programming approach that is slightly more involved but still fast and 
not limited by the dimension of the data set.
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1 introduction

When consumer choice data violates utility maximising behaviour it is often desirable to know by “how much”
the observed choices deviate from utility maximisation. Houtman and Maks (1985) proposed to measure
the degree of inconsistency as the maximal number of observations in the observed sample consistent with
rational choice. This measure (the HM-index) is calculated as the maximal subset of observations consistent
with some revealed preference axiom. The method has the additional advantage that researchers can restrict
further analysis of the data set to this maximal subset. This paper proposes two simple and fast methods to
calculate the HM-index.

Choi, Fisman, Gale, and Kariv (2007) tested whether the choices of 93 subjects over 50 decision rounds
were consistent with utility maximisation. Since most subjects were inconsistent, they computed the HM-index
to obtain a measure of the degree of inconsistency. However, in doing so, they report that the HM-index
is “computationally intensive even for moderately large data sets”. We apply our procedures to their data and
find them to be very fast: the first procedure found a solution for every subject in at most 0.4 seconds, while
the second found a solution in at most 3.3 seconds for every subject. Given the efficiency of our algorithms,
researchers can use the procedures to run extensive Monte-Carlo simulations to approximate the test power
based on the HM-index.

Our first method is a simple combinatorial algorithm based onGross and Kaiser (1996). It is only applicable
for two-dimensional data sets, but because experimental data sets are often two-dimensional, the method
is useful for many purposes. As described above, it runs very fast and to our knowledge is the first efficient
algorithm that does not require optimisation software. The second method is based on solving a mixed integer
linear programming (MIP) problem. This method is not restricted by the dimension of the data set. As such, it
is more general but slower than the first procedure. Implementations of the methods for Matlab® andWolfram
Mathematica® are available as supplementary material upon request.

Dean and Martin (2013) recently proposed a new measure of how close choice data is to satisfy utility
maximisation. The algorithm used to implement this measure can also be used to calculate the HM-index,
and like our second method it consists of solving an MIP problem. Thus, the two problems are similar
in computational complexity. But while our MIP problem is deduced directly from the definition of the
HM-index, Dean and Martin (2013)’s MIP problem is based on solving the so called “minimum set covering
problem” which is shown to be equivalent to calculating the HM-index. In this respect, it is important to note
the simplicity of our first algorithm which does not require using any optimisation packages.

2 preliminaries

The commodity space is RL
+ and the price space is RL

++, where L ≥ 2 is the number of different commodities.
A budget set is defined as Bi = B(pi ,w i) = {x ∈ RL

+ ∶ pixi ≤ 1}, where pi = (pi1 , . . . , piL)′ ∈ RL
++ is the price

vector and income is normalised to 1. We assume that pixi = 1; the only observables of the model are N
budgets and the corresponding consumer demand. As price vectors characterise budgets, the entire set of N
observations is denoted Ω = {(xi , pi)}Ni=1.

The bundle xi is directly revealed preferred to a bundle x, written xi R0 x, if pixi ≥ pix; it is strictly directly
revealed preferred to x, written xi P0 x, if pixi > pix; it is revealed preferred to x, written xi R x, if R is the
transitive closure of R0, that is, if there exists a sequence x j, . . ., xk , such that xi R0 x j R0 . . . xk R0 x. The
bundle xi is strictly revealed preferred to x, written xi P x, if xi R x j P0 xk R x for some j, k = 1, . . . ,N .
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Axiom (Samuelson 1938) A set of observations Ω satisfies theWeak Axiom of Revealed Preference (Warp) if
for all i , j = 1, . . . ,N, it holds that [not xi R0 x j] whenever x j R xi and xi ≠ x j.

Axiom (Varian 1982) A set of observations Ω satisfies the Generalised Axiom of Revealed Preference (Garp)
if for all i , j = 1, . . . ,N, it holds that [not xi P0 x j] whenever x j R xi .

Axiom (Banerjee and Murphy 2006) A set of observations Ω satisfies the Weak Garp (WGarp) if for all
i , j = 1, . . . ,N, it holds that [not xi P0 x j] whenever x j R0 xi .

Varian (1982) showed that Garp is a necessary and sufficient condition for the existence of a continuous,
monotonic, and concave utility function to rationalise Ω. Banerjee and Murphy (2006) showed that for L = 2,
Garp and WGarp are equivalent.

Houtman and Maks (1985) introduced the HM-index to measure the degree of inconsistency of Garp.
To formally define the HM-index, let v = (v1, . . . , vN) be a vector of binary variables (i.e., v i ∈ {0, 1} for
all i = 1, . . . ,N), and define the relation R0(v) as xi R0(v i) x j if v i pixi ≥ pix, and let R(v) be the transitive
closure of R0(v); furthermore, let P0(v i) if v i pixi > pix.

Axiom A set of observations Ω satisfies Garp(v) for some v ∈ {0, 1}N if for all i , j = 1, . . . ,N, it holds that
[not xi P0(v i) x j] whenever x j R(v j) xi .

Definition The Houtman-Maks (HM) index is the maximal fraction of non-zero elements in the binary vector
v such that Garp(v) holds.

Thus, the HM-index is the solution to the problem

HM =max
v

N
∑
i=1

v i

N
such that Garp(v) holds and v ∈ {0, 1}N . (1)

3 the two-dimensional case

As Houtman and Maks (1985), Gross and Kaiser (1996) took a graph-theoretic approach. Every observation is
interpreted as a node of a graph. In their definition, if observations i and j form a violation of Warp, then the
nodes for i and j are adjacent. The degree of a node i, degr(i), is the number of nodes to which it is adjacent.
Define Ai as the set of nodes adjacent to node i, and 1Ai as the set of nodes which are adjacent to i with degree
1.

The algorithm consists of two parts. First, whenever degr(i) = max j∈{1,...,N} degr( j) and degr(k) <
degr(i) for all k ∈ Ai , remove i. Repeat this step until no index is removed anymore. Second, whenever
degr(i) = degr(h) = max j∈{1,...,N} degr( j) and h ∈ Ai , then (1) if 1Ai ≠ ∅, remove i, (2) if 1Ah ≠ ∅, remove
h, (3) if 1Ai = 1Ah = ∅, remove either i or h. Again, repeat this step until no index is removed anymore. All
nodes not removed in this process belong to the set of indices consistent with Warp. Gross and Kaiser (1996)
point out that there is a special case in which the algorithm will fail to provide a maximal subset. However,
they argue that this case is extremely rare, and in any case, the algorithm provides a lower bound.

The algorithm is very efficient and easy to implement and therefore suitable for practical purposes. It can
easily be adapted for WGarp by simply redefining adjacency.1 If two nodes i and j are defined as adjacent

1This has already been noted by Heufer (2014) who did not go into the details of the approach.
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whenever i and j form a violation of WGarp, then the same algorithm will provide the set of indices consistent
with WGarp. With Banerjee and Murphy’s (2006) result, we then have a computationally efficient method to
compute the maximal subset of indices which are consistent with Garp in the two-dimensional case.

The same method can also be applied to compute a homothetic HM-index for homotheticity in the
two-dimensional case as Heufer (2013) showed that a pairwise version of Varian’s (1983) homothetic axiom is
sufficient in that case.

4 a mixed integer linear programming approach

A direct way to calculate the HM-index in the multi-dimensional setting (i.e., L > 2) is to numerically solve
(1). However, this problem may become difficult to solve because of the complexity in implementing the
Garp(v)-constraint. Instead we suggest to reformulate the problem as a simple mixed integer programming
(MIP) problem by replacing Garp(v) with an equivalent condition.

Theorem 1 For any v ∈ {0, 1}N , the following conditions are equivalent:
1. the set of observations Ω satisfies Garp(v);
2. there exist numbers U i ∈ [0, 1) and ψ i j ∈ {0, 1} such that

U i −U j < ψ i j , (2a)
(ψ i j − 1) ≤ U i −U j , (2b)

v ipixi − pix j < ψ i jAi , (2c)
(ψ i j − 1)Aj ≤ p jxi − v jp jx j , (2d)

for all i , j = 1, . . . ,N, where Ai is a number greater than pixi .

This theorem states that Garp(v) is equivalent to the set of linear inequalities (2a)-(2d).2 We suggest
to replace Garp(v) with the linear inequalities (2a)-(2d) in (1) and calculate the HM-index by solving the
following mixed-integer programming problem:

HM = max
v,Ui ,ψi j

N
∑
i=1

v i

N
subject to (2a)-(2d) and v ∈ {0, 1}N . (3)

This problem gives an exact and global solution (because every local solution to a MIP problem is a global
solution), and there exist efficient algorithms for solving such MIP problems in practice (branch and bound,
cutting plane, etc.).

5 empirical application and concluding remarks

We applied our methods to data from Choi et al. (2007). This data consists of portfolio choice allocations in
a two-dimensional setting (i.e., L = 2) from 93 experimental subjects over 50 decision rounds (i.e., N = 50).
Choi et al. (2007) reported the HM-index for all but six subjects which they were unable to find an optimal
solution for. We calculated the HM-index for every subject including the six unreported subjects (detailed

2The proof of Theorem 1 follows (with some simple modifications) from Cherchye, Demuynck, De Rock, and Hjertstrand (2014)
who prove a similar theorem in the context of weakly separable utility maximisation.
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results for each subject is available as supplementary material upon request). We found the method based
on the Gross-Kaiser algorithm to be very fast: it found a solution for every subject in at most 0.4 seconds.3

Solving the MIP problem (3) is more involved and took a maximum of 3.3 seconds for every subject, which, in
our view, can be considered fast enough given the relatively large N .4

This paper introduced two simple and efficient algorithms for computing the Houtman-Maks-index. The
first algorithm is applicable for the two-dimensional setting and does not require any optimisation software.
The second algorithm is based on solving a mixed-integer programming problem and can be applied to any
dimensional setting. Both of these algorithms can be modified to calculate the HM-index for other revealed
preference axioms, such as those for homotheticity.
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