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There are simple well-known conditions for the validity of regression and correlation as statistical 
tools. We analyse by examples the effect of nonstationarity on inference using these methods and 
compare them to model based inference using the cointegrated vector autoregressive model. Fi-
nally we analyse some monthly data from US on interest rates as an illustration of the methods.

Introduction
This paper is based on a lecture given at the 56th Ses-
sion of the International Statistical Institute in Lisbon 
2007, and part of the introduction is taken from there.

Yule (1926) in his presidential addres at the Royal 
Statistical Society stated

It is fairly familiar knowledge that we sometimes 
obtain between quantities varying with the time 
(time-variables) quite high correlations to which 
we cannot attach any physical significance what-
ever, although under the ordinary test the corre-
lation would be held to be certainly ”significant”. 
(p. 2) 

He goes on to show a plot of the proportion of Church 
of England marriages to all marriages for the years 
1866-1911 inclusive, and in the same diagram, the 
mortality per 1.000 persons for the same years, see 
Figure 1.

Yule (1926) then commented
Evidently there is a very high correlation between 
the two figures for the same year: The correlation 
coefficient actually works out at +0.9512. (p. 2) 

Finally Yule (1926) pointed out that
When we find that a theoretical formula applied 
to a particular case gives results which common 
sense judges to be incorrect, it is a  generally as 
well to examine the particular assumptions from 
which it was deduced and see which of them are 
inapplicable to the case in point. (p. 4) 

In order to describe the probability assumptions behind 
the ”ordinary test” he invents an experiment which 
consists of writing corresponding numbers of ),( tt YX  
on cards and defines the distribution of the correlation 
coefficient as what you get when you draw the cards 
at random and calculate the correlation coefficient. In 
this way he simulated the distribution of the empirical 
correlation coefficient calculated from two indepen-
dent i.i.d. processes, from two independent random 
walks, and from two independent cumulated ran-
dom walks, the latter having a U-shaped distribution, 
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Figure 1. The proportion of Church of England marriages to all marriages for the years 1866-1911 (line), and the mortality 
per 1.000 persons for the same years (circles), Yule (1926).

Figure 2. Simulation for T = 10 of the distribution of the empirical correlation coefficient for independent i.i.d. processes, I(0), 
independent random walks, I(1), and independent cumulated random walks, I(2), Yule (1926).
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 see Figure 2. The interpretation of Figure 2 is that for 
10,=T  there is no evidence that the empirical corre-

lation will be close to the theoretical correlation, which 
is zero. In fact the results also hold for very large ,T  as 
we shall discuss that later.

Thus, 80 years ago Yule pointed to what is wrong 
with just calculating correlation coefficients without 
checking the stationarity assumption behind the inter-
pretation, and he suggested calling such correlations 
”nonsense correlations”.

Granger and Newbold (1974) take up the point and 
note that

 It is very common to see reported in applied 
econometric literature, time series regression 
equations with an apparently high degree of fit, 
as measured by the coefficient of multiple cor-
relation 2R  but with an extremely low value 
for the Durbin-Watson statistic. We find it very 
curious that whereas virtually every textbook 
on econometric methodology contains explicit 
warnings of the dangers of autocorrelated errors 
this phenomenon crops up so frequently in well-
respected applied work. (p. 111) 

They show by simulation of ARIMA models that re-
gressions can be quite misleading. The important pa-
per by Phillips (1986) solved the problem of finding 
the asymptotic distribution of correlation and regres-
sion coefficients, when calculated from a class of non-
stationary time series. Thus the problem and its solu-
tion has been known for a long time but we still find 
numerous examples of misunderstandings in applied 
and theoretical work.

The paper by Hoover (2003) discusses Reichen-
bach’s principle of the common cause, that is, ”if event 
X  and Y  are correlated, then either X  causes ,Y  Y  

causes ,X  or X  and Y  are joint effects of a common 
cause (one that renders X  and Y  conditionally prob-
abilistically independent)”, see Sober (2001). A counter 
example to this principle, according to Sober (2001), 
consists in considering Venetian sea levels and Brit-
ish bread prices. Sober claims they are truly correlated 
but not causally connected by construction, therefore 
neither causes the other and there can be no common 
cause. Hoover points out that the statement ”truly cor-
related” is based on calculating the empirical correla-
tion coefficient, which is clearly a case of a spurious or 
nonsense correlation, as both series trend with time.

Thus the problem pointed out and analyzed by sim-
ulation by Yule in 1926, followed up by Granger and 
Newbold (1974), and finally solved by Phillips (1986) 
is still present in applied and theoretical work.

The purpose of this paper is to discuss regression 
and correlation which are commonly applied statistical 
techniques, and emphasize the assumptions underly-
ing the analysis in order to point out some instances, 
where these method cannot be used in a  routinely 
fashion, namely when the variables are nonstation-
ary, either because they contain a deterministic trend 
or a random walk. We then want to demonstrate that 
by building a statistical model that allows the variables 
to nonstationary, using the cointegrated vector autore-
gressive model, we can express our understanding of 
the variation of the data and apply that to pose ques-
tion of economic relevance.

Two approaches to inference
As an illustrative example we consider two time series 

tX  and ,,1  ,=, TtYt …  and a substantive theory that X  
influences Y  in a linear fashion formulated as .= XY β  
For given data such a relation does not hold and there 
is most often no substantive theory for the deviations, 
and to quote Haavelmo (1943) “we need a  stochastic 
formulation to make simplified relations elastic enough 
for applications”. We therefore introduce the error term 

tε  and write the relation as a statistical relation 

.,1, =,= TtXY ttt …+ 	 (1)

We want to estimate the parameter  and evaluate its 
uncertainty in order to be able to test hypotheses, for 
instance that 0  ,=  which means that in this model 
there is no influence of tX  on tY .

There are two common approaches to deal with in-
ference in linear regression and correlation analysis.

• 	 The method based approach 
Regression is used to estimate the effect of X  on Y  
by calculating the least squares estimators and the 
residual error variance using the formulae

,=ˆ
2

1=

1=

t

T

t

tt

T

t

X

YX

∑

∑ 	
		  (2)
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.)ˆ(=ˆ 2

1=

12
tt

T

t
XYT −∑− 	 (3)

These are then used to conduct asymptotic infer-
ence by comparing the t-ratio

,
ˆ

ˆ
)(= 01/22

1=
0=

−∑ t

T

t
Xt 	 (4)

with the quantiles of a  standard normal distribu-
tion. Regression works well if the estimates ˆ  and 

2ˆ  are close to their theoretical counterparts,  
and ,2  and if the asymptotic distribution of 

0=t  
is close to the Gaussian distribution. We discuss 
below some examples, where there is no relation 
between the empirical regression estimates and 
their theoretical values. 

Correlation is used to describe the linear relation be-
tween two observed variables Y  and X . We define the 
theoretical correlation coefficient between Y  and X  as

,
)()(

),(=
XVarYVar

YXCov 	 (5)

and the empirical correlation coefficient between two 
time series tY  and tX  is calculated as

.
)()(

))  ((
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1=

YYXX
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t

T

t
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t

tt

T

t

−−

−−

∑∑

∑ 	
		  (6)

both (5) and (6) are commonly called correlation, 
which causes some confusion. We distinguish these 
concepts here using the qualifications empirical and 
theoretical, and we discuss below some examples where 
the empirical correlation is not related to the theoreti-
cal correlation. Thus correlation and regression are 
summary statistics and the danger of using them is 
that for some types of data there is no relation between 
the empirical and the theoretical concepts.

 
• 	 The model based approach

In the model based approach we first formulate 
a hypothetical mechanism for how the data is gen-
erated and then derive the relevant statistical meth-
odology by an analysis of the likelihood function. 
One such model, which also specifies how tX  is 
generated, is 

,= 1ttt XY + 	 (7)

,= 21 ttt XX +− 	 (8)

where ),(= 21 ttt  are i.i.d. Gaussian with vari-
ances 2

1  and 2
2  and covariance .1 2  We then 

conduct inference using the method of maximum 
likelihood and likelihood ratio test. These meth-
ods, however, require that the assumptions of the 
model are carefully checked in any particular ap-
plication in order to show that the model describes 
the data well, so that the results of asymptotic infer-
ence, which are derived under the assumptions of 
the model, can be applied. 

It is well known that linear regression analysis can be 
derived as the Gaussian maximum likelihood estima-
tor provided that t  in (1) are i.i.d. ) ,(0, 2N  and tX  is 
nonstochastic. Similarly if ),( tt YX  are i.i.d. Gaussian 
with variances 2

2
2
1 ,  and covariance ,1 2  then the 

theoretical correlation is ,/= 211 2  and the maxi-
mum likelihood estimator of  is ˆ  given in (6). Thus 
there is no clear-cut distinction between the method 
based approach and the model based approach, but 
a difference of emphasis, in the sense that regression 
and correlation are often applied uncritically by ”press-
ing the button on the computer”, and the model based 
method requires more discussion and checking of as-
sumptions. Thus the model based approach we express 
our understanding of the data by the choice of model. 
We then apply the model to formulate precise ques-
tions and hypotheses, which can possibly be falsified 
by a statistical analysis of the data. In this way we can 
actually learn something new about the data.

We discuss below some examples where regression 
analysis and correlation analysis cannot be used, and 
hence one has to take properties of the data into ac-
count in order to avoid incorrect inference.

Regression and Correlation
We specify a set of conditions under which regression 
and correlation methods work well, and then analyse 
some examples where the methods do not work.

Regression
We formulate the statistical assumptions of the regres-
sion model (1) as
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Algorithm 1 We assume that
• T,,1 …  are innovations in the sense that 
they are i.i.d. )(0, 2  and t  is independent of 

TtXX t ,1  ,=,,,1 ……

• TXX ,,1   are stochastic (or deterministic) vari-
ables for which the normalized sum of squares is 
convergent to a deterministic limit

0  ,>2

1=

1 Σ→∑−
P

t

T

t
T Xn

for some sequence ∞→Tn . 

Here P→  denotes convergence in probability. These as-
sumptions are enough to show that 

0  ,=),,|( 1
1/2

tttT XXXnE …− 	 (9)

and 

.),,|( 2
1

1=

1 Σ→∑−
P

ttt

T

t
T XXXVarn … 	 (10)

Apart from a technical assumption on the third moment, 
these relations show that ttT Xn 1/2−  is a so-called martin-
gale difference sequence, and that the sum of its successive 
conditional variances converges to a deterministic limit. 
This again implies that one can apply the Central Limit 
Theorem for martingales, see Hall and Heyde (1980). The 
theorem shows, in this particular case, that
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where 
d
→  means convergence in distribution.

From (2) and (3) we find that 
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The result (11) then implies that 

	 ,ˆ P
→ 	 (12)

	 ,ˆ 2P
→ 	 (13)

	 ,)(0,)ˆ( 121/2 −Σ→− Nn d
T 	 (14)

	
ˆ

)ˆ()(= 01/22

1=
0=

−∑ t

T

t
Xt (0,1).Nd

→ 	 (15)

The first two results state that the estimators are close 
to the theoretical values, that is, the estimators are con-
sistent, and the third that ˆ  is asymptotically normally 
distributed. The last result is used to conduct asymp-
totic inference and test the hypothesis that ,= 0  by 
comparing a  −t ratio with the quantiles of the normal 
distribution. In this sense the regression method works 
well when the above Assumption 1 is satisfied.

Correlation
We formulate the condition that guarantees that the 
theoretical correlation can be measured by the empiri-
cal correlation.

Algorithm 2 We assume that ),( tt XY  is a  stationary 
(and ergodic) time series with finite second moments. 

It follows from the Law of Large Numbers, see for 
example Stock and Watson (2003, p. 578), that if As-
sumption 2 is satisfied, then 

.ˆ P
→ 	 (16)

Thus in order for the calculation of an empirical correla-
tion to make sense as an approximation to the theoreti-
cal correlation, it is important to check Assumption 2.

Examples
The first example shows that we have to choose dif-
ferent normalizations depending on which regressor 
variable we have.

Example 1. (Regression) If 1=tX  we have 
TX t

T

t
=2

1=∑  and we choose ,= TnT  and if ,= tX t  
then ,3

1= 32
1=

2
1=

TtX T

tt
T

t
≈∑∑  and we choose 

3= TnT  so that .3
1= 2

1=
32

1=
1 →∑∑ −− tTXn T

tt
T

tT  If 

tX  is an ergodic process with ,<)( 2 ∞tXE  then the 
Law of Large Numbers for ergodic processes shows 
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that ) .( 22
1=

1
t

P
t

T

t
XEXT →∑−  Hence we use the nor-

malization TnT =  in this case. This, however, is not 
enough to apply the regression method because we 
also need t  to be independent of the regressor, see 
Assumption 1.

Consider for instance the model defined in (7) and 
(8) for 1  ,  | <|  which defines an ergodic process .tX  
Then 

) ,/(1=)( 22
2

2
1=

1 −→∑− t
P

t
T

t
XVarXT  

but note that (9) fails because 
),,|( 11 ttt XXXE …

ttttt XEX 2
2

21  221 =)|(= −

0  ,  )(= 1
2

21 2 ≠− −
−

ttt XXX
when t1  is not independent of the regressor, and we 
cannot apply the asymptotic theory unless 0  .=1 2  
Thus even for stationary processes an autocorrelated 
regressor variable is enough to invalidate the simple 
regression.

If, however, we take the model based approach we 
can analyse model (7) and (8) as follows. We first find, 
assuming Gaussian errors, the conditional mean of tY  
given ,,,1 tXX   where 2

21 2=: −  

),,|( 1 tt XXYE 

),,|(= 11 ttt XXEX …+

) .(= 1−−+ ttt XXX 

This means we can replace (7) and (8) by the equa-
tions

1.2
1)(= ttttt XXXY +−+ −          	

(17)

.= 21 ttt XX +−                                   	  (18)	

Because the error terms ttt 21
1.2 = −  and t2  

are independent, we can analyse the equations sepa-
rately and estimate  by regressing tX  on ,1−tX  and 
determine +  and −  by regression of tY  on 

tX  and ,1−tX  and that allows one to derive consistent 
asymptotically Gaussian estimators for the parameter 
of interest .  Thus by analysing the model we can de-
termine the relevant regression analysis.           

Example 2 (Correlation) Let again the data be gener-
ated by (7) and (8) for 1  .| <|  Then tt YX ,  is an ergodic 
process and the empirical correlation, ,ˆ  will converge 
towards the theoretical correlation  given by
 

)()(
),(

1

1

ttt

ttt

XVarXVar
XXCov

+
+

,
) ]( 12)( 1[

)( 1=
2
2

2
1  2

22
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2
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2
1  2

2
2
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using the results that )/(1=)( 22
2 −tXVar  and 

.=),( 1  21ttXCov

If tX  instead is generated by 
,= 2tt tX +

then 

ttt tY 12= ++
and correlation analysis does not work. We find 

tXE t =)(  and ,=)( tYE t  so that the theoretical 
correlation is 

22 )()(
))  ((=
tXEtYE

tXtYE

tt

tt

−−

−−

)()(
))((=

2
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2
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ttt

ttt

EE
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,
)2(

=
2
2

2
11  2

2
2

2

2
21 2

++

+

that is, the correlation between the stochastic error 
term of tY  and tX .

The empirical correlation, however, measures some-
thing quite different. It contains the averages 

,= 2+tX
Where 

1)/2,(==
1=

1 +∑− TtTt T

t

 

so that 22)(= −+−− tt ttXX  
and 

112211 )()(=)(= −+−+−−+−− ttttt ttXXYY

112211 )()(=)(= −+−+−−+−− ttttt ttXXYY

are dominated by the linear trend and we have 

1  ,=
||

ˆ ±→
P

if 0  .≠  Thus, if the regressor is trending with a lin-
ear trend, there is no relation between the empirical 
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correlation, which is often very close to 1  ,±  and the 
theoretical correlation which measures a  correlation 
between the error terms see the example in Figure 1. 
The mistake made is of course that X  and Y  do not 
measure the expectation of tX  and .tY

The model based approached leads to estimating 
),(  from a  regression of ),( tt XY  on t and that 

gives consistent asymptotically Gaussian estimators of 
the parameters of interest without using or misusing 
any measure of correlation.

A good check of the relevance of the empirical cor-
relation is simply to calculate it recursively, that is, de-
fine tˆ  based on date up to time ,t  and then plot it and 
check if it is reasonably constant in ,t  see Figure 3.            

Next we give an example where one cannot normalize 
2

1= t
T

t
X∑  so that the limit exists as a deterministic limit, 

and hence that simple regression analysis may fail.

Example 3. (Random walk regressor) A very special 
situation occurs in example (7) and (8) if 1  ,=  so that 

tX  is stochastic and nonstationary in the sense that,
 

.= 02
1=

XX i

t

i
t +∑

In this case 00 =)|( XXXE t  and the variance 
tXXVar t

2
20 =)|(  which increases to infinity, and 

something completely different happens. Let us first 
find out how to normalize ) ,|( 0

2
1=

XXE t
T

t∑  because 
such a normalization could be a good candidate for the 

normalization of 2
1= t

T

t
X∑ . We find

tXXEXXE
T

t
t

T

t
t

T

t
∑∑∑

1=

2
20

2

1=
0

2

1=

=)|(=)|(

1).(
2
1= 2

2 +TT
 

Thus a  good choice seems to be ,= 2TnT  which at 
least makes sure that the mean converges when nor-
malized by 2T .

Unfortunately 2
1=

2
t

T

t
XT ∑−  does not converge to 

a deterministic limit but to a stochastic variable. The 
detailed theory of this is quite complicated because it 
involves Brownian motion, see Davidson and MacKin-
non (2004, p 616).

Figure 3. The recursively calculated correlation coefficient. Note how the value stabilizes for the two i.i.d. sequences at the 
theoretical value 1⁄√2=0.71, whereas for the two un-correlated random walks the value does not settle down.
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Brownian motion is a continuous stochastic process 
defined on the unit interval for which )(0  ,=(0) uBB  
is distributed as )(0,uN  and for 1<<0 321 ≤≤ uuu  
we have that )()( 12 uBuB −  is independent of 

) .()( 23 uBuB −  The main reason for this to be inter-
esting in the present context, is that we can approxi-
mate Brownian motion by random walks, because on 
the interval, 1  ,0 ≤≤ u  

,
)(
)(

22

11

2

1

1

1/2








→






∑
≤≤

−

uB
uB

T
d

i

i

T  ui

	 (19)

Thus a Brownian motion can be thought of as a ran-
dom walk with a very large number of steps, and that is 
how its properties are studied using stochastic simula-
tion. The two Brownian motions in (19) are correlated 
with correlation ./= 211 2

Two fundamental results about Brownian motion are 

,)( 2
2

1

0

2
2

2

1=

2 d  uuBXT
d

t

T

t
∫∑ →−

) .)  (( 12

1

0121
1=

1 d  BuBXT
d

tt

T

t
∫∑ →−

These limits are stochastic variables, and for our pur-
pose the main result is that the product moments should 
be normalized by 2T  and T  respectively to get con-
vergence. It follows that Assumption 1 is not satisfied 
because the limit of 2

1=
2

t
T

t
XT ∑−  is stochastic, and we 

cannot count on the results (12) to (16) to be correct.

If we run a regression anyway, we can calculate the 
t-ratio and find its limit 

)ˆ()( 1/22
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X 	 (20)
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∑
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−

If t1  and t2  are independent, one can show that the limit 
distribution (20) is ) ,(0, 2

1N  and therefore (12) and (15) 
hold anyway, whereas (14) is different, because we get in-
stead a so-called mixed Gaussian distribution of the limit 
of )ˆ( −T . So despite the fact ˆ  is not asymptotically 
normally distributed one can still test hypotheses on  
using the usual t-ratio, but the independence of t1  and 

t2  is crucial for this last result. A simulation is show in 
Figure 4. It is seen that for 0  ,=  where there is inde-
pendence between the regressor and the error term in the 
regression, the distribution of the t-ratio is very close to 
Gaussian, but the distribution of )ˆ( −T  is centered 
around zero, but far from Gaussian. Thus it is important 
to normalize )ˆ( −T  by an estimate of the asymptotic 
conditional standard error, or square root of the informa-
tion, which gives the −t ratio, which is asymptotically 
Gaussian, and not by its variance which will not give an 
asymptotically Gaussian variable, see the right hand panel 
in Figure 4.

Figure 4. The plots show simulations of the t–ratio, (15) or (20), and T(β̂-β); (14), in the regression of Yt=βXt+ε1t, when Xt is 
a random walk, ∆Xt=ε2t, see Example 3, and ε1t is independent ε2t. Each plot contains a Gaussian density for comparison. It 
is seen that the t-ratio has approximately a Gaussian distribution and that the estimator normalized by T has a distribution 
with longer tails than the Gaussian. The densities are based upon 10.000 simulations of T = 100 observations.

Dis tribution of t-ratio and beta^

Dis tribution of t-ratio, rho = 0.0

-4 -2 0 2 4 6

0. 00

0. 05

0. 10

0. 15

0. 20

0. 25

0. 30

0. 35

0. 40

0. 45

Dis tribution of T (beta^-beta), rho = 0.0

-15 -10 -5 0 5 10 15 20

0. 00

0. 05

0. 10

0. 15

0. 20

0. 25

0. 30



48 Søren Johansen

10.5709/ce.1897-9254.39DOI: CONTEMPORARY ECONOMICS

Vol. 6 Issue 2 40-572012

The result in (20) shows that applying a simple regres-
sion analysis, without checking Assumption 1, can be 
seriously misleading, and we next want to show how 
we can solve the problem of inference by analysing the 
model, that generated the data.

If 1  ,=  then ,= 2ttX∆  and we find the equations, 
see (17) and (18) 

,= 1.2
tttt XXY +∆+ 	 (21)

.= 2ttX∆

Here the errors are independent and 

)|(=)( 21
1.2

ttt VarVar .== 2
2|1

2
2

2
1  2

2
1

−−

Equation for tY  is analysed by regression of tY  on tX  
and tX∆  to find an asymptotically Gaussian estima-
tor for . This simple modification of the regression 
problem solves the inference problem. We still get an 
expression like (20) 

,
)(

)()(
)ˆ()(

2
2

1

0

2|12

1

02|11/22

1= d  uuB

ud  BuB
X d

t

T

t ∫
∫∑ →−       	 (22)

where )()(=)( 212|1 uBuBuB −  is independent of ,2B  
so the limit is mixed Gaussian and inference can be 
conducted using the usual t-ratio and comparing it to 
the quantiles of the Gaussian distribution.

The correlation analysis of tY  and tX  leads to a the-
oretical correlation (conditional on )0X  

)|()|(
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XXVarXXVar
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+

which converges to 1=|| 1 ±→ −  if 0  .≠  Thus for 
large t  we find a value 1±  depending on the sign of .

The empirical correlation coefficient has the same 
limit as ˆ

2

1=

2
1

1=
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1=

)())((

))  (()(

XXXX

XXXX

t
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t
tt

T

t
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t
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∑∑

∑∑

which converges in probability to 1  ,=|| 1 ±→ −P  if 
0  ,≠  so that it estimates the limit of the theoretical 

correlation for ∞→T .
This model with 1= is an example of two nonsta-

tionary variables with a stationary linear combination, 
that is, a model for cointegration.

Example 4. (Spurious correlation and regression)
Assume ),( tt YX  are generated by the equations

	 ,= 1ttY∆
	 ,= 2ttX∆

 where we assume that 0  ,=1 2  so tX  and tY  are 

Figure 5. The left panel shows the distribution of the empirical correlation between two independent random walks, S1t 
and S2t. The right panel shows the similar results for the empirical regression coefficient of S1t on S2t. The results are the 
same for higher values of T, thus there is no tendency to converge to ρ = 0. The densities are based upon 10.000 simula-
tions of T = 100 observations.
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independent of each other. The theoretical correlation 
is, conditioning on initial values, 

2
2

2
1

1 2

00

00 =
)|()|(

),|,(=
tt

t
XXVarYYVar

XYXYCov

tt

tt
t

0  .==
21

1 2

If we calculate the empirical correlation, (6), all prod-
uct moments should be normalized by 2−T  and we 
find, using the notation ,)(=

1

0
d  uuBB ∫  the limit in 

distribution of :ˆ

.
))(())((
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2
22

1

0

2
11

1

0

1122
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−−

∫∫
∫

Thus ˆ does not converge to zero or any other value 
but is stochastic even for infinitely many observations. 
This is the phenomenon observed by Yule (1926). 
A regression of tY  on tX  gives similarly 

,
)(

)()(ˆ
2

2

1

0

12

1

0

d  uuB

d  uuBuBd

∫
∫→

where the stochastic limit is totally unrelated to any 
theoretical measure of the effect of tX  on tY . Thus by 
calculation of a correlation or a regression coefficient 
one may infer an effect of tX  on ,tY  when absolutely 
no effect is present because they are independent, see 
Figure 5.

If the independent random walks contain a  trend, 
we model them as

,= 11 +∆ ttY 	 (23)

,= 011
1=

YtY i

t

i
t ++∑

,= 22 +∆ ttX 	 (24)

,= 022
1=

XtX i

t

i
t ++∑
 

where we again assume 0  .=1 2  In this case, the trend 
is dominating the random walk, and we find that for 
instance 

)(1 XXT t −−

][= 2
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i
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i
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for ,/ uTt →  because 021=
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i
t

i
T →∑− . It follows that 

because / 3)( 32
1=

TttT

t
≈−∑  we get 

1  ,=
||

ˆ
12

12 ±→
P

if 0  .21 ≠  Thus, despite the fact that tY  and tX  are 
stochastically independent, an empirical correlation 
suggests something quite different.

The regression coefficient satisfies similarly

,ˆ
2

1P
→

which is the ratio of the slopes of the trends, which 
makes some sense, but an analysis of the data, using 
model (23) and (24), would find a linear trend in each 
variable and estimates of 1 and 2 which would con-
tain more information.

It is therefore very easy to calculate an empirical 
correlation between two variables that are completely 
uncorrelated, but which each depend on the same 
third variable, like here a  time trend. It is important 
in the calculation of correlations to replace )( tXE  and 

)( tYE  by reasonable estimates, not use averages. 

The cointegrated vector autoregressive 
model
Cointegration was introduced in econometrics by 
Granger (1981) because many macro variables show 
nonstationarity of the random walk type, but also clear 
co-movement. We present in this section the cointe-
grated vector autoregressive model (CVAR) and apply 
it in the next section to analyse some interest data. The 
purpose is to demonstrate that by modelling the data, 
taking into account the nonstationarity, we can actu-
ally learn something new about the economic relations 
underlying the variation of the data.

The paper by Engle and Granger (1987) contains 
the first statistical analysis of cointegration using re-
gression methods, and Phillips (1991) modified the 
regression approach to allow for valid inference. The 
analysis of cointegration and model based inference 
in the vector autoregressive framework was initiated 
by Johansen (1988). The technique of cointegration is 
described in most text book on times series economet-
rics and many computer programs are available, see for 
instance Cats for Rats, (Dennis et al. 2005), which was 
used for the calculations in Section 5. For a systematic 
account of the theory, see Johansen (1996), and for  
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applications the monograph by Juselius (2006) is rec-
ommended. A recent survey with more details is given 
in Johansen (2006).

Below we give a simple example of such a model and 
discuss briefly the statistical analysis of the model.

An example of a model for cointegration
We consider two variables tX  and tY  which are gener-
ated by the equations for Tt ,1  ,= …  

,)(= 111 tttt XYY +−∆ −− 	 (25)

.)(= 211 tttt XYX +−∆ −− 	 (26)

The special choices of 0  ,=1  ,= −  and =  give 
the model (7) and (8) with a redefinition of the error 
term. Each equation is linear in past variables, but note 
that the levels 1−tY  and 1−tX  enter only through the 
same linear combination 111 = −−− − ttt XYU  in both 
equations. We call 1−tU  the disequilibrium error and 
think of the relation XY =  as an equilibrium rela-
tion, to which the variables react with adjustment co-
efficients  and  respectively.

It is seen that the equation for ttt XYU −=  is 

,)(= 211 tttt UU −+−∆ −

so that tU  is an autoregressive process with one lag, 
which is stationary if 1  .| <1| −+  By eliminating 

1−tU  from (25) and (26) we get

,= 21 tttt XY −∆−∆

which, by summation, shows that 

,=)(= 0021
1=

tii

t

i
tt SXYXY −+−− ∑

where tS , is a random walk and hence nonstationary.

The solution of the equations can be expressed as 

'
tttt

'
tt USUSYX ),()(=),( 1 −−− −

which equals 

.
1

1=
ti

t

i

'

U







−








−








 ∑ 	 (27)

This is a special case of the general formula below, see 
(29).

That is, the model produces nonstationary variables, 
each of which is composed of a stationary and a random 
walk. The linear combination )(1,−  eliminates the 

Figure 6. Plots of integrated series generated by equations (25) and (26). To the left are two random walks (η = τ = 0). To 
the right are two cointegrated nonstationary processes (γ =1, τ = −1/2,η =1/2). Note how they follow each other in the 
upper panel and move around the line Y − X = 0 in the lower panel.
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common random walk (common trend) and makes the 
linear combination stationary.

This is expressed by saying that ),( tt XY  is nonstation-
ary but cointegrated with cointegrating vector )(1,−  
and common stochastic trend tS , see Granger (1981).

Note that the variables are both modelled and treated 
similarly, unlike in a regression of tY  on .tX  Thus for 
instance if tt XY −  is stationary then so is ,1

tt XY −−  
so we can normalize on either one of them, provided 
the coefficient is nonzero. A cointegration relation is 
a relation between variables not a causal relation.

The general vector autoregressive model and its 
solution
The vector autoregressive model with two lags and 
a  constant term for a  −p dimensional process tX  is 
given by the equations, 

,=: 11 ttt
'

tr XXX +++∆ −−H 	 (28)

where t  i.i.d. ,,1  ,=) ,(0, TtN p …Ω  and ),(  are 
rp ×  matrices. Note that we need the values 1−X  and 

0X  as initial values in order to be able to determine the 
process recursively.

We define the polynomial

) .)( 1)((1det=)( zzzIzz '
p −Γ−−−

In order to avoid explosive processes we assume that the 
roots of 0=)(z  satisfy either 1| >| z  or 1=z . Under 
a  further regularity condition, the solution is nonsta-
tionary with stationary differences and given by

) .(=
0=1=

+++ −
∗

∞

∑∑ iti
i

i

t

i
t CtCCX  	 (29)

The matrix C  satisfies 0=C'  and 0  ,=C  
and ∗

iC  are functions of ,,  and Γ . Note that 
)(=

0=
+−

∗∞∑ itii
'

t
' CX  is stationary because 

0  ,=C'  and note that the trend disappears if 
'=   because 0  ,=C  and in this case there is no 

linear trend in the solution only a  level ∗∞∑ ii
C

0=
  , 

and 0  .=)( '
t

' XE +  The representation (27) is 
a  special case of (29) for a  bivariate system where 

')(1,= −  and ) ,,(=  so that ) .,(= −⊥
'  The 

model defined in (7) and (8) is a special case of (28) for 
0=1  ,= 21 −  and )(1,= −' .

Thus we have seen that
 •	 tX  is nonstationary with linear trend, ,tC  and 

tX∆  is stationary.

•	 )(=
0=

+−
∗∞∑ iti

'
it

' CX  is stationary so, that 

tX  is cointegrated with r cointegrating relations  
and disequilibrium error ) .( t

'
t

' XEX −
•	 tX  has rp −  common stochastic trends, 

,
1= i

t

i
' ∑⊥  where ⊥  is )( rpp −×  of full rank 

and 0  .=⊥
'  

Statistical inference in the cointegrated VAR 
model
It is important to emphasize that before inference can be 
made in this model the assumptions of the model should 
be carefully checked. Thus we have to fit a lag length so 
that the residuals are close to being i.i.d. We therefore 
plot the residuals and their autocorrelation function, see 
Figure 8 for an example. The Gaussian assumption is not 
so important for the analysis, but the assumption that 
the error term is i.i.d. is crucial for the application of the 
result from the asymptotic theory below.

Thus briefly summarize, we can conduct inference 
as follows
•	 First determine the lag length needed to describe 

the data and check the assumptions behind the 
model, in particular the independence of the re-
siduals.

•	 Find the cointegration rank and estimate and inter-
pret the cointegrating relation.

•	 Simplify the model by testing coefficients to zero. 

The test for cointegrating rank
The rank of  and  is the number of cointegrat-
ing relations and it is important either to check ones 
knowledge of the rank, or estimate it from the data. 
The statistical formulation starts by considering the 
unrestricted vector autoregressive model

,=: 11 ttttp XXX ++Γ  ∆+Π∆ −−H 	 (30) 
where t  i.i.d. )(0,ΩN  and ,,,ΓΠ  and Ω  are unre-
stricted. If we denote

,=),,( 11 −Γ  ∆−Π−∆ΓΠ −− tttt XXX

then the conditional Gaussian log likelihood function, 
) ,(log pL H  given the initial values 1−X  and ,0X  is apart 

from a constant, given by 

)(logdet[
2

Ω−
T 	 (31)

}].),,(),,({
1=

1 '
tt

T
t

t r ΓΠΓΠΩ ∑−
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Note that likelihood functions are usually based 
upon the joint density of the data. This is not pos-
sible for nonstationary variables, like random walks, 
as there is no joint density. We therefore condition on 

0X  and ,1−X  and consider the conditional density of 

TXX ,,1   given 0X  and 1−X . It follows that, condi-
tional on initial values, the (conditional) maximum 
likelihood estimators of ),,,( ΩΓΠ  in (30) can 
be found by multivariate regression of tX∆  on ,1−tX  

,1−∆ tX  and a  constant. The maximized likelihood 
function, ) ,(max pL H  can be found from (31) by insert-
ing the maximum likelihood estimators ) .ˆ,ˆ,ˆ,ˆ( ΩΓΠ µ

The hypothesis of r  cointegrating relations is for-
mulated as in model (28) 

,= 'Π
where  and  are rp ×  matrices. It turns out that maxi-
mum likelihood estimators can be calculated explicitly by 
an eigenvalue problem, even though this is a nonlinear 
maximization problem, see Anderson (1951) for reduced 
rank regression or Johansen (1996) for the application to 
cointegration. This gives estimates ),,,,( ΩΓ

�����  and 
the maximized value, ) ,(max rL H  calculated from (31). 
From this we calculate the likelihood ratio test

.
)(
)(log2=)=(log2

max

max

p

r'

L
LL  R

H
H

−Π−

The asymptotic distribution of this statistic is a func-
tional of Brownian motion, which generalizes the so-
called Dickey-Fuller test, see Dickey and Fuller (1981), 
for testing a  unit root in a  univariate autoregressive 
model. The asymptotic distribution does not depend 
on parameters, but depends on the type of determin-
istic terms and different tables are provided by simula-
tions, because the distributions are analytically quite 
intractable, see Johansen (1996, Ch. 15). It should be 
noted that the asymptotic distribution is not a 

2
 dis-

tribution as one often finds when applying likelihood 
methods, see Table 1 for an example.

After the rank is determined, we often normalize on 
one of the variables to avoid the indeterminacy in the 
choice of coefficients. When that is done, one can find 
the asymptotic distribution of the remaining param-
eter estimators in order to be able to test hypotheses 
on these, using either likelihood ratio tests statistics or 
−t test statistics. Thus the only nonstandard test is the 

test for rank, and all subsequent likelihood ratio tests 
in the model are asymptotically distributed as ) ,(2 f  
where f  is the number of restrictions being tested.

Asymptotic distribution of the coefficients of the 
cointegrating relation
Unlike usual regression, as described in Section 3, the 
estimators of the parameters in the cointegrating rela-
tion are not asymptotically Gaussian. Nevertheless one 
can estimate scale factors, ,î  so that 

(0,1).)ˆ(ˆ= 0
1

0= Nt
d

iiiii
→−− 	 (32)

Thus one can use these t-ratios for testing hypotheses on 
individual coefficients, for instance that they are zero. In 
general one can also test any linear (or nonlinear) hy-
pothesis on the cointegrating parameters using a likeli-
hood ratio test, which is asymptotically distributed as 

)(2 f , where f  is the number of restrictions tested.
A simple example of maximum likelihood estima-

tion is given in model (21), where the scale factor can 
be chosen as 1/22

1=
1/2
11.2 )(ˆ=ˆ −∑ t

T

t
x , and the limit is 

Gaussian because 2|1B  is independent of 2B  in (22).

Regression analysis of cointegrating relations
The cointegration coefficients can also be estimated by 
regression, provided we know the value of r , but infer-
ence is difficult in the sense that running a regression 
of tX1  on p  t t XX ,,2 …  will give consistent estimators 
of the cointegrating coefficients, but the corresponding 
−t  ratios will not converge to the normal distribution, 

and one cannot find scale factors so that (32) holds. 
This was illustrated in Example 3 above, where the 
equations for 1  ,=  become

,= 1ttt XY +

.= 2ttX∆

This is an example of two cointegrated series, where 
the usual t-test leads to a strange limit distribution if 

01 2 ≠ , see (20). The problem of how to modify the 
regression approach by finding a nonparametric esti-
mator of the so-called long-run variance, ,'CCΩ  was 
solved by Phillips (1991).

If, however, tX  contains a trend, then the analysis 
is different because a regression will in fact give valid 
inference because 22

1=
)ˆ( −∑ t

T

t
X  is given by

2

1=

2
1

1=

)(

t

T

t

tt

T

t

X

X

∑

∑
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Figure 7. The graph shows the four interest rates iff , i6m, i3y, and i10y from 1987:1 to 2006:1. Note how they move together 
and that they do not appear to be stationary.

Figure 8. These plots show how well the VAR(2) fits the data for one of the interests i3y. The upper left hand panel shows 
the data in differences and the fitted values. Below are the standardized residuals. To the right is the autocorrelation func-
tion for the estimated residuals and their histogram. 
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which converges in distribution to (1).2  The reason 
for the change of result is that the trend dominates the 
random walk asymptotically in this case.

An illustrative example
As an illustration of the cointegration methodology we 
next give an analysis of US monthly interest rates in the 
period 1987:1 to 2006:1. This is the period when Green-
span was the chairperson of the Federal Reserve System 
and avoids the recent turmoil of the financial crisis. The 
data is taken from IMF’s financial database and consists 

of the following four interest rates: the federal funds rate 

f fi , the 6 month treasury bills rate, the 3 year and 10 year 
bond rates, denoted yym iii 1  036 ,,  respectively. A  more 
thorough analysis of these data is given in Giese (2008) 
who also give the references to earlier analyses.

The first task is to find a  reasonable statistical de-
scription of the data and we try with the VAR model. 
After some investigation we end up with model with 
two lags and an unrestricted constant, see Figure 8.

As an important diagnostic tool we calculate the 
roots of the companion matrix where a unit root will 
indicate the type of nonstationarity we can handle with 
these models. We find there are two roots close to one, 

i0.0090.979 ±  and the rest are smaller than 0.798,  
indicating two unit roots.

The formal test for rank of the matrix Π  can be 
found in Table 1.

Figure 9. A plot of the canonical relations. It is seen that the first two which are the estimated cointegrating relations 
appear stationary an the last two are more nonstationary 

c a nonc ia l rela tions

beta1*X (t)

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
-5

-3

-1

1

3

beta2*X (t)

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
-4

-2

0

2

4

beta3*X (t)

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
-2.5

-1.5

-0.5

0.5

1.5

beta4*X (t)

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
-2.5

-1.5

-0.5

0.5

1.5



Vizja Press&ITwww.ce.vizja.pl

55The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration

 The tests for rank ,3,0  ,= …r  indicate that 1=r  
can be accepted at the 5  %  level, and at the 10%  level 
we find 2  ,=r  with a  −p value of 0.861 . The choice 
of 2=r  is supported by the finding of two roots close 
to one and will be maintained in the following. In the 
tests we assume a restricted constant so that ,= '  
in order to avoid a linear trend in the data and main-
tain the possibility that interest rate spreads are sta-
tionary around a level.

The two estimated cointegrating relations are given 
in Table 2, see also Figure 9, where the first two panels 

show the estimated cointegrating relations. In order to 
estimate the uncertainty of the coefficients we have im-
posed a zero restriction and a normalization on each. 
The natural hypothesis that the spreads are stationary 
cannot be satisfied because there are three spreads 
among four variables and we have only two station-
ary relations. Thus this simple cointegration analysis 
questions the usual expectation hypothesis that would 
predict the stationary of the spreads. What can we find 
instead?

A  formal test that the cointegration relations are 
homogeneous, and therefore only depend on the 
spreads, can be tested as the hypothesis that H=  
or 0  ,='H⊥  where 

(1,1,1,1).='H⊥

Considering the estimates of the second relation in Ta-
ble 2, it is obvious that it describes the change of slope 

)()( 1  0336 yyym iiii −−−  which is almost like a  cur-
vature, and in fact the first relation is approximately 

)0.2()( 366 ymmf f iiii −−−  which also represents 
a change of slope. We can test that as the hypothesis 
that 111 = H  and ,= 222 H  where 

.
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
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
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We find from Table 3 the stationary relations 
) ,()( 1  0336 yyym iiii −−−  

and 
) ,0.082()( 366 ymmf f iiii −−−  

so it seems from the data that the term structure is de-
scribed more by stationary changes of the slope and 
less by stationary slopes. 

Table 1. The trace test for rank shows that r =1 or 2 are acceptable at a 5% level 

Table 2. The parameters α and β estimated unrestrictedly. The t−ratios are given in brackets.

r λ̂ Trace c65 p-val

0 0.23 95.71 53.94 0.00

1 0.11 35.09 35.07 0.05

2 0.02 7.45 20.16 0.86

3 0.00 1.84 9.14 0.80

β’
1 β’

2 α’
1 α’

2

iff 1 0 -0.206
[-4.124]

-0.070
[-2.422]

i6m
-1.157
[-26.821]

1 0.840
[1.127]

-0.066
[-1.536]

i3y
0.204
[3.968]

-1.987
[-17.760]

0.002
[0.024]

0.036
[1.310]

i10y 0 1.004
[7.492]

0.068
[0.917]

0.030
[0.706]

1 0.00
[.429]

-0.00
[-1.232]
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Conclusion
We have discussed spurious regression and correla-
tion, which has been well recognized for more that 80 
years and have applied this to contrast two approaches. 
The regression or correlation based approach and the 
model based approach to statistical inference.

It is argued that it is a good idea to distinguish between 
the empirical and the theoretical correlation and regres-
sion coefficients. We need a  limit theorem to relate the 
empirical value to the theoretical value, and this limit 
theorem may not hold for nonstationary variables.

We illustrate by examples that empirical correlation 
and regression coefficients may be spurious, in the 
sense that the conclusions drawn from them cannot be 
considered conclusions about the theoretical concepts. 
There are two reasons why regression and correlation 
may be spurious. One is that using ,X  and the empiri-
cal variance as estimates of the mean and variance of 

tX  is that these need not be constant if the process is 
nonstationary.

The solution to the spurious correlation or regres-
sion problem in practice, is to model the data and 
check the model carefully before proceeding with 
the statistical analysis and this is where cointegration 
analysis comes in, as a possibility to model the nonsta-
tionary variation of the data. The vector autorgressive 
model is a natural framework for analysing some types 
of nonstationary processes and cointegration turns out 
to be a natural concept to describe long-run relations 
in economics and other fields.

By modelling the data carefully, taking into account 
the nonstationarity, we can actually learn something 

new about the economic relations underlying the vari-
ation of the data by posing sharp questions and analyse 
the statisrical model.
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