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Abstract This paper calls for a change in paradigm in lot sizing and scheduling.

Traditionally, a discrete time scale is chosen to model lot sizing and scheduling. As

an alternative, the so-called block planning concept is proposed which is based on a

continuous representation of time. A mixed-integer linear optimization model is

presented that determines the size and the time phasing of the individual production

lots in a single-stage production system under the objective of minimizing the

makespan. The modelling approach presented here assumes the grouping of product

variants into setup families and the production of product variants within a family in

a pre-defined sequence. Numerical results demonstrate the practicability of this

approach under experimental conditions which reflect typical settings from a

leading company in the European beverage industry.

Keywords Lot sizing and scheduling � Block planning � Mixed-integer

linear programming

JEL Classification C61 � M11

1 Introduction

Dynamic lot sizing and scheduling is a key issue in almost all manufacturing

systems, especially, when multiple products with volatile demand are produced on

the same production equipment. In his seminal work published in 1913, Harris

raised the fundamental question ‘‘How many parts to make at once?’’ and proposed
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the famous classic lot-sizing model for determining optimal lot sizes under static

demand conditions. In the following decades, discrete time-based lot-sizing models

were introduced to cope with dynamic demand conditions (Wagner and Whitin

1958). In the sequel, capacitated lot-sizing models were derived from this classic

dynamic lot-sizing model (Dixon and Silver 1981; Günther 1987; Ross and Almada-

Lobo 2011). Clearly, rapidly changing business conditions impose new challenges

on the design and industrial application of lot-sizing models. For instance, the

following observations give reasons to reconsider the current principles of lot size

modelling and call for a change of paradigm.

First, shorter product lifecycles and mass customization lead to a steadily

increasing complexity of production systems. This holds, for instance, for technical

and chemical goods which are often adapted to the specific processing conditions of

the customers. The trend of increased product variety is even more pronounced in

the consumer goods industry due to the diversification of package sizes, the use of

customized package prints and labels, and the variation of ingredients and flavours.

Second, customers in many industries are seeking faster replenishment and

shortened cycle times to reduce their inventories and their investment in storage

facilities. This development comes along with the above-mentioned increased

product variety. As a consequence, in order not to build up excessive inventories

particularly for product variants with low and infrequent demand, manufacturers are

often forced to shift part of their production system from make-to-stock (MTS) to

make-to-order (MTO) and to apply a hybrid MTS/MTO strategy (Soman et al.

2007). This makes it necessary to implement more flexible manufacturing and more

responsive planning systems and to realize smaller lot sizes with frequent

changeovers between product variants. In addition, daily due dates or even time

windows comprising only a few hours are often defined for the delivery of goods to

customers’ distribution centres (Günther and Seiler 2009).

Third, especially in process-related industries, there is often a natural sequence in

which the various products are to be produced to minimize total changeover time

and to maintain product quality standards. For example, setups are sequenced from

products with high to low purity requirements, from the lower taste of a food

product to the stronger, or from the brighter colour of a product to the darker (Lütke

Entrup et al. 2005). Hence, families of products can be identified which are

produced in a given sequence under the same basic equipment setup. In this case,

major setups are incurred for changing over between product families while only

minor setups are needed for switching to another product within the same family.

Hence, lot-sizing models need to reflect the nature of setup drivers and the

corresponding hierarchy of setup operations.

Fourth, since the development of the first dynamic lot-sizing models production

speed in almost all industries has considerably increased due to rapidly progressing

technical advancements. This in combination with the increased number of product

variants makes it necessary to base discrete lot-sizing models on an accordingly

shorter period length which in turn causes a significant increase in the number of

variables and constraints. At the same time, setup effort is often considerably

reduced or even eliminated due to automated manufacturing technologies.
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Finally, many companies shifted their production control philosophy from push,

e.g. the classic material requirements (MRP) planning, to pull systems (Karrer et al.

2012). Consequently, forecast-driven advanced planning of production runs over

multiple weeks or months has been replaced by short-term creation of production

schedules which are most often driven by call orders from contract customers.

Since in our view conventional lot sizing and scheduling models do not

sufficiently reflect the conditions given in industrial production systems we propose

an alternate approach, called block planning, for scheduling production orders on a

continuous time scale with demand elements being assigned to distinct delivery

dates. Moreover, issues like definition of setup families with consideration of major

and minor setup times and multiple non-identical production lines with dedicated

product-line assignments can be addressed in a realistic way. In the basic block

planning model developed in Günther et al. (2006), only one block per period was

assumed. Though blocks were allowed to start prior to the assigned period, the

degree of flexibility in the generation of the production schedules was still

somewhat limited. This paper generalizes and extends the basic block planning

model by redefining the decision variables similar to Denizel and Süral (2006) and

thus eliminating inventory variables and balance equations. In addition, a flexible

assignment of product families to production runs is introduced considering major

setups for product families and minor setups for individual items within a family.

Further extensions include the consideration of numerous demand elements with

specific delivery dates not being confined to period boundaries, the implicit

observation of shelf life through the definition of adequate time windows for the

assignment of production runs to demand elements, and the reduction of the number

of binary variables through the analysis of run-out times for stock-keeping units.

The remainder of this article is organized as follows. In the next section the basic

techniques for lot size modelling are discussed. In Sect. 3, the major characteristics

of the block planning concept are explained. In the subsequent Sect. 4, a block

planning model based on mixed-integer linear programming is developed.

Numerical investigations presented in Sect. 5 show the practical applicability of

the proposed block planning approach. Finally, some conclusions are drawn.

2 Lot size modelling: review and discussion

The following short review focuses on basic modelling techniques for dynamic

capacitated lot sizing. It is not intended here to give a detailed assessment of the

many variants of lot-sizing models and solution methods presented in the academic

literature. Recently, several comprehensive reviews have been published which

focus on specific aspects of lot sizing and scheduling. For instance, Karimi et al.

(2003), Quadt and Kuhn (2008) and Buschkühl et al. (2010) review the literature on

capacitated lot-sizing problems. Allahverdi et al. (2008) provide a comprehensive

review of scheduling problems with sequence-dependent setup times and costs. The

review of Zhu and Wilhelm (2006) specifically addresses models and solution

approaches for lot sizing with sequence-dependent setups. Robinson et al. (2009)

provide a state-of-the-art review of research on coordinated lot sizing. Another
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recent paper by Jans and Degraeve (2008) reviews the lot-sizing literature from an

industrial application perspective.

In the following, we focus on the development stages of the basic modelling

techniques. In this regard, three categories of dynamic capacitated lot-sizing models

can be identified: (1) pure discrete time-based models, (2) hybrid, i.e. combined

discrete–continuous models, and (3) continuous time-based models.

The first category of lot-sizing models subdivides the entire planning horizon into

discrete periods, usually of equal length, and determines setup decisions, lot sizes

and inventory levels for each product and period (Suerie 2005). Two variants of this

modelling approach exist. Big-bucket models assume a basic period length which is

sufficient to schedule several production lots per period. The main difficulty

associated with this approach is that the sequencing and timing of the production

runs within a period and the possible carryover of the setup state between periods is

not explicitly modelled. In contrast, small-bucket models attempt to integrate lot

sizing and scheduling by allowing one or at most two products to be scheduled per

period and to carry over the setup state from period to period. The latter, s, is

achieved by an increased number of binary variables (Suerie 2005). Irrespective of

the granularity of the underlying time grid, in discrete time-based lot-sizing models

the start and end of production runs as well as the updates of the inventory status are

restricted by the period boundaries. Clearly, the accuracy with which the time

representation is modelled depends on the relative length of the time periods. In the

case of a dense time grid, e.g. imposed by high production speed of the equipment,

an excessively large number of decision variables and constraints are needed.

Furthermore, for modelling sequence-dependent setup times and costs, an even

considerably larger number of variables are necessary.

The second category of hybrid lot-sizing models combines a discrete time scale

for modelling the production runs of product families and a continuous time scale

for scheduling the individual product variants within a period. For this purpose,

macro-periods are defined which are divided into a fixed number of non-

overlapping micro-periods with variable length (Amorim et al. 2012). This

modelling approach was derived from the ‘‘General Lot Sizing and Scheduling

Problem (GLSP)’’ due to Fleischmann and Meyr (1997) and can be regarded as

more realistic compared to purely discrete lot-sizing models. But still, the

computational burden associated with solving real-life problem instances can be

prohibitive.

In a discrete time-based lot-sizing model, particularly in a small-bucket model, a

considerable but consistently ignored issue is the definition of the length of a time

period. Intuitively, weeks are chosen for macro-periods and days for micro-periods.

In a practical application, however, the period length must be defined based on

minimum lot sizes imposed by technological conditions or by minimum customer

order sizes. In a high-speed production environment, e.g. bottling of beverages, this

often leads to just a few minutes needed to produce the minimum lot size while in a

low-speed environment, e.g. steel production, a few hours suffice. Accordingly, the

length of a time period should be defined in the order of minutes or hours depending

on the particular application environment. Discrete time-based lot-sizing models in

the academic literature typically cover only 2–12 periods corresponding to a time
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span of just a few hours or at most a full day. With a typical planning horizon of

4–12 weeks, these lot-sizing models had to be based on an extremely large number

of periods to reflect the sequencing and timing of production lots. To overcome

these difficulties, the use of a continuous time scale is appealing.

The third and last category of lot-sizing models uses a continuous time

representation for modelling the production activities. In this regard, it also

combines issues of lot sizing and scheduling in a realistic way. Motivated by the

early development of continuous time-based model formulations for scheduling

chemical batch operations (see Mouret et al. 2011 for a comprehensive overview),

Grunow et al. (2003) developed a continuous time-based approach for scheduling

production campaigns in a supply network of the chemical–pharmaceutical industry.

From their model formulation, the basic block planning approach (Günther et al.

2006), was derived as a single-stage model formulation primarily for application in

high-variant production systems with volatile demand. This modelling approach

was coined block planning which is a common term in industry for cyclical

scheduling of product variants belonging to the same product family. Applications

of the block planning approach can be found in Lütke Entrup et al. (2005) for

scheduling yogurt production lines, in Günther et al. (2006) for hair dye production,

in Bilgen and Günther (2010) who developed an integrated model for production

and distribution planning, in Farahani et al. (2012) for the production and

distribution of perishable food products and in Mattik et al. (2014) for the

scheduling of continuous casters and hot strip mills in the steel industry.

Irrespective of the specific representation of time, lot-sizing models are based on

the same paradigm of balancing the trade-off between setup costs which are

incurred whenever a production run for a product is started and inventory holding

costs charged for production in advance of demand. In contrast, scheduling models

usually aim at achieving time targets and avoiding delays in the completion of the

production schedule. For several reasons, we found it difficult to employ

conventional lot-sizing approaches for scheduling production activities in a number

of industrial projects, for instance in the electronics, the consumer goods, the

chemical, and the steel industry.

First, the usual assignment of setup costs and times to products does not

realistically reflect the changeover processes prevalent in advanced manufacturing

technology. In a great number of industrial settings, we observed that setup

conditions are related to the processing mode of the production equipment rather

than to individual product types. Hence, the common assignment of setup costs and

times to individual products appears to be questionable since setup costs are often

caused by changing the basic processing mode and not for switching between

different product types. As an example, consider the bottling of beverages (see the

case-based example in Sect. 5.1) where stretch blow-moulding machines are set up

for a specific type of plastic bottles by mounting the required moulds into the

processing head of the machine. Once the machine is set up for a specific type of

bottle, a variety of beverages can be bottled with only a minor changeover between

the different product types. Therefore, the definition of lot sizes should primarily

refer to the retention of a basic setup condition of the production equipment instead

to the production quantity of an individual item.
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Principally, the following types of setup activities can be distinguished.

• In the simplest cases, setup activities are independent of the sequence of

products and thus setup times and costs are associated with the setup of a single

product type.

• Another type of setup activities can be referred to as family setup. In this case,

the setup is accomplished for a family of related product variants with only

small or no setup requirements for a changeover to another variant in the same

product family. Examples are the setup of tools or electronic components in the

magazine of an automated assembly machine (Yilmaz et al. 2007). This setup

type is more demanding because the changeover effort between families

depends on all of the predecessors.

• With limited changeover environments are described in which certain change-

overs between product types are prohibited. Examples can be found in the

chemical and pharmaceutical industry, where residues of the predecessor

product could contaminate the succeeding product.

• A natural sequence exists when the sequence of products after a major setup is

pre-defined due to technological reasons. This case, which is quite common in

process industries, especially in the food and beverage industry, is considered in

this paper.

• The most general case is full sequence flexibility. In this case, the sequence of

products can be chosen arbitrary, but the setup effort depends on the sequence of

products. In most industrial applications, a few standard types of setup

operations suffice to model the sequence-dependent setup effort while in

literature mostly an unrealistically wide range of setup times and costs is

assumed.

Certainly combinations exist, for instance, major setups for a family of products

and a natural sequence with minor setups for changing to another product variant

within the same family.

Second, in many industrial applications setup costs are defined as opportunity

costs to compensate for the unproductive times during the change of the setup state.

This interpretation of setup costs is quite common, especially because out-of-pocket

costs caused by the consumption of material or energy often play a minor role.

Opportunity costs, however, depend on the utilization rate of the equipment and the

profitability of the production facility. Clearly, these costs are only essential in

bottleneck situations and even then impossible to measure. Despite this obvious

interrelation, lot-sizing models known from the literature typically assume given

values of setup costs and do not discuss the nature of setup costs though these costs

greatly impact the resulting lot sizes.

Third, in supply chain management attention has shifted towards improved

logistical performance (Pourakbar et al. 2009). Thus finished product inventories are

merely regarded as buffers between the manufacturing and the distribution stage of

the supply chain and costs for the deployment of the finished goods to the

warehouses in the supply chain often dominate capital-oriented inventory holding

costs. For instance, in the consumer goods industry, companies seek to turn over
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their inventories within 1 or 2 weeks after production. In this scenario, assuming

10 % interest rate per year and an average replenishment period of 10 days, per unit

production costs increase only by 0.27 % due to capital based holding costs. This

simple calculation shows that capital based inventory costs are extremely low and

thus less essential in applications with fast product turnover, e.g. in the consumer

goods industry or in companies which supply their customers according to the just-

in-time principle.

From this discussion of basic techniques and assumptions for modelling dynamic

capacitated lot sizing two conclusions can be drawn. The first is that the widely used

capacitated lot-sizing models, which are based on a discrete representation of time,

often do not comply with the changed business environment and the need to respond

quickly to customer orders by frequently updating the production schedules. In this

regard, continuous time-based lot sizing and scheduling models seem to be more

appealing. The second conclusion is that minimizing total setup and holding costs is

only appropriate if these costs can be determined as out-of-pocket costs directly

assignable to individual product types. A possible way-out might be seen in activity-

based costing which derives costs of activities from the actual use of resources

(Cooper and Kaplan 1988). In the absence of ‘‘true’’ cost figures, minimizing the

makespan, i.e. the time span needed to complete a given portfolio of demand

elements and thus minimizing setup times, seems to be more appropriate. Another

major advantage of the makespan objective is that production resources are freed as

soon as possible so that additional not yet known customer demand can be

integrated into the production schedule.

The block planning approach presented in the subsequent sections tries to

overcome the difficulties associated with classic discrete time-based lot-sizing

models and constitutes an attempt to integrate lot sizing and scheduling in a way

that can easily be implemented in practice.

3 The block planning principle

In many industries, e.g. in the consumer goods industry, production systems usually

consist of a single bottleneck stage after which final products are packed and

shipped to distribution centres or individual customers. Since multiple products are

produced on the same equipment, decisions have to be made on lot sizes and their

timing and sequencing. By integrating several product types into a product family (a

‘‘block’’) and by scheduling them block-wise in a pre-determined sequence, the

complexity of the model is significantly reduced. Specifically, in process industries

most often a natural sequence is given in which the various products are to be

produced to minimize total changeover time and to maintain product quality

standards. In the production of fruit juices, for instance, setups are sequenced from

light to dark colours of a product and, finally, at the end of the sequence mix drinks

are produced. Accordingly, all product types included in the pre-defined setup

sequence are pooled into one setup family and scheduled as a block.

Scheduling policies which rely on a given sequence of product types within a

setup family can be found in many industrial production systems. In the simplest
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case, called rigid block planning, the length of an entire block comprising a given

sequence of products corresponds to the length of a period, e.g. a week. In this

paper, a flexible block planning approach based on a mixed-integer linear (MILP)

model formulation is proposed which introduces a considerable degree of flexibility

for determining the length of an entire block, varying the production quantities for

individual products within a block, and for scheduling the start-off and completion

times of all blocks and production lots.

Taking a combined filling and packing line in the beverage industry as an

example, the composition of a block schedule is given in Fig. 1. The line produces a

specific package form, e.g. plastic bottles. Once the line is prepared after a major

setup for a certain bottle type, a family of different recipes (product types) is

processed in the pre-defined sequence each with a production sub-lot of variable

size. When changing over from one recipe to another, a minor setup time is incurred

for switching the pipelines and pre-mix tanks.

The major characteristics of the basic block planning concept upon which the

development of the MILP model in Sect. 4 is based can be summarized as follows.

• Given the assignment of products to setup families, fixed setup sequences of

products within a family are defined based on human expertise and technological

requirements. Each block corresponds to a single setup family.

• The assignment of setup families to blocks is modelled by use of binary decision

variables and determined by the optimization model based on the size and

timing of demand and capacity considerations.

• The composition of blocks is not necessarily the same. Binary decision variables

indicate whether a product is set up or not and continuous decision variables

reflect the lot size of each product in the block. Depending on the development

of demand over time, the lot sizes of an individual product may vary from block

to block. As a result, also the time needed to complete a block is variable.

• The start-off and completion times of a block are not directly linked to the

period boundaries but can be scheduled flexibly on the continuous time scale.

Hence, a block is allowed to start as soon as the predecessor block has been

completed. However, a time window can be imposed which defines the earliest

possible start and the latest feasible completion time of a block.

• Typically, a major setup operation is performed before starting or after

completing a block, e.g. for retooling or cleaning the manufacturing equipment,

while only a minor setup operation is required when changing between products

within the same block, e.g. for provision of material or for adjusting the

processing conditions.

...Package form 1

1 2 ...

Major setup time

Minor setup time

Block (production lot)

Production sub-lot (recipe)

Package form 2 Package form n

3 1 2 ...3 1 2 ...3

Fig. 1 Block pattern for a production line in the beverage industry
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• The minimization of the makespan, i.e. the time after which the entire set of

production orders is completed, can be seen as the usual objective function in

short-term production scheduling. Major constraints arise from the available

production capacities and the satisfaction of external demand.

• Further characteristics of the block planning approach refer to the modelling of

demand in a mixed make-to-stock and make-to-order environment. For instance,

in the consumer goods industry, short-term demand is known with certainty

based on distinct customer orders. In addition, expected order quantities for

future periods must be forecasted. The integration of both views leads to the

definition of so-called demand elements, which either represent specific

customer orders or forecasts. In block planning, for each demand element a

due date is defined on a continuous time scale. A demand element may be filled

from initial stock or by a set of assigned production orders.

As an example, Fig. 2 shows three demand elements d1, d2 and d3 for a specific

product assigned to due dates on the continuous time scale. The figure illustrates the

possibility of satisfying these demand elements from initial stock P0 or from a

number of assigned production orders P1, P2 and P3 which produce the requested

product. Continuous decision variables are used to model the flow from a production

order into a demand element. Moreover, Fig. 2 illustrates the possibility of

indirectly considering shelf life by limiting the assignment of demand elements to

only the most recent production orders, i.e. excluding assignments to blocks with

early time windows or to initial stock.

4 Development of an optimization model

4.1 MILP model formulation

In the following, a novel MILP model for lot sizing and scheduling in a single-stage

production system based on the block planning principle is presented. Such models

can be formulated using a discrete or a continuous representation of time. To

provide increased flexibility for scheduling the production activities in face of the

large product variety and to avoid that the start and the end of production runs are

confined to the period boundaries we develop a continuous time-based model

.....

Production order 1

..... .......... ..........

Initial stock

0P 1P 2P 3P

3d1d 2d

Production order 2 Production order 3

Time

Fig. 2 Assignment of demand elements to production orders and initial stock
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formulation. As mentioned before, the sequence in which the various products are

scheduled within a block is pre-defined following the human planner’s expertise and

technological requirements, whereas the assignment of product families to blocks is

not confined to any pre-defined setup sequence. Moreover, the model formulation is

based on the following specific assumptions.

• External demand is given in the form of demand elements which are

distinguished by product type, demand quantity and due date defined on a

continuous time scale.

• Demand elements for the same product and the same due date are aggregated

into one composite demand element.

• Each block can be executed within a pre-defined time window. The length of the

time window determines the degree of flexibility inherent in the model

application. Time windows may overlap.

• Blocks are numbered in consecutive order according to non-decreasing end

times of the time windows.

As a flexible and practice-oriented approach, we propose that a ‘‘menu’’ of

overlapping blocks is defined by the human planner. In the simplest case, only one block

per period, e.g. per week, would be allowed. In the case of a wide range of products and

high demand volatility it seems reasonable to offer a ‘‘menu’’ of blocks without product

families being assigned to them in advance. Figure 3 displays an example of three blocks

assigned for completion during overlapping time windows. Binary variables indicate

whether a block should be activated, i.e. one of the available setup families should be

assigned to it, or the block should be kept idle. The length of an active block is determined

by the setup and manufacturing time requirements of the individual production lots.

To facilitate the model formulation demand elements k 2 K are consecutively

numbered in increasing order of due dates. The pointer pðkÞ indicates the specific

product p 2 P to which a demand element refers. Principally, a demand element can

be satisfied from any preceding block including initial stock. However, in a practical

application, the number of feasible blocks will be limited. Hence, a set IðkÞ of

preceding blocks is defined from which demand element k can be satisfied. In turn, a

set KðiÞ can be derived which defines the succeeding demand elements which can be

satisfied from block i.

The notation used in the model formulation is given as follows.

4.1.1 Indices and index sets

i 2 I blocks (i ¼ 1; . . .; I0 )

j 2 J product families

p 2 P products

p 2 PðjÞ products which belong to product family j

k 2 K demand elements

i 2 IðkÞ set of preceding blocks from which demand element k can be satisfied

k 2 KðiÞ set of succeeding demand elements which can be satisfied from block i

pðkÞ product to which demand element k refers
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4.1.2 Parameters

ai; �ai earliest start and latest feasible completion time, respectively, of block i

ap unit production time for product p

sp minor setup time per sub-lot of product p

Sj major setup time for product family j

dk quantity of demand element k

4.1.3 Decision variables and domains

xik� 0 quantity of demand element k satisfied from production in

block i

yij 2 0; 1f g ¼ 1; if product family j is assigned to block i (0, otherwise)

qip 2 0; 1f g ¼ 1; if product p is set up in block i (0, otherwise)

ri 2 0; 1f g ¼ 1; if block i is active, i.e. a product family is assigned to it (0,

otherwise)

ai� 0 start time of block i

di� 0 duration of block i

The constraints of the block planning model are the following.

4.1.4 Setup constraints

Constraint (1) ensures that exactly one product family j[J is assigned to each block

if the block is active, i.e. ri ¼ 1, and no product family is assigned if the block is not

active, i.e. ri ¼ 0.
X

j2J

yij ¼ ri 8i 2 I: ð1Þ

According to (2), binary setup variables qip for the production sub-lots are

allowed to take values of one only if the respective product family j is assigned to

the block, i.e. yij ¼ 1.
X

p2PðjÞ
qip� yij � PðjÞj j 8i 2 I; j 2 J: ð2Þ

Block i-2 Block i-1 Block i

Product families

Time window i-2
Time window i-1

Time window i

Fig. 3 Definition of time windows
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Constraint (3) models the relationship between the product flow xik from block i

into demand element k and the binary setup variable qip. The flow quantity is

enforced to zero if no corresponding setup operation is performed, i.e. qip ¼ 0.

xik� dk � qi;pðkÞ 8i 2 I; k 2 KðiÞ: ð3Þ

4.1.5 Block schedule

The next set of constraints is needed to model the succession of blocks. Equation (4)

expresses the duration of a block which results from the major setup time for the

product family assigned to the block, the minor setup times for all sub-lots and the

time required for producing the sub-lot sizes. Note that di ¼ 0 if the block is non-

active. Further note that only one single product family is assigned to the block due

to (1) so that variables qip and xik may take positive values only for the respective

product family. Actually, variables di are not essential since they can be replaced by

the expression on the right-hand side of (4).

di ¼
X

j2J

Sj � yij þ
X

p2P

sp � qip þ
X

k2KðiÞ
apðkÞ � xik 8i 2 I: ð4Þ

According to (5), a block is allowed to start as soon as the predecessor block

has been completed. Constraints (6) and (7) impose time windows with boundaries

ai for the earliest start-off and �ai for the latest completion time of a block. Note

that in case a block is non-active, i.e. ri ¼ 0, the respective assignment variables

yij and qip and the lot size xik will be enforced to zero due to (1) to (3) as well as

the block duration di in (4), meaning that no setup or production activity takes

place. Moreover, in that case the lower boundary of the time window imposed in

(6) will not be binding. But still, the start time of the block will take a positive

value considering the finish time of the predecessor block according to constraints

(5).

ai� ai�1 þ di�1 8i ¼ 2; . . .; I0 ð5Þ
ai� ai � ri 8i 2 I ð6Þ

ai þ di� �ai 8i 2 I: ð7Þ

4.1.6 Matching production output and demand

The following constraint is needed to allocate output from the different blocks to the

demand elements. Constraint (8) makes sure that sufficient output quantities are

allocated from the feasible blocks i 2 IðkÞ, i.e. from those preceding the due date of

demand element k, to each of the demand elements. It should be noted that index set

IðkÞ is defined such that it includes only blocks with time windows preceding the

due date of demand element k.
X

i2IðkÞ
xik ¼ dk 8k 2 K: ð8Þ
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4.1.7 Objective function

The entire optimization model consists of constraints (1) to (8) and the objective

function (9) stated below. The objective function aims to minimize the makespan,

i.e. to complete the entire production schedule as early as possible. Indirectly, this

objective minimizes setup times and thus tends to maximize the capacity utilization.

min aI0 þ dI0 : ð9Þ
It should be noted that the block planning approach is not confined to the

makespan objective. Bilgen and Günther (2010) have shown how to incorporate

setup and holding costs into the objective function.

4.2 Variable reduction

The extended model formulation presented in the following is based on the

distinction of fixed and optional blocks. Since each product family must be

scheduled at least once in the course of the planning horizon—given that a positive

net-requirement for at least one item within the product family exists—we consider

the setup of one block of each product family as being fixed, but still leave the start-

off time of the block open. Further setups of a product family are considered

optional because the number and the size of the respective blocks as well as their

timing have to be determined by the optimization model. The rationale behind the

introduction of fixed blocks is to reduce the number of binary decision variables for

the setup of blocks and product types.

In most production systems, different types of products are produced using the

same equipment. Hence, stocks are to be built up, which cover the demand between

successive production runs of the same product. The development of stocks over

time mirrors the stochastic demand process and is heavily affected by the short-term

replenishment quantities of the customers. Moreover, stock levels are impacted by

the application of the lot-sizing model under a rolling horizon regime. Once an

individual product runs out of stock, a major setup activity for the entire product

family, i.e. the setup of a complete block, is induced. In this case, usually production

runs for various products are activated because in face of the excessive major setup

times it would be uneconomic to set up the production system only for a single

product.

Assume that demand elements are consolidated on a daily basis. The run-out-

time of initial stock rotp of any product p 2 P can easily be calculated as the day at

which the initial stock Fp0 is depleted:

rotp ¼ min s
Xs

s0¼1

eps0

����� �Fp0

( )
8p 2 P; ð10Þ

where s is the consecutive number of days within the planning horizon and eps0

indicates the external demand of product p 2 P on day s0.
The minimum of the run-out-times for items p 2 PðjÞ within a product family

j 2 J defines the run-out-time ROTj of the respective product family.
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ROTj ¼ min
p2PðjÞ

rotp

� �
8j 2 J: ð11Þ

To determine the sequence of the fixed blocks, the corresponding product

families i ¼ 1; . . .; I0 are sorted in ascending order of their run-out-times ROTj

giving ROT1�ROT2� ; . . .;ROTI0 . Accordingly, products included in the ordered

set of product families are consecutively numbered k = 1,2,…,P. This step

constitutes the first part of the production schedule consisting of a sequence of fixed

blocks and respective product setups. However, lot sizes of the individual products

still need to be determined by means of the optimization model.

Given the sequence of the fixed blocks and the product families included therein,

initial demand elements dk for all products k = 1,2,…,P can be obtained as total

net-demand over the time span from the beginning of the planning period until the

run-out-time ROTI0 of the last of the fixed blocks. ROTI0 is also assumed as the due

date of these demand elements.

dk ¼ max 0;
X

s�ROTI0

eks � Fk0

( )
k ¼ 1; 2; . . .;P: ð12Þ

Note that each product appears only once in the first part of the schedule. Hence,

product index p can be replaced by index k for the demand elements. Production lot

sizes from the fixed blocks must be sufficient to satisfy initial demand elements

defined this way. Nevertheless, actual lot sizes might be greater than initial demand

since the point in time for the consecutive setup is not known in advance.

The second part of the production schedule contains the optional blocks, i.e. the

‘‘menu’’ of blocks defined by the human planner. For these blocks, it is left to the

optimization model to decide on the assignment of product families to blocks, on the

sub-lot sizes of the individual products and on the start and completion times of the

production activities. Since not all of the allowed optional blocks must be utilized,

active and non-active blocks can be distinguished. Figure 4 illustrates the

composition of the entire production schedule using an example of a production

schedule with three product families and five optional blocks. After one fixed block

of each of the three product families is scheduled in ascending order of their run-

out-times, the second part of the schedule contains five optional blocks. For non-

active blocks, no setup or manufacturing activity takes place.

Product families whose stocks deplete during the planning horizon require at

least one setup, i.e. they are represented with one fixed block i 2 Ifix in the schedule

(see Fig. 4). In constraints (13) and (14), respectively, the binary setup variables for

fixed blocks and products are set to one. In addition, constraint (15) ensures that for

all fixed blocks the assigned demand elements dk from equation (12) must be

satisfied.

ri ¼ 1 8i 2 Ifix ð13Þ

qi;pðkÞ ¼ 1 8i 2 Ifix; k 2 KðiÞ ð14Þ

xik � dk 8i 2 Ifix; k 2 KðiÞ: ð15Þ
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For all fixed blocks i 2 Ifix constraints (13), (14) and (15) replace (1), (2) and (8)

in the original model formulation and variables yij can be fixed according to the pre-

determined family-block assignment.

4.3 Discussion

Despite the progress that has been achieved with more realistic model

formulations and advanced solution methodologies, lot sizing and scheduling is

still a very challenging task due to excessive computational times. This is

especially true if complex industrial conditions and a large number of entities, e.g.

products or demand elements, have to be modelled. Obviously, a continuous

representation of time is more adequate to model the succession of production

activities compared to a discrete time scale which is common in classical lot

sizing. See, for instance, Shaik et al. (2006) who compare different model

formulations for application in the chemical industry. Jordan and Drexl (1998)

showed the equivalence between the discrete lot sizing and scheduling and the

continuous batch sequencing problem for the single-machine case with sequence-

dependent setup times and cost. In their numerical experiments, they demonstrated

the superiority of the batch sequencing approach in terms of CPU time. But still,

the discrete time representation is the predominant modelling technique in the

OR-related literature.

Obviously, the size of the discrete time scale models depends on the number of

products and periods. In a very elementary production setting with P = 10 products

and T = 12 periods (weeks) and under the most rigid big-bucket modelling

assumptions, i.e. multiple products scheduled per period, already 240 decision

variables for modelling the production and inventory quantities and 120 additional

binary variables for setup activities are required. Extending the modelling

assumptions to a small-bucket model with seven micro-periods per week, the

number of continuous variables increases to 1680 and, because of the additional

binary variables for modelling the setup state, the same number of binary variables

is needed. Small-bucket models of this size are extremely hard or impossible to

solve using standard optimization software.

For illustration, a specific example is taken from the beverage industry (see the

case-based example in Sect. 5.1). Today, powerful filling machines are used which

operate at a speed of 300 l/min, thus allowing one Euro pallet containing 750 l to be

produced within 2.5 min. Given minimum customer order sizes of one pallet, the

Fixed blocks

Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr Mo Tu We Th Fr

1 2 3 4 5

Block 1 Block 2 Block 3 Block ? Block ? Block ? Block ? Block ?

Product families

Optional blocks

ROT1 ROT2 ROT3

Fig. 4 Example of a production schedule with three product families and five optional blocks
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appropriate length of a micro period would be 2.5 min leading to a total number of

4,838,400 decision variables each for production, inventory, setup activities and

setup states, based on a typical planning horizon of 12 weeks and 100 products and

continuous plant operation (24 h per day and 7 days a week). Half of these decision

variables are binary. The size of the resulting optimization problems is far beyond

the scale of problem instances that can be solved today even with the most powerful

standard optimization solvers.

These estimations of the model size clearly show that conventional discrete

time-based model formulations are at best useful in applications with low-speed

production technology, aggregate demand for a limited number of products, and a

small number of big-bucket periods. For calculating the size of the block planning

model presented in Sect. 4.1, let K indicate the number of demand elements, B the

number of blocks, W the number of blocks from which a demand element can be

filled (the size of the time window), J the number of product families and �P the

average number of product types per family. Then the number of continuous

variables can be expressed as K �W þ B (not counting the redundant variables

defined in (4)). In addition, B � J þ J � �Pþ 1ð Þ binary variables are needed. The

number of constraints amounts to B � J þ 3ð Þ þ K �W � 1 (not counting the

redundant constraints (4) and the lower bounds defined in (6)). For instance,

K = 1,000, B = 24, W = 4, J = 8, and �P ¼ 7:5 are realistic dimensions of real-

life instances in the beverage industry. Based on these values, the block planning

model contains 4,024 continuous and 1,656 binary variables and 4,263 constraints.

As it is shown in the numerical investigation presented in the next section, the

resulting optimization models are easily tractable by use of standard optimization

packages.

In a real application, planners have to decide whether demand elements can be

aggregated so that the number of continuous variables and constraints is greatly

reduced. Clearly, if single customer orders are considered as demand elements,

numerous continuous decision variables are needed. As for the binary variables,

which primarily determine the CPU time requirements, their number depends on the

range of blocks and products and is independent of the demand granularity.

A particular difficulty with continuous lot sizing is the modelling of inventory

quantities and related storage capacity constraints. In contrast to discrete lot-sizing

models, the timing of stock receipts is variable and not confined to period

boundaries. However, Bilgen and Günther (2010) have shown that stock receipts

can be modelled by introducing an auxiliary time grid and by use of additional

binary variables which indicate whether a production activity is completed up to a

particular point in time. In this way, inventory states and transhipment quantities

can be incorporated into the model formulation.

Finally, it should be remarked that the block planning model is also applicable if

no pre-defined setup sequence of products within a family exists. In this case, each

product must be defined as its own ‘‘family’’. In contrast, incorporating a pre-

defined setup sequence into a discrete time-based lot-sizing model entails a very

elaborate procedure using a sequence-dependent model formulation and the

definition of prohibitively high setup costs or times for infeasible product sequences.
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5 Numerical investigation

Based on a case-based example from the beverage industry numerical experiments

are conducted to examine the practical applicability of the proposed block planning

approach for production systems with a single bottleneck stage. In particular, it is

shown that optimal solutions to problems of realistic size can be obtained within

reasonable CPU time. Please note that it is not the aim of this section to go into

details of beverage production (Ferreira et al. 2009; Bilgen and Günther 2010;

Ferreira et al. 2012), but merely to obtain a realistic test bed for the numerical

experiments.

5.1 A case-based example from the beverage industry

As a practical case, the production of beverages at a leading European producer of

fruit juice is considered. The beverages as well as other branches of the consumer

goods industry face an increased number of package forms, customized package

prints and labels, and a variety of flavours and compositions of ingredients. Caused

by environmental regulations and the need for improved logistics efficiency, novel

package forms have been developed. For instance, in the European Union plastic

bottles represent the major package form for fruit juices and other types of

refreshment drinks. At the same time, glass bottles become less important except for

alcoholic drinks and some specific kinds of beverages. Another common package

form is carton boxes made from foldable cardboard. However, carton boxes

continue losing market share compared to plastic bottles. Both plastic bottles and

carton boxes allow liquid food to be packaged and stored under ambient temperature

conditions for up to a year.

Specifically in the production of beverages, combined bottling and packaging

lines are established for each package form, e.g. plastic bottles, carton boxes, and

glass bottles. A line usually produces a number of product types, e.g. juices of

different flavour, and fills them into individual units for use by end customers. Each

product type, e.g. orange or pineapple juice, corresponds to a specific recipe which

determines the ingredients and the processing conditions of the product. Figure 5

illustrates the typical product-line assignment.

Due to the large effort for changing over between different package forms on a

line, manufacturers in the beverage industry pursue a production policy with fairly

large run times for a given package form. However, to cope with the increased

product variety short production cycles for product types and frequent changeovers

...

Production lines Carton boxes Plastic bottles Glass bottles

Form 1Package form Form 2 Form 3

Product type (recipe) a b ... a b ... a b ...

Fig. 5 Product-line assignment in beverage production
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between products within the same product family are common. Typically,

production lines are set up for a specific package form requiring a major setup

such that the changeover between the individual product types can be accomplished

with only a minor setup operation for switching the pipelines which connect the pre-

mix tanks with the filling lines.

In many industrial production settings, e.g. in the beverage industry, setup

conditions are considerably complex and the assignment of setup costs and times to

a specific product may become a difficult task. As an example, consider blow-

moulding machines which represent the recent technology for bottling of beverages

like mineral water or fruit juices. This kind of machinery is set up for a specific

shape and size of plastic bottles by mounting the required moulds into the

processing head of the machine. The actual plastic bottles are formed on the

machine from compact pre-forms through thermal and high-air pressure processes.

Depending on the configuration of the machine, around 20 moulding devices are

arranged on a rotary turret thus allowing a respective number of bottles to be

produced on the fly. Due to the high-pressure filling capabilities of the machine,

15–20,000 plastic bottles of one-litre size can be filled per hour. Auxiliary

equipment for bottle washing, capping and labelling is integrated into the line as

well as packaging machines for the generation of unit loads used in retail stores or

transportation. Once the line is set up for a specific type of bottle, a variety of

beverages can be filled with only a minor changeover between the different product

types.

Also inventory holding costs have to be reconsidered in the context of supply

networks with intensive material flows and short-term delivery requests from

customers to be found in the consumer goods industry. Traditionally, holding costs

are defined to compensate for the interest of capital tied up in inventory. In practice,

however, production managers face difficulties in defining these costs as out-of-

pocket costs since no clear relationship between cash flows and individual

production activities can be identified and the turnover periods of stocks have

considerably decreased. Therefore, in industries with high inventory turnover

minimizing stock levels is typically seen as a secondary goal while serving customer

requests on time and improving logistics performance are of paramount importance.

5.2 Experimental design

The major parameter settings in our numerical experiments were derived from the

industrial application example in the previous subsection. Specifically, the definition

of product families and the sequencing conditions for product types within a family,

the bottling and packaging technology, and the generation of demand elements

reflect key issues of this real-life application. Further assumptions and basic

parameter settings of the lot sizing and scheduling problem at hand are as follows.

• The planning horizon comprises 12 weeks and the plant is operated 24 h per day

and 7 days a week.

• From the various package forms, the line for filling plastic bottles is considered

as the one showing the highest filling speed and the most complex setup
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conditions. As mentioned before, lines are dedicated to package forms, e.g.

plastic bottles or carton boxes, and thus the lot sizing and scheduling problem

can be solved separately for each line.

• Major and minor setup times being typical for stretch blow-moulding machines,

which represent the latest technology for processing plastic bottles, are assumed.

• On the considered bottling and filling line eight different types of plastic bottles

(product families) are produced.

• The number of product types per family is randomly generated from the uniform

distribution U 5; 10½ � rounded up to the nearest integer giving 8 product types per

family on average.

• Depending on the relative demand volume, we distinguish between high,

medium and low-runner products. An equal number of product types is

randomly assigned to these categories.

While certain types of soft drinks show a strong seasonal demand pattern, the

consumption of fruit juice is only slightly affected by seasonal factors. Hence, in the

generation of the demand elements we do not consider any seasonality. Instead, we

assume capacity load scenarios of 75 and 90 %, respectively, which reflect

conditions of low and high average workload. Moreover, since demand in the fast

moving consumer goods industry is characterized by a large variety of customer

order sizes and irregular replenishment times, we investigate three demand

scenarios which differ by the average time between orders. Accordingly, a

parameter f = 1, 3, 7 is introduced which expresses demand frequency, i.e. the

average interval (in days) between the occurrence of demand elements. In our

experiments, f = 1 indicates daily demand, f = 3 demand occurring every third day,

and f = 7 demand occurring once per week. The size of the demand elements is

adjusted accordingly so that in each of the scenarios the same total demand volume

over the planning horizon is observed.

The random generation of demand elements can be described by the following

procedure.

5.2.1 Determination of the number of demand elements

(a) To reflect the cyclical production mode and the corresponding development of

inventories, it is assumed that sufficient initial stocks of all products exist.

Hence, no demand is assigned to an initial time interval and the first feasible

demand-day DDj for product families j ¼ 1; . . .; 8 is determined as DDj ¼
2þ j � 4þ Dj where Dj takes values of 0, 1, and 2 with equal probability.

Accordingly, TWj ¼ Sj; 84
� �

is assumed as the feasible time window for the

assignment of demand elements of products within family j over the planning

horizon of 84 days.

(b) With 84 days planning horizon and 60 products on average, 84.6 = 5040

product-demand combinations result. Excluding the 20 � 60 ¼ 1200 combina-

tions with zero demand due to sufficient initial stocks from (a) above,

effectively N = 5040 - 1200 = 3840 demand elements (product-demand

combinations) are considered. With f representing the demand frequency
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factor for distinguishing between low, medium and high demand frequency,

the average number of generated demand elements is determined as n(f) = N/f

giving a total of n(1) = 3840, n(3) = 1280, and n(7) = 549 demand elements

on average generated in the three demand frequency scenarios with f = 1, 3,

and 7, respectively.

5.2.2 Determination of demand quantities

(a) Determine X ¼ 24 � 7 � 12 ¼ 2016 as the total number of operating hours

available based on 24 h operating time per day, seven workdays per week, and a

planning horizon of 12 weeks. Considering an average workload of 75 % and

90 %, respectively, and a capacity loss of 576 h due to setup operations (giving

X � 576 ¼ 1440), determine Y as the effective total workload on the production

system: Y ¼ 0:75 � X � 576ð Þ ¼ 1080 and Y ¼ 0:9 � X � 576ð Þ ¼ 1296,

respectively.

(b) The average size of demand elements is set to D(f)=Y/n(f) hours depending on

f = 1, 3, 7 for the individual demand frequency scenarios. To create a realistic

degree of demand variability, values of demand elements d(f) are randomly

drawn from the uniform distribution dðf Þ 2 U½0:5 � Dðf Þ; 1:5 � Dðf Þ�. Select

randomly one of the product families and one product within the family. If the

selected product is a high-runner, demand is increased by 2/3, i.e.

dðf Þ  dðf Þ � ð5=3Þ. If the selected product is a low-runner, demand is

reduced to one-third, i.e. dðf Þ  dðf Þ=3. Otherwise, demand is not changed.

The detailed assignment of demand elements to due dates within the feasible

time window [defined in Step 1 (a)] is accomplished as follows:

• High demand frequency scenario (f = 1): One demand element is assigned

to each day t 2 TWj.

• Medium and low demand frequency scenarios (f = 3 and f = 7): Demand

elements are randomly assigned to periods t 2 TWj until the number of

demand elements determined in Step 1 (b) is reached. Note that in case a

demand element for the chosen product-period combination has already

been assigned, the assignment is rejected and a new product-period

combination is drawn.

(c) The size of the demand elements is normalized using the factor Y/Z where

Z indicates the total workload of the generated demand elements. This way a

workload of exactly Y hours is assured.

5.2.3 Determination of blocks

(a) For each of the product families, one fixed block is assumed. As due date, day

DDj þ 1 determined in Step 1 (a) is defined.

(b) In addition, 24 optional blocks are defined to which no specific product family

is assigned in advance. The time window for the execution of the optional

70 Business Research (2014) 7:51–76

123



blocks is set such that the latest feasible completion time of blocks is evenly

spread over the time interval between the completion time of the last fixed

block and the end of the planning horizon. No specific lower limit for the start

of a block is imposed.

5.2.4 Implementation

With two workload scenarios of 75 and 90 %, respectively, and the three levels of

demand frequency, six different scenarios are investigated. Each experiment is

repeated five times with different seeds of the random number generator. Detailed

parameter settings are summarized in Table 1. The proposed optimization model

was implemented on a PC with Dual Xeon Quad Core 2.5 GHz processor and 4 GB

RAM using ILOG’s OPL Studio 6.1.1 as the modelling environment and CPLEX

11.2.1 as solver. As termination criterion, the relative MIP gap was set to 1 %

throughout the experiments.

5.3 Numerical results

The main goal of the numerical investigation is to examine whether the proposed

block planning approach provides a practical tool for decision support in real

applications, i.e. solutions to the MILP model presented in Sect. 4 are obtained

within reasonable CPU time. In addition, the effect of the demand frequency is

investigated. Finally, it will be shown that CPU times can be drastically reduced if

demand over the final 6 weeks of the planning horizon is aggregated from daily into

weekly figures.

Tables 2 and 3 show the computational performance parameters for the two

scenarios of 75 and 90 % capacity load, respectively, and for different levels of

demand frequency. First, it appears that the optimum makespan is only slightly

affected by the different demand frequencies. Obviously, the MILP-based block

planning approach is effective in combining the demand elements into blocks which

are produced under the same major equipment setup. Because of the makespan

objective, idle times of the production line are shifted to the end of the planning

horizon allowing the planner to integrate not yet known customer demand into the

Table 1 Model parameters

Type Value

Number of product families (types of plastic bottles) 8

Average number of product types within a product family 8

Number of optional blocks 24

Planning horizon 12 weeks

Production speed 18,000 litre per hour

Minor setup time per sub-lot 90 min

Major setup time per block 600 min
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schedule. This type of compact schedules is particularly preferred in food

production where intermediate idle times require additional cleaning of the

equipment to prevent contamination. The second observation is that the number of

blocks as well as the number of sub-lots per block (product types actually produced

in a block) also show a slightly decreasing tendency with increasing demand

frequency in both capacity load scenarios, i.e. fewer sub-lots are set up when

demand elements occur less frequently. Finally, it is observed that in both capacity

load scenarios CPU times are extremely moderate. Though CPU times are

considerably higher in the 90 % capacity load scenario, in particular in the case of

high demand frequency, they are still at a very low level considering the application

environment of operative planning over a 12-week horizon. Apparently, CPU times

decrease with a smaller number of demand elements due to the decrease in model

size and they increase with a higher capacity load. The final column of Tables 2 and

3 shows the MIP gap achieved when the optimization run terminated. Though a 1 %

MIP gap was imposed as termination criterion, the actual MIP gap was well below

this threshold.

A related set of experiments was conducted to investigate the effect of demand

aggregation. Due to uncertainty in customer release quantities and replenishment

times, it is merely impractical in most branches of the consumer goods industry to

determine precise hourly or daily production schedules for more than a few weeks

ahead. Hence, we aggregated the demand elements for the final 6 weeks of the

12-week planning horizon from daily into weekly demand figures and solved the

corresponding MILP model which was considerably reduced in size compared to the

original model. This kind of demand aggregation seems to be appealing because it

Table 2 Computational performance of the MILP model under the 75 % capacity load scenario

(average over five replications)

Demand

frequency

No. of demand

elements

Makespan

(days)

No. of

blocks

No. of sub-lots

per block

CPU

time (s)

MIP gap

(%)

1 3,939 66.42 24.00 7.63 1.61 0.00

3 1,268 65.62 24.00 7.04 0.63 0.00

7 550 64.74 23.80 6.35 0.35 0.00

Avg. 1,919 65.59 23.93 7.01 0.86 0.00

Table 3 Computational performance of the MILP model under the 90 % capacity load scenario

(average over five replications)

Demand

frequency

No. of demand

elements

Makespan No. of

blocks

No. of sub-lots

per block

CPU

time (s)

MIP gap

(%)

1 3,944 75.83 24.40 7.66 71.08 0.24

3 1,261 74.44 24.00 6.93 3.26 0.00

7 519 73.47 24.00 6.00 0.35 0.63

Avg. 1,908 74.58 24.13 6.86 24.90 0.29
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still allows the production manager to develop the associated labor schedules and

procurement plans with adequate accuracy. Results indicated in Tables 4 and 5

reveal that in all test cases the CPU time falls well below one second. At the same

time, the differences in makespan compared to the original model are only minor. As

can be seen from Tables 4 and 5, the applied demand aggregation leads to a slight

decrease in the average number of blocks and a slight increase in the average number

of sub-lots per block. In fact, aggregate demand figures provide additional freedom in

creating larger production lots and thus saving one or the other setup operation.

6 Conclusions

In this paper, an MILP-based block planning concept has been presented that is

intended for practical application in production systems which are characterized by

a single bottleneck stage and high demand volatility. Such production systems can

be found, for instance, in the consumer goods as well as in the chemical industry. In

these process-related industries, planners are confronted with a variety of product

specifications which are produced on the same manufacturing equipment by

adjusting process parameters, such as process duration and processing mode or the

mix of raw materials. To illustrate the practical applicability of the block planning

concept, the production of beverages was considered as a case-based example. It

could be shown that the proposed MILP modelling approach adequately reflects the

relevant practical issues and problem instances reflecting realistic conditions could

be solved in very short computational time by use of standard optimization

software.

Table 4 Computational performance of the aggregate MILP model under the 75 % capacity load

scenario (average over five replications)

Demand

frequency

No. of demand

elements

Makespan

(days)

No. of

blocks

No. of sub-lots

per block

CPU

time (s)

MIP gap

(%)

1 3,939 65.57 23.00 7.65 0.31 0.00

3 1,268 64.83 22.60 7.34 0.28 0.00

7 550 64.44 22.80 6.72 0.23 0.00

Avg. 1,919 64.95 22.80 7.24 0.27 0.00

Table 5 Computational performance of the aggregate MILP model under the 90 % capacity load

scenario (average over five replications)

Demand

frequency

No. of demand

elements

Makespan No. of

blocks

No. of sub-lots

per block

CPU

time (s)

MIP gap

(%)

1 3,944 74.16 22.40 7.74 0.42 0.00

3 1,261 73.61 22.40 7.30 0.28 0.00

7 519 73.30 23.40 6.21 0.42 0.16

Avg. 1,908 73.79 22.73 7.08 0.37 0.05
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Generally, the problem of determining production order sizes, their timing and

sequencing with setup considerations is equivalent to a capacitated lot size problem.

However, the change in business conditions as shown by shortened replenishment

lead times, increased product variety, high-speed production equipment with more

complex setup conditions, increased inventory turnover etc. calls for a change of

paradigm. It appears that the industrial relevance of traditional lot sizing and

scheduling models has shifted from discrete parts manufacturing to process

industries, particularly, for applications with long processing times of campaigns in

multi-stage production systems. Hence, it is more relevant in the multi-plant supply

network planning stage than in detailed short-term scheduling of operations. In

addition, in the chemical industry setup costs are often easier to determine in the

form of direct costs mainly when after a product changeover output is temporarily

produced, which does not meet the desired specifications (Chapter 5 of Schöpperl

2013), or excessive clean-out times occur as in the pharmaceutical industry.

The block planning approach proposed in this paper relies on a continuous

representation of time which makes it unnecessary to use binary variables for the

product-period assignments and the changeovers as in capacitated discrete time-

based lot-sizing models. Moreover, the block planning approach reflects practical

issues like the definition of setup families with consideration of major and minor

setup times in a realistic way.

As objective function, the minimization of makespan was pursued. The resulting

setup time savings are specifically appealing in situations where direct setup costs

are less essential and the actual setup time consists of downtime of the production

equipment. Another condition that justifies the use of the makespan objective is the

increased inventory turnover, specifically in the consumer goods industry, which

makes the common understanding of inventory holding costs questionable. In any

case, the framework of linear programming is flexible enough to incorporate

alternate objective functions or specific conditions arising in the individual

industrial application.
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