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Abstract 
 
We develop a theoretical analysis of two widely used regulations of genetic tests, disclosure 
duty and consent law, and we run several experiments in order to shed light on both the take-
up rate of genetic testing and on the comparison of policyholders’ welfare under the two 
regulations. Disclosure Duty forces individuals to reveal their test results to their insurers, 
exposing them to the risk of having to pay a large premium in case they are discovered to 
have a high probability of developing a disease (a discrimination risk). Differently, Consent 
Law allows them to hide this detrimental information, creating asymmetric information and 
adverse selection. We obtain that the take-up rate of the genetic test is low under Disclosure 
Duty, larger and increasing with adverse selection under Consent Law. Also, the fraction of 
individuals who are prefer Disclosure Duty to Consent Law increases with the amount of 
adverse selection under the latter. These results are obtained for exogenous values of adverse 
selection under Consent Law, and the repeated interactions experiment devised has not 
resulted in convergence towards an equilibrium level of adverse selection. 
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1 Introduction

One of the major evolutions in medicine in the last decade has been the advent of so-
called “personalized medicine”, defined as the use of an individual’s genetic profile to
guide decisions made in regard to the prevention, diagnosis, and treatment of disease.
For instance, in 2012 the FDA has approved a new drug for cystic fibrosis (a serious
inherited disease impairing the lungs and digestive system) for patients with a specific
genetic mutation – referred to as the G551D mutation – which is responsible for only
4% of cases in the United States. Personalized medicine also allows patients to initiate
preventive treatments before the occurrence of the disease.

The development of ever cheaper and more informative genetic tests is behind the
development of personalized medicine.1 These tests allow individuals to obtain very
detailed information on their genetic predisposition to several diseases, as well as on
potential prevention strategies to decrease the probability of the disease occurring, and
on the treatment to be followed if the disease occurs.2 However, such tailored informa-
tion on one’s individual health risk may have two detrimental impacts on the health
insurance market. On the one hand, if the tested agent is forced by law to disclose the
information revealed by the test, he then faces the risk of a larger premium in case of a
bad genetic background (rather than the “average” premium in case he does not acquire
genetic information). If the individual is risk averse, this so-called discrimination risk
(Hirshleifer, 1971) may prevent him from taking the test in the first place, resulting
in the loss of precious health information. On the other hand, if regulation allows the
tested individual to withhold information from the health insurer, we enter the realm
of adverse selection, with agents revealing their genetic background to insurers only in
the case of good news.

Policy makers then face a trade-off when choosing how to regulate the information
obtained from genetic testing, with the obligation to disclose yielding to a discrimination
risk while allowing withholding of information leads to adverse selection. Moreover,
both types of regulation generate different incentives for taking a genetic test. Among
the regulations currently in place,3 those labelled Laissez-faire and Disclosure Duty
prevent the tested agent from withholding genetic information from insurers,4 while
Consent Law and Strict Prohibition both generate asymmetric information and adverse

1See http://www.genome.gov/sequencingcosts
2See Abrahams and Silver (2010).
3See Otlowski et al. (2012) for a survey presenting the different regulations of genetic tests used

throughout the world.
4Laissez-faire allows the health insurers to require testing from their customers, while disclosure duty

does not. Laissez-faire is applied in Australia, Canada, China, Japan, Korea, Ireland, Portugal, Russia,
Singapore, Spain and South Africa whereas disclosure duty is the regulatory regime in Germany, New
Zealand, and the UK.
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selection.5

Our objective in this article is to compare both types of regulations (more precisely,
Consent Law and Disclosure Duty) in terms of their consequences on genetic tests’
take-up rate and on the individuals’ (ex ante) welfare. We first develop a theoretical
framework to compare those regulations, and we then devise a series of experiments
to elicit which regulation individuals would prefer, and whether they would take the
genetic test under each regulation.

Our theoretical model is based on Bardey and De Donder (2013). Agents can be
of two types depending on their genetic background: type L have a low probability
of developing a disease while type H have a high probability. Agents are uninformed
about their type, unless they take a genetic test which reveals their type without error.
Genetic tests are costly to individuals, because of their monetary cost but also because
some agents may dislike knowing with precision their genetic background. Agents are
then heterogeneous in their testing cost. After deciding to test or not, individuals buy
health insurance on a competitive market.

Under Disclosure Duty (DD hereafter), individuals pay an “average” premium if
they do not test, but are faced with a discrimination risk if they test, in the form of
a lottery (low premium if type L, high premium if type H). Under Consent Law (CC
hereafter), agents show their test results to the insurers if they are revealed to be type L,
and pretend to be uninformed (i.e., not to have done the test) otherwise. In light of the
current low take-up rate of genetic tests (see Hoy et al. (2014)), we assume that insurers
offer a pooling contract to all who pretend (truthfully or not) to be uninformed. The
(zero-profit) premium attached to this contract reflects the intensity of adverse selection
at play (with a higher premium when more type H individuals falsely pretend to be
uninformed).

The main theoretical results obtained are twofold. First, we establish that agents
should test more often under CL than under DD or, more precisely, that they test
under CL for higher values of the idiosyncratic test cost K than under DD. Second, we
show that they should attain a higher utility level under DD when their test cost K is
low enough that they test under both regulations, and a higher utility level under CL
when their test cost is high enough that they do not test under either regulation. The
comparison of utility levels for intermediate values of K (when agents should test under
CL but not under DD) is ambiguous.

We then design a series of experiments in order to check the validity of these theo-

5Under Consent Law, agents choose whether they want to disclose genetic information, which can be
used in their contracting with health insurers, while under Strict Prohibition no contract can be explicitly
based on genetic information – which does not prevent insurers from offering menus of contracts that
indirecty elicit information on individual risks. The Netherlands and Switzerland are two of the countries
applying a consent law regime whereas Austria, Belgium, Denmark, France, Israel, Italy, Norway and
USA (only for health insurance contract) apply a strict prohibition regime.
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retical results, and also to resolve the ambiguity in the comparison of utility levels when
the test cost is intermediate. We are especially interested in the role of the intensity
of adverse selection under CL in these comparisons, as we surmise that this intensity
will grow in the future as genetic tests become more commonplace. Observe that, to
obtain answers to those questions with empirical data, we would have to find a (quasi-
)natural experiment where the same subjects are exposed to both regulations at some
point in time, which is very unlikely because these regulations have been introduced
quite recently in most countries, and have thus varied very little since their inception.

We design an experiment which is neutrally framed, and divided in three stages.
Stage A has the subjects choose between lotteries in order to estimate their individual
degree of risk aversion. Stage B has them choose between a sure payoff (corresponding
to not testing under DD) and several lotteries (corresponding to testing under CL) in
order to assess the maximum (exogenous) degree of adverse selection under CL under
which they prefer the latter (the lottery) to the former (the sure payoff). Stage C
consists in 30 rounds in which subjects choose between a sure payoff (not testing under
CL) and a lottery (testing under CL) where the lotteries are computed based on the
population testing decisions in the previous round. Our objective there is to compute
endogenously the amount of adverse selection under CL, and to see whether this amount
converges towards an equilibrium value.

The main experimental results we obtain are as follows. The take-up rate of the
genetic test under DD is low, at 10% of the population, while the take-up rate under
CL is larger, and increases with adverse selection. The intuition for the latter result is
that more adverse selection degrades the quality of the pooling contract for the insurer
(since more agents buying this contract have the large risk associated to type H), forcing
them to increase their premium and inducing more individuals to take the test to try
and obtain the lower premium associated to being revealed of type L.6 The individual
degree of risk aversion seems to play little role in the testing decision under CL. As
for the comparison of utilities, the proportion of subjects who prefer CL to DD when
the testing decision varies across regulations decreases linearly (from 100% to 10%)
as the amount of adverse selection under CL increases from its minimum amount (all
individuals buying the pooling contract are truly uninformed) to its maximum amount
(all who buy the pooling contract have taken the test). These results are obtained
when the level of adverse selection under CL is set exogenously. When we compute
this level endogenously in Stage C, we fail to obtain convergence. This non-convergence
may be explained in part, but not exclusively, by agents differing in risk aversion.
Consequently, we are able to comapre both regulations only for exogenous degree of the
adverse selection under CL.

6This effect is not the only one at play when adverse selection increases, so that the theoretical
impact of a higher level of adverse selection on the take-up rate is ambiguous.
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Both Barigozzi and Henriet (2011) and Peter et al. (2014), in slightly different set-
ups, obtain that disclosure duty weakly dominates the other regimes, including consent
law. Their result is partly dependent on their joint assumption that genetic tests are
costless and that individuals are homogenous in their preference for information acqui-
sition, which induces all individuals to test under CL at equilibrium and, this being
known by the insurers, results in everyone obtaining the contract designed for his type,
L or H. By contrast, we obtain in our setting that not all individuals test under either
CL or DD, because they vary in their (financial, but especially psychological) cost of
taking the test. Also, to the best of our knowledge, our paper is the only one, with
Crainich (2014), to assume that insurers offer a pooling contract under CL. We find this
assumption to be much more in line with current practice than the separating contracts
à la Rothschild-Stiglitz used by the rest of the literature. Finally, we are not aware of
any experimental analyses comparing regulations for genetic testing.7

The paper is organized as follows. Section 2 develops the theoretical model, including
the set-up and the analysis of the two regulations. Section 3 presents the experimental
design while section 4 presents our experimental results. Section 5 concludes.

2 Theoretical Background

We develop a theoretical background that allows us to formulate predictions to be
tested during the experiment. In a first section we provide a standard set-up of genetic
testing where people may change their prevention decision according to the test result.
Within this set-up, we present the feature of two current regulations of genetic testing:
disclosure duty and consent law. We formulate some predictions in a third section which
will be tested during the experiment.

2.1 Set-Up

The economy is composed of a unitary mass of individuals. We focus on a generic illness,
for which each agent has a genetic background which either predisposes him to develop
the disease (bad type, or type H, with a large probability of developing the illness) or a
neutral/beneficial genetic background (good type, or type L, with a low probability of
developing the disease). There is a fraction λ of type H in the population. Developing
the disease is modeled as the occurrence of a monetary damage, d.

Agents can exert a costly effort to reduce their probability of being sick, where
this effort reduces the risk of developing the disease only for agents with bad genetic

7Even though it does not really tackle the genetic testing issue, Schudy and Utikal (2012) perform
an experimental approach in order to analyze the incentive to acquire personal health data in an envi-
ronment where there is a risk of dissemination of such information.
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backgrounds (type H). The probability of developing the disease is not affected by
whether effort is exercised or not for agents of type L. Agents are uninformed about
their type, except if they choose to take a genetic test, which reveals with certainty
their true type.8

This setting has been studied by Bardey and De Donder (2013). They study the
combination of effort cost and efficiency (measured as the decrease in sickness probability
of typeH agents when they exercise effort) under which effort is exercised at equilibrium.
We assume from now on that effort is inexpensive and/or efficient enough that all agents
who are either uninformed about their type, or who know that they are of type H, exert
this effort. One reason to do the genetic test is then to forego the effort cost for agents
who learn that they are of type L.9

We now introduce the minimum amount of additional notation used throughout
this paper. Agents decide first to take the genetic test or not, and then exert the effort
in case they do not take the test or if the test reveals that they are of type H. The
monetary cost of the effort is denoted by φ. The probability of developing the illness
is pH for agents of type H and pL for agents of type L. The probability pH reflects
the fact that agents do the effort, while pL is not affected by effort (which is the reason
why agents of type L do not exercise this costly effort). An agent not informed about
his own type (i.e., who does not take the genetic test) is denoted as type U , with the
corresponding (expected) probability of getting sick,

pU = λpH + (1− λ)pL.

Agents who take the genetic test may have to pay a financial cost.10 The information
generated by the test, by itself, may generate utility or disutility for agents (ambiguity
preference). We denote by K the financial cost of the test, plus the (monetary equiv-
alent) of the psychological cost/disutility from knowing one’s genetic background.11

Agents then differ according to K, since they have different (unmodelled) attitudes to-

8The fact that the genetic test allows people to obtain their true type for sure is obviously a simpli-
fying assumption which is usual in the literature. To the best of our knowledge only Hoy et al. (2014)
consider that genetic test may generate errors of type I and II which make individuals face second-order
probabilities and consequently may be a plausible explanation for low take-up rates.

9Our results would no be affected under the alternative scenario under which only individuals in-
formed about being of type H would undertake prevention.

10At the beginning of 2000s, the cost to decrypt human genome required an investment of several hun-
dred millions of (US) dollars. Nowadays the cost is much lower, around 1,000 dollars. Roughly speaking,
the cost has been divided by one hundred thousand, which represents a much faster improvement than
the Gordon Moore Law applied to the microprocessor evolution.

11This financial equivalent K allows us to keep the simple expected utility framework and may capture
different notions which have been introduced in the literature such as ambiguity aversion (Epstein,
1999), repulsion to chance (Hoel et al., 2006) and psychological expected utility (Caplin and Leahy,
2001; Barigozzi and Levaggi, 2010).
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wards having more information on their genetic background, with individuals having
a negative value of K if their (monetary equivalent) of their utility of knowing their
genetic background is larger than the test’s cost. We measure the cost K in monetary
terms because we want to control for the individuals’ value of K in the experiment. We
assume that K follows a density g(.) and a cumulative distribution12 G(.).

After having decided whether to test and do the effort, agents then buy health
insurance on the private market. We consider two types of regulation of this market,
starting with disclosure duty.

2.2 Disclosure Duty versus Consent Law: a theoretical approach

In this section, we compare two situations according to whether insurers can observe
or not their policyholders’ information status, i.e. if policyholders are more informed
about their health risk than the average thanks to a genetic test. More precisely, on
the one hand, we consider the situation under which policyholders have to disclose if
they have made a genetic test. In practice, it corresponds to the disclosure duty
regulation. On the other hand, we consider the opposite situation where policyholders
are not obliged to reveal if they have done a genetic test. It corresponds to the regulation
named consent law. In such a case, when policyholders have undertaken a test and
that the test has revealed to them that they are low risk, then they may share the result
of the test with insurers in order to benefit from a lower premium. On the contrary,
when the test reveals that they are H-type, then they have the possibility to hide the
result of the test in order to be insured as if they were of type U in a pooling contract.
In such a case, the discrimination risk is smoothed but we may have adverse selection
at play. We aim to compare the two situations for different levels of adverse selection.

2.2.1 Disclosure Duty

The insurance contract devised for an agent of type j ∈ {L, H, U} is characterized by
a premium in case of health, πj , an indemnity (net of the premium) in case of sickness,
Ij . Competition forces insurers to offer actuarially fair contracts with full insurance,13

so that πj = pjd and Ij = (1 − pj)d. Agents who choose not to take the genetic test
are uninformed about their type, and so are their insurers. Moreover, the disclosure
duty regulation requires that the policyholders’ informational status is observable from

12In the first stage of the experiment, we measure the subjects’ risk aversion but we do not control for
preferences toward ambiguity. Moreover, we have allocated different values of K over the population
of participants in order to replicate the effect of ambiguity aversion heterogeneity which may have a
crucial role in practice.

13See Bardey and De Donder (2013) for more details.
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insurers. The policyholders’ expected utility level is then

U0
DD = (1− pU )v(y − πU − φ) + pUv(y − d+ IU − φ)

= v(y − pUd− φ),

where the superscript 0 over UDD stands for “no testing” and where v(.) is a classical
von Neumann Morgenstein utility function (v′(.) > 0, v′′(.) < 0) with y the individual’s
exogenous income.

Individuals who take the genetic test receive a utility level

v(y − pHd−K − φ) = (1− pH)v(y −K − πH − φ) + pHv(y −K − d+ IH − φ),

if they are revealed to be of type H, and

v(y − pLd−K) = (1− pL)v(y −K − πL) + pLv(y −K − d+ IL),

if they are revealed to be of type L. Their expected utility when taking the test is
then given by

U1
DD = λv(y − pHd−K − φ) + (1− λ) v(y − pLd−K),

where the superscript 1 over UDD stands for “taking the test”.
Let us denote by ΨDD the information value of the genetic test under disclosure

duty, with agents doing the test if ΨDD > 0. We have:

ΨDD = U1
DD − U0

DD

= λv(y − pHd−K − φ) + (1− λ) v(y − pLd−K)− v(y − pUd− φ). (1)

From (1), we see that the main drawback of disclosure duty is that it exposes agents
to a discrimination risk : rather than obtaining the sure payoff associated with remaining
uninformed, they face a lottery when taking the test. Observe that agents may decide
to take the test even if K = 0, since taking the test allows them to save on the effort cost
φ when they are revealed to have good genes. Besides, more risk averse agents are less
likely to take the test, as they suffer more from the discrimination risk. Finally, a larger
value of K (because, for instance, of a larger disutility from knowing one’s own genetic
background) renders genetic testing less attractive. We denote by KDD the threshold
value of K below (resp., above) which agents take (resp., do not take) the genetic test
under disclosure duty–i.e., the value of K such that ΨDD = 0.

2.2.2 Consent Law

Under the consent law regulation, individuals reveal their information to the insurers
only when they are of type L, and conceal the information that they are of type H,
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claiming not to have done the test, in order to be pooled with the truly uninformed
agents. The classical way for the insurers to solve this adverse selection problem is to
issue separating contracts, with partial coverage (i.e., a deductible) for the mimicked
type (here, type U) in order to prevent the mimicking type (here, type H) from taking
the contract intended for the former. We rather adopt the approach developed by
Crainich (2014) in this context and assume that the insurers offer a pooling contract
intended for all those who claim to be uninformed. This assumption of a pooling contract
can be justified for instance by the existence of transaction costs generated by several
contracts (see Newhouse (1996) and Allard et al. (1997)). As pointed by Hoy et al.
(2003), it also better corresponds to the reality, as we are not aware of health insurance
contracts offering a deductible in case the insured does not provide genetic tests results.

Anticipating that such a pooling contract will attract tested agents of type H, the in-
surers ask for a larger-than-pU unitary premium in order to break-even. More precisely,
if the pooling contract clientele is made of an (exogenous, for the moment) fraction f
of truly uninformed agents (type U) and of a fraction 1− f of cheating agents (of type
H), 0 ≤ f ≤ 1, then the insurers have to set a premium

πU = (pU + x) d,

and an indemnity (net of the premium) in case of sickness,

IU = (1− (pU + x))d,

where the zero-profit mark-up x satisfies

pU + x = fpU + (1− f)pH .

Roughly speaking, both f and x are measures of the intensity of the adverse selection
at play, with more adverse selection translating into a lower f and a larger x.

We denote by U0
CL the (expected) utility of an agent who does not test under consent

law, which is given by

U0
CL = v(y − (fpU + (1− f)pH)d− φ),

and by U1
CL the (expected) utility of an agent who takes the genetic test, with

U1
CL = λv(y − (fpU + (1− f)pH) d−K − φ) + (1− λ)v(y − pLd−K).

We denote by ΨCL the information value of genetic testing under consent law, given by

ΨCL = U1
CL − U0

CL

= λv(y − (fpU + (1− f)pH) d−K − φ) + (1− λ)v(y − pLd−K)

−v(y − (fpU + (1− f)pH) d− φ). (2)
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Individuals who take the test obtain the same payoff (minus K) than if they did not
when they are unlucky (type H) and a better payoff if they are lucky (type L). It is
then straightforward that they do take the test when K = 0, and that the incentives to
take the test are reduced when K increases. The impact of variations in (exogenous) f
on the incentives to take the test is more convoluted. On the one hand, a larger value of
f improves the payoff associated to the pooling contract and thus reduces the amount
to be gained by testing. On the other hand, if K is large, the marginal utility with the
pooling contract is much higher if the agent has tested (and paid K) than if he did not,
so that the increase in income with the pooling contract associated to a larger value of
f increases more U1

CL than U0
CL. Denoting by KCL the (positive) value of K such that

ΨCL = 0 and applying the implicit function theorem to (2), we obtain:

dKCL

df
=

(pU − pH)d [v′(y − (fpU + (1− f)pH) d− φ)− λv′(y − (fpU + (1− f)pH) d−KCL − φ)]

λv′(y − (fpU + (1− f)pH)d−KCL − φ) + (1− λ)v′(y − pL −KCL)
,

(3)
so that

Lemma 1 KCL decreases with f if policyholders are not too risk averse (v(.) is not too
concave) and if λ is low enough.

We have assumed up to now that f were exogenous, and we have computed the
maximum value of K compatible with doing the test. The equilibrium value of f , if it
exists, is given by

f∗ =
1−G(KCL(f∗))

1− (1− λ)G(KCL(f∗))
,

where the numerator denotes the fraction of individuals (in the overall population) who
choose not to test and the denominator the fraction of the population who buys the
pooling contract. In the experiment, we try to find the equilibrium value of f using
a sequential procedure spanning several rounds of the same game. We construct the
function ft+1(ft) where t denotes the round agents are playing, such that

ft+1 =
1−G(KCL(ft))

1− (1− λ)G(KCL(ft))
, (4)

where we compute KCL from the answers given by the subjects in round t when the
payoffs they are offered are based on ft. We have an equilibrium (or steady state) when
ft+1 = ft. We assume that

G (KCL (0)) < 1, and that G (KCL (1)) > 0

10



so that, respectively, ft+1(0) > 0 and ft+1(1) < 1.
Thanks to Lemma 1, we obtain that

∂ft+ 1

∂ft
> 0 if

∂KCL(f)

∂f
< 0, and that

∂ft+ 1

∂ft
< 0 if

∂KCL(f)

∂f
> 0.

Since the sign of the derivative of KCL with respect to f is the same (either positive
or negative) for all values of f and since the cdf G(K) is continuous, we obtain the
following result:

Proposition 1 The sequential procedure developed above should converge towards an
equilibrium value of f , so that for all ε < 0, there exists a value of t, denoted by t∗, such
that ft+1 − ft < ε ,∀t ≥ t∗.

In the next section, we compare the two regulations for exogenous values of K and
of f . We will revert to endogenizing f when presenting and analyzing the experiments’
Stage C.

2.2.3 Disclosure Duty versus Consent Law: Some Theoretical Predictions

The following lemma will prove to be very important in both the theoretical predictions
and the design of the experiment.

Lemma 2 U1
CL ≥ U1

DD and U0
DD ≥ U0

CL ∀K, f.

Proof. Immediate from the definitions of the four utility levels.

For individuals who would test whatever the regulation at play, consent law is prefer-
able to disclosure duty ex ante, because they would obtain the same payoff in both cases
if they are revealed to be of type L, while they would fare better off under consent law,
by being pooled with type U , if they are revealed to be of type H. Alternatively, for
individuals who do not test whatever the regulation, disclosure duty is preferable to
consent law because the pooling contract offered under consent law is more costly than
the separating contract (based on pU ) offered under disclosure duty.

Lemma 2 has a direct consequence on the comparison of the threshold valus KDD

and KCL.

Lemma 3 KCL ≥ KDD ∀f ∈ [0, 1] .

11



Proof. Follows from the facts that ΨCL = U1
CL−U0

CL > ΨDD = U1
DD−U0

DD ∀f,K
by Lemma 2, and that both ΨCL and ΨDD are decreasing in K, ∀f,K.

Lemma 3 says that, everything else equal, policyholders are more willing to take a
genetic test under consent law than under disclosure duty. This result is intuitive, since
individuals gain more by taking the test under consent law than under disclosure duty
(ΨCL > ΨDD), both because consent law does not expose them to a discrimination
risk (since they obtain the same contract whether of type U or type H) but degrades
the contract offered in case the test is not taken, compared to the disclosure duty case
(because of adverse selection).

Proposition 2 Individuals are better off under disclosure duty if K is low enough that
they take the test under both regulations (K < KDD < KCL) and under consent law if K
is large enough that they do not take the test under either regulation (K > KCL > KDD).
For intermediate values of K, they take the test only under consent law, and the utility
gap between disclosure duty and consent law increases with K and decreases with f .

Proof. K < KDD implies that agents do the test under both regulations (by Lemma
3) in which case they are better off under disclosure duty (by Lemma 2). K > KCL

implies that agents do not take the test under either regulation (by Lemma 3) in which
case they are better off under consent law (by Lemma 2). In the intermediate case
where KDD < K < KCL, the difference in utility levels between disclosure duty and
consent law is

v(y − pUd− φ)−
[
λv(y − (fp1

U + (1− f)p1
H)d−K − φ)− (1− λ) v(y − pLd−K)

]
,

which is increasing in K and decreasing in f .

Proposition 2 can be summarized in Figure 1, which shows the utility differential be-
tween disclosure duty (UDD =max(U0

DD, U
1
DD)) and consent law (UCL =max(U0

CL, U
1
CL))

as a function of K, when f = 0 (panel a), 0 < f < 1 (panel b) and f = 1 (panel c).
When f > 0 (so that some agents who buy the pooling contract are uninformed about
their own type), the utility level under disclosure duty decreases faster than under con-
sent law when K < KDD because of the larger marginal utility under the former (due
to the larger premium when revealed of type H). For intermediate values of K, the test
cost K is paid only under consent law, so that the utility difference between disclosure
duty an consent law increases with K. When f < 1 (so that some type H agents pretend
to be uninformed), utility is strictly larger under disclosure duty because individuals
suffer from adverse selection under consent law (in the guise of a larger premium in the
pooling contract for those who do not test).
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Figure 1: Utility differences between disclosure duty and consent law.

Theory shows that the comparison of utilities under CL and DD is ambiguous when
agents test under CL but not under DD. We now present the design of the experiments
which will allow us, among other things, to resolve this ambiguity.

3 Experimental design

Subjects were students at Universidad de los Andes (Bogotá). We conducted four
sessions with 20 subjects each for a total of 80 participants. The experiment was pro-
grammed and conducted using the z-Tree software (Fischbacher, 2007).

Each session was divided into three stages. All decisions in all stages were neutrally
framed – i.e., were described in terms of lotteries, omitting all relationship to insurance
contracts and genetic test taking. In Stage A we retrieve a measure of the participants’
risk aversion, used as a control in further stages of the analysis. The novelty in our
experimental analysis resides in Stages B and C, in which subjects with different
and exogenously assigned test costs K take a series of testing decisions represented by
gambles. In Stage B, the offered gambles represent a comparison between disclosure
duty and consent law, whereas in Stage C these gambles focus on the consent law
regulation.

The payoffs in Stages B and C were based on the following parameter values:14

y = 1.0, d = 0.7, λ = 0.5, pL = 1/9, φ = 0.1 and pH = 5/9. The monetary cost of the
genetic test (including the monetary cost or benefit of having full information about
one’s own genetic background), denoted by K, follows a normal-like distribution such
that K takes values 0.01, 0.05, 0.10, 0.15 and 0.20 with probabilities 0.10, 0.20, 0.40,

14Remember that we assume implicitly that the prevention effort decreases the probability of getting
sick of a type H agent by at least φ/(λd) = 2/7, so that both uninformed and type H agents have an
incentive to do the effort under both regulations. Payoffs are then calculated under the assumption that
the effort is made by types H and U , but not by type L.
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0.20 and 0.10, respectively. The heterogeneity of K intends to reflect, and control for,
the expected heterogeneity among subjects despite having the same price of the test.
These differences are derived from the psychological costs associated to take the test.

3.1 Stage A: Measuring risk aversion

Subjects were asked to select one out of six 50/50 gambles that were increasing in
expected value and variance, in order to measure their risk aversion. The six gambles,
adapted from Cárdenas and Carpenter (2013) are shown in Table 1. The second column
reports the (range of) value(s) of the coefficient of relative risk aversion r an individual
with utility function U(x) = (x1−r)/(1 − r) would need to exhibit in order to pick
the corresponding gamble. Larger values of r represent higher risk aversion, since the
concavity of the utility function is more pronounced as r increases. The protocol used
was similar to Barr and Genicot (2008) and Eckel and Grossman (2008), and it intended
to simplify the gamble choice.

Table 1: Gambles offered in Stage A of the experiment

Gambles Parameter from the CRRA utility function
Lottery 1: $33—$33 r > 1.77
Lottery 2: $25—$47 0.82 ≤ r ≤ 1.77
Lottery 3: $18—$62 0.48 ≤ r ≤ 0.82
Lottery 4: $11—$67 0.27 ≤ r ≤ 0.48
Lottery 5: $4—$91 0.00 ≤ r ≤ 0.028
Lottery 6: $0—$95 r ≤ 0.00

We compare on Figure 2 the cumulative distribution of the subjects’ decisions in
Cárdenas and Carpenter (2013) and in our experiment. The cumulative distribution in
Cárdenas and Carpenter (2013) is always above ours, which means that we have a less
risk averse sample of subjects than theirs.15 At least two elements could explain this
difference. First, Cárdenas and Carpenter (2013)’s subjects are 567 non-students (also
in Bogotá), while ours are 80 students. Second, the stakes for this task are slightly larger
in Cárdenas and Carpenter (2013): although the average payoffs in both experiments
are similar (12 USD), the share of Stage A decisions in the total payoff of the experiment
is on average 25% for Cárdenas and Carpenter (2013) but only 17% in our study.16

In addition to the measure of risk preferences we also measure subjects’ tolerance
to ambiguity using a non-incentivized test (Budner, 1962) during the post-experimental
survey. An index measuring tolerance to ambiguity17 was constructed from a set of

15The two distributions are statistically different according to a Kruskal-Wallis equality of populations
rank test (chi-squared 5.967 and p-value =0.0146).

16A Wilcoxon-Mann-Whitney test applied to our Stage A results shows that women are more risk
averse (p-value of 0.0014).

17Budner (1962) defines the intolerance for ambiguity as the “tendency to perceive ambiguous situ-
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Figure 2: Cumulative distribution of lotteries chosen with respect to Cárdenas and
Carpenter (2013)
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sixteen questions. Each question uses a Likert scale from 1 to 7, whose score was added
to the index. Higher values of the index represent more intolerance to ambiguity. The
average index in our sample was 49.6, with a minimum of 28 points and a maximum of
68 points.18

3.2 Stage B: Simultaneous choice between regulation type and genetic
testing

The aim of Stage B is to elicit when individuals prefer consent law to disclosure duty,
as a function of their idiosyncratic test cost K and of the exogenous value of f , taken as
a measure of the extent of adverse selection under consent law. The decisions offered to
participants in this Stage mimic a setting where individuals choose simultaneously the
type of regulation (disclosure duty or consent law) and whether they take the genetic test
or not. Lemma 2 has shown that disclosure duty dominates consent law for individuals
who take the genetic test, while consent law dominates disclosure duty when individuals
do not take the genetic test. In other words, individuals faced with a simultaneous choice
of regulation type and testing decisions never choose the two combinations “testing
under disclosure duty” and “not testing under consent law”, so that we can restrict their

ations as sources of threat”. Budner’s scale measures four different factors related to the tolerance for
ambiguity: predictability, variety and originality, clarity, and regularity (Benjamin et al., 1996).

18We find gender differences in the average tolerance for ambiguity, with women scoring on average
51.9 points compared to the 47.9 points scored by men. This difference, of 4.0 points, is statistically
significant at the 5% level.
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choice to the two options “not testing under disclosure duty” and “testing under consent
law”. We now explain how we have framed this choice neutrally, without mention to
genetic testing and health insurance.19

Subjects were presented with seven binary decisions. In each decision, participants
had to choose between a 50/50 gamble, corresponding to the payoff they would have
obtained under consent law when the genetic test is taken, and a fixed amount of money,
representing the payoff under disclosure duty when the genetic test is not taken. For
each decision, we then have the following set of payoffs:

Fixed amount (Not testing under DD) Gamble (Testing under CL)
If H−type If L−type

y − pUd− φ y − (fpU + (1− f)pH)d−K − φ y − pLd−K

From one decision to the next, we increase the value of f (from -0.2 to 1, by steps
of 0.2), making the gamble (testing under consent law) more attractive (since a larger
f means less adverse selection and thus a better payoff), while not impacting the sure
payoff corresponding to not testing under disclosure duty. We ask participants for the
first decision in which they prefer to gamble instead of keeping the fixed amount of
money.20

3.3 Stage C: Repeated decisions under consent law when f is made
endogenous

Stage C concentrates on the testing decision by subjects within the consent law regula-
tion. Its aim is to endogenize the extent of adverse selection (as measured by f) based
on the decisions of the subjects. We then have the subjects choose between taking the
test (i.e., playing a gamble) and not taking the test (i.e., receiving a sure payoff) for

19We could rather have modeled a sequential decision, where agents choose first whether they prefer
disclosure duty or consent law, and then whether they take the genetic test or not, for each regulation.
This more ambitious scenario would have allowed us to assess and compare directly the testing decisions
across regulations. After much thinking about this alternative model, our opinion is that it would have
involved too many choices by subjects to offer reliable results. In other words, our experimental design
is the result of a trade-off between the simplicity of the task for the respondents and the richness and
simplicity of interpretation of the results obtained. We show in the Result 2 below how our simple
experimental design allows us to infer indirectly whether the test would have been taken by the subjects
under disclosure duty, and to give both a lower- and upper-bound on the value of f , for each individual
value of K, between which genetic tests would have been taken under consent law. More importantly,
this design also allows us to rank unambiguously UDD and UCL when the testing decision is allowed to
vary across regulations (see Result 3).

20We start with a negative value of f in order to detect an interior switching point.
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thirty consecutive rounds, with the payoffs based on the consent law regulation and
given by at each round by21

Fixed amount (Not testing under CL) Gamble (Testing under CL)
If H−type If L−type

y − (fpU + (1− f)pH)d− φ y − (fpU + (1− f)pH)d− φ−K y − pLd−K

The value of f was recomputed after every round using formula (4). In words, the
payoffs offered to subjects in round t+ 1 are obtained using a value of f which reflects
the choices of the subjects in the previous period t –i.e., the fraction of subjects who
know they were of type H among all the subjects who ended up buying the pooling
contract in period t. Exogenous values of f = 0.10 and f = 0.90 were set in rounds 1
and 16.

Subjects were informed of their type at the end of each period, independently of
whether they chose to take the test or not. Our aim with this feature is to block
the inter-temporal effects of different information sets between subjects. Subjects were
not informed on how the payoffs were computed at each round. Therefore, it was
unnecessary to give them information about the proportion of U -types and H-types in
the population and we did not give them this information to avoid imitation behaviors.

3.4 Timing and payoffs

In all sessions, subjects started playing Stage A. In order to control for the potential
order effects, we randomize the sequence in which Stage B and Stage C were played.
We also randomize the sequence of the exogenous values of f in Stage C, with the
same purpose. At the end of the experiment, three random draws defined the subjects’
earnings from each stage. A first draw decided the outcome of the lottery chosen in
Stage A. A second draw defined the decision to be paid from Stage B, and the low/high
prize was simultaneously chosen. A third draw was used to determine which one of the
thirty rounds in Stage C was paid. We decided to pay to subjects for only one of their
decisions in Stage C in order to avoid strategies involving inter-temporal computations
that would be out of the scope of this paper. Average earnings were approximately
$25,000 Colombian pesos (cop).22

21More precisely, we told the subjects that a random letter, X or Y , was assigned to them in each
round. They had to decide whether they wanted to learn the letter assigned to them (equivalent to
playing the gamble, with the larger payoff for letter X), or not (receiving then the sure payoff).

22$2,500 cop are equivalent to e1.00 at the time of the experiment.
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4 Experimental results

4.1 Stage B: Comparison between consent law and disclosure duty

We obtain the following three results. The first result compares no testing under dis-
closure duty and testing under consent law, while the two subsequent results compare
testing behavior (Result 2) and utilities (Result 3) across regulations.

Result 1: The value of f required to switch from not testing under DD
to testing under CL is increasing in K and in the level of ambiguity aversion,
whereas risk aversion plays a minor role.

Figure 3 shows that the value of f (denoted henceforth by f̂) such that individuals
switch from the sure payoff (under DD) to the lottery (under CL) increases with the
cost of taking the test K. The correlation between f̂ and K is 0.373 (p-value 0.001),
represented by the upward slope. This positive relationship between f̂ and K can be
interpreted as a mere confirmation of rationality: a larger value of K decreases the
payoff obtained with the lottery, so that agents prefer the sure payoff for larger values
of f (recall that the payoff with the lottery improves when f increases).23 The regression
analysis reported in Table 2 allows us to identify which individual factors, above and
beyond the cost K, affect the preferences for testing under CL vs not testing under DD.

Figure 3: Switching point (f̂) from not testing to testing as function of K.
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23We should stress that f̂ is not related to KCL, since the latter is obtained when comparing U1
CL

and U0
CL (rather than U0

DD for f̂). The sign of the relationship between KCL and f is ambiguous (see
(3)) because f affects both U0

CL and U1
CL, while here the sign of the relationship between f̂ and K is

unambiguous since f and K do not affect U0
DD.
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We run two OLS models whose coefficients are reported in columns (1) and (2) of
Table 2, and where the dependent variable is the number of decisions in which the
participant prefers not to test (i.e., the sure payoff under DD). The switching point f̂ is
obtained by a linear transformation of this variable: each additional decision in which
the subject decided not to test represents an increase of f̂ by 0.2 units. The coefficients
show the positive and robust effect of K: according to model (1), an increase in K
of 0.1 will increase the number of decisions in which the participants will not test by
1.175, or equivalently, will increase f̂ by 0.235. This explanatory power of K is a reason
for the difficulty in retrieving the effects of risk aversion and intolerance to ambiguity.
The effect of intolerance to ambiguity becomes significant only after being interacted
with K. According to model (2), an additional point in Budner’s scale (see footnote 17)
increases the number of decisions in which the test is not taken by 0.096, or equivalently
increases the value of f̂ by 0.019. This effect decreases as the value of K increases, as
shown in the corresponding interaction coefficient.

Table 2: OLS regressions. Dependent variable is the switching point, i.e., the number
of decisions in which the test was not taken

Dependent variable: OLS regression

switching point f̂ (1) (2)
K 11.75*** 46.67**

(3.552) (22.20)
Intolerance to ambiguity 0.0085 0.0959*

(0.0221) (0.0537)
K × Intolerance to ambiguity -0.804*

(0.448)
Gender (Male = 1) -0.219 -0.557

(0.421) (0.902)
K × Gender 3.167

(7.974)
Lottery 2: $25—$47 0.597 0.928

(0.637) (0.664)
Lottery 3: $18—$62 0.237 0.470

(0.748) (0.753)
Lottery 4: $11—$67 0.641 0.999

(0.717) (0.745)
Lottery 5: $4—$91 -0.157 0.176

(0.930) (0.961)
Lottery 6: $0—$95 1.235 1.482*

(0.745) (0.761)
Constant 2.923** -1.140

(1.305) (2.877)
Observations 79 79
R-squared 0.186 0.226
The omitted category in the risk aversion measure is Lottery 1: $33—$33.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

We now turn to the impact of risk aversion. We measure risk aversion using the
subjects’ answers to Stage A. More precisely, we use a dummy variable that indicates
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which of the six lotteries proposed in Stage A has been chosen by the subject. Recall
that these lotteries are increasing in both expected value and variance (we indicate in
Table 2, for each lottery from 2 to 6, the two payoffs that were proposed, with a 50%
probability attached to each payoff). The effect of risk aversion is significant only when
comparing the most risk averse subjects (who chose lottery 6 in Stage A) with the
least risk averse subjects (who chose the first lottery, namely the sure payoff), in model
(2). One may think that the lack of explanatory power of risk aversion is due to the
potential collinearity with ambiguity aversion. However, in our experimental sample the
correlation between these variables is 0.189, with a p-value of 0.095. This moderate but
significant correlation is consistent with the literature in neuroscience and economics
(Hsu et al., 2005; Bossaerts et al., 2010; Potamites and Zhang, 2012).

Result 2: The take-up rate under DD is low, while the take-up rate under
CL is more precisely identified when f is large. The take-up rate predicted
for CL on the basis of answers to Stage A is very large and close to the take
up rate of risk neutral agents.

Even though Stage B does not ask subjects directly whether they would test under
each regulation separately, the setting offered to subjects allows to indirectly gather
some information about their testing behavior with each regulation. We start with
disclosure duty. Observe that the payoffs offered under both regulations are equivalent
when testing and when f = 0 –i.e., U1

DD = U1
CL. Hence, when f = 0, comparing

“no testing under DD” and “testing under CL” is equivalent to comparing “no testing
under DD” and “testing under DD”. We can then infer from the choice of subjects
when f = 0 whether they would take the genetic or not under the DD regulation. We
report in Figure 4 the fraction of subjects (using the “discrete-normal” distribution of
test costs K) who choose to test under DD.24

We then move to consent law. We know of two categories of individuals who should
prefer testing to no testing, under CL. The first category is composed of those who prefer
to test (rather than not testing) under DD, since Lemma 3 shows that all individuals
who test under DD (i.e., with K < KDD) should also test under CL (i.e., are such
that K < KCL since KDD < KCL). The second category is made of those who prefer
not testing under DD (U0

DD > U1
DD) but who prefer the lottery under CL to the sure

payoff under DD (i.e., U1
CL > U0

DD), since in that case we obtain the following ranking
of utilities: U1

CL > U0
DD > U0

CL, with the latter inequality proved in Lemma 2. Hence,
we can compute the lower-bound on the take-up rate under CL, which consists, for each
value of 0 ≤ f̃ ≤ 1, in the fraction of individuals who prefer the lottery under CL to the

24The preference for testing or not under DD (and thus the aggregate take-up rate of the test under
DD) does not change with f , since f does not impact the payoffs under DD, even though we use the
subjects’ decision when f = 0 to assess this preference as both regulations are equivalent in such a case.
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Figure 4: Take-up rates for disclosure duty and consent law
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sure payoff under DD for a value of f at most equal to f̃ . We report this lower-bound
on the take-up rate on Figure 4.25 This lower-bound is of course increasing in f .

As for the upper-bound on take-up under CL, we see from the definition of KCL

(as the value of K such that ΨCL defined in (2) is zero) that increasing risk aversion
decreases the value of KCL, all other things kept unchanged.26 The maximum value
of KCL (corresponding to the upper-bound on the take-up rate) is then obtained when
agents are risk neutral –i.e., with linear utilities. We report on Figure 4 the upper-
bound on take-up rate as G(KCL(f)) with linear utilities. It is straightforward from (3)
that KCL decreases with f in that case.

We see from Figure 4 that the take-up rate of genetic testing under DD is low, at
10%. Individuals then dislike so much the discrimination risk associated to taking the
test under DD that most of them prefer not taking the test. As for CL, we do not observe
the actual take-up rate but rather construct both a lower- and an upper-bound. We
obtain that the interval gets more precise as f increases (i.e., as the intensity of adverse
selection decreases), since the lower-bound increases while the upper-bound decreases.
We obtain a quite precise estimate of the take-up rate as f becomes large, with around
80% of subjects who should take the test if f = 0.8. Also, recall from Lemma 3 that
the take-up rate need not be increasing in f , especially if agents are very risk averse.

25This is a lower-bound because individuals with U1
DD < U0

DD and U1
CL < U0

DD can either be such
that U1

CL > U0
CL or U0

CL > U1
CL. For the lower bound, we assume that U1

CL > U0
CL.

26This is intuitive, since the test cost K is paid when the test is chosen, in which case the agent is
faced with a lottery. A larger risk aversion then decreases the certainty equivalent of this lottery, other
things equal, and induces the more risk averse individuals to favor the sure payoff associated with not
taking the test for a lower value of K.
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We then construct a prediction of take-up rates under CL by using the estimated
degree of risk aversion of subjects obtained in Stage A. More precisely, for each subject
preferring lotteries 2 to 5, we use the middle value of the corresponding range of the
relative risk aversion parameter (for instance, when a subject chooses lottery 3, we
assume that his value of r is 0.65). For very risk averse subjects who prefer lottery 1
(the sure payoff), we use the lower-bound value of their estimated relative risk aversion
parameter (r = 1.77) while, for the very risk averse subjects who prefer lottery 6, we
use the upper-bound value of 0. We then compute the take-up rate of our population as
a function of f , given the discrete-normal distribution of K, assuming that individual
preferences exhibit this constant relative risk aversion parameter. The result is reported
on Figure 4.

We obtain that this measure is very close to the upper-bound value, and is (weakly)
decreasing with f . Both phenomena are due to the fact that our population is made
of a large proportion of agents exhibiting little risk aversion in Stage A (see section
3.1). Interestingly, our predicted take-up rate is, for all values of f , larger than the
lower-bound we have computed. This was not a foregone conclusion, since the lower-
bound is computed using responses to Stage B, while our prediction is based on Stage A
alone. We have tested the robustness of this characteristic to the degree of risk aversion
retained for the most risk averse agents. As long as the value of the coefficient of relative
risk aversion of those subjects is lower than 3.23, the predicted curve remains the same.
Agents with r ≥ 3.23 prefer not to test when f = 0.8, bringing down the predicted take-
up rate of the population. When more than 40% of subjects choosing lottery 1 in Stage
A exhibit r ≥ 3.23, then our predicted take-up rate decreases below the lower-bound
computed from responses to Stage B.

Result 3: The proportion of subjects who prefer CL to DD when the test-
ing decision varies across regulation increases linearly (from 10% to 100%) as
f increases from 0 (maximum adverse selection under CL) to 1 (no adverse
selection under CL)

Stage B allows us to compute the fraction of subjects who prefer DD to CL when
testing can vary across regulations–i.e., to compare UDD =max(U0

DD, U
1
DD) and UCL =

max(U0
CL, U

1
CL). As explained in Result 2, looking at the subjects’ decision when f = 0

allows us to compare U0
DD and U1

DD. Subjects’ decisions also allow us to compare U0
DD

with U1
CL as a function of f . Finally, recall that we always have that U0

DD > U0
CL and

that U1
CL > U1

DD, for any value of 0 < f < 1. We can then put subjects in three groups,
for each value27 of f :

(i) Members of group 1 are such that U0
DD < U1

DD. Putting together this inequation
with U0

DD > U0
CL and U1

CL > U1
DD, we obtain that U1

CL > U1
DD > U0

DD > U0
CL, so

27The composition of groups does vary as we change exogenously f .
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that subjects in group 3 prefer the CL regulation. Observe that U0
DD < U1

DD, so that
K < KDD, and that K < KCL since U1

CL > U0
CL.

(ii) Members of group 2 are such that U0
DD > U1

DD and that U0
DD < U1

CL. Putting
together these two inequations with U0

DD > U0
CL and U1

CL > U1
DD, we obtain that

U1
CL > U0

DD > U1
DD and that U0

DD > U0
CL, so that subjects in group 2 prefer the CL

regulation. Observe that U0
DD > U1

DD, so that K > KDD, and that K < KCL since
U1
CL > U0

CL.
(iii) Members of group 3 are such that U0

DD > U1
DD and that U0

DD > U1
CL. Putting

together these two inequations with U0
DD > U0

CL and U1
CL > U1

DD, we obtain that
U0
DD > U1

CL > U1
DD and that U0

DD > U0
CL, so that subjects in group 1 prefer the DD

regulation. Observe that U0
DD > U1

DD, so that K > KDD, but that we cannot compare
U1
CL with U0

CL, so that we do not know whether K is larger or smaller than KCL.

We can reconcile these results with Proposition 2 by looking at Figure 5, which
reproduces Figure 1 (b) and adds the three groups of subjects just identified.

Figure 5: Utility differences between disclosure duty and consent law and preferences
between regulations

Figure 6 reports the fraction of subjects belonging to group 1 (in blue), group 2
(dark blue) and group 3 (red) for the values of f , from 0 to 1, corresponding to the
lotteries offered to subjects in Stage B. In the absence of adverse selection under CL
(f = 1), all subjects prefer CL to DD. As adverse selection increases, the proportion
of subjects preferring DD increases monotonically, to reach 90% when f = 0. More
subjects favor CL than DD when f is larger than (roughly) 0.5. Also, we have regressed
the proportion of subjects preferring CL on the value of f , and we obtain that the
intercept is not statistically significant, while the slope is not statistically different from
one. In other words, an increase in f by 0.1 increases the fraction of our population
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favoring CL by 0.1.

Figure 6: Proportion of subjects that prefer disclosure duty and consent law as function
of f
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f: adverse selection measure under CL

We now turn to the results obtained from Stage C, where subjects choose whether
to test or not (i.e., choose between a sure payoff and a lottery) when we vary f from
one round to the next, based on the subsjects’ answers in the previous round.

4.2 Stage C: Take-up rates under consent law

Result 4: The quality of the pool f has a negative impact on the probability
of taking the test under CL. The degree of risk aversion plays little role in
the testing decision.

Lemma 1 has shown that the impact of increasing f on the decision to test under
a CL regulation is ambiguous. We now use the experiments’ results to resolve this
ambiguity.

We estimate a logistic model (where the dependent variable takes the value one when
the test is taken–i.e., when the subject prefers the lottery to the sure payoff) using a
discrete panel with random effects, i.e., assuming that covariates are independent of
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Table 3: Discrete panel regressions with random effects. The dependent variable indi-
cates if subject i tests (1) or not (0) in period t.

Dependent variable: Full sample High risk aversion Low risk aversion
Test was taken (1) or not (0) (1) (2) (3) (4) (5) (6)
K -21.70*** -64.28*** -25.55*** -76.99*** -18.71*** -74.99**

(3.128) (19.23) (5.477) (26.24) (4.017) (30.92)
f (quality of the pool) -1.693*** -1.694*** -1.785*** -1.783*** -1.640*** -1.649***

(0.339) (0.339) (0.512) (0.511) (0.454) (0.454)
Intolerance to ambiguity 0.0010 -0.0952** -0.0280 -0.160** 0.0189 -0.0880

(0.0178) (0.0438) (0.0306) (0.0662) (0.0221) (0.0613)
K × Intolerance to ambiguity 0.874** 1.159** 1.001*

(0.361) (0.516) (0.534)
Gender (Male = 1) 0.557* 0.524 0.823 1.932 0.625 -0.493

(0.339) (0.757) (0.590) (1.178) (0.406) (1.254)
K × Gender 1.093 -9.004 10.36

(6.624) (9.831) (11.89)
Health (L-type = 1) -0.103 -0.105 -0.245 -0.239 -0.00801 -0.0126

(0.106) (0.106) (0.165) (0.165) (0.138) (0.138)
Healtht−1 0.232** 0.229** 0.350** 0.353** 0.162 0.158

(0.106) (0.106) (0.165) (0.165) (0.138) (0.139)
Healtht−2 0.202* 0.199* 0.120 0.121 0.256* 0.254*

(0.106) (0.106) (0.164) (0.164) (0.138) (0.138)
Period -0.0061 -0.0061 -0.0036 -0.0036 -0.0078 -0.0077

(0.0065) (0.0065) (0.0102) (0.0102) (0.0085) (0.0085)
Constant 3.366*** 8.249*** 5.548*** 11.35*** 2.169* 8.105**

(1.148) (2.527) (1.901) (3.496) (1.245) (3.445)
Observations 2,212 2,212 980 980 1,232 1,232
Number of ID 79 79 35 35 44 44
Lotteries from Stage A to measure risk aversion were included in models (1) and (2) as indicator variables,
none of them were statistically significant. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

the unobserved characteristics of each subject. The estimations for the full sample are
reported in columns (1) and (2) on Table 3.

We interpret the coefficients of the regression using the concept of odds ratio. The
coefficients then represent the expected change in the log odds ratio (log(p/(1 − p))
where p is the probability to test under CL) for a one-unit increase in the dependent
variable. According to results reported in Table 3, the effect of f on the log odds ratio of
testing is negative and significant. An increase of 0.1 in the value of f decreases the odds
ratio by 16% (since e−0.169 = 0.844 where -0.169 is 0.1 times the estimated coefficient for
f). This result shows that subjects do not exhibit enough risk aversion (i.e., concavity
in their utility function) to counteract the fact that a larger f , by improving the payoff
with the pooling contract, reduces the (monetary) incentive to test (recall the discussion
before equation (3)).28

Table 3 shows that increasing the test cost K by 0.05 decreases the odds ratio of

28This of course does not contradict Result 2, since increasing f when the choice is between “no
testing under DD” and “testing under CL” unambiguously encourages testing by increasing U1

CL without
impacting U0

DD.
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taking the test by 67%.29 This confirms the raw exploitation of the subjects’ decisions,
where we obtain that when K = 0.01 subjects test 97.5% of the times, whereas subjects
with K = 0.20 test 29.3% of the times. So, as in Stage B, increasing the test cost K
has a very sizeable impact on the testing decision.

The first two columns of Table 3 also show that the type assigned in a previous
round does influence the likelihood to test in the current round, even though types are
reassigned at random to each subject at the beginning of each round. Having been
assigned a type L (in the form of letter X, see footnote 21) in the previous round
increases the odds of taking the test in the current round by 26%, and in the next
round by 23%.30 This is reminiscent of Jessup et al. (2008), who show that positive
feedback increases the likelihood to pick a gamble instead of a fixed payment when the
odds of achieving the high payoff outcome are not too small.

According to model (2) in Table 3, an additional point in the ambiguity score (mean-
ing less tolerance to ambiguity) reduces the likelihood to take the test by nearly 10%
when K is very small. However, this impact decreases as the test cost increases, as it
also did in Stage B.

We do not observe any effect of risk aversion, as measured in Stage A, on the testing
decision under consent law. An indicator variable for each one of the lotteries in Stage A
was introduced in the regression models (1) and (2), but none of the coefficients proved
to be statistically significant.

We then compute again the regressions with two separate sub-samples based on the
levels of risk aversion measured in Stage A. One sub-sample includes the subjects who
picked lotteries 1 or 2 in Stage A -i.e., the 43.75% of the population with the highest
risk aversion levels. Results with this sub-sample are reported in models (3) and (4)
in Table 3. The other sub-sample includes the remaining 56.25% subjects, a population
with moderate to low levels of risk aversion. Results for this population are to be found
in Models (5) and (6) in Table 3. Negative coefficients are larger, in magnitude, for the
sub-sample with high risk aversion. However, the differences across sub-samples for the
coefficients of f and K are not substantive and the coefficients remain significant at the
one percent level. Note that the intolerance to ambiguity is significant only for subjects
with high risk aversion, a result related to the positive correlation of risk aversion and
ambiguity aversion mentioned before. The two subsamples also differ in how they react
to past information regarding their type. In the sub-sample with high risk aversion,
only information from the previous round (Healtht−1) is significant, whereas for the
sub-sample with lower risk aversion, only the information from two previous rounds
(Healtht−2) is statistically significant.

29Dividing the coefficient of K by 20 (so that ∆K = 0.05) and using the exponential function to
obtain e−1.085 = 0.338.

30Additional regressions, not reported in the paper but available upon request, show that this effect
disappears after two rounds.
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Up to this point, we find little empirical support for the relevance of risk aversion
on the testing decision. One explanation for this limited impact is that the exposure
to repeated testing decisions makes risk averse subjects more willing to choose the
gamble. Benartzi and Thaler (1999), inspired by the work of Samuelson (1963), call
this phenomenon “myopic loss aversion,” claiming that subjects are more sensitive to
the losses in a gamble if they are exposed to a single trial than to multiple trials.

Result 5: Experience in the game reduces the effect of f in the most risk
averse participants and increases its effect in the less risk averse participants.

Logit coefficients from the discrete panel with random effects are reported in Table
4, where we run again the regressions for the sub-sample of high and low risk averse
subjects, but splitting the sample into an early part in which subjects do not have
too much experience (rounds 1-15), and a late part in which subjects have gained more
experience in the decision task (rounds 16-30). We observe strong differences across risk
preferences across time in the individual responsiveness to the quality of the pool f . For
the most risk averse participants, a comparison of the coefficients between models (1)
and (2) shows that the coefficient of f decreases by more than half from the early to
the late part of the game. For this sub-sample of subjects, the average testing rate is
60.4% in the first fifteen rounds and 59.8% in the last fifteen rounds. The difference in
testing rate is negligible, meaning that subjects are less sensitive to f although they are
not testing more.

Table 4: Discrete panel regressions with sub-samples. Full sample splitted by risk
aversion level and by early part (rounds 1-15) and late part (rounds 16-30) of the game.

Dependent variable: High risk aversion Low risk aversion
Test was taken (1) or not (0) Rounds 1-15 Rounds 16-30 Rounds 1-15 Rounds 16-30

(1) (2) (3) (4)
K -80.74*** -67.33** -59.70*** -59.22**

(24.67) (28.95) (22.05) (27.73)
f (quality of the pool) -2.485*** -1.210* -0.832 -2.103***

(0.856) (0.666) (0.729) (0.596)
Intolerance to ambiguity -0.173*** -0.116 -0.0890* -0.0619

(0.0626) (0.0734) (0.0538) (0.0659)
K × Intolerance to ambiguity 1.264*** 0.839 0.923** 0.836

(0.482) (0.573) (0.454) (0.570)
Gender (Male = 1) 1.067** 0.669 0.731** 0.340

(0.511) (0.619) (0.336) (0.440)
Constant 12.50*** 9.178** 6.793** 5.573*

(3.382) (3.912) (2.684) (3.299)
Observations 455 525 572 660
Number of ID 35 35 44 44
Additional covariates omitted in the table: Period, Health, Healtht−1 and Healtht−2.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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For the less risk averse subjects we observe the opposite pattern. The coefficient
of f in model (3) is not statistically significant, suggesting that these subjects are not
very responsive to f in the early part of the game. However, model (4) shows that
for the late part of Stage C the coefficient of f becomes significant at the one percent
level. In this case, the increase in sensitivity to the quality of the pool was accompanied
by a decrease in the testing rate of five percentage points, from 66.5% to 61.5%. This
difference in testing rates suggests that the less risk averse subjects are becoming more
selective to the offered contracts as they gain experience in the game.

The repeated exposure to the decision is also dampening the effects of gender and
ambiguity aversion. In models (1) and (3), the coefficients of these two variables are
statistically significant, but they become insignificant in models (2) and (4). In addition,
the effects of gender and ambiguity aversion are larger for the most risk averse subjects.
The higher likelihood to test of men compared to women in models (1) and (3) is
reminiscent of the well established experimental result that women are more risk averse
than men (Borghans et al., 2009; Croson and Gneezy, 2009).31 However, the gender
difference becomes insignificant in the late part of the game.

We also observe that the effect of ambiguity aversion reported in Result 4 is driven
by the early interactions in the game. One explanation for the decreasing effect of
ambiguity aversion over time is that subjects learn from previous realizations of the
game and therefore become more tolerant to uncertainty. This interpretation goes in
line with the “comparative ignorance hypothesis” (Fox and Tversky, 1995), according
to which ambiguity aversion is driven by comparisons of states of knowledge. The
results we obtain are compatible with assuming that subjects compare their own states
of knowledge over time, which are enriched by previous experiences in the game.

Result 6: We do not observe convergence over time to an equilibrium
value of f .

According to Proposition 1, we should expect convergence to an equilibrium value
of f . Such a convergence would allow us to compare again the two regulations, but
with the equilibrium value of f for consent law rather than with an exogenous value.
Unfortunately, we do not obtain convergence, as evidenced in Figure 7. The red bars,
representing the difference ft − ft−1 in each period, should be shrinking over time if f
were reaching a steady state. Setting ε = 0.05 (resp., ε = 0.1) and excluding rounds 1
and 16, we find that ft − ft−1 < ε in 21.4% (resp., 39.3%) of the 30 rounds. Moreover,
as Figure 7 shows, there is no downward trend in ft − ft−1, with low (absolute) values
dispersed along the time line in each session. The correlation between ft− ft−1 and the
period is not significant either.

31This is also the case with our subjects: see footnote 16.

28



Figure 7: Evolution of f and ∆f over the 30 rounds
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Interestingly, Figure 7 shows an alternation of positive and negative values of ∆ft,
while theory would predict that f∗ > ft+1 > ft as long as ft < f∗ ( so that ∆ft > 0),
and f∗ < ft+1 < ft as long as ft > f∗ ( so that ∆ft < 0).32 It is thus as if subjects
were over-reacting to variations in ft, generating endogenous values of f which alternate
between values larger and smaller than the equilibrium value, without exhibiting any
convergence.

One reason for this non-convergence may be that our convergence result (Proposition
1) assumes that all agents share the same utility function, while in reality they of course
differ in, among other things, their degree of risk aversion. With heterogeneous utility
functions, some subjects may be such that a larger value of f reduces their incentive
to test under CL (i.e., ∂KCL/∂f < 0) while for others the opposite relationship would
hold (∂KCL/∂f > 0). We want to stress that this is not the (only) mechanism at play
in the experiment to prevent convergence. Whatever their utility function, the impact
of a larger f on the incentive to take the test under CL should have the same sign, for
any given subject, whatever the value of f , since we have that the sign of ∂KCL/∂f
does not change with f (see equation (3)). Unfortunately, this is not what we observe
in the experiment. We call “consistent” a testing behavior characterized by a threshold
value of f , above (resp., below) which a subject always takes the same testing decision.
For instance, an inconsistent testing behavior consists in a subject testing when f is
low, not testing when f is medium, and testing again when f is large. We find repeated
violations of consistency for 82.5% of the participants. The few exceptions are subjects
who always test (10 in total, 6 of them with K = 0.01), those who always test except

32Proof available upon request.
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when f = 0.9 (3 in total, 1 of them with K = 0.01 and another two subjects with
K = 0.10) and a subject who never tests (with K = 0.20).

The subjects’ inconsistencies may have at least two explanations. One is that the
sensitivity to the quality of the pool is changing with the experience in the game,
and that the change is heterogeneous with respect to the risk aversion level. Another
explanation, not mutually exclusive, is an inherent sampling behavior that is likely to
appear when subjects are unable to construct a full action profile, and instead directly
build a correspondence between actions and rewards (Osborne and Rubinstein, 1998).
Since, in our experimental setting, subjects are not informed of the exact procedure used
to recompute payoffs after each round, this lack of information may induce a sampling
behavior.

Another reason why we do not observe convergence is that the required time hori-
zon may be longer than fifteen periods. We have two arguments against this possibility.
First, the time correlations for ft − ft−1 within each session are not statistically signifi-
cant, and this lack of statistical correlation hold also when the time horizon is split into
rounds 1-15 and 16-30. Second, the sensitivity of the testing decision to the variable f
is decreasing over time for the most risk averse subjects. We then have no reason to
think that extending the time horizon would have resulted into convergence.

5 Conclusion

In this paper, we develop a theoretical analysis of two regulations of genetic tests, dis-
closure duty and consent law, and we run several experiments in order to shed light on
both the take-up rate of genetic testing and on the comparison of utilities under the
two regulations. We obtain that the take-up rate is low under DD, larger under CL
and is increasing with adverse selection under CL. Also, the fraction of individuals who
prefer DD to CL increases with the amount of adverse selection under CL, measured
as the fraction of agents informed of their (bad) type among those who buy the pool-
ing contracts devised for uninformed agents. As long as this proportion is lower than
(roughly) one half, a majority of subjects prefer CL to DD. These results are obtained
for exogenous values of adverse selection under CL, and the 30-round experiment de-
vised in Stage C has not resulted in convergence towards an equilibrium level of adverse
selection.

Our setting is well adapted to the current situation where most people do not test,
and where insurers offer pooling contracts to agents who are (or pretend to be) unin-
formed about their genetic type. As long as few people test, the CL regulation offers
higher utility to a majority of individuals, compared to DD.33 As personalized medicine

33This stands in stark contrast with other papers such as Barigozzi and Henriet (2011) and, as ex-
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develops, with cheaper tests and more options offered to agents who discover their
detrimental genetic background, more people can be expected to test, and a majority
of individuals may then benefit from DD rather than CL.
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Experimental Instructions

You will find below the experimental instructions. All the text inside a box was
displayed in a single screen to the participants. When the text appears in brackets
[ ] it corresponds to a button displayed in the screen. Amounts of money displayed
inside the boxes are provided as an example, as they depend on the test cost which
is different across subjects.

Welcome!

This activity is part of a study about how individuals take economic decisions.
The decisions you will take today are divided in three stages.

First Stage:
In the first stage a total of six (6) lotteries will be shown to you. You will have to decide which
one you prefer to play.

Second Stage:
In the second stage a total of seven (7) lotteries will be shown to you. You will have to decide
in which ones of them you would prefer to play and in which ones you would prefer to receive
a compensation for not playing.

Third Stage:
In the third stage you will play for several rounds.
In each round of the third stage a given letter, X or Y, will be assigned to you. Each one of
these letters will represent an amount of money.
You will not know which letter was assigned to you. But you know that each letter has a 50%
chance to be assigned.
You will have to decide if you want to reveal the assigned letter, and receive the corresponding
amount of money, or receive a fixed amount of money for not revealing the assigned letter.
The amount received for not revealing the assigned letter is a value in-between the money
received for having the letter X and the money received for having the letter Y.
These three values, the amount received for having the letter X, the amount received for having
the letter Y, and the amount received if you prefer to not reveal the letter, will be displayed
simultaneously before you have to take a decision of each round.

[Continue]
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Earnings in the activity:

After playing the three stages we will proceed to make the raffles that will define your earnings
from each one of the stages.
At the end of the activity you will receive the following earnings:

Raffle No. 1: The payment of the lottery chosen in the first stage, according to the result
obtained in the draw.

Raffle No. 2: One of the lotteries from the second stage will be randomly drawn. If you
decided to play the selected lottery you will receive the payment corresponding to the raffle’s
outcome. Otherwise, you will receive the compensation for not playing the lottery.

Raffle No. 3: One round of the third stage will be randomly chosen. You will receive the
corresponding earnings.

Do you have any questions?

If the instructions have been understood and you do not have any question you can click on
“Continue.”
In the next screen you will find the informed consent. If you agree with the conditions exposed
in this document we ask you to please click on “I accept the conditions of the activity.”

[Continue]

FIRST STAGE:

Now six (6) lotteries will be shown to you. You have to choose which one you want to play.
In each lottery will be randomly drawn a color between BLUE and BLACK as outcome.
The probabilities of drawing BLUE and BLACK are the same.
The raffle, which defines the random choice of one of the two colors, will be done at the end of
the activity.

[Continue]
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FIRST STAGE:

Now you have the six lotteries.
You can pick the one you prefer most. At the end you will receive the lottery’s earnings
according to the randomly chosen color, BLUE or BLACK.
Remember for every lottery the two outcomes are equally likely to occur. In other words, each
color has a 50% chance to be randomly chosen.

Option A: $3,300 or $3,300 [Lottery A]
Option B: $2,500 or $4,700 [Lottery B]
Option C: $1,800 or $6,200 [Lottery C]
Option D: $1,100 or $7,700 [Lottery D]
Option E: $ 400 or $9,100 [Lottery E]
Option F: $ 0 or $9,500 [Lottery F]

SECOND STAGE:

In the next screen you will see seven (7) lotteries. In each one of them you may receive a
HIGH PRIZE or a LOW PRIZE.
The lotteries are ordered according to the value of the LOW PRIZE, in increasing order.
You will have to choose from which of these lotteries you prefer to play instead of receiving a
fixed amount of money for not playing.
At the end of the activity a raffle will decide which one of the lotteries will be chosen. If you
decided to play this lottery, the raffle will also define if you receive the HIGH PRIZE or the
LOW PRIZE.
You will only play the chosen lottery if it is one of the lotteries in which you accepted to gamble
instead of receiving the fixed payment.
Consider the following example. You decided to play from lottery No.4 to lottery No. 7 and
the randomly chosen lottery is lottery No. 2. In this case you will not play and instead will
receive the fixed payment.

[Continue]
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SECOND STAGE:

You will find now seven (7) lotteries.
In each one of them you can decide whether to PLAY or to NOT PLAY.
In case you decide to NOT PLAY you will receive $10,000.
In case you decide to PLAY you may receive the HIGH PRIZE or the LOW PRIZE.
The HIGH PRIZE is $13,000.
The LOW PRIZE increases with each one of the lotteries.
You will have to decide from which lottery you would prefer to PLAY.
In other words, you will have to decide which is the minimum LOW PRIZE you are willing to
accept in order to choose PLAY.

PLAY NOT PLAY
LOW PRIZE HIGH PRIZE

Lot. 1 You receive $6,400 You receive $13,100 [I PLAY this lot-
tery and the follow-
ing 6]

You receive $10,000

Lot. 2 You receive $6,900 You receive $13,100 [I PLAY this lot-
tery and the follow-
ing 5]

You receive $10,000

Lot. 3 You receive $7,400 You receive $13,100 [I PLAY this lot-
tery and the follow-
ing 4]

You receive $10,000

Lot. 4 You receive $7,900 You receive $13,100 [I PLAY this lot-
tery and the follow-
ing 3]

You receive $10,000

Lot. 5 You receive $8,300 You receive $13,100 [I PLAY this lot-
tery and the follow-
ing 2]

You receive $10,000

Lot. 6 You receive $8,800 You receive $13,100 [I PLAY this lot-
tery and the follow-
ing 1]

You receive $10,000

Lot. 7 You receive $9,200 You receive $13,100 [I PLAY this lot-
tery]

You receive $10,000
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THIRD STAGE:

A letter, X or Y, will be assigned to you in each round of the game. The probability that the
letters X or Y will be assigned to you are the same.
Your task, before being informed which letter was assigned to you, is to decide if you want to
reveal the assigned letter.
Before you take this decision, a payment will be offered for the letter X, another payment will
be offered for the letter Y, and another payment if you prefer not to reveal the assigned letter.
The payment for having the letter X is larger than the payment for not revealing the letter,
which at the same time is larger than the payment for having the letter Y.
You will repeat this procedure for a total of 30 rounds.
At the end of the activity a raffle will be made to randomly select which of the 30 rounds will
be paid and added to your total earnings.

[Continue]

Round 1:

You may receive $9,800 if you decide not to reveal the letter.

If you decide to reveal the letter you may receive:
$13,100 if the letter is an X
$ 9,000 if the latter is a Y

[Reveal the letter]
[Not reveal the letter]

Round 1:

You decided to not reveal the letter.
The assigned letter was:

Y
Your earnings, if this round is selected, will be $9,800

[Continue]
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RAFFLES

Now the three raffles will be realized, one for each stage in the activity.
For each random draw you will find a gray button and a red button.
The gray button’s purpose is to practice the random draw. You can click on it for practice all
the times you want.
The red button’s purpose is to make the decisive draw. You can click on the red button just
once per raffle.

Raffle No. 1: By clicking you will choose if the outcome of the lottery is BLUE or BLACK.

Raffle No. 2: By clicking you will choose one of the seven lotteries and whether the lottery’s
outcome is the HIGH PRIZE or the LOW PRIZE. If you decided not to play the randomly
selected lottery you will receive a fixed payment.

Raffle No. 3: By clicking you will choose the round from the third stage that will be paid.

[Continue]

FINAL EARNINGS

Your earnings in the first stage were $4,700
Your earnings in the second stage were $10,000
Your earnings in the third stage were $9,800
After rounding to the nearest thousand your final earnings were $25,000

Please click on “Continue” when you are done. We will ask you to complete a short survey
before leaving the room.

Thank you for your participation.

[Continue]
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