
Kim, Sang-Hyun; Choi, Jay Pil

Working Paper

Optimal Compatibility in Systems Markets

CESifo Working Paper, No. 5037

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Kim, Sang-Hyun; Choi, Jay Pil (2014) : Optimal Compatibility in Systems Markets,
CESifo Working Paper, No. 5037, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/105129

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/105129
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Optimal Compatibility in Systems Markets 
 
 
 

Sang-Hyun Kim 
Jay Pil Choi 

 
 

CESIFO WORKING PAPER NO. 5037 
CATEGORY 11: INDUSTRIAL ORGANISATION 

OCTOBER 2014 
 

 
 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 5037 
 
 
 

Optimal Compatibility in Systems Markets 
 
 

Abstract 
 
We investigate private and social incentives for standardization to ensure market-wide system 
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1 Introduction

This paper reexamines the incentives for �rms to achieve standardization that ensures

market-wide system compatibility in a two-dimensional spatial competition model. To

analyze such an issue, we consider a systems market comprised of two complementary

products to be used on a one-to-one basis. We construct a "torus" model to represent two-

dimensional spatial competition. The torus model allows characterization of a symmetric

equilibrium with more than two �rms, as the circular city model does in a one dimensional

product space. We develop a novel approach to analyze competition on a torus and show

that there is a fundamental con�ict of interest between consumers and producers over the

standardization decision. Consumers prefer standardization with full compatibility because

it o¤ers more variety that confers a better match with their ideal speci�cations. However,

�rms are likely to choose the minimal compatibility to maximize product di¤erentiation

and soften competition. This is in sharp contrast to the previous literature that shows the

alignment of private and social incentives for compatibility [Matutes and Regibeau (1988)

and Economides (1989)].

Consider a situation in which all �rms in the market are integrated in the sense that they

produce both component products. One important decision for them is whether or not to

make their components compatible with those of their rivals. In the case of the home audio

industry, for instance, full industry-wide compatibility prevails, which allows consumers to

combine a receiver of any brand with speakers of any other brands. In the smartphone

industry, however, we have incompatibility in the sense that any "apps" developed for the

Android operating system cannot be used for any phone based on iOS, the operating system

developed by Apple, and vice versa.1

The issue of compatibility choice has been studied extensively. The literature on this

has addressed two main questions: Do �rms have incentives to achieve compatibility across

components made by di¤erent producers? Is the market compatibility choice socially op-

timal? Major contributors on this subject, in particular Matutes and Regibeau (1988)

and Economides (1989), answered positively to both questions, demonstrating the align-

1System markets are often characterized by indirect network e¤ects or inter-group network externalities.
Implications of network e¤ects in this set-up has been extensively analyzed in the framework of two-sided
markets (see, for instance, Armstrong (2006) and Rochet and Tirole (2006)). In this paper, we analyze
incentives to maintain product compatibility in the absence of network externalities to isolate the e¤ects of
compatibility on competitive pricing. This also facilitates comparison of our results to the existing literature
pioneered by Matutes and Regibeau (1988) and Economides (1989).
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ment of private and social incentives for compatibility in the absence of network e¤ects.

In particular, Matutes and Regibeau (1988) consider a two-stage game in which two fully

integrated �rms make their compatibility decisions prior to competition in prices. They

show that the equilibrium entails full compatibility between component products of the two

rival �rms because compatibility leads to higher prices than incompatibility. Compatibility

also leads to higher social welfare due to the increased variety of systems available. Econo-

mides (1989) extends Matutes and Regibeau�s analysis by considering a more general case

of n(� 2) �rms. He recon�rms that compatibility prevails in equilibrium, because compati-

bility leads to higher prices and pro�ts than incompatibility. However, as we explain below,

Economides�conclusion is based on an inconsistent analysis, which we intend to rectify in

this paper. To this end, we develop a torus model that allows more than two �rms to be

located symmetrically. We demonstrate that Matutes and Regibeau�s results are limited to

the special case of two �rms and not robust to changes in the number of �rms, overturning

the conclusion of Economides (1989).

To analyze the desirability of compatibility across di¤erent producers of each component

products, we adopt the framework of Matutes and Regibeau (1988) to facilitate the com-

parison of results. However, we modify it to maintain symmetry across system products

in a more general case with more than 2 varieties for each component. More precisely,

we consider a system good market which consists of two di¤erentiated component goods,

called A and B, such as hardware and software.2 We search for symmetric equilibria with

n producers in each of the two di¤erentiated component-markets. The distribution of con-

sumers�preference is modeled as a uniform distribution on a torus, the Cartesian product

of two circles.

With a general number of �rms in the market, we need to deal with a large number of

compatibility possibilities across the two components and location choices for each system

variety. In this paper, we focus on two polar cases. Compatibility is the case where any

component in market A is compatible with any component in market B: For instance, this

may be an outcome of industry-wide standardization e¤orts that ensures interoperability

between any components that adhere to the industry standard. The other case we consider

is the minimum level of compatibility in which one particular variety of component A is

compatible with only one variety of component B, and vice versa. We call this regime

2See Katz and Shapiro (1994) for a discussion of economic issues in systems markets.
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incompatibility under which no mix-and-match is possible. We consider two alternative

market structures, one in which all �rms are vertically integrated multi-product �rms that

produce both components, and one in which each �rm is vertically separated and produces

only one component. In the integrated �rm case, incompatibility would arise if each �rm

produces a closed system. In the vertically separated �rm case, this would arise if each

�rm has a proprietary technology and �rms in market A form an exclusive partnership with

partner �rms in market B.

We show that for all n � 4, �rms prefer incompatibility to compatibility in the integrated

�rm case (whereas the same holds for n � 3 in the vertically separated �rm case).3 In

contrast, social welfare is maximized under compatibility. This implies that the alignment

of private and social incentives towards compatibility in Matutes and Regibeau is a special

result that applies to only n = 2, and is not robust to changes in the number of �rms.

The logic behind our results is simple and can be explained in geometric terms. First,

under compatibility there are n2 systems available while there are only n systems available

under incompatibility. As a result, it is more costly for an individual consumer to change his

choice under incompatibility because the second best alternative tends to be farther away

from his ideal speci�cation than in the compatibility regime. Second, the measure of mar-

ginal consumers (those who are indi¤erent between two alternatives) is usually smaller under

incompatibility. This implies that the marginal gains from a price cut, or equivalently the

�rms�price cutting incentives, are smaller. Taken together, �rms have incentives to produce

closed systems or engage in exclusive partnerships that result in incompatibility in order to

reduce the intensity of price competition. In particular, we make a novel methodological

innovation that provides a clean characterization of the dependence of price competition on

the location of competing products in a two-dimensional product space. We show that the

intensity of price competition in the market is completely characterized by and is inversely

related to a simple parameter called the m-to-d ratio, which is a ratio of the measure of

marginal consumers to the extent of product di¤erentiation. This parameter operational-

izes the notion of the principle of maximum di¤erentiation in a two dimensional product

space. On the other hand, as is well-understood in the literature, compatibility is desirable

for the consumers and for the whole economy since it reduces consumers�"transportation

3Monroe (1993) shows by example that the comparison of industry pro�ts across regimes is ambiguous
for n > 4 and depends on �rms�locations in product space, but does not provide a systematic analysis as
we do.
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costs" by increasing the variety of systems available in the market.

It is worth mentioning that Economides (1989) analyzed essentially the same problem we

are considering in this paper. His analysis, however, was logically inconsistent by implicitly

considering two topologically di¤erent manifolds to represent the same market �sphere and

torus �when he compared two di¤erent regimes.4 More speci�cally, he assumed on one hand

that consumers are uniformly distributed on a surface of a sphere that has a great circle of

length 1 (p.1167). On the other hand, he represented the market on a two-dimensional plane

(see Figure 1 in p.1169 of the paper) which is topologically equivalent (or homeomorphic)

to a torus (Cartesian product of two circles) but not to a sphere.5 The analysis of the

equilibrium under compatibility (Section II) was based on the assumption that the market

can be represented as the two-dimensional plane. In the analysis of the equilibrium under

incompatibility (Section III), however, he assumed a sphere market: whereas the distance

between any two neighboring systems appears to be
p
2d in the two-dimensional plane (see

Figure 1), that distance is taken as d (as opposed to
p
2d) in the analysis in Section III.

This would be the case on the surface of the sphere where the length of a diagonal circle is

the same with that of a horizontal circle or a vertical circle. But that is not the case in the

plane representation.

Even if we ignored this technical problem, Economides�s analysis would still appear

problematic, because as shown in this paper, how the products are located on the charac-

teristics space matters. Without an inquiry of whether the equilibrium pro�ts would depend

on the locations of the products, he simply assumed that the system goods are located on

the diagonal. The comparison under this locational formation of the products may not be

fair. For the compatibility case there is no other formation that enhances the equilibrium

pro�ts, but for the incompatibility case there is. As a result, he mistakenly concluded

that the Matutes and Regibeau result extends for the general n �rm case, with private

and social incentives aligned. In contrast, we show in this paper that �rms may prefer

incompatibility, because under incompatibility they can increase pro�ts by di¤erentiating

their products from others.

Our paper mainly contributes to the literature on spatial competition models of com-

4We are not the �rst one to notice this error. Matutues and Regibeau (1991) and Farrell, Monroe, and
Saloner (1998) also point out the error, but do not pursue the matter further.

5For an explanation about homeomorphic relations among two-dimensional manifolds, we refer interested
readers to Massey (1991).
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patibility, but also relates to other branches of research including products bundling (e.g.

Matutes and Regibeau (1992), Chen (1997), Choi (1996), Denicolo (2000) and Nalebu¤

(2004)), exclusive dealing (e.g. Besanko and Perry (1994)) and vertical organization of

industry in general (Farrell et al. (1998)). In our analysis, we consider two alternative

market structures. One is where all �rms are integrated in the sense that they produce

both components of the system. The other case is where all �rms produce only one com-

ponent. Depending on the market structure, our model can also be reinterpreted as an

analysis of the incentives for �rms to engage in bundling or exclusive dealing arrangements.

In the integrated �rm case, the e¤ect of incompatibility is equivalent to that of bundling

in that consumers are forced to buy the whole system from the same vendor. In the one-

component producer case, incompatibility is equivalent to exclusive dealing between a pair

of partner �rms. For instance, if we reinterpret two component products as a �nal good

and retailing service, respectively, our model can be considered as an analysis of incentives

for exclusive dealing contracts. In this context, our paper also provides a useful framework

to analyze incentives to engage in bundling decisions or exclusive dealing arrangements in

system markets.

The rest of the paper is organized as follows. In section 2, we present the model of

di¤erentiated system products in a toroidal two dimensional product space. In section

3, we �rst consider integrated �rms that produce both components. We analyze market

equilibria in two regimes, incompatibility without any mix-and-match possibility, and full

compatibility enabled by market-wide standardization. We derive the market equilibrium

in each regime and analyze incentives to achieve standardization in the market. We show

that under full compatibility, the market equilibrium in each component market can be

analyzed in isolation of the other component market. As a result, the market equilibrium

replicates the one in the classical circular city model. We also characterize the equilibrium

of price competition under any symmetric con�guration of product di¤erentiation, which

allows the comparison of equilibrium pro�ts under compatibility and under incompatibility.

The analysis reveals a fundamental con�ict of interest between consumers and producers

over the standardization decision. Section 4 contains a discussion about an alternative

market structure in which each �rm produces only one component as a robustness check of

our main results. Concluding remarks follow.
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Figure 1: Transforming a square into a torus

2 The Model

Consider a market for system goods that consist of two component products, A and B. We

assume that these two component products can generate value only when they are combined

together. To analyze the incentives to achieve compatibility between the two components,

we adopt a variation of Matutes and Regibeau (1988) that accommodates more than 2

varieties in each component market while maintaining symmetry among varieties. There

are n (� 2) �rms, each of which produces the two components of a system, i.e., a single

variety of component A and a single variety of component B.6 To maintain symmetry, we

adopt a torus to represent the product space. Consumers have heterogenous preferences

over the characteristics of each component. Each consumer�s preference is summarized by

her location which represents her ideal variety (xA, xB) in the product space. The torus is

constructed by the following equivalence relations over R2.

(xA; xB) � (xA + 1; xB) � (xA; xB + 1) for any (xA; xB) 2 R2

As shown in Figure 1, the torus is homeomorphic to the Cartesian product of two circles,

i.e. S1 � S1, thus is a natural two-dimensional extension of the circular city model à la

Salop (1979).

With n (> 2) manufacturers for each component, we can imagine a plethora of possibili-

ties to the extent of which the component products are compatible with each other, most of

which are analytically intractable. Here, we just consider two polar cases. In the �rst case,

which we simply label as compatibility, any component A is compatible with any arbitrary

component B to make a feasible system. Under compatibility, n2 systems are available in

the market, which is the the maximum number of varieties that can be assembled by the

6 In section 4, we also consider the case where each �rm produces only one of the components, and show
that our main result is strengthened in this alternative market structure.
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consumers. This case arises if all manufacturers participate in a standard-setting organi-

zation, and establish industry-wide standards that would allow "mix-and-match" between

two components from any producers. In the other extreme case of compatibility, which we

call incompatibility, a brand of component A can be matched only with the component B by

the same producer.7 Incompatibility among di¤erent systems prevails if the �rms decide to

make their components incompatible with their rivals�. Therefore, under incompatibility,

only n system goods, the least possible number of varieties, are available to the consumers.

Let us denote the set of component A by IA; and similarly for B by IB. Also let IC be

the set of system goods available in the market, and (i; j) be its generic element where

i 2 IA and j 2 IB. The size of IC is n2 under compatibility, and n under incompatibility.

As in Salop (1979), we assume that all varieties are symmetrically located, and focus on

symmetric equilibria in which �rms independently set the price of their own components,

taking the compatibility con�gurations and location choices as given.

Consumers are uniformly distributed on the torus. A consumer, who is at (xoA; x
o
B) and

purchases system (i; j) 2 IC , derives net utility of

v � t[(xoA � xi)2 + (xoB � xj)2]� pAi � pBj ;

where v is the reservation value of the ideal system, which is common to all consumers, t > 0

is a "transportation cost" parameter that represents the degree of product di¤erentiation,

xi is the location of �rm i on coordinate A, pAi is the price of component A produced by

�rm i, and xj and pBj are de�ned similarly for component B.8 Each consumer buys at

most one unit of the system good that provides the highest net utility. We assume that v

is su¢ ciently large, and thus every consumer makes a purchase in any equilibrium. Each

�rm�s marginal cost is normalized to zero.

3 Market Equilibrium: Compatibility vs. Incompatibility

In this section, we derive the market equilibrium under compatibility and incompatibility to

analyze incentives to achieve industry-wide standardization. Matutes and Regibeau (1988)
7Alternatively, each �rm provides an integrated system good of which components cannot be disintegrated

and rematched with other products in the market.
8We adopt a quadratic transportation cost in our analysis as in d�Aspremont et al. (1979). However, any

speci�cation of transportation costs which is a monotonic transformation of the Euclidean distance generates
the same qualitative results.
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address the same question for the case of n=2, and show the alignment of private and social

incentives for compatibility. We demonstrate that their results are limited to the special

case of two �rms and not robust to changes in the number of �rms.9

3.1 Equilibrium under Compatibility

Under compatibility, competition takes place at the component level. As a consequence, the

symmetric equilibrium is identical to that of the one-dimensional circular city model. This

can be easily shown by considering an individual consumer�s utility maximization problem:

max
i2IA; j2IB

�
v � t[(xoA � xi)2 + (xoB � xj)2]� pAi � pBj

	
= v �min

i2IA
ft(xoA � xi)2 + pAi g � min

j2IB
ft(xoB � xj)2 + pBj g

In words, with compatibility that allows every component in A to be combined with any

component in B, the choice of each component can be made independently of the other.

Furthermore, each marginal distribution of consumers�preferences is uniform on a circle of

length 1, since the preferences for A and B are jointly uniform on the torus. Therefore,

provided that the products in IA are equidistant from each other along the (say, horizontal)

coordinate xA and those in IB along the (vertical) coordinate xB, there exists a symmetric

equilibrium where all �rms in the market set their prices the same and share the market

equally.

Note that every symmetric formation of the products on a circle yields the same intensity

of competition, which yields the same level of equilibrium pro�ts. As shown in the next

subsection, however, this is not the case on the torus: there is usually more than one way

to symmetrically locate the products on the torus, and each con�guration yields a di¤erent

level of equilibrium pro�ts.

Since the component market B is structurally identical to market A, we just consider

the market for component A (horizontal circle) below. Suppose �rm i; located at the origin,

charges pAi , and all the other �rms charge the identical price p for their component A. A

consumer located at x is indi¤erent between purchasing from �rm i and purchasing from

i�s closest neighbor if pAi � tx2 = p + t
�
1
n � x

�2
. There are two neighboring �rms on the

9Matutes and Regibeau (1988) also analyze the case where the market is not fully covered.
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Figure 2: Two symmetric formations with n = 8

circle. Thus, the demand for �rm i�s component A can be written as

Di(p
A
i ; p) = 2x =

1

n
�
n
�
pAi � p

�
t

;

and the pro�t from component A as

pAi Di(p
A
i ; p) = p

A
i

�
1

n
� n(p

A
i � p)
t

�
:

Di¤erentiating with respect to pAi and imposing the symmetry condition that p
A
i = p, we

derive that the equilibrium price and the pro�t from component A are t=n2 and t=n3,

respectively . Since a �rm collects pro�ts from both the A and B markets, the total pro�t

is twice as large as the pro�t from a component market.

Proposition 1 Under compatibility, the symmetric equilibrium price and pro�t are given

by pC(n) = t=n2 and �C(n) = 2t=n3, respectively.

3.2 Equilibrium under Incompatibility

Suppose now that each �rm produces the components of a system that are incompatible

with the other �rms�products. Since the number of available systems under incompatibility

is n as opposed to n2 (the number under compatibility), and because each �rm supplies a

single good (i.e., an integrated system), our model is identical to a two-dimensional circular

10



city model with n identical �rms. In what follows, with a slight abuse of notation, we

use the same notation for the �rms and the systems that they produce. As mentioned

before, we focus on symmetric equilibria, but there is in general more than one way to

symmetrically locate the products on the torus. Formally, we de�ne a symmetric formation

as a distribution of the feasible systems on the torus, with which given the same system

prices, the shape and size of market areas are identical across the systems. Let zn be the

set of all symmetric formations for given n, and Fn be a generic element of it.

Figure 2 shows two examples of symmetric formations for n = 8, which yields di¤erent

equilibrium prices and pro�ts. Note that all dots at the corners of the square in the left

panel represent the same system because (xA; xB) � (xA + 1; xB) � (xA; xB + 1). By

the same token, in the right panel the dots on the top boundary and the corresponding

dots at the bottom represent the same systems. The shaded areas represent the consumers

purchasing one unit of goods from �rm i, i.e., �rm i�s market areas.

Let Ni be the set of the neighboring systems of system i, where the neighboring systems

are de�ned as follows. In a symmetric equilibrium, j is a neighboring system of i if there

exists a set of consumers who are indi¤erent between i and j and purchase either of the

systems. In other words, the neighboring systems are direct competitors who share a market

boundary. As in the circular city model where a �rm has two direct competitors, in our

torus city model, a system competes directly against neighboring systems.

To characterize the equilibrium price and pro�t for any symmetric formation Fn, let

us introduce a few more de�nitions. Let m(i; j;Fn) denote the length of the equilibrium

market boundary between system i and its neighboring system j, and let d(i; j;Fn) be the

Euclidean distance between these two systems on the torus under symmetric formation Fn.

Using this notation, we de�ne the m-to-d ratio, �(Fn) for an arbitrary �rm i,

�(Fn) =
X
j2Ni

m(i; j;Fn)

d(i; j;Fn)

which is the sum of the ratios of two orthogonal segments (see the left panel of Figure 2).

The following proposition shows how this ratio relates to the equilibrium prices and pro�ts.

Proposition 2 Given a symmetric formation Fn, the unique symmetric equilibrium price

and the corresponding pro�t under incompatibility are given by pIN (Fn) = 2t=[n�(Fn)] and

�IN (Fn) = 2t=[n
2�(Fn)], respectively.
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Proof. See the Appendix.

Note �rst of all that the equilibrium price depends on the locational formation of the

competing products on the torus. More speci�cally, the proposition shows that the intensity

of price competition in the market is completely characterized by and is inversely related

to the m-to-d ratio �(Fn) and the number of �rms n. Intuitively, the market boundary

m(i; j;Fn) represents the measure of marginal consumers who would respond to a small

price change, meaning that a higher m(i; j;Fn) would lead the �rms to engage in more

intense price competition. On the other hand, the distance d(i; j;Fn) captures the extent

of product di¤erentiation between the two competing systems i and j. The farther the

two systems are located, the less substitutable they become. Proposition 2 essentially

states that the (symmetric) equilibrium pro�ts increase as the location con�guration induces

shorter market boundaries and longer distances from each other. This result generalizes the

principle of maximum di¤erentiation in a one dimensional location model and is consistent

with Irmen and Thisse (1998) who show that �rms seek the formation which generates the

smallest market boundary.10

The result can be illustrated with the examples in Figure 2. The products in the

left panel are distributed more evenly over the space, while those in the right panel are

concentrated on two horizontal lines.11 Thus, we expect that the price competition will be

less severe, and therefore the equilibrium pro�t will be higher with the formation on the

left panel. Proposition 2 con�rms this intuition; the equilibrium pro�t generated from the

formation on the left panel is t=112, which is about 35% higher than t=152, the pro�t from

the formation on the right.

It is also noteworthy that the m-to-d ratio itself has little to do with the number of �rms

n. That is, because the length of a market boundary is scaled by the associated distance

between the products, the ratio does not necessarily shrink down to zero as n grows to

in�nity. Instead, the ratio depends crucially on the shape of the market area; when the

systems are distributed more evenly over the product space, the shape of each market area

becomes more round, as we can see again in Figure 2. We can predict that when the

shape of equilibrium market areas is more round, its m-to-d ratio is lower, and thus the

10They state that "the lower the density of marginal consumers, the lower is the elasticity. Accordingly,
as the consumer distribution is uniform, demand has minimal elasticity when the corresponding hyperplane
has minimal surface area."
11Note again that the top and the bottom boundaries represent the same line in the torus.
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Figure 3: k-jump formation (left); a symmetric but not k-jump formation (right)

equilibrium pro�t will be higher.12

Since the equilibrium pro�t depends on the locational con�guration, unlike in the case

of compatibility, it is inevitable to search for the pro�t-maximizing formations for each n.

As one can imagine, however, �nding the pro�t-maximizing formation among all symmetric

formations is by no means easy. So, instead of characterizing the exact maximum of

equilibrium pro�ts for each n, we construct an upper bound on the minimum m-to-d ratios

for an arbitrary n. This upper bound will later be used to establish that for n � 4,

under incompatibility there exists at least one formation that allows a pro�t higher than

the equilibrium pro�t under compatibility.

To derive an upper bound for the minimum m-to-d ratios for a general n, we �rst

introduce a class of simple and tractable formations. Given n, the k-jump formation,

denoted by Jkn , is the formation in which every system product lies equidistantly on the

line of slope k (with intercept zero) for some integer k (see the left panel of Figure 3).13 It

is noteworthy that the examples in Figure 2 are k-jump formations with n = 8 and k = 3

and 4; respectively. A k-jump formation is well de�ned for any n and k, and is tractable

because it is repetitive.

12 If, hypothetically, the shape of the market area is completely round (i.e. a disk), its m-to-d ratio would
be its circumference over its diameter, which must be approximately 3.141592.
13When k is a rational number, a formation can be de�ned in a similar way. But we do not consider such

a case here. If k is an irrational number, the line with slope of k never goes back to an integer point. Thus,
there does not exist a regularly symmetric formation in which systems are located on a line with slope of an
irrational number.
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Figure 4: The candidates for neighboring systems of the system at the origin in k-jump
formation for k � 2; q is the quotient of the division of n by k, and r is the remainder, i.e.,
n = qk + r.

Note that there are formations which are symmetric but not k-jump. The right panel

of Figure 3 provides such an example. To make a contrast between k-jump formations and

the one in the right panel of Figure 3, we introduce another de�nition that helps categorize

the shape of market areas. Suppose that all �rms charge the same price while the market

is fully covered. A regularly symmetric formation is a symmetric formation in which (i) the

number of the market boundaries of each system is an even number, and (ii) for any parallel

market boundaries of a system, the distance from a market boundary to the system is the

same as the distance from any other boundary to the system. In other words, a regularly

symmetric formation has each system locate at the center of its market area. Then, it

is apparent that the formation depicted in the right panel of Figure 3 is an example of a

symmetric but not regularly symmetric formation. Below, we focus on regularly symmetric

formations, and let F �n denote the pro�t-maximizing formation among regularly symmetric

ones.14

The following lemma states some useful facts about k-jump formations.

14We restrict our attention to regularly symmetric formations for two reasons. First, because the irregular
formations are, as the name suggests, irregular, full characterization of all possible irregular formations is
often intractable for large n. More importantly, although it is di¢ cult to show this formally, it is intuitively
apparent that if a formation lets each system locate more closely to one market boundary than the others, the
formation is not the pro�t-maximizing one. Therefore, we strongly believe that the set of pro�t-maximizing
formations is a subset of that of regularly symmetric formations.
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Lemma 1 For any natural number k, the following are true:

(i) k-jump formations are regularly symmetric.

(ii) With a k-jump formation, the shape of an equilibrium market area is either a rec-

tangle or a hexagon.

Proof. See the Appendix

Note that there exist regularly symmetric formations that are not k-jump. For instance,

consider a formation where each system is located at the nodes of a square grid. This

formation is well de�ned for any square number n, i.e., n = a2 for some integer a � 2, and

is not a k-jump formation because there does not exist a single line on which all products

are located. This, together with the lemma, implies that the set of k-jump formations is

a subset of that of regularly symmetric formations in general, and thus k-jump formations

do not help us characterize a lower bound of the m-to-d ratio. But it can still help provide

an upper bound of the minimum m-to-d ratio. Speci�cally, we construct an upper bound

of the minimum m-to-d ratio by considering k-jump formations, with k the largest integer

that is smaller than or equal to
p
n.

Lemma 2 For any n � 2, the m-to-d ratio of the pro�t-maximizing formation �(F �n) must

be smaller than 3
p
13.

Proof. See the Appendix.

3.3 Comparison between the Regimes

In this section, we compare equilibrium pro�ts under compatibility and incompatibility.

Matutes and Regibeau (1988) show that the pro�ts under compatibility are higher than

those under incompatibility when n = 2.15 However, we show that their conclusion is

overturned when n � 4.

The upper bound established in Lemma 2 is simply too loose to allow us to show that

the equilibrium pro�ts under incompatibility are greater than those under compatibility.

But as shown in Propositions 1 and 2, the equilibrium pro�t under compatibility converges

to zero at a rate of n3 while the rate of convergence under incompatibility is n2, provided

15As in our paper, the main analysis of Matutes and Regibeau (1988) focuses on two integrated �rms that
o¤er both components, but they point out that the pro�ts are independent of the compatibility regime if
the two integrated �rms are replaced by four independent single component producers. In section 4, we
consider the case of vertically separated �rms that o¤er only one component.
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Figure 5: Equilibrium pro�t ratio �IN (Jk
�
n )=�

C(n) as a function of n

that �(F �n) is bounded above. Therefore, incompatibility must be preferred by the �rms

for su¢ ciently large n. It turns out that such n is not very large. Figure 5 shows the

increasing trend of �IN (Jk
�
n )=�

C(n) where Jk
�
n is the pro�t-maximizing formation among

all k-jump formations.

Proposition 3 For any n � 4, there exists at least one symmetric formation under incom-

patibility, which allows higher equilibrium pro�ts than those under compatibility.

Proof. See the Appendix.

This result can be appreciated through the lens of Proposition 2, which states that

the equilibrium pro�t is inversely related to the m-to-d ratio. Under compatibility, the

competition is at the component level, and �rm i has two direct competitors, with each

of whom the �rm shares a market boundary of length 1. Since the distance between two

systems is 1=n, the m-to-d ratio under compatibility is 2n. Note that this speci�c m-to-d

ratio can be generated under incompatibility as well by what can be called a 0-jump or no

jump formation in which all feasible systems are restricted to lie on a horizontal line. How-

ever, �rms can do much better than this under incompatibility by scattering their products

more evenly over the characteristics space. As shown above, there are con�gurations which

shorten the market boundaries and di¤erentiate the systems more, which in turn softens

price competition and increases pro�ts.

In Matutes and Regibeau (1988), the main di¤erence between compatibility and incom-
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patibility in terms of price competition is the degree to which �rms can appropriate the

bene�t of a price reduction; a reduction in the price of component A produced by �rm i will

increase the market share not only of the system produced by �rm i; but also of the system

of component A produced by �rm i and component B produced by its rival. In contrast,

under incompatibility the bene�t of a price cut is fully captured by the �rm. Therefore,

price competition is more intense under incompatibility, so �rms prefer compatibility to in-

compatibility. In our model, another e¤ect of compatibility con�guration on the intensity

of price competition, namely product di¤erentiation, emerges. More systems are feasible

under compatibility (n2) than under incompatibility (n), which makes the market more

crowded and the systems less di¤erentiated from each other. This e¤ect grows larger as the

number of �rms increases, and eventually dominates the e¤ect demonstrated by Matutes

and Regibeau.16

The discussion so far suggests that incompatibility, which provides the smallest number

of varieties, is most likely to be the pro�t-maximizing compatibility con�guration among

all possible compatibility regimes, including the ones not considered in this paper. This

is because as more systems are added to the market, a system is likely to encounter more

neighbors (i.e., directly competing systems) at nearer locations. In contrast, compatibility

can be regarded as the welfare-maximizing form of compatibility when the number of �rms

is �xed: given the assumption that every consumer purchases a system good, the social

welfare is completely determined by the total "transportation costs," which is minimized

when the number of available systems is maximized.

4 Vertically Separated Producers

Section 3 showed that for n large enough (i.e., n � 4), incompatibility yields higher equilib-

rium pro�ts than compatibility when each �rm produces both component A and component

B. In this section, we consider an alternative market structure, following Matutes and Reg-

ibeau (1988), in which each component producer is an independent entity, and show that

the main result derived above still holds in this alternative market structure.
16 It is worth mentioning that for n = 2, our model generates the same result as in Matutes and Regibeau

(1988), i.e., the equilibrium pro�t under compatibility is twice as large as that under incompatibility: �C(2) =
t=4 while �IN (J12 ) = t=8. When the market is served by vertically separated producers as assumed in Section
4, the �rms earn the identical pro�ts (t=8) under both regimes, which is also the case in Matutes and Regibeau
(1988).
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Matutes and Regibeau (1988) analyze compatibility incentives for two di¤erent mar-

ket structures. In one case, as in the model considered so far, a component A producer

is vertically integrated with a component B producer from the beginning. In the other

case, each component producer is assumed to be an independent entity, and has to form

an alliance with a partner company to make their products compatible. The integrated

system providers set their component prices to maximize the pro�ts from both components,

internalizing the e¤ect of a price change in one component on the sales of the other. In

contrast, the vertically separated component providers do not internalize such externalities.

As explained at the end of the previous section, an important e¤ect of compatibility con-

�guration is its e¤ect on the degree of internalization of price externalities. This e¤ect,

however, is absent in a market with independent component producers because the �rms

do not internalize the externalities under both compatibility and incompatibility. Thus, it

is not surprising that the key result in Section 3 reappears in a stronger form.

Proposition 4 Suppose both components of the system are provided by vertically indepen-

dent �rms. Then, for any n � 3, there exists at least one symmetric formation under

incompatibility, which allows higher equilibrium pro�ts than those under compatibility.

Proof. See the Appendix.

This proposition is immediate from noticing that individual �rms��rst order conditions

are mathematically identical to the ones derived in the previous analysis. This implies

that the equilibrium component price under incompatibility is the same as the equilibrium

system price with integrated producers, whereas the prices remain the same under compat-

ibility. As a result, the system price under incompatibility is doubled due to the change

in the vertical structure. This is because under incompatibility each component producer

ignores the e¤ect of its price cut on the partner �rm�s demand, which results in double

marginalization of system prices. However, this is bene�cial to producers in competitive

environments because it relaxes price competition as in Bonanno and Vickers (1988).

5 Concluding Remarks

In this paper, we examine private and social incentives for compatibility in a two-dimensional

spatial competition model of system markets. We show that there is a fundamental discrep-

ancy between private and social incentives towards compatibility among di¤erent vendors.
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Consumers �nd compatibility more attractive because it allows more variety of systems,

and they can easily �nd a system close to their ideal speci�cation on average. However,

the availability of more variety under compatibility implies intensi�ed competition and a

lower pro�t for every �rm in the market. If the number of �rms in a system market is

�xed, then �rms prefer incompatibility to compatibility. However, social welfare is higher

under compatibility.17

We have not explicitly considered any costs involved in achieving a particular form of

compatibility. If there are di¤erences in such costs across regimes, the attractiveness of each

regime would change in a predictable way. However, it is not clear a priori which type of

compatibility would be more costly. In cases where the cost of forming an exclusive coalition

(e.g., transaction costs involved in signing a contract) is non-negligibly higher than the cost

of establishing standards that would ensure interoperability across all manufacturers, the

�rms may �nd compatibility more attractive. However, in other cases the cost of achieving

compatibility may be higher than that of incompatibility.18

One shortcoming of our paper is that we consider only two possible compatibility

regimes: compatibility and incompatibility. For the case of incompatibility, we have not

considered each �rm�s incentive to deviate and build an alliance with another �rm. Sup-

pose that every �rm in the market decides to make their components incompatible with its

rivals�products. Firm i may then have an incentive to approach j and o¤er to build a new

system (i; j) by making their components compatible. If �rm j accepts the o¤er, now there

are two feasible systems in the market whose component A is made by �rm i. Even though

the �rm i may earn a smaller pro�t from its own integrated system (i; i), the loss may be

more than made up by an additional source of revenue from system (i; j). A full analysis

of endogenous formation of coalitions that account for externalities among coalitions in our

model would be an important research agenda.19 In addition, an industry may be partially

compatible, or compatibility may run in only one direction in that some �rms�component

17 In the previous version of this paper, we also perform a long-run analysis in which the number of �rms
is endogenously determined by the zero pro�t condition, assuming that the components are provided by
vertically independent �rms. We show that more �rms enter under incompatibility due to higher pro�ts
compared to compatibility. Nonetheless, the number of available systems is still higher under compatibility.
This implies that compatibility is the optimal regime in the long-run as well as in the short run because it
provides more variety with less entry �xed costs.
18 In the context of exclusive dealing, Besanko and Perry (1994) argue that exclusive dealing �pairwise

compatibility in the context of our model �reduces the retailing cost such as the costs of inventory and store
space.
19See Bloch (1996) and Yi (1997) for such an analysis.
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products can be used in combination with the rival �rms�, but not the other way around.

For instance, Windows OS can be used in Mac computers which allows for dual booting,

but Mac OS may not be used with the PC. This type of situation typically arises when

�rms are asymmetrically situated in the presence of network externalities.20 An analysis of

partial or one-way compatibility within a general framework of n �rms is beyond the scope

of the current paper, but would be a worthwhile extension.

20For an analysis of one-way compatibility, see Besen and Farrell (1994) and Katz and Shapiro (1985).
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Appendix

Proof of Proposition 2. We �rst characterize symmetric �rst order conditions using the

m-to-d ratio, and then show that the �rst order condition should be satis�ed in equilibrium.

Suppose that given a symmetric formation Fn, �rm i located at (xAi ; x
B
i ) charges Pi for

its system good while the other �rms charge P . When j is an element of Ni, a consumer

located at (xA; xB) is indi¤erent between system (i; i) and (j; j) if

t
�
xA � xAi

�2
+ t

�
xB � xBi

�2
+ Pi = t

�
xA � xAj

�2
+ t

�
xB � xBj

�2
+ P (1)

or equivalently,

2t
�
xAj � xAi

�
xA + 2t

�
xBj � xBi

�
xB = P � Pi + t

��
xAj
�2 � �xAi �2�+ t��xBj �2 � �xBi �2� :

Note that the above formula describes the market boundary that is orthogonal to the line

connecting system i and system j. To see how much the market boundary moves in the

direction of coordinate A as a response to a price change in Pi, we �rst �x xB. Then, it is

clear that a small increase in Pi moves the market boundary along coordinate A as much as

@xA=@Pi = �1=
h
2t
�
xAj � xAi

�i
. Now, let us de�ne a new coordinate which is orthogonal

to the market boundary, and see how much the boundary moves along this new coordinate.

Letting x(i;j) be the projection of xA onto the new coordinate, the following is immediate

from the Pythagorean theorem.

@x(i;j)

@xA
=

xAj � xAir�
xAj � xAi

�2
+
�
xBj � xBi

�2 = xAj � xAi
d(i; j)

Therefore, a small increase in Pi moves the market boundary toward its orthogonal direction

as much as
@x(i;j)

@Pi
=
@x(i;j)

@xA

@xA
@Pi

= � 1

2td(i; j)
.

Next, consider the response of the demand Di(Pi; P ) to a price change �Pi:

�Di(Pi; P ) �
X
j2Ni

�
m (Pi; P ; (i; j)) ��x(i;j) +�m (Pi; P ; (i; j)) ��x(i;j)

�
wherem (Pi; P ; (i; j)) is the length of the market boundary given the prices (Pi; P ), �x(i;j) is
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the amount that the market boundary moves toward its orthogonal direction, and�m (Pi; P ; (i; j))

is the corresponding change in the market boundary. Notice that when the price change is

small, the second term in the square bracket is of second order, and converges to zero faster

than the �rst-order term in the limit. So by dividing by �Pi and taking limits on both

sides, we obtain the following formula.

@Di(Pi; P )

@Pi
=
X
j2Ni

m (Pi; P ; (i; j)) �
@x(i;j)

@Pi
= �

X
j2Ni

m (Pi; P ; (i; j))

2td(i; j)
(2)

On the other hand, the �rst order condition for �rm i is

Pi
@Di(Pi; P )

@Pi
+Di(Pi; P ) = 0;

which can be rewritten after imposing the symmetry condition Pi = P = P IN as

P IN = � Di(Pi; P )

@Di(Pi; P )=@Pi

����
Pi=P=P IN

=
1

n

0@X
j2Ni

m(i; j)

2td(i; j)

1A�1

=
2t

n�(Fn)
:

The corresponding equilibrium pro�t is �IN (Fn) = 2t=[n2�(Fn)]:

Let us turn our attention to the existence of equilibrium. If �rm i sets Pi = 0, its demand

Di(Pi; P ) must be positive because P cannot be negative. By continuity of the demand

function, for small enough Pi the pro�t must be positive. Once again, by the continuity

and boundedness of Di(Pi; P ) along with the fact that the pro�t is zero when Pi > v, the

pro�t function has non-zero maximum with the best response Pi(P ) 2 (0; v]. Because all

�rms�pro�t functions are identical and continuous, the best response correspondences are

continuous and symmetric. Therefore, there exists at least one pure strategy symmetric

equilibrium.

In the remainder of the proof, we show that there does not exist a local maximum

at which the pro�t function is not di¤erentiable. This implies that the strategy pro�le

characterized above is the unique symmetric equilibrium because it is the only symmetric

solution of the �rst order conditions.

To prove the claim, we show that the demand function is convex in Pi. To this end, we

�rst prove that the market area is convex, i.e., if consumers located at (xA; xB) and (x0A; x
0
B)

purchase system (i; i), then a consumer located at (�xA + (1� �)x0A; �xB + (1� �)x0B) for
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any � 2 [0; 1] also purchases the same system. Suppose both consumers at (xA; xB) and

(x0A; x
0
B) buy system (i; i). For all (j; j) 2 ICnf(i; i)g, the following inequalities are true.

v � t[(xA � xAi )2 + (xB � xBi )2]� Pi � v � t[(xA � xAj )2 + (xB � xBj )2]� P

v � t[(x0A � xAi )2 + (x0B � xBi )2]� Pi � v � t[(x0A � xAj )2 + (x0B � xBj )2]� P

Rearranging terms, the conditions can be rewritten as

(P � Pi)=t � (xAi � xAj )(2xA � xAj � xAi ) + (xBi � xBj )(2xB � xBj � xBi )

(P � Pi)=t � (xAi � xAj )(2x0A � xAj � xAi ) + (xBi � xBj )(2x0B � xBj � xBi ):

Summing up the above inequalities after multiplying by � and (1��) respectively, we have

(P�Pi)=t � (xAi �xAj )
�
2
�
�xA + (1� �)x0A

�
� xg � xi

�
+(xj�xh)

�
2
�
�xB + (1� �)x0B

�
� xh � xj

�
;

which implies that (i; i) is the best choice for any consumer located on the segment con-

necting (xA; xB) and (x0A; x
0
B). Therefore, the total length of the market boundaries is

monotonically decreasing as Pi increases. This, in turn, implies the derivative of the de-

mand (@Di(Pi; P )=@Pi) is increasing (see equation (2)) in Pi, i.e., the demand function is

convex in Pi. Note that there does not exist a non-di¤erentiable local maximum of PiD(Pi)

ifD(Pi) is a convex function. Therefore, in the unique symmetric equilibrium, the �rst order

condition derived above should hold.

Proof of Lemma 1. (i) By de�nition, there is a line of slope k on which all the products

in IC lie. Let us call this line L. In R2 representation, in�nitely many L�s lie equidistantly

from each other by the property of (xA; xB) � (xA + 1; xB) � (xA; xB + 1). Furthermore,

since the systems are distributed regularly on each line, if a product �nds a competing

product on one side, it must �nd another on the exactly opposite side. This means that if

we draw a line connecting any two systems and beyond, we would encounter a third system,

and the distance between the �rst and the second is the same as that between the second

and the third. See Figure 4 for a concrete picture.

(ii) By result (i), the shape of a market area generated by a k-jump formation should

be either rectangular, hexagonal, octagonal, or 2a-gonal for a � 5. We �rst show that it is
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not possible that a market area is shaped as an octagon. To see this, suppose that there

exists (n; k) such that given n, a k-jump formation generates an octagon-shaped market

area. Since the market area is convex as shown in the proof of Proposition 2, each interior

angle of the octagon must be smaller than 180�. Thus, three or more vertices are required

to complete one 360�. In addition, in tiling the torus (R2 plane), each vertex of the octagon

should participate only once, and all together eight vertices should make three complete

360� because the sum of the interior angles is 180� (8� 2) = 1080 = 360� 3. However, it

is easy to see that when we divide the eight vertices into three disjoint sets, there is always

a set which has only two or less elements. This contradicts the condition that each interior

angle is smaller than 180�. By the same token, for a � 5, one can check that 2a vertices

cannot be distributed into a� 1 disjoint sets without allowing at least one set to have two

or less elements.

Proof of Lemma 2. We characterize an upper bound of �(F �n) using a k-jump formation.

Note that when n is larger than or equal to 4, in any k-jump formation with k � 2, eight

products nearby the focused product are potential neighbors. (See Figure 4.) Since the

number of market boundaries is either four or six by (ii) in Lemma 1, at least two products

out of the eight cannot participate in forming the market boundaries.

Let ko = d
p
ne, the largest integer that is smaller than or equal to

p
n, and consider a ko-

jump formation. Suppose that product i is located at the origin. We then label the product

at (1=n; ko=n) as the �rst system and the product at (2=n; 2ko=n) as the second system,

and so on. Then, since k2o � n, or equivalently (ko + 1)ko=n � 1 + ko=n, for the (ko + 1)st

system from the origin which is at ((ko + 1) =n; (ko + 1)ko=n), the maximum distance from

the horizontal axis is ko=n because ((ko + 1) =n; 1 + ko=n) � ((ko + 1) =n; ko=n). Note that

potentially the (ko � 1)st, ktho , and (ko + 1)st system can participate in building a market

boundary around i. (See Figure 4. In this case, q = ko and r = n� k2o .) Thus, the distance

between i and a neighboring system of i cannot be larger than
p
(ko + 1)2 + k2o=n, which is

the distance between the origin and (ko + 1)
st system when ko =

p
n. At the same time, it

cannot be smaller than ko=n, which is the distance from the origin to the ktho system when

ko =
p
n.

For any rectangle, the longest distance between two edges is equal to the length of the

longest edge. For any hexagon, the longest distance between two edges is longer than or

equal to the longest edge by the triangle inequality. In other words, every market boundary
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is shorter than or equal to the longest distance between two neighboring systems. Thus,

each ratio of a market boundary to the associated distance must be smaller than or equal

to
p
(ko + 1)2 + k2o=n over ko=n:

�(F �n) � �(Jkon ) < 6 �
p
(ko + 1)2 + k2o=n

ko=n
=
6
p
2k2o + 2ko + 1

ko
� 3

p
13

where the last inequality comes from the fact that 6
p
2k2o + 2ko + 1=ko is decreasing in ko,

and is 3
p
13 when ko = 2.

For the cases of n = 2 and 3, one can easily con�rm that �(J1n) = 4 < 3
p
13.

Proof of Proposition 3. By Lemma 2, the ratio of the equilibrium pro�t under incom-

patibility to that under compatibility is larger than n=3
p
13, which implies that the ratio is

greater than 1 for n > 10. To complete the proof, we only need to consider the case where

4 � n � 10, and show that �IN (F �n) � �C(n) as follows.

�IN (J24 ) = t=28 > t=32 = �
C(4) �IN (J25 ) = t=50 > 2t=125 = �

C(5)

�IN (J26 ) = t=66 > t=108 = �
C(6) �IN (J27 ) = t=98 > 2t=343 = �

C(7)

�IN (J38 ) = t=112 > t=256 = �
C(8) �IN (J39 ) = t=144 > 2t=729 = �

C(9)

�IN (J410) = t=190 > t=500 = �
C(10)

Proof of Proposition 4. Consider �rst the case of incompatibility. Suppose that given

a symmetric formation Fn, �rm i located at xAi forms a coalition with �rm j located at xBj ,

and charges pi for its component good while the other �rms (including �rm j) charge p.

Denote N(i;j) as the set of neighbors of system (i; j). When (g; h) is an element of N(i;j), a

consumer located at (xA; xB) is indi¤erent between system (i; j) and (g; h) if

t
�
xA � xAi

�2
+ t

�
xB � xBj

�2
+ pi + p = t

�
xA � xAg

�2
+ t

�
xB � xBh

�2
+ 2p:

Notice that this condition is virtually identical with equation (1), which implies the demand

for component A made by �rm i would also be identical with Di(pi; p) derived in the proof

of Proposition 2. The �rst order condition would also be identical. Thus, the equilibrium

prices of each component here are exactly the same as those of the system prices charged

by vertically integrated �rms. On the other hand, under compatibility, the intensity of
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competition is not a¤ected by the vertical structure of the industry, meaning that the pro�t

for a component producer is half of that for an integrated system producer.

In short, under incompatibility each component producer earns as much as �IN (Fn),

whereas under compatibility they earn �C(n)=2. When n = 3, the maximum pro�t under

incompatibility is �IN (J13 ) = �IN (J23 ) = t=18, and under compatibility �C(3)=2 = t=27.

Therefore, even for n = 3, there exists a symmetric formation under incompatibility that

yields a higher equilibrium pro�t than that under compatibility.
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