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1 Introduction1

It is becoming more and more common to evaluate the impact of regional policies using the tools of

program evaluation derived from micro settings (see Blundell and Costa-Dias, 2009, or Imbens and

Wooldridge, 2011 for surveys). In particular, enterprise and empowerment zone programs have

received a renewed interest over recent years (see for instance, Busso, Gregory and Kline, 2013,

Ham, Swenson, Imrohoroglu and Song, 2012, Gobillon, Magnac and Selod, 2012). Those programs

consist in a variety of locally targeted subsidies aiming primarily at boosting local employment or

the employment of residents. Their evaluations use panel data and methods akin to difference in

differences that offer the simplest form of control of local unobserved characteristics that can be

correlated with the treatment indicator. Nonetheless, specific issues arise when studying regional

policies and the tools required to evaluate their impact or to perform a cost-benefit analysis are

different from the ones used in more usual micro settings.

The issue of spatial dependence between local units is important in the evaluation of regional

policies. Outcomes are likely to be spatially correlated in addition to the more usual issue of

serial correlation in panel data. There is thus a need for a better control of spatial dependence

and more generally of cross-section dependence when evaluating regional policies. This is why

more elaborate procedures than difference in differences are worth exploring and the use of factors

or interactive effects proved to be attractive and fruitful in micro studies (Carneiro, Hansen and

Heckman, 2003). Interactive effect models facilitate the control for cross-section dependence not

only because of spatial correlations but also because areas can be close in economic dimensions

which depart from purely geographic characteristics. This is the case for instance when two local

units are affected by the same sector-specific shocks because of sectoral specialisation even if these

units are not neighbors.

Second, a key issue in policy evaluation is that treatment and outcomes might be correlated

because of the presence of unobservables. It should also be acknowledged when using regional

data that those unobservables differencing local units might be multidimensional because the

1We are grateful to two referees and to the coeditor for their suggestions and participants at seminars in Duke

University, INED-Paris, Toulouse School of Economics, CREST, ISER at Essex, the 2012 NARSC conference in

Ottawa, ESEM 2013 and 8th IZA Conference on Labor Market Policy Evaluation in London for useful comments

as well as to Alberto Abadie and Sylvain Chabé-Ferret for fruitful discussions. We also thank DARES for financial

support. The usual disclaimer applies.
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underlying cycles of economic activities of local units are likely to be multiple. Interactive effect

models are aimed precisely at allowing the set of unobserved heterogeneity terms or factor loadings

that are controled for to have a moderately large dimension.

Moreover, the estimation of linear factor models in panels is relatively easy and asymptotic

properties of estimates are now well known (Pesaran, 2006, Bai, 2009). Yet, there are only a few

earlier contributions in the literature that conduct regional policy evaluations using factor models

(Kim and Oka, 2014) or using a kindred conditional pseudo-likelihood approach (Hsiao, Ching

and Wan, 2012).

The contributions of this paper are threefold. We first provide results concerning the theoretical

set-up. We clarify restrictions in linear factor models under which the average treatment on

the treated parameter is identified. We analytically derive the generic bias of the difference-in-

differences estimator when the true data generating process has interactive effects and the set of

factor loadings is richer than the standard single-dimensional additive local effect. Moreover, we

derive from extant literature conditions on the number of treatment and control groups as well

as on the number of periods under which factor model estimation delivers consistent estimates of

the average treatment on the treated parameter.

Contrasting the estimation of linear factor models with the alternative method of synthetic con-

trols is our second contribution. This alternative method was proposed by Abadie and Gardeazabal

(2003) and its properties have been developed and vindicated in a model with factors (Abadie,

Diamond and Hainmueller, 2010). Under the maintained assumption that the true model is a

linear factor model, we show that synthetic controls are equivalent to interactive effect methods

whenever matching variables (i.e. factor loadings and exogenous covariates) of all treated areas

belong to the support of matching variables of control areas, which is assumed to be convex, a

case that we call the interpolation case. This is not true any longer in the extrapolation case, that

is, when matching variables of one treated area at least, do not belong to the support of matching

variables in the control group.

Our third contribution is that we evaluate the relevance and analyze the properties of in-

teractive effect, synthetic control and difference-in-differences methods by Monte Carlo experi-

ments. We use various strategies for interactive effect estimation. First, a direct method estimates

the counterfactual for treated units by linear factor methods in a restricted sample where post-
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treatment observations for treated units are excluded. The second method estimates a linear factor

model which includes a treatment dummy and uses the whole sample. Propensity score matching

underlies the third method in which the score is conditioned by factor loading estimates obtained

using the first method. Imposing common support constraints on factor loadings when estimating

the counterfactual for treated units by linear factor methods provides the fourth method. We

contrast these Monte Carlo estimation results with the ones we obtain by using synthetic controls

and difference in differences.

We finally provide the results of an empirical application of these methods to the evaluation of

the impact of a French enterprise zone program on unemployment exits at the municipality level

in the Paris region. This extends our results in Gobillon et al. (2012) in which we were using

conditional difference-in-differences methods. We show that the estimated impact is robust to the

presence of factors and therefore to cross-section dependence. We also look at other empirical

issues of interest such as the issue of missing data about destination when exiting unemployment

and the more substantial issue of the impact of the policy on entries into unemployment.

In the next Section, we briefly review the meager empirical literature in which factor models

are used to evaluate regional policies. We construct in Section 3 the theoretical set-up and write

restrictions leading to the identification of the average treatment on the treated in linear factor

models. Next, we derive the bias of difference in differences and describe the linear factor model

estimation procedures. We derive the conditions that contrast their properties with those of

synthetic control methods. Monte Carlo experiments reported in Section 4 are used to evaluate

the small sample properties of the whole range of our estimation procedures. The empirical

application and estimation results are presented in Section 5 and the last section concludes.

2 Review of the literature

To our knowledge, there are only two earlier empirical contributions by Hsiao, Ching and Wan

(2012) and Kim and Oka (2014) applying factor models to the evaluation of regional policies.

Interestingly, both papers motivate the use of factor models by contrasting them to the difference-

in-differences approach. Hsiao et al. (2012) use an interactive effect model to study the effect

on Hong Kong’s domestic product of two policies of convergence with mainland China that were

implemented at the turn of this century. Their observations consist in various macroeconomic
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variables measured every quarter over ten years for Hong Kong and countries either in the region

or economically associated with Hong-Kong. The authors argue that interactive models can be

rewritten as models in which interactive effects can be replaced by summaries of outcomes for

other countries at the same dates using a conditioning argument. Indeed, common factors can

be predicted using this information but this entails a loss of information since information at the

current period only is used to construct these predictions.

Interestingly, Ahn, Lee and Schmidt (2013) analyze an interactive effect model and their

method, that consists in differencing out factor loadings, provides potential effi ciency improve-

ments over the procedure of Hsiao, Ching and Wan (2012). The authors indeed show that the

parameters of interest are solutions of moment restrictions that do not depend on individual factor

loadings. Assuming out any remaining spatial correlation, they show that their GMM estimates

are consistent for fixed T .

Kim and Oka (2014) estimate an interactive effect model following Bai (2009) and provide a

policy evaluation of the impact of changes in unilateral divorce state laws on divorce rates in the

US. They find that interactive effect estimates are smaller than difference-in-differences estimates.

Furthermore, they estimate their model varying the number of factors and find that the model

selection procedures proposed by Bai and Ng (2002) are not informative.

Overall, in a large N and T environment, the most prominent estimation methods were pro-

posed by Pesaran (2006) who uses regressions augmented with cross section averages of covariates

and outcomes, and by Bai (2009) who uses principal component methods. Westerlund and Urbain

(2011) review quite extensively differences between these methods.

3 Theoretical Set-Up

Consider a sample composed of i = 1, ..., N local units observed at dates t = 1, ..., T . A simple

binary treatment, Di ∈ {0, 1}, is implemented at date TD < T so that for t > TD > 1, the

units i = 1, ..., N1 are treated (Di = 1). Units i = N1 + 1, ..., N are never treated (Di = 0). For

each unit, we observe outcomes, yit, which might depend on the treatment and our parameter

of interest is the average effect of the treatment on the treated. In Rubin’s notation, we denote

by yit (d) the outcome at date t for an individual i whose treatment status is d (where d = 1

in case of treatment, and d = 0 in the absence of treatment). This hypothetical status should
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be distinguished from random variable Di describing the actual assignment to treatment in this

experiment.

The average effect of the treatment on the treated can be written when t ≥ TD:

E (yit (1)− yit (0) |Di = 1) = E (yit (1) |Di = 1)− E (yit (0) |Di = 1) (1)

A natural estimator of the first right-hand side term is its empirical counterpart since the

outcome in case of treatment is observed for the treated at periods t > TD. In contrast, the second

right-hand side term is a counterfactual term since the outcome in the absence of treatment is not

observed for the treated at periods t > TD. The principle of evaluation methods relies on using

additional restrictions to construct a consistent empirical counterpart to the second right-hand

side term (e.g. Heckman and Vytlacil, 2007). For instance, it is well known that difference-in-

differences methods are justified by an equal trend assumption:

E(yit(0)− yi,TD−1(0) | Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0) for t ≥ TD. (2)

under which the counterfactual can be written as:

E (yit (0) |Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0) + E(yi,TD−1(0) | Di = 1) for t ≥ TD,

in which all terms on the right-hand side are directly estimable from the data.

The object of this section is to generalize the usual set-up in which difference in differences

provide a consistent estimate of the effect of the treatment on the treated (TT) to a set-up allowing

for higher-dimensional unobserved heterogeneity terms. Local units treated by regional policies

could indeed be affected by various common shocks describing business cycles related for instance

to different economic sectors. Associated factor loadings would describe the heterogeneity in the

exposure of local units to these common shocks. A single dimensional additive local effect as in

the set up underlying difference-in-differences estimation is unlikely to describe this rich economic

environment. Furthermore, we know that difference in differences can dramatically fail when

heterogeneity is richer than what is modelled (Heckman, Ichimura and Todd, 1997).

In this paper, we restrict our attention to linear models because the number of units is rather

small although extensions to non-linear settings could follow the line of Abadie and Imbens (2011)

at the price of losing the simplicity of linear factor models. The route taken by Conley and

Taber (2011) to deal with small sample issues might also be worth extending to our setting. More

6



specifically, linearity makes one wary of issues of interpolation and extrapolation that we shall

highlight in the general framework of linear factor models as well as in the approach of synthetic

controls proposed in the seminal paper by Abadie and Gardeazabal (2003).

We present in the first subsection the specification of a linear factor data generating process

which is maintained thorughout the paper and we discuss identifying assumptions. We show that

the conventional difference-in-differences estimate is generically biased. Next, for a linear factor

model that includes a treatment indicator, we derive a rank condition for the identification of the

average treatment on the treated. We also propose a direct method whereby we construct the

counterfactual term in equation (1) using the samples of control and treated units albeit the latter

before treatment only (see Heckman and Robb, 1985 or Athey and Imbens, 2006). Finally, we

describe the approach of synthetic controls and analyze its properties when the true model has

interactive effects.

3.1 Interactive linear effects and restrictions on conditional means

In the conventional case of difference in differences (DID) (see for instance Blundell and Costa-

Dias, 2009), the outcome in the absence of treatment is specified as a linear function:

yit (0) = xitβ + λ̃i + δ̃t + εit (3)

in which xit is a 1×K vector of individual covariates, and λ̃i and δ̃t are individual and time effects.

A limit to this specification is that individuals are all affected in the same way by the time effects.

To allow for interactions and make the specification richer, we specify the outcome in the absence

of treatment as a function of the interaction between factors varying over time and heterogenous

individual terms called factor loadings as:

yit (0) = xitβ + f ′tλi + εit (4)

in which β are the effects of covariates, λi is a L× 1 vector of individual effects or factor loadings,

and ft is a L × 1 vector of time effects or factors. Note that this specification embeds the usual

additive model which is obtained when λi =
(
λ̃i, 1

)′
and ft =

(
1, δ̃t

)′
as, in that case, f ′tλi =

λ̃i + δ̃t.

The true process generating the data is supposed to be given by equation (4) and is completed
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by the description of the outcome in case of treatment:

yit (1) = yit (0) + αit (5)

which, in contrast to the linear specification above, is not restrictive.

There are a few usual assumptions that complete the description of the true data generating

process (DGP) maintained throughout the paper. First, we shall assume that we know the number

of factors in the true DGP described by equation (4). It might be useful to implement tests

regarding the number of factors (Bai and Ng, 2002, Moon and Weidner, 2013b) but these tests are

fragile (Onatski, Moreira and Hallin, 2013). Moreover, we adopt the assumption that factors are

suffi ciently strong so that the consistency condition for the number of factors and consequently

for factors and factor loadings is satisfied (for alternative views see Onatski, 2012 or Pesaran and

Tosetti, 2011). This condition reflects the fact that factor loadings can be separated from the

idiosyncratic random terms at the limit.2

Moreover, we do not specify the dynamics of factors in the spirit of Doz, Giannone and Reichlin

(2011). Their specification imposes more restrictions on the estimation and inference is more

diffi cult to develop. This is why we stick to the limited information framework which does not

impose conditions on the dynamics of factors although it could be done in the way explained

by Hsiao, Ching and Wan (2012). Furthermore, the only available explanatory variables are

not varying over time in our empirical application. This corresponds to the low rank regressor

assumption as defined by Moon and Weidner (2013a) and under which identifying assumptions

are of a particular form. At this stage however we prefer to stick to the more general format.

A final comment is worth making. In treatment evaluation, lagged endogenous variables are

at times included as matching covariates in order to control for possible ex-ante differences. In

spirit, this is very close to a model with interactive effets because it is well known that a simple

linear dynamic panel data model like:

yit = αyit−1 + ηi + uit

can be rewritten as a static model:

yit = αtyi0 +
(
1− αt

) ηi
1− α + νit

2It does not mean that the treatment parameter is not identified under alternative assumptions.
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in which νit is an AR(1) process. Factors are αt and 1− αt, and factor loadings are yi0 and ηi
1−α .

This argument could be generalized to more sophisticated dynamic linear models.

3.1.1 Restrictions on conditional means

To complete the description of the true data generating process, we now present and comment the

main restrictions on random terms. To keep notation simple and conform with the usual panel

data set up, we generally consider that factors ft are fixed while factor loadings λi are supposed

to be correlated random effects.

We first assume that idiosyncratic terms εit are "orthogonal" to factor loadings and that

explanatory variables are strictly exogenous:3

εit ⊥ (λi, xi)

in which x′i = (x′i1, ...x
′
iT )′ is a [T,K] matrix. This would be without loss of generality when

orthogonality is defined as the absence of correlation as in Bai (2009). Because of the next

assumption we will adopt, we prefer to interpret orthogonality as mean independence and the

formal translation of the informal statement above is therefore that:

Assumption A1: E(εit | λi, xi) = 0.

Second, we extend the usual assumption made in difference-in-differences estimation by assuming

that the conditioning set now includes unobserved factor loadings:

yit(0) ⊥ Di | (xi, λi)⇔ εit ⊥ Di | (xi, λi)

and we write this condition as a mean independence restriction:

Assumption A2: E(εit | Di, λi, xi) = E(εit | λi, xi).

Note that we do not suppose that (λi, xi) and Di are uncorrelated and selection into treatment

can freely depend on observed and unobserved heterogeneity terms.

Finally, define the average treatment effect over the periods after treatment as:

αi =
1

T − TD + 1

T∑
t=TD

αit

3The extension to the case with weakly exogeneous regressors would follow Moon and Weidner (2013a) for

instance.
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so that our main parameter of interest is the average treatment on the treated over the periods

after treatment defined as:4

Definition ATT:

α = E(αi | Di = 1) =
1

T − TD + 1

T∑
t=TD

E(αit | Di = 1).

Assumptions A1 and A2 are the main restrictions in our set-up and Definition ATT defines our

parameter of interest.

3.2 The generic bias of difference-in-differences estimates

If the true data generating process comprises interactive effects, we now show that the difference-

in-differences estimator is generically biased although we exhibit two interesting specific cases in

which the bias is equal to zero. For simplicity, we omit covariates or, since covariates are assumed

to be strictly exogenous, implicitly condition on them in this subsection. We also assume for

simplicity that the probability measure of factor loadings in the treated population, dG(λi | Di =

1), and in the control population, dG(λi | Di = 0), are dominated by the Lebesgue measure so

that both distributions are absolutely continuous.

We shall show that the condition which is implied by Assumption A2:5

E(yit(0)− yi,TD−1(0) | Di = 1, λi) = E(yit(0)− yi,TD−1(0) | Di = 0, λi) for t > TD (6)

does not imply equation (2) under which the difference-in-differences estimator is consistent.

Indeed:

E(yit(0)− yi,TD−1(0) | Di = 1) = E [E(yit(0)− yi,TD−1(0) | Di = 1, λi) | Di = 1] ,

=
∫
E(yit(0)− yi,TD−1(0) | Di = 1, λi)dG(λi | Di = 1).

Replacing the integrand using equation (6) yields:

E(yit(0)− yi,TD−1(0) | Di = 1) =

∫
E(yit(0)− yi,TD−1(0) | Di = 0, λi)dG(λi | Di = 1). (7)

4In the case T → ∞, those definitions should be interpreted as limits. Note also that it is generally easy to
design estimates for time-specific treatment parameters such as E(αit | Di = 1) by restricting the post-treatment

observations to period t only.
5This condition is slightly weaker than A2 because it considers differences between periods.
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Two special cases are worth noting. Firstly, the integrand in the previous expression does not

depend on λi in the restricted case in which there is a single factor ft = 1 and a single individual

effect associated with this factor. In this case, equation (7) can be written as:

E(yit(0)− yi,TD−1(0) | Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0)
∫
dG(λi | Di = 1)

= E(yit(0)− yi,TD−1(0) | Di = 0),

which yields equation (2) describing equality of trends.

Alternatively, (perfectly) controled experiments also enables identification through difference

in differences in spite of using the alternative argument that dG(λi | Di = 1) = dG(λi | Di = 0).

The same equation (2) holds and the treatment parameter is consistently estimable by difference

in differences.

This implication is not true in general and we can distinguish two cases. If the conditional

distribution of λi in the treated population is dominated by the corresponding measure in the

control population i.e.:

∀λi such that dG(λi | Di = 0) = 0 we have dG(λi | Di = 1) = 0, (8)

the support of treated units is included in the support of non treated units. We shall describe

from now on cases in which support condition (8) holds as an instance of interpolation and if such

a condition is not satisfied, as an instance of extrapolation.

In the interpolation case, let:

r(λi) =
dG(λi | Di = 1)

dG(λi | Di = 0)
<∞

which is well defined because of the support condition (8) and because distributions are absolutely

continuous. Write equation (7) as:

E(yit(0)− yi,TD−1(0) | Di = 1) =

∫
E(yit(0)− yi,TD−1(0) | Di = 0, λi)r(λi)dG(λi | Di = 0) (9)

which in turn implies that:

E(yit(0)− yi,TD−1(0) | Di = 1) = E(yit(0)− yi,TD−1(0) | Di = 0)

+Cov (yit(0)− yi,TD−1(0), r(λi) | Di = 0)

The second term in the right hand side can be interpreted as the differential trend in outcomes

which is due to the time varying effects of factors interacted with unobserved factor loadings. If
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there is indeed a factor loading associated to a time-varying factor, the second term is not equal

to zero except under special circumstances as seen above. In the interpolation case, the second

term describes the bias in DID estimates.

In the alternative case of extrapolation, the bias term is derived in a similar way although its

interpretation is less clear since it mixes issues of non inclusive supports with the time varying

effect of factors.

3.3 Interactive Effect Estimation in the Whole Sample

We now explore interactive effect methods and exhibit conditions under which these methods

allow the identification of the average treatment on the treated parameter. The observed outcome

verifies:

yit = yit(0)(1− ItDi)+yit(1)ItDi,

in which Di is the treatment indicator, and It = 1{t ≥ TD} is a time indicator of treatment. Using

equations (4) and (5) yields:

yit = αitItDi + xitβ + f ′tλi + εit (10)

We maintain Assumptions A1 and A2 that allow the correlation between Di and λi to be unre-

stricted so that selection into treatment can depend on factor loadings. Similarly, the correlation

between It and ft is unrestricted so that the implementation of the treatment can be correlated

with economic cycles which are described here by factors.

We shall rewrite equation (10) as:

yit = αItDi + xitβ + f ′tλi + εit + (αit − α)ItDi (11)

in which α is the average treatment on the treated parameter as in Definition ATT. If the number of

periods after treatment is greater than 1 however, this model would not deliver unbiased estimates

because of omitted variables. Indeed, we could rewrite model (10) as:

yit = αtItDi + xitβ + f ′tλi + εit + (αit − αt)ItDi, (12)

allowing for a time varying treatment effect:

αt = E(αit | Di = 1).
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The omitted variables in equation (11) would be the T − TD period indicators interacted with

the treatment indicator (except one). For the sake of simplicity, we develop our analysis in this

section in the simple case in which we have:

Assumption A3: ∀t ≥ TD, αt = α

so that equation (11) is correctly specified.6

We now exhibit further conditions under which α can be estimated using interactive effect

procedures as proposed by Bai (2009). We start with the case β = 0 which requires a weak

rank condition and then extend it to the general case with covariates which requires an additional

assumption that is stronger albeit easy to interpret.

3.3.1 Average Treatment Effect on the Treated in the Absence of Covariates

We shall prove that the parameter of interest α is identified under the two conditions that It is

not equal to a linear combination of factors ft and that the probability of treatment is positive.

We keep considering that T is fixed as well as factors ft and treatment It and we analyze

identification as if factors ft were known. This argument extends to the case in which T tends to

infinity by taking limits.

Stack individual observations in individual vectors of dimension [T, 1] :

yi = αDiI[1:T ] + F ′λi + εi + ∆iI[1:T ]Di (13)

in which yi = (yi1, ., yiT )′, I[1:T ] = (I1, ., IT )′, F = (f1, ., fT ), εi = (εi1, ., εiT )′ and

∆i is a diagonal matrix of dimension [T, T ] whose diagonal terms are (αi1 − α, ..., αiT − α). Set

MF = I − F ′(FF ′)−1F and multiply the previous equation to obtain:

MFyi = αDiMF I[1:T ] +MF εi +MF∆iI[1:T ]Di. (14)

A necessary condition for identifying α using equation (14) stacked over the different individual

units is therefore:

I ′[1:T ]MF I[1:T ] > 0 and E(Di) > 0. (15)

This means that I[1:T ] is not equal to a linear combination of factors and that the probability of

being treated is positive. This is related to the rank condition underlying the identification of

6The identification of equation (12) can be established using very similar developments. The proof is available

upon request.
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parameters in Proposition 3 in Bai (2009, p.1259). Furthermore, this condition is also necessary

in equation (13) because the correlation between λi and Di is unrestricted.

This condition is also suffi cient. This is because E(Di)I
′
[1:T ]MF I[1:T ] is invertible using condition

(15) and because we can then show that:

α = (E(DiI
′
[1:T ]MF I[1:T ]))

−1E(DiI
′
[1:T ]MFyi) = (E(Di)I

′
[1:T ]MF I[1:T ])

−1E(DiI
′
[1:T ]MFyi). (16)

Indeed, the covariance between the two right-hand side terms of equation (14), the regressor

DiMF I[1:T ] and the error term MF εi + MF (αi − α)I[1:T ]Di, is equal to zero. There are two terms

in this correlation that we analyze in turn.

The first term is equal to 0 by construction (Assumption A2) because:

E(I ′[1:T ]MFDiMF εi) = E(I ′[1:T ]MFDiMFE(εi | Di)) = 0 (17)

since Di is a scalar random variable and variables in the time dimension are supposed to be fixed.

The second term of the correlation above is more interesting and involves:

E(I ′[1:T ]MFDiMF∆iI[1:T ]Di) = E(I ′[1:T ]MFDiMFE(∆i | Di)I[1:T ]Di), (18)

which is equal to zero by construction of ∆i since E(∆i | Di = 1) is a diagonal matrix whose

diagonal terms are:

E(αit − α | Di = 1) = αt − α = 0,

by Assumption A3. The correlation in equation (18) is then equal to zero.

Finally, multiplying (14) by I ′[1:T ]MFDi and taking the expectation gives (16). This ends the

proof that the average treatment on the treated parameter α is identified under rank condition

(15).

3.3.2 The Case with Covariates

In the general case with covariates, we can write equation (11) as:

yi = αDiI[1:T ] + xiβ + F ′λi + εi + ∆iI[1:T ]Di

Multiplying this equation by MF , we obtain:

MFyi = αDiMF I[1:T ] +MFxiβ +MF εi +MF∆iI[1:T ]Di. (19)
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Denote the linear prediction of Di as a function of xi as:

Di = vec(xi)
′γ +Dix,

and rewrite equation (19) as:

MFyi = αDixMF I[1:T ] +MF ε̃i +MF∆iI[1:T ]Di, (20)

in which ε̃i = εi + xiβ + α.vec(xi)
′γI[1:T ]. Because xi and vec(xi) are uncorrelated with Dix, the

same non correlation condition as in equation (17) is valid since we have from Assumptions A1 and

A2 that E (εi |Di, xi ) = 0. Thus, the second condition derived from equation (18) that remains

to be checked refers to the equality to zero of:

E(∆iI[1:T ]DiDix) = E(∆iI[1:T ]DiDi)− E((∆iI[1:T ]Divec(xi)
′γ) = −E(∆iI[1:T ]Divec(xi)

′γ),

because of the argument employed after equation (18) that uses Definition ATT. This term is

equal to zero under the suffi cient condition given by:

∀t ≥ TD, E(αit | Di = 1, xi) = E(αit | Di = 1),

since it implies that:

E(∆i | Di = 1, xi) = E(∆i | Di = 1) = 0,

by Assumption A3 and Definition ATT as above. This condition is stronger than necessary as it

would be suffi cient to condition on the scalar variable vec(xi)γ.7 Note also that the linear interac-

tive model could be generalized by conditioning on covariates in an unrestricted way or interacting

covariates with the treatment indicator and this would substantially weaken this condition as in

the static evaluation case (Heckman and Vytlacil, 2007).

Consistency and other asymptotic properties of this method can be derived from Bai (2003)

when N −→∞ and T →∞. Note also that condition (15) also implies that N1 tends to∞ when

N −→ ∞. Estimation could also proceed with the estimation method proposed by Ahn et al.

(2013) and thence dispense with the assumption that T → ∞. Note that when T is small, Bai’s

estimator is inconsistent unless errors are white noise (Ahn, Lee and Schmidt, 2001).

7In this case, developments following Wooldridge (2005) might be appropriate but we do not follow up this

route in this paper.
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3.3.3 Remarks8

First, when we let the number of periods grow, it is interesting to consider again the difference-

in-differences estimator that might be consistent when T →∞ even if the suffi cient conditions of

Section 3.2 are not fulfilled. In the absence of covariates, the difference-in-differences estimator is

the OLS estimator of the demeaned equation:

yit − y.t − yi. + y.. = α(Di −D.)(It − I.) + (ft − f.)′(λi − λ.) + ε̃it

in which the notation ".", which replaces an index, points at the average of the variable running

over this index, say for instance yi. = 1
T

∑T
t=1 yit and ε̃it is the demeaned version of the errors.

When N → ∞, the bias in the OLS estimator of this equation converges to a term which is

proportional to:

plimN→∞
1

NT

∑
i,t

(Di −D.)(It − I.)(ft − f.)′(λi − λ.)

=
1

T

∑
t

(It − I.)(ft − f.)′ plimN→∞
1

N

∑
i,t

(Di −D.)(λi − λ.). (21)

As assumed above, we generically have plimN→∞
1
N

∑
i,t(Di−D.)(λi−λ.) 6= 0 because the correla-

tion between Di and λi is different from zero. Even in this case, the DID estimate can nonetheless

be consistent when T →∞ if:

plimT→∞
1

T

∑
t

(It − I.)(ft − f.)′ = 0.

This condition states that, in the long run, treatment and factors are uncorrelated and this is not

an assumption that one would like to make in all policy evaluations.

Second, it is interesting to develop the reverse of the underspecified case developed in Section

3.2. Overspecification arises when a factor model is estimated while the true data generating

process is that of a standard panel with additive individual and time effects. We speculate that

results of Moon and Weidner (2013b) might be used to show that not only there is no bias but

also that there is no loss of precision when using a greater number of factors than necessary, at

least asymptotically.

8We address here additional points made by referees who we thank for their suggestions.
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3.4 Direct Estimation of the Counterfactual

Assumptions A1 and A2 imply that a direct estimation strategy for the effects of treatment

on the treated can also be adopted. Estimate first the interactive effect model (4) using the

sample composed of non treated observations over the whole period and of treated observations

before the date of the treatment t < TD. Orthogonality assumption A2 makes sure that excluding

observations (i, t) with i ∈ {1, ., N1} and t ≥ TD does not generate selection. Second, orthogonality

assumption A1 renders conditions stated by Bai (2009) valid and the derived asymptotic properties

of linear factor estimates hold.

Various asymptotics can be considered:

• If N and T tend to∞, then β, ft and λi for the non treated are consistently estimated (Bai,

2009).

• If additionally the number of periods before treatment TD tends to∞, then λi for the treated

units are consistently estimated.

As for the counterfactual term to be estimated in equation (1), we have for t > TD:

E (yit (0) |Di = 1) = E (xitβ + λ′ift |Di = 1) (22)

To estimate this quantity, we replace parameters λi, i = 1, ..., N1, β and ft when t > TD by their

consistently estimated values in the right-hand side expression (computed as detailed in the online

Appendix), and take the empirical counterpart of the expectation. Namely, the treatment on the

treated at a given period is derived by using equation (1) and can be written as:

E (yit (1)− yit (0) |Di = 1) = E(αit | Di = 1) = E (yit (1) |Di = 1)−E (xitβ + λ′ift |Di = 1) (23)

and its estimate is obtained by replacing unknown quantities by their empirical counterparts.

The average treatment on the treated effect is then obtained by exploiting Definition ATT and

averaging equation (23) over the periods after treatment.9

An additional word of caution about identification is in order since the rank condition (15)

developed in the previous section is also necessary although it is not as simple to derive. This is

summarized in the next proposition:

9The variance of the estimator can be computed using formulas in Bai (2003) and Bai (2009).
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Proposition 1 Suppose that rank condition (15) does not apply and that the treatment vector I1:T

is a linear function of factors:

I1:T = F ′δ

in which δ is a [L, 1] vector and F is the matrix of factors as defined above. Then for any value of

the treatment effect α, there exists an observationally equivalent factor model in which the value

of the treatment effect is equal to zero.

Proof. Let α be any value and write equation (13) as

yi = αI1:TDi + F ′λi + ε̃i

in which ε̃i includes any idiosyncratic variation of the treatment effect across individuals and

periods. By replacing I1:T = F ′δ, we get:

yi = αF ′δDi + F ′λi + ε̃i,

= F ′(αδDi + λi) + ε̃i,

which provides the alternative factor representation in which the value of the treatment effect is

equal to zero.

This shows the necessity of condition (15) for the estimation method derived in this section as

well as for any other estimation method analyzed below.

3.5 A single-dimensional factor model

It is well known since Rubin and Rosenbaum (1983) that conditions A1 and A2 imply the condition:

E(εit | Di = 1, p(xi, λi)) = 0

in which the distinction between observed variables xi and unobserved variables λi does not matter.

Let µi = p(xi, λi) denote the propensity score.

The condition above suggests the following strategy:

1. Estimate factors and factor loadings using the sample of controls and the subsample of

treated observations before treatment as detailed in Subsection 3.4.

2. Regress Di on xi and λ̂i and construct the predictor of the score µ̂i.

18



3. Match on the propensity score à la Heckman, Ichimura and Todd (1998) or, under some

conditions, use a single factor model associated to µ̂i.

3.6 Synthetic controls

The technique of synthetic controls proposed by Abadie and Gardeazabal (2003) and further

explored by Abadie, Diamond and Hainmueller (2010, ADH thereafter) proceeds differently. It

focuses on the case in which the treatment group is composed of a single unit and uses a specific

matching procedure of this treated unit to the control units whereby a so-called synthetic control

is constructed. We shall proceed in the same way although as we have potentially more treated

units, we shall repeat the procedure for each of them and then aggregate the result over various

synthetic controls to yield the average treatment on the treated.10

3.6.1 Presentation

We follow the presentation by ADH (2010). An estimator of yit(0) for a single treated unit i ∈

{1, ., N1} after treatment t ≥ TD is the outcome of a synthetic control “similar” to the treated

unit that is constructed as a weighted average of non-treated units. We impose similarity of

characteristics xit between treated units and synthetic controls, by weighting characteristics xjt of

control units, j ∈ {N1 + 1, ., N} in such a way that

N∑
j=N1+1

ω
(i)
j xjt = xit for t = 1, ., T (24)

where ω(i)j is the weight of unit j in the synthetic control (such that ω(i)j > 0 and
N∑

j=N1+1

ω
(i)
j = 1).

Similarity between pretreatment outcomes is also imposed in ADH (2010):

N∑
j=N1+1

ω
(i)
j y

(k)
j = y

(k)
i (25)

10An alternative would be to aggregate the treated units into a single unit first. By analogy with what is done

in non-parametric matching, this procedure seems more restrictive because using a single synthetic control leads to

less precise estimates than when constructing various synthetic controls. Nonetheless, support conditions for the

validity of the synthetic control method that we find might justify such an approach because support requirements

are weaker in the "aggregate" case.
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where y(k)j =
TD−1∑
t=1

ktyjt is a weighted average of pretreatment outcomes in which k = (k1, ., kTD−1)

are weights differing across periods (y(k)i for the treated unit is defined similarly). A set of such pre-

treatment outcome summaries can be generated using various vectors of weights, k. Nevertheless,

the most general setting is when we consider all pretreatment outcomes, yjt, for t = 1, ..., TD − 1.

Indeed, taking linear combinations of pretreatment outcomes or considering the original ones is

equivalent in this general formulation and we dispense with the construction of y(k)j and y(k)i .

The average treatment on the treated for unit i is estimated as:

α̂i =
1

T − TD + 1

∑
t≥TD

[
yit −

N∑
j=N1+1

ω
(i)
j yjt

]
. (26)

In practice, one needs to determine the weights that allow the construction of the synthetic control.

Weights should ensure that the synthetic control is as close as possible to the treated unit i and

thus that conditions (24) and (25) are verified. Denote zj = (yj1, ., yj,TD−1, xj1, ., xjT )′ (resp. zi)

the list of variables over which the synthetic control is constructed (i.e. pretreatment outcomes

and exogenous variables). Weights are computed using the following minimization program:

Min

ω
(i)
j

∣∣∣∣∣ω(i)j >0,
N∑

j=N1+1
ω
(i)
j =1

(
N∑

j=N1+1

ω
(i)
j zj − zi

)′
M

(
N∑

j=N1+1

ω
(i)
j zj − zi

)
(27)

in which M is a weighting matrix.11 Note that the resulting weight ω(i) is a function of the data

(zi, zN1+1, ., zN).

3.6.2 Synthetic controls and interactive effects

We now describe this procedure in an interactive effect model setting as first suggested by ADH

(2010). Nonetheless, we show that the absence of bias implies constraints on the supports of factor

loadings and exogenous variables, and is related to the developments in Section 3.2 above.

To proceed, we need to introduce additional notation. Our linear factor model can be written

11M can be chosen in various ways (see Abadie et al, 2010, for some guidance). In our case we set M to the

identity matrix. There could also exist multiple solutions to this program if the treated observation belongs to the

convex hull of the controls. Abadie, Diamond and Hainmueller (2014) suggest to use a refinement by selecting the

convex combination of the specific points that are the closest to the treated observation (see their footnote 12).
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at each time period as:

Yt (0) = β′X ′t + f ′tΛU + εt for the untreated,

yit (0) = β′x′it + f ′tλi + εit for each treated individual
(28)

where ΛU = (λN1+1, ..., λN) is (L,N − N1) and ft is a L column vector. Similarly, Yt (0) and εt

are (N −N1) row vectors and Xt is a (N −N1, K) matrix.

Weights ω(i) =
(
ω
(i)
N1+1

, ..., ω
(i)
N

)
are obtained by equation (27) and we have: yit (0) = Yt (0)ω(i) + ηit for t < TD,

x′it = X ′tω
(i) + ηitX for t = 1, ..., T

(29)

Note that the construction of the synthetic control by equation (29) is allowed to be imperfectly

achieved and the discrepancy is captured by the terms ηit and ηitX . We thus acknowledge that

characteristics of the treated unit, zi = (yi1, ., yi,TD−1, xi1, ., xiT )′, might not belong to the convex

hull, CU , of the characteristics of control units. First, there are small sample issues when the

number of pre-treatment periods, TD − 1, and of covariates, KT , is larger than the number of

untreated units, N − N1. In other words, the convex hull CU lies in a space whose dimension is

lower than the number of vector components, TD − 1 +KT . Second and more importantly, even

if TD − 1 + KT < N − N1, vector zi might not belong to this convex hull because supports of

characteristics for treated and control units differ. Terms ηit and ηitX capture this discrepancy.

We now analyze what consequences this construction has on the estimation of the treatment

effect. The estimated treatment effect given by equation (26) is a function of

yit −
N∑

j=N1+1

ω
(i)
j yjt = yit(1)− Yt (0)ω(i) = αit + yit(0)− Yt (0)ω(i)

= αit + ηit,

in which we have extended definition (29) to all t ≥ TD. The absence of bias for the LHS estimate

with respect to E (αit) can thus be written as E(ηit) = 0. To write this condition as a function of

primitives, we need to replace dependent variables by their values in the model described by (28).

This gives:

ηit = yit(0)− Yt (0)ω(i) = β′x′it + f ′tλi + εit − (β′X ′t + f ′tΛU + εt)ω
(i),

= β′(x′it −X ′tω(i)) + f ′t(λi − ΛUω
(i)) + εit − εtω(i).
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Considering that β and ft are fixed and taking expectations yields:

E(ηit) = β′E(x′it −X ′tω(i)) + f ′tE(λi − ΛUω
(i)) + E(εit − εtω(i)),

' β′E(x′it −X ′tω(i)) + f ′tE(λi − ΛUω
(i)),

in which we have used the result derived by ADH (2010) that E(εit − εtω(i)) tends to 0 when the

number of pretreatment periods TD tends to∞.12 This expression should be true for any value of

β and ft and the absence of bias thus implies that:

E(x′it −X ′tω(i)) = 0 and E(λi − ΛUω
(i)) = 0. (30)

The following suffi cient condition is established in the Appendix:

Lemma 2 If the support of exogenous variables and factor loadings of the treated units is a subset

of the support of exogenous variables and factor loadings of the non treated units and this latter

set is convex and bounded then condition (30) is satisfied at the limit when N −N1 →∞.

We call this case the interpolation case and this relates to the familiar support condition in

the treatment effect literature and to the domination relationship between probability measures

in the treated and control groups seen in equation (8) above.

If the support of controls does not contain the support of treated observations, the synthetic

control method is based on extrapolation since it consists in projecting λi and xit onto a convex

set to which they do not belong and this generates a bias. For instance, to compute the distance

between λi and the convex hull of the characteristics of the controls denoted conv (ΛU), we could

use the support function (see Rockafellar, 1970) and show that:

d (λi, conv (ΛU)) = inf
q∈RL

[
max

j∈{N1+1,...,N}
(q′λj)− q′λi

]
in which λj is the j-th column of ΛU . Statistical methods to deal with inference in this setting

could be derived from recent work by Chernozhukov, Lee and Rosen (2013) but this is out of the

scope of this paper.

More generally, synthetic control is a method based on convexity arguments and thus needs

assumptions based on convexity. The case of discrete regressors is a diffi cult intermediate case

between interpolation and extrapolation that inherits the “bad”properties of extrapolation. In

consequence, we conjecture that the synthetic cohort estimate is generically biased.

12The main diffi culty there is to take into account that ω is a random function of zi and zj .
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4 Monte Carlo experiments

4.1 The set-up

The data generating process is supposed to be given by a linear factor model:

yit = αiItDi + f ′tλi + εit

in which the treatment effect, αi, is homogeneous or heterogenous across local units but not time

and the number of factors L is variable. We always include additive individual and time effects,

i.e. λi = (λi1, 1, λi2, ...)
′ and ft = (1, ft1, ft2...)

′ as most economic applications would require. We

did not include any other explanatory variables than the treatment variable itself.

The data generating process is constructed around a baseline experiment and several alterna-

tive experiments departing from the baseline in different dimensions such as the distribution of

disturbances, the assumption that they are identically and independently distributed, the num-

ber of local units and periods, the correlation of treatment assignment and factor loadings, the

structure of factors, the support of factor loadings and the heterogeneity of the treatment effect,

αi. Experiments are described in detail below or in the online Appendix. The Monte Carlo aspect

of each experiment is given by drawing new values of {εit}i=1,.,N,t=1,.,T only and the number of

replications is set to 1000.

In the baseline, individual and period shocks εit are independent and identically distributed

and drawn in a zero-mean and unit-variance normal distribution.

The numbers of treated units, N1 (resp. total, N) and the numbers of periods before treatment,

TD, (resp. total, T ) as well as the number of factors L are fixed at relatively small values in line

with our empirical application developed in the next section and more generally with data used

in the evaluation of regional policies. In the baseline experiment, we fix (N1, N) = (13, 143),

(TD, T ) = (8, 20) and L = 3 (including one additive factor). We also experiment with L varying

in the set {2, 4, 5, 6}.

The values of factors ft and factor loadings λi are drawn once and for all in each experiment.

Factors ft, for t = 1, ., T, are drawn in a uniform distribution on [0, 1] (except the first factor which

is constrained to be equal to 1). Alternatively, we also experiment by fixing the second factor in

ft to the value a. sin(180.t/T ) with a > 0 large enough.
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The support of factor loadings, λi, is the same for treated units as for untreated units in

our baseline experiment. They are drawn in a uniform distribution on [0, 1] (except the second

factor loading which is constrained to be equal to 1). In an alternative experiment, we construct

overlapping supports for treated and untreated units. This is achieved by shifting the support of

factor loadings of treated units by .5 or equivalently by adding .5 to draws. In another experiment,

supports of treated and untreated units are made disjoint by shifting the support of treated units

by 1. Because the original support is [0, 1], this means that the intersection of the supports of

treated and non-treated units is now reduced to a point. Note that adding .5 (resp. 1) to draws

of treated units spawns a positive correlation between factor loadings and the treatment dummy

Di equal to .446 (resp. .706).

In the baseline experiment, the treatment effect is fixed to a constant, αi = .3 which is a value

close to ten times the one obtained in our empirical application.

4.2 Estimation methods

We evaluate six estimation methods:

1. A direct approach using pretreatment period observations for control and treated units and

post-treatment periods for the non treated only to estimate factors ft and λi in the equation:

yit (0) = f ′tλi + εit (31)

as in Section 3.4. The estimation procedure follows Bai’s method and is based on an EM

algorithm which is detailed in the Online Appendix A.1. A parameter estimate of α is then

recovered from equation (23) replacing the right-hand side quantities by their empirical

counterparts. This estimator is labelled “Interactive effects, counterfactual”.

2. An approach whereby we estimate parameter α applying Bai’s method to the linear model

in which a treatment dummy is the only regressor:

Yit = αItDi + f ′tλi + εit

as in Section 3.3. The resulting estimator is labelled “Interactive effects, treatment dummy”.

3. A matching approach (Subsection 3.5) by which equation (31) is first estimated as in the first

estimation method. This yields estimates of λi from which a propensity score discriminating
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treated and untreated units is computed. We use a logit specification for the score and

construct the counterfactual outcome in the treated group in the absence of treatment at

periods t > TD using the kernel method proposed by Heckman, Ichimura and Todd (1998).

If we denote the score predicted by the logit model by µ̂i, the counterfactual of the outcome

for a given treated local unit i at a given post-treatment period is constructed as:

Ê (yit (0) |Di = 1) =
∑N

j=N1+1
Kh

(
µ̂i − µ̂j

)
yjt

/∑N

j=N1+1
Kh

(
µ̂i − µ̂j

)
for t > TD

where Kh (·) is a normal kernel whose bandwidth is chosen using a rule of thumb (Sil-

verman, 1986). An estimator of the average treatment on the treated is the average of

yit − Ê (yit (0) |Di = 1) over the population of treated local units for dates t > TD. The

resulting estimator is labelled “Interactive effects, matching”.

4. An approach similar to “Interactive effects, counterfactual” in which we impose the con-

straint λi = ΛUω
(i) for any unit i when estimating (31). ΛU is the L × (N −N1) matrix

comprising untreated factor loadings and ω(i) are weights obtained in the synthetic control

method. The estimation method is detailed in the Online Appendix A.2 and the estimator of

α is recovered from (23) replacing right-hand side quantities by their empirical counterpart.

This estimator is labelled “Interactive effects, constrained”.

5. The synthetic control approach (Subsection 3.6) whereby the average treatment on the

treated is obtained by averaging equation (26) over the population of treated units. The

resulting estimator is labelled “Synthetic controls”.

6. A standard difference-in-differences approach whereby we compute the FGLS estimator tak-

ing into account the covariance matrix of residuals (written in first difference). Recent

research presented in Brewer, Crossley and Joyce (2013) suggests that this is the appropri-

ate procedure if assumptions underlying difference in differences are satisfied. The resulting

estimator is labelled “Diff-in-diffs”.

In our simulations, the number of iterations for Bai’s method involved in methods (1) to (4)

is fixed to 20, and the number of iterations for the EM algorithm involved in method (1) and (4)

is fixed to 1. When an estimation method using Bai’s approach is implemented, we use the true
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number of factors.13

4.3 Results

Our parameter of interest is α and we report the empirical mean, median and standard error of each

estimator for every Monte-Carlo experiment. Results in the baseline case are presented in column 1

of Table 1, and unsurprisingly, show that the estimated treatment parameter exhibits little bias for

all methods controlling for interactive factors: “Interactive effects, counterfactual”, “Interactive

effects, treatment dummy”, “Interactive effects, matching”, “Interactive effects, constrained”and

“Synthetic controls”. Similarly, the method of “Diff-in-diffs”is unbiased in spite of not accounting

for interactive factors since factor loadings are orthogonal to the treatment indicator in the baseline

experiment.

Interestingly, among methods allowing for interactive factors, those with constraints are the

ones achieving the lowest standard errors (“Interactive effects, constrained”and “Synthetic con-

trols”) since using constraints that bind in the true model increases (identification) power. Note

also that the standard error is larger when using the method “Interactive effects, counterfactual”

than when using the method “Interactive effects, treatment dummy”as the structure of the true

model after treatment in the treated group is not exploited. "Diff-in-diffs" standard errors lie

between those values.

In Columns 2 and 3 of Table 1, we report results when shifting by .5 or 1 the support of

individual factors for the treated. These shifts have two consequences. First, the validity conditions

are now violated for interactive effect estimation which uses support constraints (“Interactive

effects, constrained”) and for synthetic controls. Second, they make factor loadings correlated

with the treatment dummy. Results show that all methods are severely biased except “Interactive

effects, counterfactual”, “Interactive effects, treatment dummy”and more surprisingly “Diff-in-

diffs”. The two first methods are designed to properly control for interactive effects and factor

loadings whatever the assumption about supports or about correlations between factor loadings

and treatment. The bias for "Diff-in-diffs” is close to zero because the correlation between the

factors and time indicators of treatment is close to 0 (see equation (21)). We investigate further

13Monte-Carlo simulations are implemented in R. Weights ω(i) in methods (4) and (5) are computed using the

R procedure lsei and the minimization algorithm solve.QP.
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below the bias in a case in which they are correlated.

The method “Interactive effects, matching”does not work well because non-treated units close

to treated units in the space of factor loadings are hard to find since the support for the treated

has been shifted. We thus abstain from reporting the related results. As expected, the bias

obtained for “Interactive effects, constrained”and “Synthetic controls” is large. These methods

indeed impose that individual effects of treated units can be expressed as a linear combination of

individual effects of non-treated units. These constraints are violated with a positive probability

when the treated unit support is shifted by .5, and always violated when the support is shifted by

1.

[ Insert Table 1 ]

To investigate further the cause of the surprising small bias of “Diff-in-diffs” in the previous

Table, we modified the structure of factors in the experiment. The first factor in ft is now

fixed to 5. sin(180.t/T ) and this implies that factors and time indicators of treatment, It, are

now correlated.14 Table 2 shows that the “Diff-in-diffs”method can generate much larger biases

in this alternative setting while biases of other methods remain the same. It is even the case

that small sample biases of “Interactive effects, counterfactual”, “Interactive effects, treatment

dummy”become smaller in this alternative experiment.

[ Insert Table 2 ]

We then make the number of factors vary between two and six (including individual and time

additive effects) to assess to what extent the accuracy of estimates decreases with the number of

factors. Results reported in Table 3 show that for the first three methods “Interactive effects, coun-

terfactual”, “Interactive effects, treatment dummy”and “Interactive effects, matching”, the bias

does not vary much and remains below 10%. Interestingly, whereas the standard error markedly

increases with the number of factors for the method “Interactive effects, counterfactual”, it in-

creases much more slowly for the method “Interactive effects, treatment dummy”. This occurs

because factor loadings of the treated are estimated using pre-treatment periods only in the for-

mer case whereas in the latter case all periods contribute to the estimation of factor loadings.

When using methods with constraints “Interactive effects, constrained”and “Synthetic controls”,

14This correlation disappears when T →∞ as noted by a referee.
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the bias can be larger than 10% but standard errors remain small. As in the baseline case, the

bias of “Diff-in-diffs”is rather small although we know from the previous analysis that changing

the structure of factors could make the bias larger.

[ Insert Table 3 ]

There are two interesting conclusions in this analysis which bear upon our empirical applica-

tion. First, the method of “Interactive effect, counterfactual” seems to be dominated in terms

of bias and precision by the method “Interactive effect, treatment dummy” in all experiments

and we shall thus retain only the second method. Second, the three methods “Interactive effects,

matching”, “Interactive effects, constrained”and “Synthetic controls”seem to behave similarly.

Therefore, we shall retain only one method, synthetic controls, for our application.

4.4 Other experiments

In the Online Appendix B, we detail additional Monte-Carlo simulation results when the distri-

bution of errors is uniform, when there are fewer pre-treatment and post-treatment periods, and

when the number of local units is larger. Results conform with intuition.

We also report there, results when disturbances are not identically and independently distrib-

uted. Heteroskedasticity is introduced by drawing variances from a distribution with two points

of support, with probability 1/2 for each point. We change the ratio of the two variance values

across experiments. Alternatively, serial dependence is modelled as autoregressive of order 1 and

we change serial correlation across experiments. This allows us to show that the number of periods

that we considered T = 20 in line with our empirical application below is suffi ciently large for

asymptotic results developed in Bai (2009) to be valid. We find very little evidence of bias and

the asymptotic variance of estimates obtained in the iid setting is a rather good approximation to

the experimental variance. In other words, small sample biases shown by Ahn et al. (2001) can

be neglected when T = 20.

5 Empirical Application

Our application is motivated by the evaluation reported in Gobillon et al. (2012) of an enterprise

zone program implemented in France on January 1, 1997.
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A survey of enterprise zone programs in the US and the UK is presented in this article as

well as many particulars that we do not have the space to develop here. The fiscal incentives

given by the program to enterprise zones were uniform across the country and consisted in a series

of tax reliefs on property holding, corporate income, and above all on wages. The key measure

was that firms needed to hire at least 20% of their labor force locally (after the third worker

hired) in order to be exempted from employers’contributions to the national health insurance and

pension system. This is a significant tax exemption that represents around 30% of whole labor

costs (gross wage). It was expected that this measure would affect labor demand for residents of

these zones and decrease unemployment. This is why we analyze the impact of such a program

on unemployment entries and exits over this period.

We restrict our analysis to the Paris region in which 9 enterprise zones ("Zones Franches

Urbaines") were created in 1997. Municipalities or groups of municipalities had to apply to the

program and projects were selected taking into account their ranking given by a synthetic indi-

cator. This indicator whose values have never been publicly released, aggregates five criteria: the

population of the zone, its unemployment rate, the proportion of youngsters (less than 25 years

old), the proportion of workers with no skill, and finally the income level in the municipality in

which the enterprise zone would be located. An additional criterium is that the proposed zone

should have at least 10,000 inhabitants. Nevertheless, the views of local and central government

representatives who intervened in the geographic delimitation of the zones also played a role in the

selection process. It thus suggests that although the selection of treated areas should be condi-

tioned on the criteria of the synthetic indicator, it is likely that there is suffi cient variability in the

selection process due to political tampering. As a consequence, assumptions underlying matching

estimates are not a priori invalid if observed heterogeneity is controlled for. Indeed, the supports

of the propensity score in treated and non treated municipalities largely overlap though there are

some outliers as shown in the Online Appendix C.3.

In Gobillon et al. (2012), we provided evidence that controlling for the effect of individual

characteristics of the unemployed when studying unemployment exits only moderately affect the

treatment evaluation. This is why we use raw data at the level of each municipality in the present

empirical analysis. Furthermore, the destination after an unemployment exit, either to a job or

to non employment, is quite uncertain in the data since unemployment spell is often terminated
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because the unemployed worker is absent at a control. Many exits to a job might be hidden in the

category “Absence at a control”. The empirical contribution of our paper is that we investigate

not only exits to a job as in Gobillon et al. (2012) but also unknown exits, as well as entries into

unemployment. More generally, we assess the robustness of the results when using estimation

methods which deal with the presence of a larger set of unobserved heterogeneity terms than

difference in differences.

5.1 Data

We use the historical file of job applicants to the National Agency for Employment (“Agence

Nationale pour l’Emploi” or ANPE hereafter) for the Paris region. This dataset covers the large

majority of unemployment spells in the region given that registration with the national employ-

ment agency is a prerequisite for unemployed workers to claim unemployment benefits in France.

We use a flow sample of unemployment spells that started between July 1989 and June 2003 and

study exits from unemployment between January 1993 and June 2003. This period includes the

implementation date of the enterprise zone program (January 1, 1997) and allows us to study

the effect of enterprise zones not only in the short run but also in the medium run. These un-

employment spells may end when the unemployed find a job, drop out of the labor force, leave

unemployment for an unknown reason or when the spell is right censored.

Regarding the geographic scale of analysis, given that enterprise zones are clusters of a signif-

icant size within or across municipalities, it would be desirable to try to detect the effect of the

policy at the level of an enterprise zone and comparable neighboring areas. Nevertheless, our data

do not let us work at such a fine scale of disaggregation and we retain municipalities as our spatial

units of analysis. Municipalities have on average twice the population of the enterprise zone they

contain. As a consequence, any effect at the municipality level measures the effect of local job

creation net of within-municipality transfers.

The Paris metropolitan region on which we focus is inhabited by 10.9 million people and

subdivided into 1,300 municipalities. We only use municipalities which have between 8,000 and

100,000 inhabitants as every municipality comprising an enterprise zone has a population within

this range. Using propensity score estimation, we select as controls municipalities whose score is

close to the support of the score for treated municipalities and this restricts further our working
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sample to 148 municipalities (135 controls and 13 treatments). On average, about 300 unemployed

workers find a job each half-year in each of those municipalities. In view of these figures, we chose

half years as our time intervals since using shorter periods would generate too much sampling

variability.

Descriptive statistics relative to exits to a job, exits to non-employment, and exits for unknown

reasons can be found in the Online Appendix C.2.

5.2 Results

In Table 4, we report estimation results of the enterprise zone treatment effect obtained with the

most promising methods that were evaluated in the Monte Carlo experiments.15 As explained at

the end of the previous section, we use the interactive effect model with a treatment dummy and

the synthetic control approach, and contrast them with the most popular method of difference in

differences. Standard errors of the “Interactive effect, treatment dummy”estimates are computed

using independently and identically distributed disturbances, an assumption we justify below.

We also derive a confidence interval for the synthetic control estimate which, as far as we

know, has not been derived in the literature. We construct this confidence interval by inverting a

test statistic whose distribution is obtained by using permutations between local units under the

(admittedly strong) assumption of exchangeable disturbances across local units. The procedure

is as follows. Subtract the synthetic control estimate α̂ from post treatment outcomes of treated

units. Next, draw 1000 times without replacement 13 units in the whole population (treated and

controls) and consider them as the new treated units while the other 135 are the new controls.

Construct synthetic controls in each sample and estimate the average treatment effect. Derive

the estimated quantiles q̂0.025 and q̂0.975 from the empirical distribution of estimates. Consider

now any null hypothesis H0 : α = α0 and reject it at level 5% when α0 − α̂ does not belong

to the interval bounded by those quantiles. Inverting this test yields the confidence interval,

[α̂ + q̂0.025, α̂ + q̂0.975], that is reported in Table 4. Note that we use a non pivotal statistic in the

absence of any result about asymptotic standard errors of the synthetic control estimates. As a

consequence, the confidence interval has no refined asymptotic properties.

15The only slight modification is that for the FGLS first difference estimate, the covariance matrix is kept general

enough to allow for serial correlation of unknown form.
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We analyze three outcomes at the level of municipalities constructed for each 6-month period

between July 1993 and June 2003: exit from unemployment to a job, exit from unemployment

for unknown reasons and entry into unemployment. The outcome describing unemployment exits

(to a job or for unknown reasons) is defined as the logarithm of the ratio between the number

of unemployed workers exiting during the period and the number of unemployed at risk at the

beginning of the period. Entries are defined in the same way. Table 4 reports results using our

three estimation methods for each outcome.

Starting with exits to a job, we find a small positive and significant treatment effect using

the interactive effect method in line with the “Diff-in-diffs” estimate and with the findings in

Gobillon et al. (2012) in which we used difference in differences but with a more limited number

of periods.16 The size of the interactive effect estimate is slightly larger than the difference-

in-differences estimate and tends to increase with the number of factors that are included in

the estimation. In contrast, the “Synthetic control”estimate is negative although the estimated

confidence interval is so large that this estimate is not significantly different from zero at a level

of 5%.

[ Insert Table 4 ]

In the Monte Carlo experiment, differences between interactive effect estimates and other

estimates were interpreted as an issue of disjoint supports. We plot in Figure 1, the additive

local effect (i.e. the factor loading associated to the constant factor) and the multiplicative factor

loading for each control unit (circle) and each treated unit (triangle) in the case in which the

model includes two factors only. This graph does not exhibit any evidence against the hypothesis

that the support of factor loadings for the treated units is included in the corresponding support

for the controls. We tried to construct a test using permutation techniques (Good, 2005) and we

failed to reject the null hypothesis of inclusion of the supports. In the absence of formal analyses

of this test in the literature, we do not know however if this result is due to the low power of such

a test.

[ Insert F igure 1 ]

Another cause of the discrepancy between synthetic controls and interactive effects could be the

16This was based on an analysis distinguishing short-run and long-run effects of the program.
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presence of serial correlation. When a single local effect is considered as in the difference-in-

differences method, serial correlation is still substantial and the estimate of the autocorrelation

of order 1 is around .35. In contrast, estimates of the serial correlation in the interactive effect

model are close to zero. Factor models “exhaust”serial time dependence and this is also true for

spatial dependence.17 By contrast, we do not know much about the behavior of synthetic controls

when serial correlation and spatial correlation are substantial. Interestingly, the within estimate

without any correction for serial correlation is also on the negative side and close to the synthetic

control estimate.

Results for other outcomes confirm the diagnostic that synthetic control estimates seem to

have a behavior different from interactive effect estimates and difference-in-differences estimates.

While interactive effect estimates of the treatment effect are undistinguishable from zero when we

analyze exits from unemployment for unknown reasons, difference in differences yield a positive

but insignificant estimate and synthetic controls a positive and significant estimate. As we have

reasons to believe that the treatment effect should be larger for the outcome recording exits to a job

than for the outcome recording exits for unknown reasons, synthetic control estimates seem slightly

incoherent. Nonetheless, it is also true that synthetic control and interactive effect estimates for

the effect of treatment on entries are very similar while difference-in-differences estimates seem

surprisingly positive and nearly significant.

As a robustness check, we report in the Online Appendix C.4 the treatment effect estimates

when the propensity score is introduced as a regressor. Results are very similar with those presented

in the text.

6 Conclusion

In this paper, we compared different methods of estimation of the effect of a regional policy

using time-varying regional data. Spatial and serial dependence are captured by a linear factor

structure that permits conditioning on an extended set of unobserved local effects when applying

17This result is obtained using a Moran test when the distance matrix is constructed using the reciprocal of the

geographical distance. Other contiguity schemes (for instance, when using discrete distance matrices constructed

using 5 and 10km thresholds) capture positive spatial correlations although they diminish with the number of

factors.
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methods of policy evaluation. We show how difference-in-differences estimates are biased and how

interactive effect methods following Bai (2009) can be applied. We compare different versions of

these interactive effect methods with a synthetic control approach and with a more traditional

difference-in-differences approach in Monte Carlo experiments. We finally apply the different

methods to the evaluation of an entreprise zone program introduced in France in the late 1990s.

In both Monte Carlo experiments and the empirical application, interactive effect estimates behave

well with respect to competitors.

There are quite a few interesting extensions worth exploring in empirical analyses.

First, there is a tension between two empirical strategies in regional policy evaluations (Blun-

dell, Costa-Dias, Meghir and van Reenen, 2004). On the one hand, choosing areas in the neighbor-

hood of treated areas as controls might lead to biased estimates since neighbors might be affected

by spillovers or contamination effects of the policy. On the other hand, non neighbors might be

located too far away from the treated areas to be good matches and therefore good controls. This

paper tackles this issue in a somewhat automatic way by letting factor loadings pick out spatial

correlation in the data. A richer robustness analysis would allow the modification of the popu-

lations of controls and treatments by playing on the distance between municipalities and locally

treated areas as was done in Gobillon et al. (2012).

Second, it is easy to extend the interactive effect procedures we have analyzed to the case in

which the treatment date varies with time. This is particularly easy in the linear factor model

and this set-up is used by Kim and Oka (2014). In addition, the variability of treatment dates

facilitates the identification of the treatment effect since the rank condition (15) used in Section

3.3 for identification purposes is no longer needed although endogeneity issues might become more

severe. The synthetic control approach can also be adapted when the treatment date varies across

treated units by using a variable number of pre-treatment outcomes to construct the synthetic

control.

A word of caution is also in order in case of extrapolation. When supports of exogenous

variables and factor loadings of the treated units are not included in the corresponding supports of

the control units, we have seen that unconstrained interactive effect estimation methods perform

better than matching methods such as a constrained Bai method or synthetic controls. This

conclusion is nonetheless due to our Monte Carlo setting in which the true data generating process
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has linear factors. If it was non linear, this asymmetry between methods would disappear and

no method would be likely to dominate each other. Extrapolation is indeed a case in which

any technique needs some untestable assumptions to achieve identification. Bounds on outcome

variations might however lead to partial identification of treatment effects.
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Appendix: Proof of Lemma 2

Let Y and X be some real random vectors whose supports denoted SY and SX are included

in RK . Assume that SX is convex and bounded.
Denote D the distance between Y and its projection on the convex hull generated by n inde-

pendent copies of X. Namely, let this convex hull be defined as:

ŜX,n = {Z;Z =
n∑
j=1

ωjXj, ωj ≥ 0,

n∑
j=1

ωj = 1},

so that:

D =
∥∥∥Y − ProjŜX,n(Y )

∥∥∥ .
We shall use the result that if n→∞, ŜX,n → SX in probability in the Hausdorf sense that is:

dH(ŜX,n, SX) = oP (1),

in which dH is the Hausdorf distance. The proof of this result is to be found in Dumbgen and

Walther (1996).

Assume that SY ⊂ SX . Consider any realization y of Y and a realization Ŝx,n of ŜX,n. If

y ∈ Ŝx,n then the realization of D is zero. If y /∈ Ŝx,n then the realization of D is bounded since

SX is bounded. As by the result above dH(ŜX,n, SX) = oP (1) and y ∈ SX then:

E(D) = E(D | Y ∈ ŜX,n) Pr(Y ∈ ŜX,n) + E(D | Y /∈ ŜX,n) Pr(Y /∈ ŜX,n)

= E(D | Y /∈ ŜX,n) Pr(Y /∈ ŜX,n)→ 0 when n→∞.
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Table 1: Monte-Carlo results, variation of support

Support difference 0 .5 1

Interactive effects, 0.009 -0.045 -0.115

counterfactual 0.004 -0.046 -0.122

[0.174] [0.204] [0.248]

Interactive effects, 0.009 -0.043 -0.093

treatment dummy 0.005 -0.046 -0.100

[0.155] [0.172] [0.284]

Interactive effects, 0.007 n.a. n.a.

matching 0.006 n.a. n.a.

[0.154] n.a. n.a.

Interactive effects, -0.008 0.413 0.732

constrained -0.005 0.418 0.720

[0.107] [0.128] [0.238]

Synthetic controls -0.017 0.661 1.510

-0.018 0.660 1.510

[0.104] [0.121] [0.185]

Diff-in-diffs 0.016 -0.052 -0.130

0.020 -0.044 -0.134

[0.136] [0.135] [0.134]

Data generating process: number of observations: (N1, N) =

(13, 143), number of periods: (TD, T ) = (8, 20), number of fac-

tors (including an additive one): L = 3, treatment parameter:

α = .3, time and individual effects of the non treated drawn in a

uniform distribution [0, 1], individual effects of the treated drawn

in a uniform distribution [0 + s, 1 + s] with s ∈ {0, .5, 1} reported

at the top of column, errors drawn in a normal distribution with

mean 0 and variance 1.

Notes: Estimation methods are detailed in Section 4.1. S = 1000

simulations are used. The average (resp. median) estimated bias

is reported in bold (resp. italic). The empirical standard error is

reported in brackets.

Results for “Interactive effects, matching” are not reported when

s ∈ {.5, 1} as, in some simulations, some treated and non treated

observations might be completely separated. As a consequence,

the logit model used to construct the propensity score is not iden-

tified.
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Table 2: Monte-Carlo results, variation of support, one sinusoidal factor

Support difference 0 .5 1

Interactive effects, 0.004 0.007 0.030

counterfactual 0.010 0.014 0.026

[0.158] [0.166] [0.233]

Interactive effects, 0.002 -0.009 -0.002

treatment dummy 0.006 -0.015 -0.007

[0.143] [0.154] [0.209]

Interactive effects, 0.002 n.a. n.a.

matching 0.006 n.a. n.a.

[0.136] n.a. n.a.

Interactive effects, 0.005 0.426 0.798

constrained 0.009 0.425 0.805

[0.104] [0.119] [0.213]

Synthetic controls 0.010 0.633 1.420

0.013 0.637 1.420

[0.102] [0.120] [0.206]

Diff-in-diffs -0.087 0.209 0.518

-0.087 0.204 0.519

[0.134] [0.134] [0.137]

Data generating process: number of observations: (N1, N) =

(13, 143), number of periods: (TD, T ) = (8, 20), number of fac-

tors (including an additive one): L = 3, treatment parameter:

α = .3, one interactive time effect is the deterministic sinusoid

5. sin (180.t/T ), other time effets and individual effects of the non

treated drawn in a uniform distribution [0, 1], individual effects

of the treated drawn in a uniform distribution [0 + s, 1 + s] with

s ∈ {0, .5, 1} reported at the top of column, errors drawn in a

normal distribution with mean 0 and variance 1.

Notes: Estimation methods are detailed in Section 4.1. S = 1000

simulations are used. The average (resp. median) estimated bias

is reported in bold (resp. italic). The empirical standard error is

reported in brackets.

Results for “Interactive effects, matching” are not reported when

s ∈ {.5, 1} as, in some simulations, some treated and non treated

observations might be completely separated. As a consequence,

the logit model used to construct the propensity score is not iden-

tified.
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Table 3: Monte-Carlo results, variation of the number of factors

Number of factors 1 2 3 4 5

Interactive effects, 0.020 0.020 0.022 0.016 0.010

counterfactual 0.019 0.024 0.020 0.019 -0.011

[0.160] [0.173] [0.226] [0.301] [0.610]

Interactive effects, 0.021 0.019 0.013 0.015 0.013

treatment dummy 0.020 0.022 0.015 0.019 0.010

[0.147] [0.147] [0.167] [0.182] [0.192]

Interactive effects, 0.018 0.015 0.011 0.021 0.015

matching 0.018 0.017 0.010 0.016 0.025

[0.149] [0.157] [0.174] [0.206] [0.234]

Interactive effects, 0.009 -0.005 -0.027 -0.011 -0.028

constrained 0.009 -0.007 -0.029 -0.014 -0.031

[0.111] [0.107] [0.109] [0.112] [0.118]

Synthetic controls 0.003 -0.016 -0.045 -0.022 -0.040

0.004 -0.017 -0.047 -0.023 -0.04

[0.110] [0.105] [0.105] [0.110] [0.116]

Diff-in-diffs 0.023 0.020 0.018 0.028 0.024

0.022 0.023 0.019 0.024 0.021

[0.137] [0.132] [0.136] [0.136] [0.136]

Data generating process: number of observations: (N1, N) = (13, 143), number of periods:

(TD, T ) = (8, 20), number of factors (including an additive one): L ∈ {2, 3, 4, 5, 6} with L

reported at the top of column, treatment parameter: α = .3, time and individual effects

drawn in a uniform distribution [0, 1], errors drawn in a normal distribution with mean 0

and variance 1.

Notes: Estimation methods are detailed in Section 4.1. S = 1000 simulations are used.

The average (resp. median) estimated bias is reported in bold (resp. italic). The empirical

standard error is reported in brackets.
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Table 4: Estimated enterprise zone program effects on unemployment exits and entry

Number of factors 2 3 4 5 6

Exit rate to a job

Interactive effects, 0.032 0.036 0.039 0.043 0.046

treatment dummy [-0.001 ; 0.065] [-0.001 ; 0.073] [0.006 ; 0.072] [0.010 ; 0.076] [0.015 ; 0.077]

Synthetic controls -0.026

[-0.081 ; 0.013]

Diff-in-diffs 0.028

[-0.003 ; 0.059]

Exit rate for unknown reasons

Interactive effects, 0.025 0.003 0.002 0.004 0.005

treatment dummy [-0.012 ; 0.062] [-0.032 ; 0.038] [-0.029 ; 0.033] [-0.027 ; 0.035] [-0.024 ; 0.034]

Synthetic controls 0.046

[0.000 ; 0.091]

Diff-in-diffs 0.019

[-0.012 ; 0.050]

Entry rate

Interactive effects, 0.007 0.006 0.004 0.008 0.007

treatment dummy [-0.022 ; 0.036] [-0.021 ; 0.033] [-0.021 ; 0.029] [-0.023 ; 0.039] [-0.022 ; 0.036]

Synthetic controls 0.007

[-0.019 ; 0.034]

Diff-in-diffs 0.020

[-0.004 ; 0.044]

Notes: Outcomes are computed in logarithms at the municipality level. The number of observations are (N1, N) = (13, 148) and the

number of periods are (TD, T ) = (8, 20). The estimated coefficient is the first reported figure. Its 95% confidence interval is given below in

brackets. For the estimation method Interactive effects, treatment dummy, the confidence interval is computed considering that errors are

independently and identically distributed. For the estimation method Diff-in-diffs, the feasible general least square estimator is computed

assuming a constant within-municipality unrestricted covariance matrix. For Synthetic controls, the confidence interval is computed as

explained in the text under the assumption of exchangeable errors.
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Figure 1: Additive and multiplicative local effects, exit to a job
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Note: Local effets are estimated using the method Interactive model, treatment

dummy for the specification including the treatment dummy, an additive local

effect and one multiplicative local effect only. Blue circle: control municipalities,

red triangle: treated municipalities.
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