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Abstract 
 
While coping with nonsphericality of the disturbances, standard GMM suffers from a blind 
spot for exploiting the most effective instruments when these are obtained directly from 
unconditional rather than conditional moment assumptions. For instance, standard GMM 
counteracts that exogenous regressors are used as their own optimal instruments. This is 
easily seen after transmuting GMM for linear models into IV in terms of transformed 
variables. It is demonstrated that modified GMM (MGMM), exploiting straight-forward 
modifications of the instruments, can achieve substantial efficiency gains and bias reductions, 
even under mild heteroskedasticity. Feasible MGMM implementations and their standard er-
ror estimates are examined and compared with standard GMM and IV for a range of typical 
models for cross-section data, both by simulation and by empirical illustration. 
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1. Introduction

For over three decades GMM (generalized method of moments) excels as the generic
orthogonality conditions based optimal technique for semiparametric estimation. It sub-
sumes the majority of linear and nonlinear econometric estimators. Not starting off from
tight fully parametric distributional assumptions, consequently GMM may be surpassed
in effi ciency by other methods under more specific conditions, but — as a limited in-
formation technique —it has the attraction of exhibiting robustness over a wider set of
situations. Therefore, applications of GMM are numerous, especially for the analysis
of continuously varying dependent variables both in microeconometric studies of cross-
sectional or panel data models and in the macroeconometric analysis of time-series, in
particular when stationarity assumptions can be made.
The status of GMM seems undisputable and is warranted by its following achieve-

ment: when the variance matrix of the adopted moment functions can be estimated
consistently and these moment conditions imply a suffi cient number of instrumental
variables then the standard GMM technique of Hansen (1982) deals optimally with both
any nonsphericality of the disturbances and any overidentification, given the actual set
of instrumental variables that is being used. However, as discussed in Newey (1993)
and Arellano (2003a,b), this does not necessarily imply that the moment conditions as
such are being exploited optimally. The instrumental variables are usually obtained
directly from unconditional moment conditions, whereas actually more comprehensive
conditional moment conditions may hold. These allow to exploit as instruments also
non-trivial transformations of instrumental variables. We will show that especially in
models with heteroskedasticity this means that first transforming the model such that
its disturbances become homoskedastic leads to orthogonality conditions with respect
to these transformed disturbances from which much stronger instruments may emerge.
These will not only lead to reduced bias and variance, but also to a better correspon-
dence between actual distribution in finite samples and its asymptotic approximation.
This all supports a strategy for finding instrumental variables close to the original IV
(instrumental variables) approach suggested by Sargan (1958, 1959).1

For the sake of simplicity we will focus here on both unfeasible and feasible standard
and modified implementations of GMM just in linear models with heteroskedasticity.
However, the results will have obvious implications for more general models too. The
possibility to replace relatively weak instruments by stronger instruments is of great
interest, because weakness of instruments has serious consequences for inference. This
has been extensively investigated for more than two decades already (see Staiger and
Stock, 1997, and Andrews and Stock, 2007, and its references). However, this literature
is largely confined to IV or 2SLS (two-stage least-squares) estimation of linear models
with i.i.d. (independently and identically distributed) errors. It has not really been
extended yet to the case of GMM. Below, however, we show that for linear models
with nonspherical disturbances all aspects of GMM can in principle be understood in
terms of IV applied to a model with spherical disturbances in transformed variables.
Since in this transmutation the instruments are affected in a topsy-turvy manner, the
correspondence in linear regression between GMM and IV is less straight-forward than
in the similar but more basic case of GLS (generalized least-squares), which is equivalent

1For an overview which puts the IV and GMM approaches into historical perspective see Arellano
(2002) and for a monograph on GMM see Hall (2005).
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to OLS (ordinary least-squares) applied to transformed variables. We will demonstrate
that under heteroskedasticity the reverse transformation of the instruments in standard
GMM is detrimental for their strength. But, we will also show that this can easily be
prevented by implementing GMM in a modified way.
For the simple (though unrealistic) case of known heteroskedasticity the standard and

modified forms of GMM that we consider build on exactly the same moment conditions.
However, from these they extract different instrumental variables. To find out what the
major practical consequences are requires some well-designed simulation investigations.
When performing these we exploit the in practice unavailable optimal weighting matrix,
because our first interest is in finding out what the actual potential effi ciency gains are
of modified GMM. Next, we also focus on feasible implementations and learn that a
fully nonparametric implementation of our modified estimator is ineffective. However, a
parametric setup, where use is made of a proper specification of the determining factors
of the (conditional) heteroskedasticity, yields substantial effi ciency gains in comparison
with the unfeasible optimal standard GMM estimator. We find that under nonextreme
circumstances root mean squared errors may reduce by about 50%. In this context
the distinction between conditional and unconditional moment assumptions proves to
be crucial. Adopting just unconditional moment assumptions yields the standard in-
strumental variables. Assuming that conditional moment assumptions hold, allows to
transform the instruments by weights inspired by the skedastic function. When this can
be estimated consistently one can employ instruments which asymptotically attain the
effi ciency bound achieved by the unfeasible optimal instruments.
In this paper the focus is the (in)effi ciency of IV and of (modifications of) GMMunder

heteroskedasticity. A similar analysis regarding serial correlation (the major worry in
Sargan’s approach) is left for future research. Our analysis of possibilities to improve on
the effi ciency of the standard implementation of GMM under heteroskedasticity leads
to the conclusion that in practice one should aim to weigh observations first in order
to get as close to homoskedasticity as possible. Not before, but after that (as already
done by some researchers on sensible intuitive grounds), one should design a matrix of
instruments according to the adopted orthogonality conditions in terms of the weighted
variables. In any next GMM iterations the required transformation of variables should
have deliberate implications for the chosen transformation of the instruments. Similar
conclusions have been drawn at various places in the literature without explicit reference
to GMM, see Bowden and Turkington (1984), White (1986), Baltagi and Li (1992),
Wooldridge (2010 p.351, 2013 p.516) and Iglesias and Phillips (2012). Models with
endogenous regressors and heteroskedasticity have also been considered in another line
of research (for a recent contribution see the references in and the study by Hausman et
al., 2012), but there the purpose is not to improve estimator effi ciency, but to make the
variance estimates of suboptimal estimators robust in the presence of heteroskedasticity.
The structure of this study is as follows. In section 2 we show how GMM can be

interpreted in terms of transformed IV, which immediately demonstrates that in the
presence of heteroskedasticity it leads in principle to using unnecessarily weak instru-
ments. It also suggests an unfeasible alternative GMM estimator. Section 3 focusses on
obtaining optimal instruments and produces a parametric and a nonparametric feasible
implementation of a modified GMM estimator. It also discusses the estimation of the
variance of coeffi cient estimators. Section 4 presents a Monte Carlo design for a typi-
cal family of simultaneous heteroskedastic cross-section models followed in Section 5 by
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simulation results which demonstrate the huge potential effi ciency gains by modifying
GMM as well as the diffi culties to realize these by feasible implementations. In Section 6
alternative implementations of feasible GMM are applied to empirical data to illustrate
the practical consequences of the suggested modifications. Section 7 concludes.

2. GMM in linear models and its relation to IV

We consider n sample observations of the single linear regression model yi = x′iβ + εi
where i = 1, ..., n. This model can be written compactly as

y = Xβ + ε, (2.1)

where the n×K regressor matrix X = (x1 ... xn)′ is supposed to have full column rank.
Some regressors may be endogenous, hence possibly E(xiεi) 6= 0. Available are also L
variables zi which provide an identifying set of unconditional moment assumptions

E(ziεi) = 0, (2.2)

where Z = (z1 ... zn)′ is an n× L matrix of rank L ≥ K. Provided Z ′X has rank K the
IV (or 2SLS) estimator is given by

β̂IV = [X ′Z(Z ′Z)−1Z ′X]−1X ′Z(Z ′Z)−1Z ′y. (2.3)

By defining for any full column rank matrix A the projection matrix PA = A(A′A)−1A′

the expression for β̂IV can be condensed to (X ′PZX)−1X ′PZy, and even further, by de-
noting the fitted first-stage regression results as X̂ = PZX, to the so-called second-stage
OLS regression (X̂ ′X̂)−1X̂ ′y. The IV estimator is consistent and when εi ∼ iid(0, σ2ε)
has limiting distribution

n1/2(β̂IV − β)
d→ N(0, σ2ε plimn(X ′PZX)−1), (2.4)

provided suffi cient further regularity conditions hold.
If ε ∼ (0,Σ), with Σ a symmetric positive definite matrix, while (2.2) still holds,

then the preferred estimator of β is obtained by GMM, given by

β̂GMM = [X ′Z(Z ′ΩZ)−1Z ′X]−1X ′Z(Z ′ΩZ)−1Z ′y, (2.5)

where Ω can be any non-zero scalar multiple of Σ. It is convenient to define

Ω = Σ/σ2ε with σ
2
ε = tr(Σ)/n, so that tr(Ω) = n. (2.6)

The GMM estimator is optimal in the sense that in aiming to bring the L sample
moments n−1Z ′(y −Xβ̂GMM) jointly as closely as possible to zero, it weighs them in a
quadratic form in such a way that the variance of its limiting distribution

n1/2(β̂GMM − β)
d→ N(0, plimn[X ′Z(Z ′ΣZ)−1Z ′X]−1) (2.7)

is minimal in a matrix sense. GMM simplifies to IV when Σ = σ2εI or Ω = I.
In the special case L = K the matrix Z ′X is invertible and, irrespective of the value

of Ω, we obtain
β̂GMM = (Z ′X)−1Z ′y = β̂IV .
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Then all exploited moment conditions can be satisfied in the sample, so that the weight-
ing matrix has no effect, and therefore Ω cannot play a role in optimizing the es-
timator. Of course, it still affects the variance of its limiting distribution, which is
σ2ε plimn(Z ′X)−1Z ′ΩZ(X ′Z)−1 when L = K.
When the regressors are such that E(xiεi) = 0 they can all be used as instruments.

Then substituting X for Z we find, also when Ω 6= I,

β̂GMM = (X ′X)−1X ′y = β̂OLS. (2.8)

However, it is well know that in that case the optimal estimator is

β̂GLS = (X ′Ω−1X)−1X ′Ω−1y. (2.9)

Apparently, the optimality of GMM is not universal. We will clarify this disturbing
result2 below, but first we shall demonstrate that in linear models GMM is equivalent to
applying IV to a properly transformed model upon exploiting instruments which are also
subjected to a transformation related to —but different from —the model transformation.
It is well-known that the GLS estimator can be obtained by applying OLS to a

suitably transformed model. This purely algebraic result is demonstrated as follows.
Let Ω−1 = Ψ′Ψ, where Ψ has full rank but is generally non-unique. Premultiplication of
(2.1) by Ψ yields the transformed model

y∗ = X∗β + ε∗, (2.10)

where y∗ = Ψy, X∗ = ΨX and ε∗ = Ψε ∼ (0, σ2εΨΩΨ′) with ΨΩΨ′ = Ψ(Ψ′Ψ)−1Ψ′ = I.
Applying OLS to this transformed model yields

(X∗′X∗)−1X∗′y∗ = (X ′Ψ′ΨX)−1X ′Ψ′Ψy = β̂GLS.

Now consider estimating transformed model (2.10) by IV, while using the instruments

Z† = (Ψ′)−1Z. (2.11)

These are such that Z†′ε∗ = Z†′Ψε = Z ′ε, and thus they exploit still exactly the original
moment conditions. Because ε∗ ∼ (0, σ2εI) we may estimate the transformed model by
IV, which yields

(X∗′PZ†X
∗)−1X∗′PZ†y

∗ = [X ′Ψ′PZ†ΨX]−1X ′Ψ′PZ†Ψy = β̂GMM , (2.12)

where we used PZ† = (Ψ′)−1Z(Z ′ΩZ)−1Z ′Ψ−1. Hence, GMM corresponds algebraically
to applying IV to a "GLS-like" transformed model, exploiting instruments which are
transformed by a linear transformation which is actually the inverse of the transpose of
the model transformation.
Now consider the special case in which X∗ and ε∗ are such that E(x∗i ε

∗
i ) = 0. Of

course, then one should estimate the transformed model by OLS (which conforms to
using GLS in the untransformed model) and not by IV while using as instruments
X† = (Ψ′)−1X. However, the latter is what standard GMM prescribes and it conforms
to applying suboptimal OLS to the untransformed model. The handicap of standard

2Our clarification is less abstract than those presented by Davidson and MacKinnon (2004, p.358),
Cameron and Trivedi (2005, p.747) and Wooldridge (2010, p.542).
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GMM is that it lacks the flexibility to replace the instruments Z by Ω−1Z when these
happen to be valid3 too. The above demonstrates that we better should not decide upon
which variables to use as instruments by considering the regressors of the untransformed
model, but first do the transformation and next find appropriate (valid and as strong as
possible) instruments for the regressors of the transformed model. That this is also the
case in models with some endogenous regressors is illustrated by the following.
Assume that X = (X1 X2), where X1 contains K1 ≥ 0 exogenous regressors, and X2

contains K2 ≥ 0 possibly endogenous regressors, hence E(ε | X1) = 0 thus E(X ′1ε) = 0,
whereas E(X ′2ε) is unknown. Of course K = K1 + K2 > 0, so X1and X2 can be void,
but not both at the same time. We consider the case where K1 > 0. Because E(ε |
X1) = 0 implies E(ε∗ | X∗1 ) = E(Ψε | ΨX1) = 0 it is obvious that when estimating
the transformed model (2.10) by IV we should preferably include X∗1 in the matrix of
instruments. However, standard GMM would include X1 in the matrix of instruments
for the untransformed model, implying that X†1 = (Ψ′)−1X1 is a component of the
instrument matrix it employs to the transformed model. However, it is unlikely that
in the first-stage regression of X∗ on the instruments Z† = (X†1 Z

†
2) a perfect fit will

be realized for X∗1 , whereas this occurs when including X
∗
1 in the instrument set for

the transformed model. Standard GMM does not automatically use regressors which
are exogenous in the transformed model as instruments for estimating the transformed
model. The optimality of standard GMM is achieved over the sample moment conditions
expressed in terms of the chosen instruments Z. The above illustrates that effi ciency gains
seem possible by allowing to consider transformations of Z, by pre-multiplying Z with
an n × n matrix, as well. Of course, such transformations should still be in agreement
with the adopted population moment conditions.4

When Ω is diagonal, say Ω = diag(ω1, ..., ωn) with
∑n

i=1 ωi = n and all ωi > 0, then
the moment conditions E(ziεi) = 0 are equivalent with E(ziεi/ωi) = 0. Hence, a possible
modification of GMM is using instrument matrix Ω−1Z, rather than Z. This yields the
modified GMM estimator

β̂MGMM = [X ′Ω−1Z(Z ′Ω−1Z)−1Z ′Ω−1X]−1X ′Ω−1Z(Z ′Ω−1Z)−1Z ′Ω−1y (2.13)

with limiting distribution

n1/2(β̂MGMM − β)
d→ N(0, σ2ε plimn[X ′Ω−1Z(Z ′Ω−1Z)−1Z ′Ω−1X]−1). (2.14)

MGMM5 would be more effi cient than GMM when the difference between the matrices
plimn−1X∗′PZ∗X

∗ and plimn−1X∗′PZ†X
∗ is positive (semi-)definite. This seems likely

to occur, when Z is chosen deliberately (as is usually the case) such that it yields good
fits when regressing the columns of X on Z, because that should also lead to a similar
good fit when regressing X∗ on Z∗. The latter fit seems likely to be better than for the
regressions of the columns of X∗ on Z†, because here the weights applied to the rows of
the X∗ are the opposite of the weights applied to the corresponding rows of Z†.

3When we speak of a valid instrument this refers to the validity of the corresponding orthogonality
condition. The degree by which a (not necessarily valid) instrument is effective (or not) with respect
to achieving attractive estimator spread (and possibly also location) will always be addressed here by
instrument strength (or weakness).

4As is well-know, IV and GMM are invariant regarding transformations by post-multiplying Z by a
nonsingular L× L matrix. Here we are examining the effects of transformations by pre-multiplying Z.

5Bowden and Turkington (1984, p.69) consider this estimator, but suppose it to be of limited value.
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However, MGMM is likely to be worse than GMM when GMM is implemented in
a clever way by using instruments Ω−1Z for the untransformed model because then it
actually yields MGMM of (2.13), whereas substituting Ω−1Z for Z in MGMMwould now
involve IV estimation of the transformed model using the rather awkward instruments
Ω−3/2Z. This shows that the problem with GMM that we are highlighting here can
be avoided simply by employing GMM in a more sophisticated way than is standard,
namely by choosing the instruments less naively from the initially adopted moment
conditions and next adjusting them in the light of the established heteroskedasticity.
In the special case L = K, where the expression for the standard GMM estimator is
invariant with respect to Ω and simplifies to (Z ′X)−1Z ′y, the MGMM estimator yields
(Z ′Ω−1X)−1Z ′Ω−1y, which is effi cient when Z = X.
To use the above results on MGMM directly for inference on β would require that

the numerical values of all the elements of the matrix Ω are known, which is usually
not the case. In the next section we will aim at actual gains in effi ciency by designing
operational implementations of modifications of GMM in situations where the values of
the diagonal elements of Ω are unknown and all nondiagonal elements are zero. We will
examine both nonparametric and parametric approaches towards coping effi ciently with
heteroskedasticity and simultaneity jointly.

3. Optimality and effi ciency under heteroskedasticity

In (2.2) we made the L unconditional moment or orthogonality assumptions E(ziεi) = 0,
which suggest using instrumental variable matrix Z. But, from (2.2) it easily follows that
E(ziεi/ωi) = 0 too. Thus, assuming for the moment that Ω is known, using instrument
matrix Ω−1Z is possible too. For element zil of zi, where l ∈ {1, ..., L}, we would usually
also have E(z2ilεi) = 0. In fact, any nonlinear deterministic function of zil would in
principle provide an extra valid instrument, yielding an abundance of instruments. If
instead of (2.2), we could make the conditional moment assumption

E(εi|zi) = 0, (3.1)

then for all elements of zi unconditional moment assumptions of the form

E[g(zil)εi] = 0, l = 1, ..., L (3.2)

hold, where g(·) is a vector function of distinct scalar deterministic functions. The num-
ber of elements of vector g(zil) could be infinitely large. Conditional moment assumption
(3.1) implies (2.2), but not the other way around. Assumption (2.2) is weaker, but in
practice it is usually the case that when E(zilεi) = 0 holds, it is hard to find arguments
why unconditional moment conditions of the form (3.2) will not hold either. In other
words, when we have L valid instruments in Z, usually we can easily produce many
many more. However, not all of these will be very strong. We would like to be able to
assemble those which are optimal in some sense.
Newey (1993) and Arellano (2003a, Appendix B) address this issue in a setup, where

(yi, x
′
i, z
′
i) are i.i.d. and the conditional moment assumption E(yi− x′iβ|zi) = 0 is made.

Then the optimal instruments6 are shown to be given by the K × 1 vector

ḡ(zi) = E(xi|zi)/E(ε2i |zi). (3.3)

6see also Cameron and Trivedi (2005, p.188).
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The corresponding unfeasible optimal (UO) GMM estimator uses ḡ(zi) as instruments.
It has asymptotic variance

VUO = {E(xi|zi)[E(ε2i |zi)]−1E(x′i|zi)}−1 = E(ε2i |zi){ḡ(zi)ḡ(zi)
′}−1. (3.4)

Newey (1993) shows that this variance VUO is a lower bound for the asymptotic variance
of all IV/GMM estimators for the present model, exploiting (3.1). When the instruments
zi contain some exogenous elements of xi, so xi = (x′1i, x

′
2i)
′ and zi = (x′1i, z

′
2i)
′, then

E(x′i|zi) = (x′1i E(x′2i|zi)) ,

which indicates that the optimal instrument matrix should have a component propor-
tional to Ω−1X1, which vindicates our earlier more informal derivations.
The optimal instruments for the linear model under conditions E(εi|zi) = 0 are also

discussed in Davidson and MacKinnon (2004, Chapter 9) for dependent data. They show
that the matrix of optimal instruments is given by σ−2ε Ω−1X̄, where X̄ = (x̄1, · · · , x̄n)′

and x̄i is defined as E(xi|Ξi), where Ξi contains the set of all deterministic functions of
the elements of (zi, ..., z1). It easily follows that an expression for the asymptotic variance
of the GMM estimator using these optimal instruments is

σ2ε plimn(X̄ ′Ω−1X̄)−1,

which corresponds to (3.4). Since X̄ is not observable, Davidson and MacKinnon (2004,
p.361) suggest to use instruments Ω−1Z.When the span of X̄ is a subset of that of Z, the
GMM estimator using instruments Ω−1Z has the same asymptotic variance, implying
that Ω−1Z should be used as optimal instrument matrix. This estimator is only feasible
when Ω is known.
When Ω is unknown, we could — as in feasible GLS —parametrize the functional

form of the skedastic function, for instance as σi = σ2εωi = h(z′iγ), where σi and ωi
represent the i-th diagonal element of the matrix Σ and Ω respectively. From consistent
estimates σ̂i = h(z′iγ̂) a consistent estimate Σ̂ can be obtained. This enables to obtain as
an alternative for the unfeasible estimator (2.5), the standard feasible parametric GMM
estimator

β̂FpGMM = [X ′Z(Z ′Σ̂Z)−1Z ′X]−1X ′Z(Z ′Σ̂Z)−1Z ′y, (3.5)

and as an alternative to (2.13) the feasible parametric MGMM estimator, which uses
the instruments Σ̂−1Z to the untransformed model, and is given by

β̂FpMGMM = [X ′Σ̂−1Z(Z ′Σ̂−1Z)−1Z ′Σ̂−1X]−1X ′Σ̂−1Z(Z ′Σ̂−1Z)−1Z ′Σ̂−1y. (3.6)

Here E(ε2i ) = h(z′iγ) establishes a moment condition that is nonlinear in β, which could
be exploited directly when deriving a method of moments estimator. In our implemen-
tations, however, we use a simple 2-step procedure, in which γ̂ is obtained by regressing
h−1(ε̂2i ) on zi, where ε̂i = yi − x′iβ̂IV is consistent for the disturbance εi.
Alternatively, the case of unknown Ω can also be tackled nonparametrically. For

standard GMM and unspecified heteroskedasticity the most basic feasible procedure,
which is asymptotically equivalent to unfeasible GMM, is another 2-step procedure.
Here the IV residuals ε̂i are used to obtain a consistent estimator for Z ′ΣZ/n by Ŝzz =
n−1

∑n
i=1 ε̂

2
i ziz

′
i and the second step is

β̂FnpGMM = [X ′ZŜ−1zz Z
′X]−1X ′ZŜ−1zz Z

′y. (3.7)
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Inspired by this, a 2-step feasible nonparametric MGMM estimator can be calculated
on the basis of

β̂FnpMGMM = [Q̂′zxQ̂
−1
zz Q̂zx]

−1Q̂′zxQ̂
−1
zz Q̂zy, (3.8)

where Q̂zz = n−1
∑n

i=1 ε̂
−2
i ziz

′
i, Q̂zx = n−1

∑n
i=1 ε̂

−2
i zix

′
i and Q̂zy = n−1

∑n
i=1 ε̂

−2
i ziyi.

However, this does not seem a good idea. Note that

β̂FnpMGMM = β + [Q̂′zxQ̂
−1
zz Q̂zx]

−1Q̂′zxQ̂
−1
zz (n−1Σiε̂

−2
i ziεi).

Since the residuals ε̂i will converge to the disturbances εi, we have plimn−1Σiε̂
−2
i ziεi =

plimn−1Σiε
−2
i ziεi = plimn−1Σizi/εi, where the latter does not converge to a fixed value

and hence not to zero, because zi/εi has no finite moments. Moreover, Q̂zz and Q̂zx

are problematic too, because their probability limits differ from plimn−1Z ′Σ−1Z and
plimn−1Z ′Σ−1X, because E(1/ε2i ) does not exist either and thus differs from 1/σi. How-
ever, from our simulations it seems that nevertheless β̂FnpMGMM is consistent and as-
ymptotically normal, whereas n[Q̂′zxQ̂

−1
zz Q̂zx]

−1 is not consistent for V ar(β̂FnpMGMM).
These diffi culties are similar to those regarding nonparametric feasible GLS7, for which
n−1X ′Σ−1X cannot be consistently estimated by Q̂xx = n−1Σiε̂

−2
i xix

′
i. Newey (1993)

discusses how the assessment of asymptotically optimal instruments Ω−1Z should be
approached in a nonparametric context.
In the simulations to follow, we will focus on the relatively simple case of het-

eroskedasticity in cross-sections. Typical time-series applications, where Ω may be
nondiagonal and where the non-endogenous regressors and the instruments may not
be strictly exogenous but just predetermined, require a more subtle approach. First,
we examine standard GMM and its modification MGMM for the unrealistic situation
that Ω is supposed to be known. Exploiting the true value of Ω will disclose what the
potential differences will be between the for practitioners more interesting feasible im-
plementations. Next, we examine what the actual losses are in terms of RMSE (root
mean squared error) when Ω is assessed in the particular parametric or nonparametric
implementations described above. We will also make comparisons with IV, and with the
under simultaneity inconsistent estimators OLS, WLS (the special form of GLS when Ω
is diagonal), FpWLS (given by (X ′Σ̂−1X)−1X ′Σ̂−1y) and FnpWLS (given by Q̂−1xx Q̂xy).
In addition to comparing bias, actual standard deviation, and root mean squared

error, we will examine also how well the various estimators are able to assess their actual
effi ciency, by examining the bias in the estimates provided by the standard expressions
for their standard errors. These calculations will be based on square roots of the diagonal
elements of the following list of variance estimators8:

7See ET Exercise 04.1.2 posed by Wansbeek (2004).
8As indicated above, the two variance estimates of this list involving Q̂-type assessments are pretty

naive. Also, V̂ ar(β̂IV ) is improper in case Ω 6= I, but a parametric and a nonparametric robustification
for this variance are provided by V̂ arp(β̂IV ) and V̂ arnp(β̂IV ).
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V̂ ar(β̂GMM) = σ̂2ε[X
′Z(Z ′ΩZ)−1Z ′X]−1, σ̂2ε = (y −Xβ̂GMM)′(y −Xβ̂GMM)/n

V̂ ar(β̂FpGMM) = [X ′Z(Z ′Σ̂Z)−1Z ′X]−1, σ̂i = h(z′iγ̂)

V̂ ar(β̂FnpGMM) = n[X ′ZŜ−1zz Z
′X]−1

V̂ ar(β̂MGMM) = σ̂2ε[X
∗′PZ∗X

∗]−1, σ̂2ε = (y∗ −X∗β̂MGMM)′(y∗ −X∗β̂MGMM)/n

V̂ ar(β̂FpMGMM) = [X ′Σ̂−1Z(Z ′Σ̂−1Z)−1Z ′Σ̂−1X]−1, σ̂i = h(z′iγ̂)

V̂ ar(β̂FnpMGMM) = n−1[Q̂′zxQ̂
−1
zz Q̂zx]

−1

V̂ ar(β̂IV ) = σ̂2ε[X
′PZX]−1, σ̂2ε = (y −Xβ̂IV )′(y −Xβ̂IV )/n

V̂ arp(β̂IV ) = [X ′PZX]−1X ′PZΣ̂PZX[X ′PZX]−1, σ̂i = h(z′iγ̂)

V̂ arnp(β̂IV ) = n[X ′PZX]−1X ′Z(Z ′Z)−1Ŝzz(Z
′Z)−1Z ′X[X ′PZX]−1

V̂ ar(β̂FnpWLS) = n−1Q̂−1xx , Q̂xx = n−1
∑n

ι=1 ε̂
−2
i xix

′
i, ε̂i = yi − x′iβ̂IV

Of course, for accurate inference in the form of tests or confidence intervals further
aspects are relevant as well, but a relatively small bias in both the estimates of coeffi cients
and in their estimated standard deviations (standard errors) seem of primary concern,
on top of the actual relative magnitude of the RMSE.

4. Simulation design for a heteroskedastic cross-section model

We shall design a data generating process (DGP) in which we can easily change the
seriousness and characteristics of the heteroskedasticity, the degree of simultaneity, the
strength of the instruments, the significance of individual regressors and the general fit
of the relationship. To assure that the first two moments of IV estimators exist we
choose the degree of overidentification to be 2. In the DGP we allow for the presence
of an intercept, another exogenous regressor and one possibly endogenous regressor,
hence K1 = 2, K2 = 1 and K = 3. The two exogenous regressors, which are also
used as instruments (L1 = K1), are xi1 = 1 and xi2 ∼ iidN(0, 1); the three external
instruments (L2 = 3) are generated too as mutually independent zij ∼ iidN(0, 1) for
j = 3, 4, 5; i = 1, ..., n. Of course, the two endogenous variables xi3 and yi, and the
pattern of the heteroskedasticity (ω1, ..., ωn) in the disturbances εi, where the ωi are
the diagonal elements of Ω, have to be designed such that these seem very realistic for
typical cross-section applications.
The structural form equation will be generated as

yi = β1 + β2xi2 + β3xi3 + εi (4.1)

and the reduced form equation for xi3 by

xi3 = π31 + π32xi2 + π33zi3 + π34zi4 + π35zi5 + vi, (4.2)

where

vi = σvω
1/2
i v◦i , with v

◦
i ∼ iidN(0, 1), (4.3)

εi = σεω
1/2
i

[
ρv◦i + (1− ρ2)1/2ε◦i

]
, with ε◦i ∼ iidN(0, 1). (4.4)

Hence, the reduced form disturbances vi ∼ N(0, σ2vωi) and the structural equation dis-
turbances εi ∼ N(0, σ2εωi) are affected by the same heteroskedasticity pattern. Parame-
ter ρ ∈ (−1,+1) is the correlation coeffi cient of εi and vi and expresses the degree of
simultaneity.
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Using n−1
∑n

i=1E(v2i ) = σ2vn
−1∑n

i=1 ωi = σ2v, the joint strength of the three external
instruments is determined by the scaled concentration parameter inspired scalar quantity

µ2 =
n

3

π233 + π234 + π235
σ2v

, (4.5)

which implies V ar(xi3) = π232 +σ2v(3µ
2/n+ωi). All the external instruments and exoge-

nous regressor xi2 have normalized variance unity. Thus, treating endogenous regressor
xi3 similarly requires π232 + σ2v(3µ

2/n+ 1) = 1. Therefore we will choose

σ2v =
1− π232

3µ2/n+ 1
. (4.6)

Note that π232 < 1, since π32 is the correlation coeffi cient determining the multicollinear-
ity between the structural form regressors xi2 and xi3. To have all three external instru-
ments equally weak or strong, we should take

π33 = π34 = π35 = |µσv| /
√
n. (4.7)

The heteroskedasticity pattern will follow a so-called multiplicative form determined
by the iidN(0, 1) series xi2 and zi3 (hence by one internal and one external instru-
ment), but could be driven by another in practice unobserved independent variable
η◦i ∼ iidN(0, 1) as well. A parameter φ ≥ 0 determines the seriousness of the het-
eroskedasticity, where φ = 0 implies homoskedasticity. When φ > 0 a parameter λ,
with 0 ≤ λ ≤ 1, determines the relative importance of the observed variables (xi2 and
zi3) and the unobserved variable (η◦i ) regarding the heteroskedasticity. And, if λ > 0, a
parameter κ, with 0 ≤ κ ≤ 1, determines the relative importance of xi2 and zi3 regarding
any heteroskedasticity. This is achieved by generating the variable

gi = −φ2/2 + φ{λ1/2[κ1/2xi2 + (1− κ)1/2zi3] + (1− λ)1/2η◦i } ∼ iidN(−φ2/2, φ2), (4.8)

and taking
ωi = exp(gi), (4.9)

which follows a lognormal distribution with E(ωi) = 1 and V ar(ωi) = exp(φ2)−1. Since
about 99% of the drawings gi will be in the interval [−φ2/2−2.58φ,−φ2/2+2.58φ], also
99% of the drawings ωi will fall in the interval

[exp(−φ2/2− 2.58φ), exp(−φ2/2 + 2.58φ)]. (4.10)

Table 4.1 presents the bounds of these intervals, both for ωi and for ω
1/2
i , for particular

values of φ. From these we learn that φ ≥ 1 implies pretty serious heteroskedasticity,
whereas we may qualify it mild when φ < 0.3, say.
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Table 4.1 Heteroskedasticity for different values of φ
φ bounds of 99% intervals

ω
1/2
i ωi

0.2 0.76 1.28 0.59 1.64
0.4 0.57 1.61 0.33 2.59
0.6 0.42 1.98 0.18 3.93
0.8 0.30 2.39 0.09 5.72
1.0 0.21 2.83 0.05 8.00
1.2 0.15 3.28 0.02 10.76
1.4 0.10 3.73 0.01 13.90
1.6 0.07 4.15 0.00 17.25

The design defined above, with the deliberate choices (4.6) and (4.7), has yet, apart
from the sample size n, 11 free parameters, namely: β1, β2, β3 and σε; ρ, π31, π32 and µ

2;
and φ, λ and κ. For all the estimation techniques to be examined their estimation errors
are invariant with respect to β. For instance, β̂OLS − β = (X ′X)−1X ′ε and β̂IV − β =
(X ′PZX)−1X ′PZε, etc. Therefore, the bias, variance and mean squared errors of the
coeffi cient estimates will for all techniques be invariant with respect to β too. So, from
that point of view we may choose any values for the structural coeffi cients. However,
since the estimation errors do depend on ε and hence on σε, by imposing the habitual
normalization σε = 1, the magnitude of the estimation errors will be affected and thus
the findings for the bias, variance and mean squared errors too. This is of less concern,
though, when we focus on the relative magnitude of the estimation errors for the different
techniques to be examined. Moreover, we can choose values for β2 and β3 such that, in
combination with σε = 1, values (averaged over all replications) for t and F tests or for
R2 are found which are not uncommon in cross-section regression analysis. A loosely
defined population coeffi cient of determination for simultaneous heteroskedastic model
(4.1) is given by

R2p = 1−
∑n

i=1 V ar(εi)∑n
i=1[V ar(β2xi2 + β3xi3) + V ar(εi)]

= 1− 1

β22 + 2β2β3π32 + β23 + 1
. (4.11)

Taking equal values for the two slope coeffi cients then yields

β22 = β23 = R2p/[2(1−R2p)(1 + π32)].

For 0.1 ≤ R2p ≤ 0.2 and 0 ≤ π32 ≤ 0.8 this implies positive solutions in the range
0.18 ≤ β2 = β3 ≤ 0.35. What we will do is simply take β2 = β3 = 0.25 and monitor
averages of statistics over all the replications of the Monte Carlo which monitor the
practical relevance of the cases examined. These cases take particular combinations
from the grid given in Table 4.2. Choosing β1 = 0 and π31 = 0, but incorporating
the intercept always in the model and in the matrix of instruments, will not affect the
findings regarding inference on β2 and β3.

Table 4.2 Grid of design parameter values in the simulation
n = {50, 200}
β1 = 0 β2 = 0.25 β3 = 0.25 σε = 1
ρ = {0.1, 0.5} π31 = 0 π32 = {0, 0.8} µ2 = {2, 10, 50}
φ = {0.5, 1} λ = {0, 0.2, 0.5, 1} κ = {0.2, 0.5, 0.8}
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In the tables in the next section with results on the various estimators we limit the
analysis to just 12 different cases as defined in Table 4.3. This table also presents the
value of σv that results according to (4.6). The final two columns contain the average
(with standard deviation between parentheses) over all replications of the standard OLS
R2 statistic (thus neglecting the simultaneity and any heteroskedasticity) in the struc-
tural model (4.1) and of the F3,n−L test statistic on the joint significance of the external
instruments in the reduced form equation (4.2) when estimated by OLS (thus again
neglecting any heteroskedasticity). Both measures have their drawbacks, but they are
only used here to give a rough impression of major characteristics of the DGPs, namely
their fit and the strength of the external instruments. Note that there is a reasonable
correspondence between the values of µ2 and the average F3,n−L statistic. Due to the
inconsistency of OLS results in the structural model, only in case E (where the simul-
taneity is very mild) the average R2 statistic is in the range of the aimed at R2p value.
In the next section further evidence will be discussed regarding the empirical relevance
of the chosen designs.

Table 4.3 Examined cases of design parameter value combinations, and results
on σv, R2 and F3,n−L (β1 = 0, β2 = β3 = 0.25, σε = 1, π31 = 0)

Case n ρ π32 µ2 φ λ κ σv R2 F3,n−L
A 200 0.5 0 50 1 1 0.5 0.76 0.35 (0.07) 52.56 (13.36)
B 200 0.5 0 10 1 1 0.5 0.93 0.43 (0.08) 11.47 (4.61)
C 200 0.5 0 2 1 1 0.5 0.99 0.45 (0.08) 3.24 (2.10)
D 200 0.5 0 10 0.5 1 0.5 0.93 0.43 (0.06) 11.16 (4.21)
E 200 0.1 0 10 1 1 0.5 0.93 0.17 (0.07) 11.47 (4.61)
F 200 0.5 0.8 10 1 1 0.5 0.56 0.43 (0.07) 11.47 (4.61)
G 200 0.5 0 10 1 1 0.2 0.93 0.43 (0.08) 11.58 (4.77)
H 200 0.5 0 10 1 1 0.8 0.93 0.43 (0.08) 11.35 (4.44)
I 50 0.5 0 10 1 1 0.5 0.79 0.39 (0.14) 11.92 (6.01)
J 200 0.5 0 10 1 0.5 0.5 0.93 0.43 (0.07) 11.27 (4.35)
K 200 0.5 0 10 1 0.2 0.5 0.93 0.43 (0.06) 11.16 (4.21)
L 200 0.5 0 10 1 0 0.5 0.93 0.43 (0.05) 11.07 (4.11)

The simulation estimates are obtained from 10,000 Monte Carlo replications. In each
replication new independent realizations have been drawn for ε◦i , xi2, zi3, zi4, zi5, v

◦
i and

η◦i , so the Monte Carlo averages estimate unconditional moments.
9

5. Simulation results

In Table 5.1 we collect results for the cases A, B and C. They all concern the larger sample
size, have serious heteroskedasticity, substantial simultaneity, and no multicollinearity
between xi2 and xi3. These three cases just differ in the strength of the three external
instruments, as can be seen from Table 4.3.

9Advantages and disadvantages of conditioning or not on exogenous variables in simulation experi-
ments are discussed in Kiviet (2012).
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Because the regressors x2 and x3 are uncorrelated it can easily be derived that even
the inconsistent coeffi cient vector estimators (all the least-squares variants) yield a con-
sistent estimator for element β2, the coeffi cient of the exogenous regressor x2. So, it
should not surprise that all estimators produce almost unbiased results for β2, also
when instruments are weak. Regarding β3 it are only the consistent estimators that
have moderate bias, provided the instruments are not weak. However, also FnpWLS
performs surprisingly well for non-weak instruments. For the weak instrument case C
also the consistent estimators of β3 show substantial bias, in particular IV and those
based on standard GMM. The most remarkable result, however, is that the MGMM and
FpMGMM estimators are substantially more effi cient than standard GMM. In these
three cases they reduce the RMSE by about 40 or 50%, irrespective of the strength of
the instruments, as can be seen easily from the rrmse (relative RMSE) columns which
presents the RMSE divided by that of unfeasible standard GMM.
Further note that both the parametric and the nonparametric feasible implemen-

tations of standard GMM are very close to the unfeasible estimator. That the latter
does not use optimal instruments is evident from the unfeasible MGMM results. Also
the parametric feasible version of MGMM works well, but the nonparametric imple-
mentation does not improve on standard GMM. It is also noteworthy that we find that
standard GMM is in fact not all that much better than IV, illustrating that the effi ciency
gain due to taking Ω into account is largely offset by the fact that the instruments used
by the standard implementation of GMM are weaker than those used by IV. This weak-
ening is prevented by MGMM through weighing the instruments by the same weights as
used for the variables in the transformed model, inducing remarkable reductions both in
bias and standard deviation. Another interesting finding from Table 5.1 is that on the
basis of their RMSE the inconsistent estimators often outperform consistent GMM and
occasionally even MGMM (just for β2). This is in line with results reported on OLS
and IV in Kiviet (2013): weakness of instruments is often more detrimental to estimator
accuracy than invalidity of instruments. Therefore, when the instruments are weak, Fp-
WLS is found to be substantially better than unfeasible GMM. Despite its bias due to
its inconsistency, its standard deviation is smaller due to using strong (though invalid)
instruments, whereas consistent GMM has nevertheless substantial bias and standard
deviations, due to the weakness of its instruments.
Regarding the empirical relevance of the models examined in cases A, B and C it is

useful to examine the quantities β2/sd(β̂2) and β3/sd(β̂3) for the different techniques.
This ratio has correspondences with the inverse of the coeffi cient of variation and with
a stylized t-ratio. For case A it is found to be in the range (2.12, 5.43), for case B in the
range (1.19, 5.68) and for C in (0.45, 6.25). Note that in case C the estimators based on
external weak instruments have for the estimate of β3 such a large standard deviation
in comparison to the true coeffi cient value of 0.25 that they do not enable to produce
very useful inference. And, although OLS and especially WLS have quite a reasonable
dispersion here, they are nevertheless unfit for producing informative inference too, due
to their huge bias, which is about twice the true value of the estimated coeffi cient.
However, in case A values for the true standard deviation are found which, assuming
that in practice these could be estimated accurately (to be examined at the end of this
section), would enable to construct confidence intervals of a relative width not uncommon
in practice.
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Table 5.1 Simulation results on coeffi cient estimates for cases A, B and C
β2 β3

Case bias st.dv rmse rrmse bias st.dv rmse rrmse
A: GMM 0.002 0.081 0.081 1.000 0.005 0.115 0.115 1.000

FpGMM 0.002 0.082 0.082 1.005 0.005 0.115 0.115 1.003
FnpGMM 0.002 0.081 0.081 0.998 0.005 0.114 0.114 0.999
MGMM 0.001 0.045 0.045 0.551 0.002 0.068 0.068 0.590
FpMGMM 0.001 0.047 0.047 0.572 0.002 0.070 0.070 0.610
FnpMGMM 0.001 0.085 0.085 1.040 0.005 0.117 0.117 1.021
IV 0.001 0.086 0.086 1.051 0.005 0.118 0.118 1.027
OLS 0.001 0.078 0.078 0.958 0.375 0.091 0.386 3.366
WLS 0.003 0.046 0.046 0.565 0.225 0.058 0.232 2.028
FpWLS 0.003 0.047 0.047 0.581 0.228 0.062 0.237 2.064
FnpWLS 0.001 0.085 0.085 1.038 0.010 0.116 0.116 1.015

B: GMM 0.002 0.082 0.082 1.000 0.020 0.211 0.212 1.000
FpGMM 0.002 0.082 0.083 1.005 0.020 0.211 0.212 1.003
FnpGMM 0.002 0.082 0.082 0.999 0.020 0.211 0.212 1.001
MGMM 0.001 0.045 0.045 0.547 0.007 0.123 0.123 0.582
FpMGMM 0.001 0.047 0.047 0.568 0.008 0.127 0.127 0.602
FnpMGMM -0.000 0.085 0.085 1.037 0.022 0.214 0.215 1.017
IV -0.000 0.086 0.086 1.048 0.022 0.215 0.216 1.022
OLS 0.001 0.075 0.075 0.912 0.465 0.095 0.474 2.243
WLS 0.003 0.044 0.044 0.532 0.386 0.062 0.390 1.846
FpWLS 0.003 0.045 0.045 0.546 0.385 0.064 0.390 1.845
FnpWLS 0.000 0.085 0.085 1.032 0.030 0.209 0.212 1.000

C: GMM 0.005 0.089 0.089 1.000 0.117 0.528 0.541 1.000
FpGMM 0.004 0.089 0.089 1.005 0.117 0.531 0.544 1.006
FnpGMM 0.004 0.091 0.091 1.018 0.118 0.553 0.566 1.046
MGMM 0.001 0.046 0.046 0.512 0.037 0.268 0.271 0.500
FpMGMM 0.001 0.047 0.047 0.529 0.040 0.276 0.279 0.516
FnpMGMM 0.001 0.091 0.091 1.025 0.124 0.529 0.543 1.004
IV 0.001 0.091 0.091 1.028 0.124 0.528 0.542 1.002
OLS 0.001 0.074 0.074 0.829 0.492 0.097 0.502 0.928
WLS 0.002 0.040 0.040 0.454 0.471 0.062 0.475 0.878
FpWLS 0.002 0.042 0.042 0.470 0.468 0.064 0.473 0.874
FnpWLS 0.001 0.087 0.087 0.973 0.133 0.442 0.461 0.853

In all the further cases to be examined, we shall keep µ2 = 10, so the instruments
are not very weak, but certainly not strong. Thus, from now on, case B should be
considered the reference case. Case D in Table 5.2 is similar to case B, apart from the
seriousness of the heteroskedasticity. We see that φ = 0.5 leads to similar though more
moderate relative differences, with effi ciency gains by MGMM still around 15%. All
remaining cases have φ = 1 again. Table 5.2 also contains cases E and F. In case E
the simultaneity is mild. This is seen to have no effects on the relative performance of
MGMM, but now the inconsistent estimators have minor bias for both coeffi cients and
therefore they have better RMSE (except FnpWLS). Case F differs from B just regarding
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the occurrence of substantial multicollinearity between xi2 and xi3, which reduces the
value of σv. Note that the rrmse results on β3 are invariant regarding π23, but not those
for β2. The least-squares based estimators for β2 are now inconsistent too. All standard
deviations are much higher and the bias in estimates for β3 infects the estimates of β2
with bias. As before, MGMM and FpMGMM perform best, whereas again FnpWLS
remarkably keeps pace with FnpGMM.

Table 5.2 Simulation results on coeffi cient estimates for cases D, E and F
β2 β3

Case bias st.dv rmse rrmse bias st.dv rmse rrmse
D: GMM 0.002 0.075 0.075 1.000 0.019 0.204 0.205 1.000

FpGMM 0.002 0.075 0.075 1.001 0.019 0.204 0.205 1.000
FnpGMM 0.001 0.075 0.075 1.007 0.019 0.206 0.207 1.009
MGMM 0.001 0.063 0.063 0.844 0.014 0.176 0.177 0.863
FpMGMM 0.001 0.065 0.065 0.872 0.015 0.182 0.182 0.888
FnpMGMM 0.001 0.076 0.076 1.011 0.019 0.206 0.207 1.007
IV 0.001 0.075 0.075 1.006 0.019 0.205 0.206 1.003
OLS 0.001 0.066 0.066 0.883 0.466 0.070 0.471 2.297
WLS 0.001 0.057 0.057 0.757 0.450 0.063 0.455 2.217
FpWLS 0.001 0.059 0.059 0.783 0.444 0.064 0.449 2.188
FnpWLS 0.001 0.075 0.075 1.003 0.028 0.200 0.202 0.983

E: GMM 0.001 0.083 0.083 1.000 0.003 0.211 0.211 1.000
FpGMM 0.001 0.083 0.083 1.007 0.003 0.211 0.211 1.003
FnpGMM 0.001 0.083 0.083 1.000 0.002 0.211 0.211 1.000
MGMM 0.001 0.045 0.045 0.547 0.002 0.124 0.124 0.589
FpMGMM 0.001 0.047 0.047 0.568 0.002 0.128 0.128 0.607
FnpMGMM 0.000 0.086 0.086 1.040 0.003 0.215 0.215 1.020
IV 0.000 0.087 0.087 1.051 0.003 0.216 0.216 1.023
OLS 0.001 0.085 0.085 1.021 0.093 0.108 0.143 0.677
WLS 0.001 0.045 0.045 0.541 0.078 0.065 0.101 0.479
FpWLS 0.001 0.047 0.047 0.562 0.077 0.067 0.102 0.485
FnpWLS 0.000 0.086 0.086 1.038 0.004 0.212 0.212 1.007

F: GMM -0.024 0.280 0.281 1.000 0.034 0.351 0.353 1.000
FpGMM -0.025 0.281 0.282 1.002 0.034 0.352 0.354 1.003
FnpGMM -0.024 0.280 0.281 0.999 0.033 0.351 0.353 1.001
MGMM -0.009 0.169 0.170 0.603 0.012 0.205 0.205 0.582
FpMGMM -0.010 0.175 0.176 0.624 0.013 0.212 0.212 0.602
FnpMGMM -0.029 0.282 0.284 1.009 0.037 0.357 0.358 1.017
IV -0.029 0.284 0.285 1.014 0.036 0.359 0.360 1.022
OLS -0.619 0.145 0.636 2.259 0.775 0.159 0.791 2.243
WLS -0.511 0.092 0.520 1.847 0.643 0.103 0.651 1.846
FpWLS -0.510 0.095 0.519 1.845 0.641 0.107 0.650 1.845
FnpWLS -0.039 0.277 0.279 0.993 0.049 0.349 0.353 1.000

Cases G and H in Table 5.3 differ from B only in κ, so in whether either xi2 or zi3 is
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the major source of the heteroskedasticity. The effects of κ are found to be moderate and
both cases again show spectacular effi ciency gains by (feasible parametric) MGMM. The
only difference between cases I and B is the smaller sample size. This clearly mitigates
the gains by MGMM over standard GMM, but they are still around 30%. We also note
that dividing the sample size by a factor 4 doubles about the standard deviation of the
estimators of the coeffi cient of the exogenous regressor when it is uncorrelated with the
endogenous regressor, but the effect on the standard deviation of the coeffi cient estimate
regarding the endogenous regressor is less mechanic for most techniques.

Table 5.3 Simulation results on coeffi cient estimates for cases G, H and I
β2 β3

Case bias st.dv rmse rrmse bias st.dv rmse rrmse
G: GMM 0.002 0.075 0.075 1.000 0.021 0.215 0.216 1.000

FpGMM 0.002 0.075 0.075 1.002 0.021 0.216 0.217 1.004
FnpGMM 0.002 0.075 0.075 0.998 0.021 0.215 0.216 1.001
MGMM 0.001 0.044 0.044 0.594 0.007 0.123 0.123 0.571
FpMGMM 0.001 0.046 0.046 0.613 0.008 0.127 0.127 0.588
FnpMGMM 0.000 0.077 0.077 1.027 0.024 0.222 0.223 1.033
IV 0.000 0.077 0.077 1.035 0.024 0.223 0.224 1.039
OLS 0.001 0.068 0.068 0.904 0.465 0.096 0.475 2.199
WLS 0.002 0.043 0.043 0.572 0.386 0.063 0.391 1.810
FpWLS 0.002 0.044 0.044 0.586 0.385 0.065 0.390 1.807
FnpWLS 0.000 0.076 0.076 1.021 0.031 0.217 0.220 1.018

H: GMM 0.002 0.091 0.091 1.000 0.019 0.204 0.205 1.000
FpGMM 0.002 0.091 0.091 1.006 0.019 0.205 0.205 1.002
FnpGMM 0.002 0.091 0.091 0.998 0.019 0.204 0.205 1.001
MGMM 0.001 0.045 0.045 0.500 0.007 0.123 0.123 0.601
FpMGMM 0.001 0.047 0.047 0.522 0.008 0.127 0.127 0.621
FnpMGMM 0.000 0.093 0.093 1.023 0.020 0.206 0.207 1.009
IV 0.000 0.094 0.094 1.036 0.020 0.206 0.207 1.010
OLS 0.001 0.081 0.081 0.897 0.465 0.095 0.474 2.315
WLS 0.002 0.044 0.044 0.489 0.385 0.061 0.390 1.903
FpWLS 0.002 0.046 0.046 0.504 0.385 0.064 0.390 1.903
FnpWLS 0.000 0.092 0.092 1.017 0.028 0.201 0.203 0.989

I: GMM -0.002 0.165 0.165 1.000 0.027 0.247 0.248 1.000
FpGMM -0.003 0.168 0.168 1.018 0.027 0.250 0.252 1.012
FnpGMM -0.003 0.168 0.168 1.014 0.027 0.250 0.251 1.010
MGMM -0.002 0.101 0.101 0.610 0.010 0.162 0.162 0.652
FpMGMM -0.003 0.116 0.116 0.701 0.013 0.180 0.180 0.725
FnpMGMM -0.007 0.171 0.172 1.038 0.028 0.253 0.255 1.026
IV -0.008 0.177 0.177 1.072 0.029 0.258 0.260 1.044
OLS -0.004 0.157 0.158 0.953 0.390 0.176 0.428 1.721
WLS 0.004 0.099 0.099 0.597 0.262 0.122 0.289 1.163
FpWLS 0.002 0.110 0.110 0.668 0.267 0.134 0.299 1.204
FnpWLS -0.007 0.170 0.170 1.028 0.048 0.241 0.245 0.988
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Table 5.4 Simulation results on coeffi cient estimates for cases J, K and L
β2 β3

Case bias st.dv rmse rrmse bias st.dv rmse rrmse
J: GMM 0.002 0.078 0.078 1.000 0.020 0.207 0.207 1.000

FpGMM 0.002 0.078 0.078 1.002 0.019 0.207 0.208 1.002
FnpGMM 0.002 0.078 0.078 1.005 0.019 0.208 0.209 1.007
MGMM 0.001 0.055 0.055 0.708 0.011 0.153 0.153 0.740
FpMGMM 0.001 0.058 0.058 0.750 0.012 0.160 0.161 0.776
FnpMGMM 0.001 0.079 0.079 1.015 0.020 0.208 0.209 1.009
IV 0.001 0.079 0.079 1.017 0.020 0.208 0.209 1.008
OLS 0.001 0.069 0.069 0.889 0.465 0.079 0.472 2.276
WLS 0.002 0.051 0.051 0.652 0.428 0.062 0.433 2.085
FpWLS 0.002 0.053 0.053 0.686 0.426 0.065 0.431 2.079
FnpWLS 0.001 0.078 0.078 1.009 0.028 0.203 0.205 0.988

K: GMM 0.002 0.074 0.074 1.000 0.019 0.203 0.204 1.000
FpGMM 0.001 0.074 0.074 1.001 0.019 0.203 0.204 1.001
FnpGMM 0.001 0.075 0.075 1.007 0.019 0.205 0.206 1.010
MGMM 0.001 0.063 0.063 0.843 0.014 0.176 0.176 0.863
FpMGMM 0.001 0.067 0.067 0.902 0.016 0.186 0.187 0.914
FnpMGMM 0.001 0.075 0.075 1.009 0.019 0.204 0.205 1.004
IV 0.001 0.074 0.074 1.004 0.019 0.204 0.205 1.003
OLS 0.001 0.065 0.065 0.880 0.466 0.071 0.471 2.309
WLS 0.001 0.056 0.056 0.757 0.449 0.063 0.454 2.223
FpWLS 0.001 0.060 0.060 0.805 0.447 0.066 0.452 2.216
FnpWLS 0.001 0.074 0.074 1.001 0.027 0.198 0.200 0.982

L: GMM 0.001 0.071 0.071 1.000 0.018 0.200 0.201 1.000
FpGMM 0.001 0.071 0.071 1.000 0.018 0.201 0.201 1.001
FnpGMM 0.001 0.072 0.072 1.007 0.018 0.203 0.204 1.012
MGMM 0.001 0.068 0.068 0.957 0.017 0.193 0.194 0.962
FpMGMM 0.001 0.074 0.074 1.035 0.018 0.207 0.207 1.030
FnpMGMM 0.001 0.072 0.072 1.007 0.019 0.201 0.202 1.005
IV 0.001 0.071 0.071 1.000 0.018 0.201 0.201 1.001
OLS 0.001 0.063 0.063 0.879 0.466 0.065 0.471 2.339
WLS 0.001 0.060 0.060 0.847 0.461 0.063 0.466 2.314
FpWLS 0.001 0.065 0.065 0.910 0.459 0.067 0.464 2.307
FnpWLS 0.001 0.071 0.071 1.000 0.027 0.196 0.198 0.983

In Table 5.4 we examine cases that differ from B only in that 0 ≤ λ < 1, hence the
heteroskedasticity does also depend now on a factor that one cannot capture in a feasible
parametric technique. In case J λ = 0.5, in K it is 0.2 and λ = 0 in case L. In the latter
case, where the heteroskedasticity is not related to any of the instruments, we note that
the bias and variance results for GMM and IV are almost similar. This is due to

plimn−1Z ′ΩZ = plimn−1
∑n

i=1
ωiziz

′
i (5.1)

= plimn−1
∑n

i=1
ziz
′
i + plimn−1

∑n

i=1
(ωi − 1)ziz

′
i = plimn−1Z ′Z,

18



because here ωi = exp(−φ2/2 + φη◦i ) with E(ωi | zi) = 1, thus the law of large numbers
implies

plimn−1
∑n

i=1
(ωi − 1)ziz

′
i = limn−1

∑n

i=1
E[E(ωi − 1 | zi)ziz′i] = O.

A similar result yields the asymptotic equivalence of the standard and the heteroskedas-
ticity consistent OLS variance estimators in models with just exogenous regressors which
are unrelated with the disturbance variance. However, even for λ = 0, MGMM beats
GMM and IV. That MGMM does not converge to IV in this case follows from

plimn−1X ′Ω−1Z = plimn−1
∑n

i=1
ω−1i xiz

′
i

= plimn−1
∑n

i=1
xiz
′
i + plimn−1

∑n

i=1
(ω−1i − 1)xiz

′
i

= plimn−1X ′Z + plimn−1
∑n

i=1
E[E(ω−1i − 1 | zi)xiz′i]

6= plimn−1X ′Z, (5.2)

because E(ω−1i ) 6= 1/E(ωi) = 1. The results on the feasible MGMM estimators does re-
veal, however, that we have not managed yet to materialize this remarkable theoretical
and experimental superiority of unfeasible MGMM for case L in a feasible implementa-
tion.
Next we examine the estimated standard errors. In Tables 5.5 through 5.7 for both

β2 and β3 first the Monte Carlo estimate of the true standard deviation is repeated and
next the average over the replications of the square root of the variance estimators given
at the end of section 3 (indicated as st.er) are presented, followed by their ratio, which
directly indicates the degree of over or under assessment of the true standard deviation.
In Table 5.5 we find for cases A through C that standard unfeasible GMM (substi-

tuting Ω, but estimating σ2ε) is reasonable for strong instruments, but is more and more
too pessimistic when instruments get weaker. This problem is primarily due to the esti-
mation of σ2ε. In additional simulations not presented here we found similar results when
using estimator σ̂∗2ε = (y∗ −X∗β̂GMM)′(y∗ −X∗β̂GMM)/n, whereas using the true value
gave reasonable results for µ2 ≥ 10. On the other hand, the parametric implementation
V̂ ar(β̂FpGMM) is much too optimistic, irrespective of the strength of the instruments,
whereas the nonparametric implementation does not seem all that bad in this respect.
Unfeasible MGMM is fine, but its feasible parametric version is as bad as it is for GMM,
and as we already suspected in section 4 its examined nonparametric implementation
is forlorn. The standard IV implementation, which neglects the heteroskedasticity com-
pletely, is found to be too optimistic. The variant which aims to repair this by employing
a parametrically robustified variance estimate (VpIV) is even worse, whereas its non-
parametric alternative (VnpIV) works remarkably well. Finally, we examine FnpWLS,
which in Tables 5.1 through 5.4 kept up so remarkably well with GMM. We learn that a
straight-forward nonparametric implementation of its variance estimate is extremely bad
and overoptimistic. Table 5.5 also contains case D (mild heteroskedasticity). This shows
again that FnpMGMM and FnpWLS should be discarded. It also illustrates again that
operational FnpGMM is less vulnerable for weak instruments than unfeasible GMM,
but that in fact FnpIV is not inferior to FnpGMM. Also when heteroskedasticity is mild
there is yet no feasible variant for the superior estimator MGMM for which its standard
errors are on average reasonably accurate for its true standard deviation.
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Table 5.5 Simulation results on standard errors, cases A, B, C, D
β2 β3

Case st.dv st.er ratio st.dv st.er ratio
A: GMM 0.081 0.084 1.038 0.115 0.117 1.019

FpGMM 0.082 0.036 0.434 0.115 0.066 0.573
FnpGMM 0.081 0.078 0.959 0.114 0.109 0.951
MGMM 0.045 0.044 0.993 0.068 0.067 0.996
FpMGMM 0.047 0.024 0.522 0.070 0.037 0.526
FnpMGMM 0.085 0.006 0.069 0.117 0.008 0.072
IV 0.086 0.071 0.828 0.118 0.108 0.915
VpIV 0.086 0.046 0.533 0.118 0.062 0.526
VnpIV 0.086 0.084 0.976 0.118 0.114 0.966
FnpWLS 0.085 0.006 0.066 0.116 0.007 0.058

B: GMM 0.082 0.100 1.218 0.211 0.246 1.170
FpGMM 0.082 0.034 0.415 0.211 0.119 0.562
FnpGMM 0.082 0.079 0.969 0.211 0.199 0.945
MGMM 0.045 0.045 0.997 0.123 0.123 0.998
FpMGMM 0.047 0.025 0.526 0.127 0.067 0.529
FnpMGMM 0.085 0.006 0.076 0.214 0.014 0.063
IV 0.086 0.072 0.843 0.215 0.197 0.917
VpIV 0.086 0.046 0.540 0.215 0.113 0.527
VnpIV 0.086 0.085 0.988 0.215 0.208 0.966
FnpWLS 0.085 0.006 0.066 0.209 0.008 0.039

C: GMM 0.089 0.131 1.475 0.528 0.628 1.189
FpGMM 0.089 0.039 0.438 0.531 0.256 0.483
FnpGMM 0.091 0.089 0.986 0.553 0.468 0.846
MGMM 0.046 0.046 1.017 0.268 0.266 0.993
FpMGMM 0.047 0.026 0.546 0.276 0.147 0.534
FnpMGMM 0.091 0.007 0.079 0.529 0.020 0.038
IV 0.091 0.083 0.912 0.528 0.464 0.879
VpIV 0.091 0.052 0.570 0.528 0.268 0.509
VnpIV 0.091 0.095 1.037 0.528 0.488 0.925
FnpWLS 0.087 0.006 0.067 0.442 0.010 0.022

D: GMM 0.075 0.092 1.224 0.204 0.240 1.176
FpGMM 0.075 0.035 0.462 0.204 0.119 0.582
FnpGMM 0.075 0.074 0.983 0.206 0.197 0.956
MGMM 0.063 0.064 1.011 0.176 0.175 0.994
FpMGMM 0.065 0.034 0.519 0.182 0.093 0.512
FnpMGMM 0.076 0.008 0.110 0.206 0.015 0.075
IV 0.075 0.072 0.961 0.205 0.198 0.967
VpIV 0.075 0.042 0.552 0.205 0.109 0.533
VnpIV 0.075 0.076 1.003 0.205 0.200 0.978
FnpWLS 0.075 0.007 0.094 0.200 0.009 0.043
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Table 5.6 Simulation results on standard errors, cases E, F, G, H
β2 β3

Case st.dv st.er ratio st.dv st.er ratio
E: GMM 0.083 0.083 1.004 0.211 0.205 0.974

FpGMM 0.083 0.035 0.421 0.211 0.127 0.601
FnpGMM 0.083 0.080 0.971 0.211 0.200 0.950
MGMM 0.045 0.045 0.993 0.124 0.123 0.990
FpMGMM 0.047 0.025 0.528 0.128 0.068 0.531
IV 0.087 0.074 0.844 0.216 0.198 0.920
VpIV 0.087 0.047 0.540 0.216 0.114 0.528
VnpIV 0.086 0.086 0.988 0.216 0.209 0.970

F: GMM 0.280 0.328 1.169 0.351 0.410 1.170
FpGMM 0.281 0.167 0.595 0.352 0.198 0.562
FnpGMM 0.280 0.266 0.949 0.351 0.332 0.945
MGMM 0.169 0.169 0.998 0.205 0.204 0.998
FpMGMM 0.175 0.093 0.528 0.212 0.112 0.529
IV 0.284 0.272 0.960 0.359 0.329 0.917
VpIV 0.284 0.150 0.528 0.359 0.189 0.527
VnpIV 0.284 0.275 0.969 0.359 0.346 0.966

G: GMM 0.075 0.098 1.309 0.215 0.270 1.255
FpGMM 0.075 0.033 0.445 0.216 0.120 0.558
FnpGMM 0.075 0.073 0.978 0.215 0.203 0.944
MGMM 0.044 0.044 0.999 0.123 0.123 0.999
FpMGMM 0.046 0.024 0.530 0.127 0.067 0.530
IV 0.077 0.072 0.932 0.223 0.197 0.885
VpIV 0.077 0.042 0.546 0.223 0.117 0.526
VnpIV 0.077 0.077 0.996 0.223 0.215 0.964

H: GMM 0.091 0.103 1.136 0.204 0.224 1.096
FpGMM 0.091 0.038 0.411 0.205 0.116 0.569
FnpGMM 0.091 0.087 0.959 0.204 0.194 0.951
MGMM 0.045 0.045 0.994 0.123 0.122 0.996
FpMGMM 0.047 0.025 0.523 0.127 0.067 0.529
IV 0.094 0.073 0.774 0.206 0.197 0.957
VpIV 0.094 0.050 0.534 0.206 0.109 0.529
VnpIV 0.094 0.092 0.981 0.206 0.200 0.972

In Table 5.6 case E learns that also under mild simultaneity the parametric feasible
variants estimate their variance poorly. Cases F, G and H support the wider validity of
the earlier conclusions.
In Table 5.7 case I illustrates that all techniques tend more towards too optimistic

standard error estimates when the sample size is smaller. From cases J through L we
learn that the qualities of standard error estimates depend very little on the value of λ,
except for IV. Note that for λ = 0 (instruments and heteroskedasticity unrelated) the
asymptotic equivalence of GMM and IV already shows up at n = 200 for the coeffi cient
estimates, but less so for their variance estimators.

21



Table 5.7 Simulation results on standard errors, cases I, J, K, L
β2 β3

Case st.dv st.er ratio st.dv st.er ratio
I: GMM 0.165 0.157 0.953 0.247 0.231 0.935

FpGMM 0.168 0.064 0.381 0.250 0.118 0.473
FnpGMM 0.168 0.142 0.846 0.250 0.214 0.858
MGMM 0.101 0.096 0.950 0.162 0.152 0.940
FpMGMM 0.116 0.055 0.475 0.180 0.087 0.487
IV 0.177 0.143 0.810 0.258 0.230 0.893
VpIV 0.177 0.094 0.529 0.258 0.137 0.530
VnpIV 0.177 0.157 0.886 0.258 0.232 0.901

J: GMM 0.078 0.096 1.238 0.207 0.246 1.190
FpGMM 0.078 0.035 0.444 0.207 0.116 0.558
FnpGMM 0.078 0.076 0.976 0.208 0.198 0.952
MGMM 0.055 0.055 1.007 0.153 0.152 0.995
FpMGMM 0.058 0.030 0.515 0.160 0.082 0.513
IV 0.079 0.072 0.915 0.208 0.198 0.950
VpIV 0.079 0.043 0.544 0.208 0.110 0.528
VnpIV 0.079 0.079 0.998 0.208 0.203 0.974

K: GMM 0.074 0.092 1.242 0.203 0.243 1.196
FpGMM 0.074 0.035 0.470 0.203 0.115 0.564
FnpGMM 0.075 0.073 0.983 0.205 0.196 0.957
MGMM 0.063 0.063 1.013 0.176 0.174 0.991
FpMGMM 0.067 0.034 0.510 0.186 0.094 0.504
IV 0.074 0.072 0.971 0.204 0.198 0.972
VpIV 0.074 0.041 0.544 0.204 0.107 0.526
VnpIV 0.074 0.075 1.004 0.204 0.199 0.979

L: GMM 0.071 0.085 1.193 0.200 0.231 1.152
FpGMM 0.071 0.035 0.491 0.201 0.109 0.541
FnpGMM 0.072 0.071 0.989 0.203 0.195 0.960
MGMM 0.068 0.069 1.016 0.193 0.190 0.987
FpMGMM 0.074 0.037 0.506 0.207 0.102 0.496
IV 0.071 0.072 1.014 0.201 0.198 0.988
VpIV 0.071 0.039 0.542 0.201 0.105 0.524
VnpIV 0.071 0.072 1.007 0.201 0.197 0.981

The major findings from these simulations are that if Ω were known MGMM would
be much more attractive than GMM, uniformly over all designs examined, because it has
smaller bias, much smaller true standard deviation and also its standard errors establish
much more accurate estimates of its actual standard deviation. Moreover, it is found
to be less vulnerable to weakness of the instruments chosen for the original model spec-
ification. However, although a feasible parametric implementation of MGMM is often
almost as effi cient, its standard asymptotic variance estimate is very seriously biased
and underestimates its actual dispersion, whereas the effi ciency gains over GMM are
completely lost by a nonparametric feasible MGMM implementation. The drawback of
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inaccurate standard errors by a feasible parametric implementation also affects GMM,
but here the nonparametric implementation will provide reasonably accurate standard
errors, provided the sample is not too small and the instruments not too weak. How-
ever, simply sticking to IV estimation and using nonparametric heteroskedasticity robust
standard errors (VnpIV) is almost equally effective as employing feasible nonparametric
GMM, because the latter suffers from weakened instruments due to weighing the obser-
vations. In order to fully exploit in practice the impressive effi ciency gains achieved by
feasible parametric MGMM it is yet required to develop a more accurate assessment of
its actual effi ciency. We leave this topic for future research.
It is a bit of a mystery why the inconsistent coeffi cient estimator FnpWLS performs

often similar and occasionally even better than GMM. Nevertheless, it should not be
recommended, because it underestimates its standard deviation often by a factor 20 or
worse.

6. Empirical illustrations

To illustrate our theoretical findings in practice, we first set out to extend the 2SLS and
GMM comparison for an actual cross-section data set as presented in Wooldridge (2001)
with operational MGMM findings. However, the wage equation analyzed in that study
does not seem to be inflicted with much heteroskedasticity, so in such a situation IV, pos-
sibly using heteroskedasticity consistent variance estimates, is self-evidently the prefer-
able technique. Heteroskedasticity seems evident in a data set stemming from Sander
(1992) on the effect of women’s schooling on fertility, also addressed in Wooldridge
(2010, Problem 6.8, dataset fertil1). The sample comprises 1129 US women. We re-
gressed number of kids on education, age, age-squared a racial dummy and dummies for
regions (east, west, north-central) and types of agglomeration (town, small-city, farm,
other rural) and an intercept and year dummies. Education could be endogenous and
is instrumented by years of education of the father and of the mother. Hence, the de-
gree of overidentification is just one. The F -test on the exclusion of the two external
instruments in the reduced form equation for education is 155.8 so they are certainly
not weak. However, the endogeneity problem does not seem severe. The DWH statistic
has p-value 0.48, so many researchers would happily accept exogeneity of all regressors.
However, the power of such a test is not always impressive, see Kiviet and Pleus (2014),
so imposing exogeneity could be rash, especially because there are good theoretical rea-
sons to assume endogeneity of years of schooling. Some mothers may have yet relatively
few years of education because they already care for children. This would explain the
positive difference between the OLS and IV coeffi cient estimates. That positive differ-
ence may also be the result of omitted control variables which have a positive effect on
fertility and are negatively correlated with years of education (or vice versa, such as,
for instance, being aware of birth control methods). Classic tests for heteroskedasticity
after OLS estimation are all highly significant. Employing the instruments in the various
MM techniques examined here does not provide any evidence of instrument invalidity
by the Sargan-Hansen J test, as can be seen from Table 6.1, which does not mention
the results for the included demographic and year-dummy controls.
The parametric feasible results in Table 6.1 have been obtained as follows. We

examined the log of the squared IV residuals. These have skewness 0.26 and kurtosis 3.98.
Hence, although they are significantly nonnormal, their distribution is not completely
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out of line with those of gi in (4.8). Their sample mean is -0.47 and sample variance
0.66. Interpreting these as reflecting the expectation and variance of gi they would imply
φ to be 0.69 or 0.81 respectively. Next we ran a regression of the log of the squared
IV residuals on all the instruments, their squares and their cross-products, leaving out
redundant contributions such as the squares of dummies and the cross-products of two
annual dummies, of two regional dummies and of two agglomeration dummies (giving
149 regressors in addition to the constant). This regression yields an R2 of only 0.128;
this we associate with a value of λ in (4.8) as low as about 0.13. Although some
individual coeffi cients in this auxiliary regression have substantial t-ratio’s the overall
F -test has p-value 0.61. So, one could conclude that heteroskedasticity determined by
the instrumental variables is insignificant (although in a more parsimonious specification
significant heteroskedasticity would emerge). We obtained a series of positive σ̂i values
by taking the exponential function of the fitted values of this (unrestricted) auxiliary
regression. Next, by dividing these by their sample average we obtained a series ω̂i
with sample average unity. This series has empirical quantiles q0.005(ω̂i) = 0.094 and
q0.995(ω̂i) = 7.970, which matches with a φ in the range 0.8-1.0 according to Table 4.1.

Table 6.1 Empirical findings on fertility (standard errors between parentheses)
OLS IV IV(Vnp) FpGMM FnpGMM FpMGMM FnpMGMM

educ -0.128 -0.153 -0.153 -0.152 -0.153 -0.168 -0.155
(0.018) (0.039) (0.041) (0.050) (0.041) (0.033) (0.003)

age 0.532 0.524 0.524 0.523 0.523 0.421 0.524
(0.138) (0.139) (0.141) (0.183) (0.141) (0.127) (0.013)

agesq -0.006 -0.006 -0.006 -0.006 -0.006 -0.005 -0.006
(.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.000)

black 1.076 1.073 1.073 1.068 1.072 0.881 1.129
(0.174) (0.174) (0.201) (0.301) (0.201) (0.177) (0.032)

J (p-val.) - 0.88 0.88 0.91 0.88 0.90 0.70

Given our findings regarding φ, λ and the strength of the instruments these empirical
results can probably best be interpreted against the background of our simulation results
for cases A and K, although the sample size in this application is much larger. In
the simulation the cases A and K suggest similar performance regarding rmse by IV
and the two feasible GMM techniques, but serious understatement by FpGMM of its
actual standard deviation, and much less so by IV. However, the empirical results show
substantially smaller estimated standard errors for FnpGMM than for FpGMM.We have
no simple explanation for this. We should keep in mind though that in this empirical
example the number of included instruments in comparison to the number of excluded
instruments is completely different from the simulation design. Moreover, having just
overidentification of order 1 makes interpretation of standard error estimates diffi cult
anyhow, because formally the coeffi cient variance does not exist. Also, the patterns in
the Tables 5.5 through 5.7 are about the expectation of standard error estimates, and not
about single random realizations as obtained in Table 6.1. Nevertheless, the similarity in

24



the standard error results for FnpGMM and the nonparametrically robustified standard
errors of IV, which are slightly larger than the (incorrect) standard IV standard errors,
is in agreement with our simulation findings.
Although we should always realize that a difference in empirical standard errors

does not necessarily represent a similar difference in true standard deviations, the most
remarkable finding from Table 6.1 is undoubtedly that the standard errors of MGMM
are in agreement with the in the simulations established superiority of FpMGMM over
FpGMM and FnpGMM (when λ > 0). The results in the final column demonstrate
that, although the coeffi cient estimates of FnpMGMM are not inferior to GMM, this
technique is unable to assess its own accuracy, which it extremely seriously overrates.
We also employed the various techniques to data analyzed in Wu et al. (2014). We re-

analyzed one of its two structural equations for land and house prices using data for 2011
on the 35 major Chinese cities. Table 6.2 presents the effect of house price (hp) on land
price, but does not mention results on further control variables, such as lagged budget
deficit, construction costs, agricultural GDP and available land. External instruments
used are disposable income, total population, sex ratio and expenditure on education,
giving a degree of overidentification of 4. The DWH statistic has p-value 0.043, the
2SLS results yield a J-statistic with a p-value of 0.40, but in the reduced form equation
the external instruments produce an F -value of only 6.87. Hence, it seems that house
prices are endogenous and the employed instruments are valid though weak, although
such a small sample of course hardly allows firm inferences of this nature. The auxiliary
regression of the log of the squared 2SLS residuals on all 10 instruments yields an R2

of 0.21 (we left out squares and cross-products because that would slurp all remaining
degrees of freedom). From its fitted values we obtained a series for ω̂i as before.

Table 6.2 Empirical findings on land prices (standard errors between parentheses)
OLS IV IV(Vnp) FpGMM FnpGMM FpMGMM FnpMGMM

hp 1.179 1.706 1.706 1.638 1.321 1.638 1.507
(0.309) (0.426) (0.461) (0.352) (0.476) (0.317) (0.145)

J (p-val.) - 0.40 0.40 0.60 0.31 0.72 0.80

Again we note the misrepresentation by FnpMGMM of its precision, but also the at-
tractive standard errors of FpMGMM.

7. Conclusions

We reveal an inherent unfavorable and yet generally unperceived feature of GMM as it is
currently usually implemented. Extracting from the assumed orthogonality conditions
instrumental variables such that they are reasonably effective (strong) for the regressors
in the habitual sense, as understood for IV estimation, implies that these very same
instruments will be much weaker in the context of GMM. This is because, implicitly,
GMM estimates a transformed model, in order to get rid of any non-sphericity of the
disturbances, but at the same time this transformation affects the instruments in such
a way that they will actually be much weaker than the researcher realizes. It is shown,
however, that relatively simple precautions enable to neutralize this weakening process
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of the instruments. This also allows to improve on IV and GMM in just identified models
with heteroskedasticity.
By simulation it is shown that empirically relevant forms of heteroskedasticity under-

mine the quality of standard GMM estimates and a modified implementation of GMM
yields estimates that show both less bias and smaller standard deviations. Reductions
of the root mean squared errors of the coeffi cient estimates of the alleged optimal stan-
dard GMM technique by a factor 2 or more are shown to be not exceptional when
heteroskedasticity is prominent. We also examine the accuracy of empirical standard
errors for the underlying true standard deviations.
In this paper we only examined GMM estimators for cross-sectional models that are

linear in the regressor coeffi cients. However, the results have implications for general
nonlinear models too, and also for the analysis of time-series data and especially for
dynamic panel data models where GMM is used frequently. Next to our simulation
findings, we also examined for empirical data sets what the practical consequences are.
Interpreting these, one should keep in mind, that the synthetic simulation experiments
produce accurate assessments of true bias and true standard deviations, whereas for the
empirical findings any bias cannot be assessed, because the true parameter values are
unknown, and the obtained estimated standard errors may be very misleading for the
underlying unknown true standard deviations. Nevertheless, we do find substantially
smaller estimated standard errors and therefore we unreservedly recommend the use of
parametric MGMM, the modified form of feasible GMM as developed here.
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