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Abstract

This paper analyzes the dynamic behavior of day-ahead spot prices in the
German electricity spot market due to positive structural shocks in wind
and solar power. It uses a dynamic structural vector autoregressive model
to estimate the related structural impulse response functions. The estimates
suggest that wind power shocks have a more prolonged negative effect on
spot prices than solar power shocks. These may be explained by significant
autocorrelations of wind power for larger lags. The total negative merit
order effect of a solar power shock, however, is larger. One reason might
be that solar power shocks coincide with demand peaks. Past empirical
results show differences in the total average negative merit order effects.
The inherently dynamic nature of wind and solar power could explain these
differences because the dynamics, which are ignored by past studies on the
subject using static ordinary least squares estimations, could be transferred
to the merit order effects.
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1. Introduction

This paper empirically analyzes the dynamic effects of important vari-
ables in the European Energy Exchange (EEX) day-ahead spot market for
power. The main aim is to obtain a better understanding of how a wind or
solar power shock on a given day affects future spot prices.
Electricity from renewable sources has become increasingly attractive in re-
cent years because it produces no CO2 emissions and can help to reduce
dependence on fossil fuel imports. Moreover, in contrast to nuclear power,
renewables entail no danger of serious environmental accidents. In recent
years, there has been a rise in the level of renewable generating capacity in
Germany. This is in part the result of the German energy transition (intro-
duced by the governments feed-in law of 1991 and formlated in further detail
in the Renewable Energy Act (EEG) of 2000), which places a strong focus
on renewable energies. In 2013, renewables accounted for 23.9% of the to-
tal German electricity supply. The most important renewable energy source
was wind power with a share of 35.8% in the total supply of renewables.
A smaller but also significant share (20%) belonged to solar power (BDEW
(2014)). According to the EEG 2.0 of 2014, the share of renewables in the
electricity supply will have to rise to 40-45% by 2025 and to 55-60% by 2035.
Following Gelabert et al. (2011), there has been a debate on how increased
renewable capacity will affect electricity prices, and whether the competitive-
ness of large energy consumers will suffer as a result.
The analysis of dynamic effects over time, such as that of an unforeseen shock
in wind power production on spot prices, sheds light on the debate over the
duration and persistence of merit order effects (cf. Würzburg et al. (2013)).2

Moreover, as further discussed, the dynamic behavior of the spot price due
to shocks in wind or solar power is of special interest to power end users.
So far, most research has focused on the average effect of renewables on the
spot price for power, but not on the short-term persistence of that effect.
With respect to the theoretical literature, Jensen and Skytte (2002) found,
using a microeconomic model, that power prices will fall in a power market
if the amount of renewables rises. This negative merit order effect is due
to the relation between the low marginal costs of renewables and the higher
marginal costs of fossil fuels (e.g., coal or gas). If the use of renewables rises,
the supply function of the power market – the merit order curve – shifts to

2In this paper, however, persistence over time refers to a period of a few days.
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the right. Thus, production types with higher marginal costs are forced out
of the market and a lower equilibrium price is reached. A model with resid-
ual demand can be used alternatively to obtain the same result. Germanys
EEG, particularly because of the priority placed on wind and solar power
feed-in, produces negative merit order effects. Here, the residual demand
for all production types except renewables in the market will shift to the
left, and the new equilibrium price will be lower. Amundsen and Mortensen
(2001) as well as Fischer (2006) also found, using microeconomic models,
negative merit order effects and therefore lower prices as a result of increased
subsidized renewables.
In the empirical literature, Gelabert et al. (2011) investigated the merit order
effects of renewables including wind and solar power as well as cogeneration
on the spot price for six years in the Spanish day-ahead spot market using
ordinary least squares (OLS). They found an average negative merit order
effect when the use of renewables or cogeneration increased. Cludius et al.
(2013) conducted several different linear regressions (time periods: January
2008 to June 2012, July 2010 to June 2012). They found negative merit
order effects of wind and solar power for Germany. Würzburg et al. (2013)
identified an average negative effect of predicted wind and solar power on
the day-ahead spot price for Germany and Austria by using OLS (time pe-
riod: July 2010 to June 2012). Böckers et al. (2013) found a negative merit
order effect of wind, but surprisingly a positive effect of solar in the Spanish
wholesale electricity market over a time period of five years using a struc-
tural vector autoregressive model. Maciejowska (2014) found negative merit
order effects of wind in the United Kingdom (UK) electricity market over a
time period of two years using a structural vector autoregressive model. In
addition, other researchers have reported empirical average negative effects
of wind power specifically, and of renewables generally, on electricity prices in
European markets (e.g., Jonsson et al. (2010) for Denmark). Finally, several
researchers have found negative merit order effects of renewables on electric-
ity prices using electricity simulation models (e.g., Sensfuß et al. (2008) for
Germany and Miera et al. (2008) for Spain).
So far, most of the empirical models (and all of the models that analyze the
German electricity market empirically) have investigated merit order effects
using OLS. However, OLS models do not take into account the time depen-
dency of wind and solar power, and they ignore interdependencies between
the variables on spot markets. Such interdependencies may violate the ceteris
paribus condition of OLS models. For example, if there is a positive shock
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in wind power production causing wind power to rise, the spot price falls
due to the negative merit order effect. However, conventional power sources
such as coal, gas, oil, lignite, and uranium might not stay constant but fall
as well because the larger wind power feed-in might have to be compensated
if there is no change in load. If the dynamic structures of wind and solar
power as well as the interdependencies between the variables are not taken
into account, estimated OLS coefficients could be biased because the ignored
dynamic structures and interdependencies may remain in the residuals. In
this case, explanatory variables will be correlated with the residuals, leading
to inconsistent estimators (Baltagi (2002)).
Therefore, in this paper, a structural vector autoregressive (SVAR) model is
estimated as well. An SVAR is an appropriate dynamic econometric method
because the related structural impulse response functions (SIRFs) reveal the
(unbiased) dynamic behavior of spot prices due to shocks in wind or solar
power on a given day. The SVAR attempts to identify the dynamic inter-
relationships between the variables on spot markets over days and thereby
also between spot prices and wind power and solar power, respectively. A
dynamic structure is needed because of the inherently dynamic behavior of
wind and solar power, which might be transferred to the system as a whole.
Furthermore, SVAR models are able to produce significant estimates even in
the presence of interdependencies between variables.
Wind and solar power production are time-dependent: Their current values
depend on their past values. Daily intertemporal dependencies can be iden-
tified by autocorrelations of wind and solar power at several time lags (days).
If stormy weather and therefore a surge in wind power occurs on one day,
there still may be significantly increased wind power on the following day
due, for example, to a storms continuing effects. Hasche (2010) reports that
most of the wind parks and wind power generation across Germany are pos-
itively correlated, suggesting that wind power dynamics are indeed relevant
for Germany as a whole. Although there has been no research on auto-
correlated wind power in Germany, such dynamic relationships have been
identified on the west coast of Canada, where Brett and Tuller (1991) found
autocorrelations of wind speeds and, therefore, of wind power.
Solar power depends on the behavior of solar irradiance. Thus, the amount
of solar irradiance on one day could influence the amount a day later. These
dynamics are included in persistence models, a kind of benchmark model that
is used to forecast solar irradiance (including daily time steps). Lorenz et al.
(2009), for example, compared persistence models with other forecast models
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using data from several radiometric stations, which were located in Southern
Germany, among others. Therefore, German solar power generation may be
influenced by the dynamic behavior of solar irradiance. Moreover, Safi et al.
(2002) identified autocorrelations in daily solar radiation at a radiometric
station in Marrakesh, Morocco, while Boland (1995) found autoregressive
processes for the residuals in daily solar radiation at several locations dis-
tributed over large parts of Australia. The latter findings indicate that the
dynamic structure of solar irradiance could also be present in a larger geo-
graphic area as a whole.
Wind and solar power depend on stochastically changing weather condi-
tions. Since their fluctuations are directly related to weather variability (von
Bremen (2010)), wind and solar power in Germany would be influenced by
stochastic shocks.
The results of the present study show that dynamic negative merit order
effects due to both wind and solar power are existent, and that the effects of
wind power on spot prices are more persistent over time than those of solar
(two days for wind and one for solar). The longer duration of the effects of
wind power could be explained by significant autocorrelations of wind power
for larger lags. Moreover, solar power effects have larger negative magni-
tudes. The estimates show a total average negative effect in the range of -2.4
up to -2.15 e/MWh caused by solar power and in the range of -1.7 up to
-1.6 e/MWh caused by wind power on spot prices. The larger magnitudes
for solar power might be because solar power coincides with demand peaks,
resulting in a steeper merit order curve. When comparing past German em-
pirical results, Würzburg et al. (2013) did not find this expected difference
when using OLS. Furthermore, lower magnitudes of the total average nega-
tive merit order effects (OLS) of wind and solar power are found in the range
of 0.7 up to 1.4 e/MWh. OLS estimates might be overstated if wind and
solar power dynamics are transferred to the merit order effects. The SVAR
analysis itself (with consistent estimates) might be able to take into account
these larger magnitudes, particularly by including dynamic relationships.
This paper is structured as follows. Section 2 presents the data and the
estimation methodology. Section 3 presents the results and section 4 some
sensitivity analyses. Section 5 gives concluding remarks.

5



2. Data and model

2.1. Data

Six variables are included in the dataset: total wind power production
windt (GW), total solar power production solart (GW), net total load loadt
(GW), net exports net exportst (GW), overall conventional power produc-
tion conventionalt (GW), and the European Power Exchange (EPEX) day-
ahead spot price for power pricet (e/MWh). It is assumed that these are
the most important variables for describing and explaining the relationships
and mechanisms of the day-ahead spot market. Realized values for all power
variables are used rather than forecasts. The latter might contradict the
choice of a linear estimation model because renewable forecasts are highly
non-linear (see Lorenz et al. (2009)). Hourly and quarter-hourly time points
are converted into daily average values in order to smooth out temporary
and exceptional events over the course of a day.
Exact data sources (web links) for all variables are given in Appendix A.
Wind and solar power data are taken from the four German Transmission
System Operators (TSOs) Amprion, TenneT, 50Hertz, TransnetBW, and
from the EEX-Transparency platform (EEX-T). Original data is average Ger-
man power feed-in (MW) per 15 minutes. Data sources are mixed due to
data gaps on specific days from specific sources. Total load data is taken
from the European Network of TSOs for Electricity (ENTSOE-E). Original
data is average German total demand for power (MW) per hour. Net total
load is total load (from 91% extrapolated to 100%) minus network losses
and net exports. Network losses are assumed to be 4% of total load, which
is the average of most recent yearly data (years 2009-2011, no daily data
available). Net exports data are taken from German TSOs and Creos S.A.,
the TSO of Luxembourg. Original data is average German cross-border load
flows of power per 15 minutes. Net exports refers to exports minus im-
ports and includes cross-border load flows between Germany and Poland,
Denmark, Netherlands, France, Austria, Switzerland, Czech Republic, and
Luxemburg. Flows between Germany and Sweden are not available. Data
sources are mixed due to data gaps on specific days from specific sources.
Overall conventional power data is taken from EEX-T. Original data are av-
erage German power feed-in (MW) per hour. Conventional power includes
lignite, coal, gas, oil, uranium, pump storage, seasonal storage, and furnace
gas. Conventional power only covers data on power generators with an in-
stalled capacity of at least 100 MW per block-unit power station; further
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data (e.g., biogas) are not available. The sum of load and net exports is not
equal to the sum of wind, solar, and conventional power because of excluded
network losses and missing conventional power data. Spot price data are
taken from EEX (bilateral contract data are not available). Original hourly
data are the spot prices (e/MWh) for each of the 24 hours of the following
day determined by supply and demand at the EEX.
The number of observations is 993 days and the total time period is from July
1, 2010 to March 30, 2013. This period was chosen because of the significant
wind and solar power feed-in that occurred in it, as shown in table 1 and
figure 1 (descriptive statistics and time series of the variables). The effects of
wind and solar on the spot price are therefore expected to be relevant during
this period. The means of the variables are nearly the same as in Cludius
et al. (2013) because of nearly the same dataset and time period. Average
wind power is twice the average solar power due to the higher wind capacity
or more suitable weather conditions at most of the time points investigated.
However, wind volatility is also 3 times higher. There is also significantly
high demand volatility. Most of the demand is met by conventional power
because of its very high share in total production. The remaining extreme
price events do not influence the SVAR analysis below.
Looking at figure 1, a significant increase in solar power is observable as a
result of increased capacity. For wind, solar, conventional power, and load,
there are seasonal elements in the time series. A significantly higher solar
feed-in during the summer months is apparent. In contrast, wind power
tends to spike in winter months, when load also tends to be higher, due to,
for example, a higher demand by end users for electric powered light. Most
of this demand is met by conventional power. Therefore, seasonal patterns
are similar and differences are due to fluctuations in wind and solar power
(priority feed-in). Non-stationarity and autocorrelation problems regarding
these seasonal elements in the time series are dealt with conventionally by
taking first differences. Furthermore, the lag structure in the SVAR is chosen
such that autocorrelation disappears (see section 2.3).
From 2010 to November 2012, wind capacity was higher than solar capacity.
However, solar subsidies has brought about substantially increased growth in
solar capacity, leading to higher solar capacity in 2013. Table 2 shows wind
and solar capacity for the relevant years (data sources are given in Appendix
A).
Table 3 shows cross-correlations of the variables. Most cross-correlations are
significantly different from zero. This indicates the possibility of interde-
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X-axis: Days, Y-axis: Power feed-in/demand (quantity variables) (GW), spot price for power
(e/MWh).

Figure 1: Time series of variables in SVAR

Variable Obs Mean Std. Dev. Min Max
wind (GW) 993 5.077 4.128 .277 22.311
solar (GW) 993 2.285 1.711 .034 7.885
load (GW) 993 57.355 7.911 35.107 75.598
net exports (GW) 993 .415 1.63 -3.719 4.995
conventional (GW) 993 42.726 7.89 23.45 60.249
price (e/MWh) 993 46.577 11.167 -56.87 98.982

Table 1: Descriptive statistics

Date 15.11.2010 16.11.2011 16.11.2012 18.11.2013
Wind capacity (GW) 25.96 27.55 30.04 32.45
Solar capacity (GW) 10.64 19.76 28.19 34.85

Source: EEX-T

Table 2: Wind and solar capacity
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pendencies between variables. Price correlations have the expected signs.
Correlations with wind and solar power are negative due to merit order ef-
fects. The correlation with load is positive due to the slope of the merit
order curve. The correlation with overall conventional supply is positive,
indicating that power increases for high marginal cost technologies lead to
price increases. An increase in net exports indicates a decrease in the spot
price in the German power market because of higher power outflows.

Variables wind solar load net exports conventional price
wind 1.000
solar -0.246 1.000
load -0.092 -0.324 1.000
net exports 0.476 0.218 -0.587 1.000
conventional -0.213 -0.387 0.829 -0.462 1.000
price -0.432 -0.124 0.733 -0.566 0.622 1.000

Table 3: Cross-correlations of variables

2.2. The model

Estimation is based on SVAR techniques described in Hamilton (1994)
and Lütkepohl (2006). The following SVAR model for the variables (collected
in the vector xt) is estimated:

A0 xt = A0 c + A0 ×

[
p∑

τ=1

Aτ xt−τ + B et

]
. (1)

A0 is the coefficient matrix of the direct instantaneous effects between the
variables and B between the structural shocks and the shocks in the under-
lying vector autoregressive (VAR) model. Aτ are coefficient matrices with
respect to the past time lags up to the maximum lag p, c is a vector of
constants and et is a vector of the structural shocks in the SVAR in each
equation. The underlying VAR is the reduced form of the SVAR. Therefore,
the shocks in the VAR and the SVAR are related as follows: ut = A−1

0 Bet
with ut as a vector of the shocks in the underlying VAR.
Each variable is assumed to be endogenous because of possible interdependen-
cies between the variables or dynamic dependencies of the variables them-
selves over time. As stated in the introduction, values for wind and solar
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power on a given day can be seen as dependent on their values on previ-
ous days. These variables are therefore modeled endogenously, in contrast
to the approach taken by Böckers et al. (2013). The data reveals that the
average of net exports is positive, meaning that this variable can be seen
as foreign demand for domestic power because exports are larger than im-
ports on average (see table 1). It is common to model demand variables as
nearly price inelastic (see Gelabert et al. (2011) on the Spanish electricity
market). For example, most private power customers have fixed power con-
tracts. In Böckers et al. (2013), demand is modeled exogenously. However,
price elasticity could be present, if, for example, energy-intensive companies
with more flexible contracts reacted to a price increase. Furthermore, table
3 shows that spot prices are significantly correlated with load and net ex-
ports. Moreover, the structural impulse response function in figure B.7 in
Appendix B indicates that load depends on its own values on previous days.
Table B.18 in Appendix B shows that for most significance levels, load can-
not be seen as exogenous when applying the score test of Wooldridge (1995)
and the regression-based F test of Hausman (1978) for exogeneity (load is
endogenously modeled as dependent on its own past daily values). Therefore,
demand variables are also modeled as endogenous.
In section 4, time dummies, modeled as exogenous variables, are additionally
taken into account in the SVAR as a sensitivity analysis.
The variables in the model can be seen as possibly influenced by stochastic
shocks. The dependency of wind and solar power on the weather has already
been discussed in the introduction. Another example is the possibility of a
stochastic shock in the oil price influencing the spot price, overall conven-
tional production, as well as imports and therefore also net exports. Despite
these considerations, if one variable is not influenced by a shock and if the
estimated coefficients of the SVAR are consistent, the related coefficients will
not be significant and therefore will not bias the other results.
Specifically, the structure of the SVAR model is presented in equations 2 - 5:

A0 xt =


1 0 0 0 0 0

a21,0 1 0 0 0 0
a31,0 a32,0 1 0 0 0.001
a41,0 a42,0 a43,0 1 0 0.001
a51,0 a52,0 a53,0 a54,0 1 −0.05
a61,0 a62,0 a63,0 a64,0 a65,0 1

×


windt
solart
loadt

net exportst
conventionalt

pricet

. (2)
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A0 c =


1 0 0 0 0 0

a21,0 1 0 0 0 0
a31,0 a32,0 1 0 0 0.001
a41,0 a42,0 a43,0 1 0 0.001
a51,0 a52,0 a53,0 a54,0 1 −0.05
a61,0 a62,0 a63,0 a64,0 a65,0 1

×


cwind,t

csolar,t
cload,t

cnet exports,t

cconventional,t
cprice,t

. (3)

Aτ xt−τ =


a11,τ a12,τ a13,τ a14,τ a15,τ a16,τ
a21,τ a22,τ a23,τ a24,τ a25,τ a26,τ
a31,τ a32,τ a33,τ a34,τ a35,τ a36,τ
a41,τ a42,τ a43,τ a44,τ a45,τ a46,τ
a51,τ a52,τ a53,τ a54,τ a55,τ a56,τ
a61,τ a62,τ a63,τ a64,τ a65,τ a66,τ

×


windt−τ
solart−τ
loadt−τ

net exportst−τ
conventionalt−τ

pricet−τ

. (4)

B et =


b11,0 0 0 0 0 0

0 b22,0 0 0 0 0
0 0 b33,0 0 0 0
0 0 0 b44,0 0 0
0 0 0 0 b55,0 0
0 0 0 0 0 b66,0

×


ewind,t

esolar,t
eload,t

enet exports,t

econventional,t
eprice,t

. (5)

By using an SVAR, a priori restrictions based on economic theory are im-
posed on A0 and on B in order to achieve identification of the model. After
specifying an SVAR with six endogenous variables and their related esti-
mation equations, 51 restrictions are left for the direct instantaneous effects
between the variables (see equation 2)3 and between the shocks (see equation
5). By assuming that the VAR shocks only depend on the structural shocks
of the same variable, B becomes a diagonal matrix because all off-diagonal
elements are set to zero. This transformation is usually carried out in order
to scale the variances of the structural shocks to unity. Moreover, it is obvi-
ous that each variable is dependent on the other variables in the respective
equation. Therefore, all diagonal elements in A0 are set to one. The last 15
restrictions refer to several instantaneous effects between the variables in A0,
which have to be chosen a priori. To my knowledge, there is unfortunately
no energy economic theory describing interrelations of the stated variables.
Thus, the following assumptions similar to the ones in Maciejowska (2014)

3Elements are negative instantaneous effects because A0 is (also) on the left-hand side
in equation 1.
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are given.
In an SVAR, the most endogenous variable has to be ordered last and the least
endogenous variable has to be ordered first. Therefore, wind and solar power
are ordered first and load follows. The spot price is ordered last because it
depends on all other variables. Wind as well as solar power production are
only dependent on themselves due to the priority feed-in, and load is only
affected by the spot price and itself. Load is not perfectly but nearly inelastic
to the spot price, and therefore a number near but not equal to zero (-0.001)
is chosen.4 The price effect on net exports (foreign demand for domestic
power) is chosen to be the same as on load, and net exports can be seen as
independent of conventional supply. Moreover, conventional supply is more
endogenous than load and net exports. There exists the possibility of market
power, meaning that the effect of the price on conventional power is not zero
but positive. After running several OLS regressions with different specifi-
cations (varying control variables, time dummy structure, robust standard
errors) and using conventional supply as the dependent variable, the average
of the marginal average price effects is chosen as a proxy (0.05). Regressions
are given in table B.8 in Appendix B. A perfect recursive (Cholesky) struc-
ture of the variables (another option to achieve identification) does not fit the
specific relationships between the variables. However, the stated restrictions
are similar to a Cholesky structure.
The shocks in both models are assumed to be vector white noise with zero
mean, that is, mutually independent and identically distributed:

ut˜(0,Su) , et˜(0, I6) , Su = A−1
0 BB′(A−1

0 )′. (6)

Su is the variance-covariance matrix (VCM) of the shocks in the underlying
VAR, and the VCM of the structural shocks in the SVAR is the identity
matrix. Therefore, each structural shock has unit variance and there is no
instantaneous correlation of the shocks. If these restrictions hold, causal
interpretation of the effects in the SVAR is possible because the structural
shocks are serially and mutually uncorrelated (which is not the case for the
shocks in the VAR).
The maximum likelihood estimates of the SVAR coefficients as well as of the
coefficients of the following interpretation tools are consistent if the SVAR is
identified and stationary. Furthermore, both shocks have to be vector white

4In section 4, larger negative values in the SVAR are also chosen as a sensitivity analysis.
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noise, and in particular, there can be no vector autocorrelation of the shocks
(Lütkepohl (2006)). Maximization of the log-likelihood function of the model
is achieved using the scoring method (Harvey (1990) and Amisano and Gi-
annini (1997)).
Tools for presenting and interpreting the results are structural impulse re-
sponse functions (SIRFs) and structural forecast error variance decomposi-
tions (SFEVDs). In this paper, SIRFs measure the marginal effects of a one
standard deviation increase in the structural shock of wind or solar power at
time t on the spot price at time t + s for all s = 0, ... up to the maximum
time horizon, holding everything else constant:

∂pricet+s
∂ej,t

= m
(s)
price,j , j = wind, solar. (7)

m
(s)
price,j are moving average (MA) coefficients of the stationary process xt.

This paper deals with the causal effects on the spot price as a result of
positive structural shocks in wind and solar power production over time.
The causal effects can therefore be described as average dynamic changes in
the spot price due to structural shocks in wind and solar power production
at different points in time, or rather, on different days.5 In order to be able
to compare the effects of a one-unit (1 GW) shock in wind and solar power,
the estimated effects of the SIRFs will be divided by the standard deviations
of wind and solar power such that the related shocks equal 1 GW.
In this context, SFEVDs measure the fraction of the total forecast error
variance of the spot price that is attributable to a shock in wind or solar
power. In other words, SFEVDs present the importance of a structural shock
in wind and solar power in explaining the fluctuation of the spot price.

2.3. Preliminary analysis

All variables are tested for unit roots using the augmented test of Dickey and
Fuller (1979) (cf. table B.12 in Appendix B). Wind power, load, net exports,
as well as spot prices are stationary in levels. Solar power and conventional
power are not stationary in levels, but their first differences are (notation:
variable d). In order to avoid non-stationarity problems, the last two vari-

5Considering additionally figure B.7 in Appendix B, the SIRF presents dynamic changes
in load caused by a structural shock in the same variable.
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ables are in first differences and all other variables are in levels.6

Solar power and conventional power may be cointegrated because they are
stationary in first differences (integrated of order 1). If this is the case, a vec-
tor error correction model (VECM) instead of a VAR should be implemented
in order to include long-run relationships due to cointegration. Therefore,
solar and conventional power are tested for cointegration by using the trace
test and the maximum-eigenvalue test of Johansen (1995) (see table B.13 in
Appendix B). Both tests suggest no cointegration for the 1% and 5% sig-
nificance levels. Therefore, no cointegration between solar and conventional
power is expected.
There are high autocorrelations of wind power for the first three lags and
a rapid decline within this period. Afterwards, autocorrelations are much
smaller and significantly different from zero up to the tenth lag. Figure
2 shows the respective lags and autocorrelations. Given the significant lags,
the pattern is roughly similar to those of autocorrelated wind speeds in Brett
and Tuller (1991), where the autocorrelations are only high for the first day.7

Moreover figure 2 shows the autocorrelations of solar power in first differ-
ences. Autocorrelations of solar in levels vary over time because of the non-
stationarity. There are also significant but smaller (negative) autocorrela-
tions for the first two lags, and afterwards they are not significantly different
from zero. Despite the different locations and weather conditions, these au-
tocorrelations for lag 1 or lag 2 are also consistent with past evidence, as
cited, for example, in Safi et al. (2002).
The lags of the underlying VAR have to be chosen such that there is no
mutual autocorrelation of the shocks. Several selection criteria (AIC, SBIC,
FPE, HQIC) suggest a number of maximum lags between 7 and 8 (see ta-
ble B.14 in Appendix B). However, there still exists mutual autocorrelation.
By considering several VARs with alternative numbers of maximum lags, an
underlying VAR with 14 lags as well as the seventeenth lag (excluding lags
15 and 16) reveals no mutual autocorrelation of the shocks. The Lagrange-

6Considering the time series in figure 1, conventional power may contain a slight time
trend. The related tests indicate non-stationarity for most significance levels. Solar power
clearly contains a time trend, and related tests show non-stationarity. Their first differ-
ences are stationary. With regard to load, unit root tests indicate stationarity for almost
any significance levels (with or without trend).

7However, the patterns in Brett and Tuller (1991) are for individual wind stations in
Canada. Moreover, their autocorrelations do not disappear up to two months.
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X-axis: Lags (days), Y-axis: Autocorrelations

Figure 2: Autocorrelations of wind (left graphic) and solar power (right graphic)

Multiplier test for autocorrelation of Johansen (1995) is used (see table B.15
in Appendix B). Therefore, the residuals can be seen as vector white noise.
The lag structure may be due to autocorrelated weekly load data up to 2-2.5
weeks. However, by choosing the stated lags, residual autocorrelation in the
model disappears.
Finally, the specific SVAR is estimated, that is, the stated underlying VAR
combined with the given a priori short-run restrictions of the instantaneous
effects in A0 and B. The structural shocks in this SVAR are not mutually
autocorrelated because there is no mutual autocorrelation of the stated VAR
shocks, and et = B−1A0ut holds. Moreover, the SVAR is exactly identified
and stationary. Therefore, estimated coefficients in the model are consis-
tent. Checking for identification of the SVAR is done using the method
of Amisano and Giannini (1997). The SVAR is stationary if the modulus of
each eigenvalue of the companion matrix of the underlying VAR is less than
one (Hamilton (1994) and Lütkepohl (2006), see table B.16 in Appendix B).
The residuals of the VAR and SVAR are tested to be not normally dis-
tributed using the method of Lütkepohl (2006) (see table B.17 in Appendix
B). Therefore, consistent standard errors and confidence intervals of the fol-
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lowing SIRFs and SFEVDs are created by using the bootstrapping method
for the residuals of Lütkepohl (2006). Convergence of estimations is achieved
from 1000 replications. This method does not require a specific distribution
assumption for the residuals. The confidence probability for each confidence
interval (CI) of the point estimates is 95% as usual. The maximum time
horizon for the SIRFs is 18 days in order to use all available information up
to the seventeenth lag of the underlying VAR.
There could be a problem of multicollinearity because overall demand and
supply of the spot market at each point in time is included in the model.
However, there is no perfect multicollinearity because network losses are ex-
cluded, and data on conventional power is incomplete due to data-specific
restrictions. In order to investigate quasi-multicollinearity, table B.9 in Ap-
pendix B shows the symmetric correlation matrix including cross-correlations
of stationary variables. Following Verbeek (2008) quasi-multicollinearity is
very unlikely to be a problem with respect to the data and the stated vari-
ables because the modulus of each cross-correlation does not exceed 0.8.8

By using average hourly data, nearly the same values as in Cludius et al.
(2013) are obtained. Specifically, an OLS regression with the spot price as
the dependent variable and load, wind and solar power as explanatory vari-
ables (including time dummies and robust standard errors) over nearly the
same time period with nearly the same dataset leads to nearly the same
negative merit order effects on average (around -1 e/MWh for wind and so-
lar). This is a proof of the validity of the data (see table B.11 in Appendix
B). Moreover, Table B.10 in Appendix B shows daily OLS estimates for
merit order effects due to wind and solar power. Although the effect of solar
power is smaller, the estimates are quite similar to Würzburg et al. (2013)
and Cludius et al. (2013). The smaller effect of solar power may be due to
some differences in empirical analysis. In contrast to Würzburg et al. (2013)
and Cludius et al. (2013) most variables are in levels (not first differences)
and the time period is about 9 months longer. With respect to Würzburg
et al. (2013), no forecasts are chosen as stated in section 2.1.

8In the SVAR model, all variables are dependent in one equation, and thus all variables
are explanatory in the remaining equations. Therefore, the stated threshold must hold for
all cross-correlations.
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3. Results

Figures 3 and 4 show the SIRFs for a positive shock of one standard
deviation in wind and solar power. Spot prices are decreasing over time due to
shocks in wind and solar power. The effects can be seen as different negative
merit order effects on the day of the shock and on the days subsequent to
the shock. The directions of the effects are in line with past theoretical and
empirical research on (average) negative merit order effects. The persistence
of a wind power shock is longer: The spot price decreases constantly over
two days, which is twice the duration of a solar power shock (one day).
For comparing the magnitudes of the effects of 1 GW wind and solar power
shocks, the effects are divided by the standard deviations of wind and solar
power as stated in section 2.2. Table 4 shows the related effects on the
significant instantaneous day and on significant future days as well as the
aggregated effects.9

Step,day impulse: Wind impulse: Solar d
0 -.81591189 -1.1635381
1 -.5769002 -1.2171447
2 -.31220399 0
Aggregated effect -1.7050161 -2.3806828
975 observations in SVAR

SIRFs: Effects of 1 GW wind/solar power shock on spot price (e/MWh)

Table 4: SIRFs: One-unit shock wind and solar power on spot price

The negative merit order effects of a solar power shock are larger on each
significant day (the largest effect is one day later, at about -1.2 e/MWh)
the effects of a wind power shock (largest effect is the instantaneous effect,
about -0.8 e/MWh). Moreover, when the dynamic effects of wind and solar
power are added together, the results show a total average negative effect of
-2.4 e/MWh for solar power and of -1.7 e/MWh for wind power on the spot
price.
Considering figure 2, the high autocorrelations of wind power for the first
three lags and the gradual decline during this time period could explain the
dynamic negative effects of wind power on the spot price for the time period

9The significance of the effects does not change because the bootstrapped standard
errors and confidence intervals will be transformed linearly and, therefore, confidence
intervals will not change signs.
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X-axis: Days, Y-axis: Marginal effects (e/MWh), below title: Name of
technical file (irfname). 975 observations in SVAR.

Figure 3: Effects of wind power shock on spot price

X-axis: Days, Y-axis: Marginal effects (e/MWh), below title: Name of
technical file (irfname). 975 observations in SVAR.

Figure 4: Effects of solar power shock on spot price
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subsequent to a shock. Because the results only show significant autocor-
relations of solar power in differences for the first two lags and since these
also decline gradually, this dynamic structure is also a possible explanation
for the dynamic effects of solar power on the spot price. In this sense, the
dynamic structures of wind power as well as solar power are transferred to
the merit order effects on the spot price. Dynamic effects of wind power may
persist longer over time because of the longer persistence of autocorrelated
wind speeds. In contrast to wind power, solar power coincides with demand
peaks. Thus, the merit order curve is steeper when solar is fed into the grid
and, therefore, the magnitude of the total negative merit order effect of solar
power should be larger.
The negative aggregated effects found here are slightly higher than those
reported by Würzburg et al. (2013) and Cludius et al. (2013) (static aver-
age OLS merit order effects of wind and solar power of about -1 e/MWh).
Neither of these papers reported any differences in the effects of wind and
solar power on average. Moreover, by taking electricity simulation models
into account as well, the present paper finds merit order effects for Germany
in the range of those reported in past research (from -2.5 to -0.5 e/MWh)
as presented in Würzburg et al. (2013).
Similar daily OLS estimates of the merit order effects for wind and solar
power, such as those in Würzburg et al. (2013) and Cludius et al. (2013), are
discussed in section 2.3. Following Baltagi (2002), OLS estimates (without
lagged explanatory variables) may be overstated because wind or solar power
and OLS residuals may be positively contemporaneously correlated. Positive
correlation should be present when parts of the residuals are lagged values
of explanatory variables. Furthermore, applying SVAR techniques changes
the relation of a merit order effect of wind and solar power. OLS indicates
that the negative effect of wind power on the spot price is slightly higher.
In contrast, SVAR estimates (and SIRFs) suggest a higher negative effect
of solar power. When using an SVAR, Böckers et al. (2013) also found a
negative merit order effect of wind power, but a positive effect of solar power
for Spain. The latter stands in contrast to previous theoretical as well as
empirical findings. Possibly, the contrary results reported by Böckers et al.
(2013) are driven by modeling wind and solar production in their SVAR as
exogenous (and, therefore, ignoring wind and solar power dynamics).
After the SIRFs, Structural Forecast Error Variance Decompositions are cal-
culated. Table 5 shows the respective SFEVDs and their standard errors.
A structural shock in wind power accounts for 27-28% of the variance up
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step,day SFEVD-wind standard error SFEVD-solar d standard error
0 0 0 0 0
1 0.272142 0.032765 0.022428 0.008394
2 0.280252 0.035310 0.032248 0.012173
975 observations in SVAR

Table 5: SFEVDs wind and solar power

to the second day and a structural shock in solar power accounts for 2-3%
up to the first day. This means that a shock in wind power contribute a
larger share to the variance of error made in forecasting the spot price than
a shock in solar power. Therefore, wind power shocks are more important in
explaining the fluctuation of the spot price. A possible explanation is that
such shocks tend to occur more often and therefore influence the spot price
more often. Moreover, wind capacity exceeds solar capacity for most of the
investigated time period. However, the effects are not large in magnitude due
to the relatively flat merit order curve (e.g., at night). A significant share
of the variance is also explained by solar power shocks, despite their lesser
importance.

4. Sensitivity analysis

Sensitivity analysis is done by using alternative a-priori short-run restrictions
in A0 without changing the variable ordering. There is no theoretical reason
to use a different order. Starting with an exact Cholesky structure, the
instantaneous effect of the spot price on conventional power is varied in the
interval [0.01; 0.2] with steps of 0.01, and in the interval [0.2; 0.8] with steps
of 0.1. The instantaneous effect of the spot price on load is varied in the
interval [−0.009; 0] with steps of 0.001. The instantaneous effect of the spot
price on net exports is varied in the interval [−0.04; 0] with steps of 0.005.
The instantaneous effect of conventional power on net exports is varied in
the interval [−0.005; 0.005] with steps of 0.001, and in the interval [0.01; 0.05]
with steps of 0.01. For some variations, estimation is not possible because
the related log-likelihood function of the SVAR is not concave. Taking into
account all remaining alternatives, the SVAR results do not change.
As a further sensitivity analysis, time dummies as exogenous variables are
included in the SVAR in order to control additionally for seasonal elements in
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the endogenous variables.10 There are six weekly dummies (monday is base
category), 11 monthly dummies (January is base category) and three yearly
dummies (year 2010 is the base category) in the SVAR and all calculations
are repeated. Table 6 shows the effects due to a 1 GW shock in wind and
solar power on the significant instantaneous day and on significant future
days as well as the aggregated effects.

Step,day impulse: Wind impulse: Solar d
0 -.79948813 -1.0208895
1 -.52680048 -1.1245361
2 -.27183255 0
Aggregated effect -1.5981212 -2.1454256
971 observations in SVAR

SIRFs: Effects of 1 GW wind/solar power shock on spot price (e/MWh)

Table 6: SIRFs: One-unit shock wind and solar power on spot price (time dummies in
SVAR included)

The basic patterns and the time periods of the dynamic effects in the SIRFs
remain unchanged. The magnitudes of the negative dynamic effects as well
as of the aggregated effects are slightly lower for both shocks. However,
the negative effects of a solar power shock are still significantly higher, as
in section 3. Furthermore, the aggregated effects of both shocks have still a
larger magnitude than the OLS effects in Würzburg et al. (2013) and Cludius
et al. (2013).
Taking average daily values may bias the results because solar power feed-in
occurs only during the day, and most of the wind power feed-in occurs at
night. Therefore, each day is separated into average daytime values (from
6 a.m. to 6 p.m.) and nighttime values (from 6 p.m. to 6 a.m.), and all
calculations are repeated. There are no changes in the basic patterns or
in the individual time periods in which the effects take place. Only the
magnitudes of the effects of a shock in wind power are slightly different.
Furthermore, now the oscillating solar power feed-in during the day and at
night is (only) observable for the effects of a solar power shock on the spot
price. Figure 5 shows the related SIRF.
Figure 6 presents the SIRF as a result of a shock in wind power before, and the
SIRF after the nuclear moratorium, respectively. This is another important

10Consistent SVAR and VAR models for all sensitivity analyses are used with regard to
the restrictions given in sections 2.2 and 2.3. Related estimation and test results for all
sensitivity analyses are available from the author upon request.
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X-axis: Half days, Y-axis: Marginal effects (e/MWh), below title: Name
of technical file (irfname). 1956 observations in SVAR.

Figure 5: Effects of solar power shock on spot price

X-axis: Half days, Y-axis: Marginal effects (e/MWh), below titles: Names
of technical files (irfname). 755 (left graphic), 1174 (right graphic) obser-
vations in SVAR.

Figure 6: Effects of wind power shock on spot price before (left graphic) and after (right
graphic) nuclear moratorium
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sensitivity analysis because of the possibility of a structural change due to the
nuclear moratorium of August 2011. To conduct this analysis, the dataset is
divided into the time before (from July 2010 to July 2011) and after (from
August 2011 to March 2013) the nuclear moratorium, and all calculations
are repeated. Time frequencies are now half days. The basic patterns in the
SIRFs as well as the time periods in which the effects take place are very
similar to the SIRFs above. Furthermore, in general, there is no difference in
the magnitudes of the effects. Again the effects are additionally scaled such
that wind power shocks equal 1 GW in order to compare the magnitudes (see
section 3). Table 7 shows the effects for both time periods.

Step,half day impulse: Wind 1st half impulse: Wind 2nd half
0 -.54567663 -.64794941
1 -.48702345 -.56415683
2 -.31432026 -.32217415
3 -.21074491 -.17182672
4 -.13391032 -.14478755
5 -.13500634 0
Aggregated effect -1.8266819 -1.8508947
755 observations before and 1174 after nuclear moratorium in SVAR

SIRFs: Effects of 1 GW wind power shock on spot price (e/MWh)

Table 7: SIRFs: One-unit shock wind power on spot price before/after nuclear moratorium

The differences are small. Therefore, as stated in Würzburg et al. (2013),
shutting down seven nuclear power plants due to the nuclear moratorium
does not change the electricity mix to result in different merit order effects.
Fossil fuels were likely to replace the eliminated nuclear power instead of
renewables such as wind power.
SFEVDs with respect to shocks in wind and solar power on the spot price
for all sensitivity analyses present similar results compared to the previously
reported SFEVDs. This indicates that there is no change in the importance
of a shock in wind or solar power in explaining the fluctuation of the spot
price.

5. Concluding remarks

This paper examines the behavior of spot prices over time caused by
positive structural shocks in wind or solar power in the German day-ahead
electricity spot market using a SVAR and the related SIRFs. The directions
of the dynamic negative merit order effects of wind and solar power are not
a surprise. More interestingly, wind power shows longer persistence of the
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effects on spot prices over time. An explanation is that autocorrelation for
wind power are significant at larger lags than for solar power. In this sense,
the dynamic nature of wind and solar power is transferred to the merit order
effect on spot prices. Autocorrelations of wind and solar power are likely
to autocorrelated wind speeds and solar irradiances. On average, the total
negative effect on spot prices for solar power shocks is larger. The fact that
solar coincides with demand peaks and results in a steeper merit order curve
might explain the larger magnitudes.
When comparing past empirical results, there are differences in the total
average negative merit order effects of wind and solar power. The autocor-
relation patterns of wind and solar power could explain the negative effects
found on specific days. OLS estimates might be overstated if these dynam-
ics were transferred to merit order effects: The sums of the dynamic SIRF
effects – that is, the total average effects – might then have a larger magni-
tude. Despite the possible explanations given in this paper, the reasons for
the dynamic effects on spot prices due to shocks in wind and solar power are
open questions and left for further research.
When using subsets of the data on the pre- and post-nuclear moratorium
periods as a sensitivity analysis, no different dynamic merit order effects are
found, and the basic dynamic patterns remain unchanged. According to
Würzburg et al. (2013), fossil fuels are more likely than renewables to have
replaced the eliminated nuclear power, leading to no different merit order
effects of wind or solar power.
SVAR estimates suggest that private power customers will be able to reduce
their costs by purchasing a high amount of power within a time period of two
days after a wind increase (and one day after a solar increase) if these users
are able to apply smart metering as well as electricity storing techniques in
the future. Smart metering may become available sooner than electricity
storing techniques. Power end users could then use the time periods in the
same way, if smart metering were able to identify the necessary amount of
power for all time periods and all household electrical equipment. For exam-
ple, the electricity needed to operate a washing machine could be purchased
within days of a price decrease.
Future research could study the implementation of other possible relevant
variables of the German electricity market in the model such as the gas
price. However, past research has found no related effects of gas prices on
spot prices due to long-term contracts (see Gelabert et al. (2011)).
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Appendix A. Data sources

Total wind power production windt:
Data sources are Amprion (http://www.amprion.net/windenergieeinspei
sung#), TenneT (http://www.tennettso.de/site/Transparenz/veroeff
entlichungen/netzkennzahlen/tatsaechliche-und-prognostizierte-

windenergieeinspeisung), 50Hertz (http://www.50hertz.com/de/
1983.htm), TransnetBW (http://www.transnetbw.de/de/kennzahlen/er
neuerbare-energien/windenergie), Transparency-EEX (http://www.tra
nsparency.eex.com/de/daten uebertragungsnetzbetreiber/stromerze

ugung/tatsaechliche-produktion-wind).

Total solar power production solart:
Data sources are Amprion (http://www.amprion.net/photovoltaikeinsp
eisung#), TenneT (http://www.tennettso.de/site/Transparenz/veroe
ffentlichungen/netzkennzahlen/tatsaechliche-und-prognostizierte

-solarenergieeinspeisung land?lang=de DE), 50Hertz (http://www.
50hertz.com/de/2792.htm), TransnetBW (http://www.transnetbw.de/
de/kennzahlen/erneuerbare-energien/fotovoltaik), Transparency-EEX
(http://www.transparency.eex.com/de/daten uebertragungsnetzbe

treiber/stromerzeugung/tatsaechliche-produktion-solar).

Net total load loadt:
Data provided by ENTSO-E (total load, https://www.entsoe.eu/db-que
ry/consumption/mhlv-a-specific-country-for-a-specific-month/).

Net-exports net− exportst:
Data sources are Amprion (http://www.amprion.net/grenzueberschreit
ende-lastfluesse#), TenneT (http://www.tennettso.de/site/Transpar
enz/veroeffentlichungen/netzkennzahlen/grenzueberschreitende-la

stfluesse), 50Hertz (http://www.50hertz.com/de/119.htm), TransnetBW
(http://www.transnetbw.de/de/kennzahlen/lastdaten/grenzueber
schreitende-lastfluesse), Creos S.A. (http://www.creos-net.lu,
cross-border load flows between Germany and Luxemburg available upon re-
quest).
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http://www.50hertz.com/de/2792.htm
http://www.50hertz.com/de/2792.htm
http://www.transnetbw.de/de/kennzahlen/erneuerbare-energien/fotovoltaik
http://www.transnetbw.de/de/kennzahlen/erneuerbare-energien/fotovoltaik
http://www.transparency.eex.com/de/daten_uebertragungsnetzbetreiber/stromerzeugung/tatsaechliche-produktion-solar
http://www.transparency.eex.com/de/daten_uebertragungsnetzbetreiber/stromerzeugung/tatsaechliche-produktion-solar
https://www.entsoe.eu/db-query/consumption/mhlv-a-specific-country-for-a-specific-month/
https://www.entsoe.eu/db-query/consumption/mhlv-a-specific-country-for-a-specific-month/
http://www.amprion.net/grenzueberschreitende-lastfluesse
http://www.amprion.net/grenzueberschreitende-lastfluesse
http://www.tennettso.de/site/Transparenz/veroeffentlichungen/netzkennzahlen/grenzueberschreitende-lastfluesse
http://www.tennettso.de/site/Transparenz/veroeffentlichungen/netzkennzahlen/grenzueberschreitende-lastfluesse
http://www.tennettso.de/site/Transparenz/veroeffentlichungen/netzkennzahlen/grenzueberschreitende-lastfluesse
http://www.50hertz.com/de/119.htm
http://www.transnetbw.de/de/kennzahlen/lastdaten/grenzueberschreitende-lastfluesse
http://www.transnetbw.de/de/kennzahlen/lastdaten/grenzueberschreitende-lastfluesse
http://www.creos-net.lu


Conventional power production conventionalt:
Data source is Transparency-EEX (http://www.transparency.eex.com/de
/daten uebertragungsnetzbetreiber/stromerzeugung/tatsaechliche-

produktion-von-erzeugungseinheiten%20%E2%89%A5%20100%20MW).

EEX day-ahead spot price for power pricet:
Data source is EEX (http://www.eex.com/de/). Spot price data available
by purchasing the Info-Student package.

Wind and solar capacity:
Data sources are www.ise.fraunhofer.de/de/downloads/pdf-files/

aktuelles/stromproduktion-aus-solar-und-windenergie-2012.pdf and
http://www.transparency.eex.com/de/daten uebertragungsnetz

betreiber/stromerzeugung/installierte%20Erzeugungskapazit%C3%

A4t%20%3C%20100%20MW.

Network losses:
Data source is http://search.worldbank.org/data?qterm=Network+loss
es+output&language=EN&format=.
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Appendix B. Additional tables

(1) (2) (3) (4) (5)
VARIABLES conventional d conventional d conventional d conventional d conventional d

price 0.0860*** 0.0396** 0.0378** 0.0340** -0.0118
(0.0176) (0.0169) (0.0168) (0.0165) (0.0193)

wind -0.181*** -0.188*** -0.171*** -0.218***
(0.0321) (0.0320) (0.0358) (0.0332)

solar d -0.273** -0.278** -0.281***
(0.108) (0.108) (0.104)

load 0.153**
(0.0617)

net exports -0.102 0.0920
(0.0893) (0.100)

Constant 5.753*** 9.133*** 9.281*** 9.260*** 1.895
(1.002) (1.112) (1.108) (1.107) (3.568)

Daily dummies Yes Yes Yes Yes Yes
Monthly dummies Yes Yes Yes Yes Yes
Yearly dummies Yes Yes Yes Yes Yes

Observations 992 992 992 992 992
Newey-West standard errors in parentheses because of autocorrelated and heteroskedastic residuals
*** p<0.01, ** p<0.05, * p<0.1
Spot price not significant if load is included

Table B.8: OLS regressions market power

Variables wind solar d load net exports conventional d price
wind 1.000
solar d -0.067 1.000
load -0.092 0.003 1.000
net exports 0.476 -0.059 -0.587 1.000
conventional d -0.185 -0.031 0.407 -0.228 1.000
price -0.432 -0.003 0.733 -0.566 0.315 1.000

Table B.9: Cross-correlations of stationary variables
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(1) (2) (3)
VARIABLES price price price

wind -1.018*** -0.964*** -1.027***
(0.0644) (0.0764) (0.0665)

solar d -0.349* -0.484** -0.361**
(0.180) (0.198) (0.181)

load 1.346*** 1.352***
(0.205) (0.208)

net exports 0.864*** -1.376*** 0.868***
(0.221) (0.337) (0.222)

conventional d 0.205** -0.0437
(0.0952) (0.0740)

Constant -32.18** 52.19*** -32.09**
(13.14) (1.793) (13.09)

Daily dummies Yes Yes Yes
Monthly dummies Yes Yes Yes
Yearly dummies Yes Yes Yes

Observations 992 992 992
Newey-West standard errors in parentheses because of autocorrelated and heteroskedastic residuals
*** p<0.01, ** p<0.05, * p<0.1
Conventional power not significant if load is included

Table B.10: Daily OLS regressions: Merit order effect of wind and solar power

(1) (2)
VARIABLES price price

wind -1.317*** -0.919***
(0.0277) (0.0189)

solar -0.931*** -0.965***
(0.0374) (0.0294)

load 1.164***
(0.0368)

Constant 46.81*** -21.67***
(0.577) (2.027)

Hourly dummies Yes Yes
Daily dummies Yes Yes
Monthly dummies Yes Yes
Yearly dummies Yes Yes

Observations 23.817 23.817
Newey-West standard errors in parentheses because of autocorrelated and heteroskedastic residuals
*** p<0.01, ** p<0.05, * p<0.1
All Variables in levels, stationary

Table B.11: Hourly OLS regressions: Merit order effect of wind and solar power
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Variables lags RW drift/no drift RW trend RW drift
wind 19 6.287e-06 .00004556 8.396e-08

20 6.338e-06 .00004609 8.476e-08
21 8.843e-06 .00006399 1.229e-07
22 .00002728 .00018993 4.294e-07
23 .00009164 .00055223 1.642e-06

solar 19 .47613992 .72047458 .05348393
20 .50109013 .7429769 .05894457
21 .50328511 .75096247 .05946083
22 .48135155 .74326838 .05447298
23 .50283747 .7661759 .05935601

load 19 .00412572 .00755218 .00011437
20 .01123231 .02093833 .00036115
21 .00239465 .00430228 .00006184
22 .00264193 .00453999 .00006909
23 .00300932 .0050952 .00008004

net exports 19 .00005231 .0000642 8.820e-07
20 .00024501 .00032803 4.871e-06
21 .00006897 .00007325 1.198e-06
22 .00003222 .00002762 5.163e-07
23 .00005059 .00003813 8.510e-07

conventional 19 .05464416 .16622093 .00240539
20 .06175021 .18149642 .00280372
21 .01635505 .05875521 .00056038
22 .02279832 .07796817 .00083029
23 .02568132 .08912755 .00095723

price 19 .0006222 .00035351 .0000137
20 .00197146 .00126446 .00004968
21 .00012679 .00004994 2.350e-06
22 .00023023 .00008938 4.549e-06
23 .00036079 .0001342 7.485e-06

solar d 19 8.719e-17 8.422e-15 0
20 1.184e-15 8.101e-14 0
21 4.499e-14 2.048e-12 0
22 7.705e-14 3.332e-12 0
23 3.184e-13 1.180e-11 1.110e-16

conventional d 19 0 0 0
20 0 0 0
21 0 0 0
22 0 0 0
23 0 0 0

969-973 observations

MacKinnon approximate p-values
Null hypothesis: Variable has a unit root
RW: Random walk (with or without drift or including time trend) in test equations
Varying lags chosen due to sword criterion (above/below 21 lags)

Table B.12: Augmented Dickey Fuller test for unit roots

statistic type statistic 5% critical value 1% critical value
trace 14.95 19.96 24.6
maximum eigenvalue 12.24 15.67 20.2
971 observations

Number of cointegration relationships: zero (rank 0)
Null hypothesis: No cointegration
21 lags chosen due to sword criterion
Non-zero constant trend included in test equations

Table B.13: Johansen tests for cointegration
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Lag FPE AIC HQIC SBIC
0 1002415.3 30.845185 30.856649 30.875305
1 6311.2921 25.777357 25.8576 25.988193
2 5581.8169 25.654522 25.803545 26.046076
3 4921.8136 25.528665 25.746467 26.100935
4 4586.7413 25.458119 25.744701 26.211106
5 3337.3668 25.14007 25.495431 26.073774
6 2322.3531 24.777378 25.201519 25.891799
7 1757.0065 24.498282 24.991203 25.79342
8 1632.0829 24.424362 24.986062 25.900216
9 1672.9806 24.448898 25.079378 26.10547
10 1687.774 24.457437 25.156697 26.294725
11 1724.2958 24.478523 25.246562 26.496528
12 1750.94 24.49347 25.330289 26.692192
13 1726.8874 24.479182 25.384781 26.858621
14 1697.8994 24.461722 25.4361 27.021878
15 1732.5252 24.481298 25.524456 27.222171
16 1812.5531 24.525755 25.637692 27.447344
17 1851.8592 24.546416 25.727133 27.648722
18 1933.6679 24.588753 25.838249 27.871776
19 1997.6927 24.62033 25.938606 28.08407
20 2015.4829 24.628087 26.015143 28.272545
972 observations

Lag selection criteria

Table B.14: Lag selection criteria

Lags for residuals statistic p-value
1 43.249144 .18934092
2 29.594732 .76579042
3 30.024853 .74780492
4 35.42833 .49559511
5 35.647536 .48521901
6 40.257247 .28735366
7 54.843861 .02294731
8 52.745227 .03541439
9 41.784478 .23393501
10 41.188197 .25396012
11 46.622222 .11061656
12 50.860656 .05134567
13 44.032276 .16815907
14 50.553657 .0544561
15 41.975176 .22775867
16 33.124707 .60608152
17 31.206481 .69587384
18 18.59199 .99272753
19 42.190577 .22091563
20 38.092457 .3743801
975 observations in VAR

Null hypothesis: No mutually autocorrelated residuals at specific lag
17 lags chosen due to underlying VAR
Test statistic has chi-squared distribution

Table B.15: Johansen test for mutually autocorrelated VAR residuals
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Eigenvalue number real complex modulus
1 .61237295 .77914575 .99099381
2 .61237295 -.77914575 .99099381
3 -.22097255 .96017321 .98527227
4 -.22097255 -.96017321 .98527227
5 -.8776507 .41865053 .9723883
6 -.8776507 -.41865053 .9723883
7 .9650264 0 .9650264
8 .9488727 0 .9488727
9 .58605988 .73596715 .94080488
10 .58605988 -.73596715 .94080488
11 .55817119 .72573167 .91555531
12 .55817119 -.72573167 .91555531
13 .852849 .31800191 .91020692
14 .852849 -.31800191 .91020692
15 .90900433 .02655304 .90939207
16 .90900433 -.02655304 .90939207
17 .67636754 .60380998 .906675
18 .67636754 -.60380998 .906675
19 -.22522557 .87345907 .90202955
20 -.22522557 -.87345907 .90202955
21 .31281689 .84197199 .89820445
22 .31281689 -.84197199 .89820445
23 .85545685 .22673485 .88499441
24 .85545685 -.22673485 .88499441
25 -.27868423 .8382489 .88336069
26 -.27868423 -.8382489 .88336069
27 .39411478 .7875752 .88068221
28 .39411478 -.7875752 .88068221
29 .23243107 .84919583 .88043044
30 .23243107 -.84919583 .88043044
31 -.8780167 0 .8780167
32 .85964893 .16004133 .87441953
33 .85964893 -.16004133 .87441953
34 .01795846 .87422705 .87441148
35 .01795846 -.87422705 .87441148
36 .77341534 .40662921 .87379552
37 .77341534 -.40662921 .87379552
38 .74132927 .44977405 .86710194
39 .74132927 -.44977405 .86710194
40 -.48819066 .71628573 .86683064
41 -.48819066 -.71628573 .86683064
42 .3559355 .78773055 .86441281
43 .3559355 -.78773055 .86441281
44 -.10695798 .85412954 .86080037
45 -.10695798 -.85412954 .86080037
46 -.73200168 .45021666 .85937274
47 -.73200168 -.45021666 .85937274
48 -.8534778 .08321838 .85752531
49 -.8534778 -.08321838 .85752531
50 -.39469875 .76128471 .85752056
51 -.39469875 -.76128471 .85752056
52 -.58948251 .62051235 .85587686
53 -.58948251 -.62051235 .85587686
54 -.80730999 .28299819 .85547496
55 -.80730999 -.28299819 .85547496
56 .57526653 .63161972 .85432725
57 .57526653 -.63161972 .85432725
58 -.6563199 .54374575 .85229998
59 -.6563199 -.54374575 .85229998
60 -.80729711 .26378257 .84929963
61 -.80729711 -.26378257 .84929963
62 -.83033328 .17497547 .84856924
63 -.83033328 -.17497547 .84856924
64 .7428605 .3866239 .83744836
65 .7428605 -.3866239 .83744836
66 .20652267 .80502779 .83109648
67 .20652267 -.80502779 .83109648
68 -.69903254 .44762544 .83006929
69 -.69903254 -.44762544 .83006929
70 .011978 .82947049 .82955697
71 .011978 -.82947049 .82955697
72 -.54188385 .62627923 .82816893
73 -.54188385 -.62627923 .82816893
74 -.49784486 .65553381 .82314888
75 -.49784486 -.65553381 .82314888
76 -.27351253 .77416163 .82105745
77 -.27351253 -.77416163 .82105745
78 .56538298 .58121878 .8108472
79 .56538298 -.58121878 .8108472
80 .15843332 .79194883 .80764105
81 .15843332 -.79194883 .80764105
82 .650172 .46881976 .8015707
83 .650172 -.46881976 .8015707
84 -.3781314 .70528385 .80025537
85 -.3781314 -.70528385 .80025537
86 -.11750823 .77390945 .78277967
87 -.11750823 -.77390945 .78277967
88 -.77256826 0 .77256826
89 -.62169283 .44690144 .76565193
90 -.62169283 -.44690144 .76565193
91 -.70496249 .29449137 .76400084
92 -.70496249 -.29449137 .76400084
93 .75871017 0 .75871017
94 .06376385 .70740112 .71026908
95 .06376385 -.70740112 .71026908
96 -.63738399 0 .63738399
97 .57229632 .22045923 .6132906
98 .57229632 -.22045923 .6132906
99 .59233623 0 .59233623
100 .0781323 .36437829 .37266096
101 .0781323 -.36437829 .37266096
102 -.33367055 0 .33367055
975 observations in VAR

Eigenvalues of companion matrix of VAR
17 lags chosen due to VAR
VAR stationary if modulus of each eigenvalue less than one

Table B.16: Test for stationarity of VAR
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X-axis: Days, Y-axis: Marginal effects (GW), below title: Name of tech-
nical file (irfname). 971 observations in SVAR. Time dummies included in
SVAR.

Figure B.7: Effects of load shock on load

Dependent variable in VAR statistic p-value
wind 163.98967 2.455e-36
solar d 44.325559 2.370e-10
load 979.70972 1.81e-213
net exports 3.5850257 .16654115
conventional d 41.585326 9.330e-10
price 90920.578 0
ALL 92153.774 0
975 observations in VAR

Null hypothesis: Normal distribution
17 lags chosen due to underlying VAR
Test statistic has chi-squared distribution

Table B.17: Lütkepohl test for normally distributed VAR residuals

Test Wooldridge score Regression based F
Statistic 6.61207 6.58089
p-value 0.0101 0.0105
979 observations in 2SLS regression

Wooldridge score and regression based F tests for exogeneity
Null hypothesis: Load is exogenous
Tests robust to autocorrelated and heteroscedastic residuals
Tests conducted after running 2SLS instrumental variable regression
Endogenous load depends on its own 14 lags (days)
Price dependent variable, regressors: Wind, solar d, conventional d, net exports, load (endogenous), time dummies
Test results basically unchanged if lagged values of load or regressors in price regression are varied

Table B.18: Tests for exogeneity of load
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