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Abstract

This paper relates to the literature on macro-finance-interaction models. We modify the

boundedly rational New Keynesian model of De Grauwe (2010a) using a completely micro-

founded IS equation, and combine it with the agent-based financial market model of Wester-

hoff (2008). For this purpose we derive four interactive channels between the financial and real

sector where two channels are strictly microfounded. We analyze the impact of the different

channels on economic stability and derive optimal (simple) monetary policy rules. We find

that coefficients of optimal simple Taylor rules do not significantly change if financial market

stabilization becomes part of the central bank’s objective function. Additionally, we show

that rule-based, backward-looking monetary policy creates huge instabilities if expectations

are boundedly rational.
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1. Introduction

The financial crisis of 2008 has put new issues on the economics research agenda. Recently,

a growing literature investigates how speculative phenomena in financial markets spill over

to the real economy and whether or not real market developments feed back on financial

speculation. One straightforward way to answer such questions is to integrate the standard

New Keynesian macroeconomic (NKM) model with those of the agent-based computational

(ACE) finance literature.

Early attempts in this area are Kontonikas and Ioannidis (2005) and Kontonikas and Mon-

tagnoli (2006) who connect a New Keynesian Macroeconomic (NKM) model with a financial

market (FM) model where stock prices result from two different sources: a momentum-effect

and a reversal towards the fundamental value. Those models are clearly inspired by the

agent-based (chartist/fundamentalist) literature1 on financial markets. A similar approach

can also be found in Bask (2011). The major drawback of these models is the lack of a

consistent approach of expectation formation. The Rational expectations (RE) hypothesis

which is standard in macroeconomics is kept for the NKM part while financial markets are

driven by non-rational expectations that are implicitly contained in the behavior of chartists

/ fundamentalists (compare Brock and Hommes (1998) for example).

Some interesting work in the macro-finance-interaction literature that does not build upon

NKM for the description of the real sector has been done by Westerhoff (2012) and Naimzada

and Pireddu (2013). The authors employ a classical Keynesian demand function only to

represent the real sector. The advantage of this approach is simplicity. Models are typically

of small scale, so that analytical solutions are tractable. This simplicity however comes at

the cost of a non-microfounded, ad-hoc real economy.2

In a series of papers Paul DeGrauwe3 has proposed to replace the assumption of rational

expectations in standard NKMs by an evolutionary learning approach. Following the ACE-

FM literature (e.g. Beja and Goldman (1980)), agents in his model apply different forecasting

heuristics and adjust their believes by ex post evaluation. His approach provides a perfect real

sector submodel to an integrated (i.e. macro-finance-interaction) model framework because

1 A litereture overview can be found in Samanidou et al. (2007), an empirical model contest in Franke and
Westerhoff (2012a). For illustrative examples on exchange rate modeling consult Grauwe and Grimaldi (2005)
and Bauer et al. (2009).

2 A new literature designs agent-based macroeconomic models as object oriented simulations without the need
for any equation system. Consult Lengnick (2013) for a simple example and Dosi et al. (2010) for a very
elaborate, policy oriented one.

3 De Grauwe (2010a), De Grauwe (2010c), De Grauwe (2010b).
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it allows to state both submodels using identical expectations hypothesis. A first approach

to integrate NKM of the DeGrauwe type with ACE financial markets has been proposed by

Lengnick and Wohltmann (2013). The authors put a Westerhoff (2008) model alongside the

DeGrauwe NKM and introduce two different interaction channels.

In the paper at hand we will further develop this approach in the following way. In section

2 we will derive an extended version of the IS-curve that gives rise to new interactive channels

with the financial sector. In section 3 we will adjust the expectations heuristics of the real

sector subsystem and define the macro-finance-interaction model. The role of the different

channels on (in)stability is evaluated in section 4. In section 5 we derive optimal simple

monetary policy rules of the Taylor-type and discuss the question whether they should be

forward- or backward-looking. Section 6 concludes.

2. Microfounding an Extended IS-Curve

One important aspect on the research agenda to integrate NKM with ACE finance is the

identification of the most important channels through which the different sectors influence

each other. Several channels have been proposed, but all of them share two common problems:

First, the interactive channels are not microfounded or empirically identified but assumed ad

hoc. Second, the literature has not agreed upon which channels are most important.

Typical assumptions for possible channels which affect the real sector from within the fi-

nancial one are, (1) the existence of wealth effects (Kontonikas and Montagnoli (2006), Bask

(2011), Westerhoff (2012), Naimzada and Pireddu (2013)), (2) a collateral based cost ef-

fect (Lengnick and Wohltmann (2013)) or (3) a balance-sheet based leverage targeting effect

(Scheffknecht and Geiger (2011)). Typical examples for channels going in the opposite di-

rection are (1) a misperception effect (Kontonikas and Montagnoli (2006), Westerhoff (2012),

DeGrauwe and Kaltwasser (2012), Lengnick and Wohltmann (2013), Naimzada and Pireddu

(2013)), (2) a negative dependence on the (real) interest rate (Kontonikas and Montagnoli

(2006)), or (3) a mixture of both (Bask (2011)).

But even if the same type of channel is applied, its formalization is often very different. The

wealth effect, for example, is formalized in Kontonikas and Montagnoli (2006) and Westerhoff

(2012) by adding +c1sq to aggregate demand, where c1 is a positive parameter and sq the

(log) stock price in period q. On the other hand, Bask (2011) adds real stock price changes

+c1(∆sq − πq), where πq is the inflation rate. Naimzada and Pireddu (2013) add a weighted

average of the current and fundamental stock price +c1
[
(1− ω)sf + ωsq

]
where ω is the
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weight and sf the fundamental value of sq.
4 In the remainder of this section, we will derive

channels that follow from a strict microfoundation approach, to check which of the above

mentioned channels and formalizations are in line with first order principles.

In NKM, money is typically introduced by assuming that holding money generates utility

for the household. To introduce stocks within the NKM microfoundation framework, we

proceed analogously and assume that holding stocks creates utility in just the same way.

Following Gali (2008, p. 27-32) the household’s period utility function is given by

U(Cq, Dq, Nq) =
Z1−σ

q

1− σ
−
N1+η

q

1 + η
(1)

with Zq being a composite index defined as:

Zq =
[
α1C

1−ν
q + α2D

1−ν
q

] 1

1−ν (2)

In the remainder of this paper we will call this approach stock in non-separable utility [SINU].

Consumption is given by Cq, labor supply by Nq and the amount of stock demand by Dq.

Utility is maximized with respect to the budget constraint:

Cq +
SqDq

Pq

+
T n
q

Pq

+
Bq

Pq

=
Wq

Pq

Nq +
(

d̃q−1 + Sq−1

) Dq−1

Pq

+ (1 + iq−1)
Bq−1

Pq

(3)

Sq denotes the stock price, T n
q nominal taxes, Bq bonds demand, Pq the goods price and d̃q−1

is the dividend payment per stock. The costs of current (real) stock demand SqDq

Pq
appears

on the left hand side of (3) while the (real) worth of past stock demand plus (real) dividend

receipts
(

d̃q−1 + Sq−1

)
Dq−1

Pq
is added to the right hand side. It is assumed that dividend

payments d̃q−1 are earned by firms in q− 1 and distributed to households at the beginning of

period q.

Solving the above optimization problem for an infinitely lived household yields the stock

demand function5

dq = xq − c3(sq − pq)− c4iq (4)

where lower case letters denote log differences, i.e. relative deviations from steady state. In-

4 Compare Kontonikas and Montagnoli (2006), eq. (3); Westerhoff (2012), eq. (2.3); Bask (2011), eq. (1);
Naimzada and Pireddu (2013), section 2.1.

5 Compare appendix A for a detailed derivation.
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terpretation of the dependencies of dq is straightforward: (1) The demand for stocks increases

if an agent can afford higher consumption (which results in a higher output gap xq). (2)

The higher the real price of stocks sq − pq, the lesser its demand. (3) dq also depends on

bond yields iq, because bonds are a substitute for stocks: If bonds demand becomes more

profitable, stock demand would decrease. Note that stock demand does not (directly) depend

on the expected stock price change between q and q + 1 because households’ behavior is not

driven by a speculative motive of stock demand.

The extended IS curve becomes

xq = Eq [xq+1]−
1

σ
(iq − Eq [πq+1]) + c1 · Eq [∆sq+1 − πq+1] + c2 · Eq [∆iq+1] + ǫxq (5)

with the two new (positive) constants c1 and c2. A detailed derivation can be found in

appendix A. The interpretation of (5) is again straightforward and closely follows Gali (2008,

chapter 2.5.2). In the case of expected (real) stock price increases (Eq [∆sq+1 − πq+1] > 0),

households expect future (real) stock prices to be higher than today. Hence, they expect

lower stock demand for the future compared to today (dq+1 < dq, see eq. (4)). Consequently,

marginal utility of future consumption is lower than of current consumption. To smooth

marginal utility of consumption in q and q + 1, current consumption is increased. The same

rationale holds for the expected change in government bond yields. If iq is expected to rise

(Eq [∆iq+1] > 0) future stock demand is expected to be lower than today (dq+1 < dq) which

(as above) leads to increased current consumption and output.

Given the assumptions on the wealth effect of other authors (discussed above), we can

conclude from this section that Bask (2011) was closest to a channel that is in line with

utility optimizing behavior although he had a slightly different timing (+c1(∆sq−πq) instead

of +c1 · Eq [∆sq+1 − πq+1]).

3. The Model

One problem that has to be solved when joining a NKM model with an ACE-FM is that both

are developed to run on different time scales because transactions in financial markets take
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place in much smaller time intervals (compared to the real market).6 Time indices in the

NKM represent quarters, while in ACE-FM they are interpreted as days.

To allow for a meaningful integrated model, we have to make sure that both submodels

still run on the time scale they are designed for. For this purpose we assume that the financial

market performs 64 increments of the time index t within one increment of the real market’s

time index q (figure 1). Quarter q consists of the days7 t = 64(q − 1) + 1, ..., 64q.8

Figure 1: Time scale; indexed by days t and quarters q

3.1. Real Sector

The real sector of our integrated model consists of a Taylor rule, an inflation equation of the

Phillips-type and our extended IS-Curve (5). To be able to compare the model to others in

the literature9 we also allow for a cost effect (−κsq) in the Phillips Curve:

πq = βẼq [πq+1] + γxq − κsq + ǫπq (6)

The Taylor rule is depending on expected future inflation rate and output gap:10

iq = δπ

(

Ẽq [πq+1]− π⋆
)

+ δxẼq [xq+1] + ǫiq (7)

The quarterly value of stock prices is given by the average of the corresponding daily values:11

sq =
1

64

64q
∑

t=64(q−1)+1

st (8)

6 Algorithmic trading, for example, which is typically of a very short-term intra-daily nature already accounts
for up to 60% of financial market trasactions (Matheson (2011)). Such high frequencies are unusual for
transactions of the real economy, e.g. labor is bought for at least one month. Consult also the approach of
Franke and Sacht (2014) and Ahrens and Sacht (2014).

7 It is assumed that trading does not take place on weekends.
8 Lengnick and Wohltmann (2013), section 2.
9 Compare literature overview in section 1.
10We relax this assumption in section 5.
11Compare Lengnick and Wohltmann (2013), eq. (24)
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Alternatively, one could assume decaying weights to account for the fact that recent informa-

tion has a stronger influence on traders than older information. It has been shown that the

model outcome is robust against this assumption.12

Expectations are formed in a boundedly rational way using discrete choice learning. For

the output gap the set of heuristics is given by:

Targeters: Ẽ
tar

q [xq+1] = x (9)

Static exp.: Ẽ
sta

q [xq+1] = xq−1 (10)

Extrapolaters: Ẽ
ext

q [xq+1] = xq + αx · [xq − xq−1] (αx > 0) (11)

Compared to the original De Grauwe model, we assume a different set of expectations that

is more in line with those typically assumed in ACE-FM.13 Additionally, we do not assume

a hybrid form for the IS- and Phillips-Curve, because the boundedly rational expectations

approach (especially static exp.) already gives rise to persistence in line with the rule-of-

thumb idea. A hybrid form is therefore not necessary any more.14

A further advantage of our specification is that the special case of full price flexibility is still

included in the model, while the original DeGrauwe model becomes explosive for high degrees

of price flexibility. The NKM is derived by introducing real rigidities into the Real Business

Cycle (RBC) model. Therefore, the RBC model is still incorporated in the NKM as a special

case. This aspect is important conceptually and should also hold for a boundedly rational

version of the NKM (compare appendix E for further details on this and other advantages of

our specification).

For inflation, heuristics are given by:

Targeters: Ẽ
tar

q [πq+1] = π⋆
q (12)

12Compare Lengnick and Wohltmann (2013), section 2 of online appendix.
13Compare, for example, the model of Westerhoff (2008) or De Grauwe and Grimaldi (2006) which is based on
Brock and Hommes (1998). For an alternative approach where chartism is based on a moving average rule
consult Chiarella et al. (2006).

14 Introduction of hybridity into the baseline NKM is typically justified (microfounded) by assuming habit

formation (Ravn et al. (2010), Smets and Wouters (2007)) or rule-of-thumb (Amato and Laubach (2003))
behavior. The BR expectations of DeGrauwe clearly fall in the second category because, first, they yield the
same result on the aggregate level (i.e. persistence) and, second, they follow the four criteria (compare Amato
and Laubach (2003) and Menz (2008)) for rule-of-thumb behavior: (1) They are applied if RE induce too
high costs. (2) The orientation variable should be easily observable by the agents. (3) Calculating forecasts
should involve virtually no computational burden. (4) Agents should learn, and learning algorithms should
make sure that individual choices have converged once a steady state is reached.
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Static exp.: Ẽ
sta

q [πq+1] = πq−1 (13)

Extrapolaters: Ẽ
ext

q [πq+1] = πq + απ · [πq − πq−1] (απ > 0) (14)

Depending on their past performance, measured by the mean squared forecast error (MSFE),

each forecasting heuristic j ∈ {tar, sta, ext} is ascribed a level of attractivity

Ay,j
q = −

(

yq−1 − Ẽ
j

q−2 [yq−1]
)2

+ ζA
y,j
q−1 y ∈ {x, π} (15)

with the memory parameter ζ. The fraction of agents ωy,i
q applying heuristic i is given by a

discrete choice model

ωy,j
q =

exp{φAy,j
q }

exp{φAy,tar
q }+ exp{φAy,sta

q }+ exp{φAy,ext
q }

(16)

and market expectations are given by the weighted average:

Ẽq [yq+1] = Σjω
y,j
q Ẽ

j

q [yq+1] (17)

De Grauwe points out15, that agents do not use heuristics (instead of RE) ”because they

are irrational, but rather because the complexity of the world is overwhelming” that ex ante

calculation of mean time paths is impossible. Therefore, ”heuristics [are] a rational response

of agents who are aware of their limited capacity to understand the world”. In the remainder

of the paper we will denote this response boundedly rational [BR] to distinguish it from strict

RE.

To keep the model simple, we do not add a set of heuristics and a discrete choice learning

model for interest rate expectations of eq. (5), but only use static expectations: Ẽq [iq+1] = iq.

The solution of our real sector model is then given by (compare appendix B)

(

xq

πq

)

= A−1
q Cq

(

xq−1

πq−1

)

+A−1
q Dq · sq +A−1

q Fq · sq−1 +A−1
q

(

σǫxq − ǫiq

ǫπq

)

(18)

with the time dependent matrices:

Aq =

(

σ − (σ − δx)ω
ext
x,q (1 + αx)− σc1ω

tar
s,qh −(1− δπ − σc1)ω

ext
π,q(1 + απ)

−γ 1− βωext
π,q(1 + απ)

)

15De Grauwe (2010b), p. 415.
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Cq =

(

(σ − δx)(ω
hab
x,q − αxω

ext
x,q ) (1− δπ − σc1)(ω

rof
π,q − απω

ext
π,q)

0 β
(
ωrof
π,q − απω

ext
π,q

)

)

Dq =

(

c1σ
(
ωext
s,q (1 + αs)− 1

)

−κ

)

Fq =

(

c1σ
(
ωsta
s,q − αsω

ext
s,q

)

0

)

3.2. Financial Sector

We use the model of Westerhoff (2008) for the financial sector of our economy.16 In this

section, we will shortly describe the original Westerhoff model. Afterwards it will be adjusted

to allow for interactions with the real economy.

In this model, agents learn from a set of two different rules:

Chartists: Ẽ
C

t [st+1] = st + kC [st − st−1] (19)

Fundamentalists: Ẽ
F

t [st+1] = st + kF
[

s
f
t − st−1

]

(20)

Chartists belief in a continuation of the recently observed stock price trend while fundamen-

talists expect a reversal towards the fundamental value sft . For both groups j, the excess

demand for stocks Dj
t positively depends on the direction of the expected stock price change:

D
j
t = ℓ

(

Ẽ
j

t [st+1]− st

)

+ ǫ
j
t j ∈ {C,F} (21)

Note that the above equation denotes excess demand of institutional investors of the financial

market, while the completely microfounded eq. (4) denotes households’ demand. The fractions

of agents W j
t applying the different strategies j are determined by a discrete choice model.

In addition to strategies C and F , Westerhoff (2008) also allows a ’no trading’ -strategy:

W
j
t =

exp{eAj
t}

exp{eAC
t }+ exp{eAF

t }+ exp{eA0
t}

j ∈ {C,F, 0} (22)

A
j
t is the attractivity of strategy i that is determined as a function of past profits (cf. eq.

(15)):

A
j
t = (exp{st} − exp{st−1})D

j
t−2 +mA

j
t−1 (23)

16We decided to use this model because because of its straightforward assumptions and implementation. The
model is also empirically validated and has successfully been used for policy analysis. For alternative models
compare Dieci and Westerhoff (2010) or Tramontana et al. (2013). An interesting example on a much debated
policy issue can be found in Westerhoff and Dieci (2006).
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The parameterm ∈ (0, 1) determines the memory of traders and the attractivity of no trading

is normalized to A0
t = 0 (i.e. no profits). Price adjustment is given by a price impact function

st+1 = st + a
(
WC

t D
C
t +W F

t D
F
t

)
+ ǫst (24)

that relates stock price changes positively to excess demand
(
WC

t D
C
t +W F

t D
F
t

)
. The random

term ǫst denotes the influence of trading strategies other than j ∈ {C,F, 0}.

Impacts from the Real Sector For the first interactive channel, we follow Kontonikas

and Montagnoli (2006), Westerhoff (2012), DeGrauwe and Kaltwasser (2012), Lengnick and

Wohltmann (2013)17 and Naimzada and Pireddu (2013) by assuming, that the perceived

fundamental value sft is biased in the direction of the recent real economic development:18

s
f
t = h · xq q = floor

(
t− 1

64

)

, h ≥ 0 (25)

The completely microfounded stock in non-separable utility [SINU] approach gives rise to

a second channel because households’ demand for stocks (eq. (4)) has to be added to the

demand of institutional investors of the financial market model (eq. (24)). If we assume

that households’ (quarterly) demand for stocks is distributed evenly among the 64 days of

the quarter, we have to add 1
64
∆dq to stock demand such that the price impact function

becomes:19

st+1 = st + a

(

WC
t D

C
t +W F

t D
F
t +

k

64
∆dq

)

+ ǫst (26)

The parameter k is introduced as a generalization that allows to vary the intensity of the

channel. For k = 0 the channel disappears.

3.3. Financial and Real Sector Interaction

In total, we have four channels through which the financial and real sector could impact each

other (fig. 2): Channels I and II that are in line with the literature, but assumed ad hoc, and

channels IIIa and IIIb that are newly introduced by the microfounded SINU approach.

17Compare eq. (26) in Lengnick and Wohltmann (2013).
18The floor function in eq. (25) rounds a number down to the next integer.
19Note that stock prices react to excess demand which is given by ∆dq, not dq.
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Figure 2: Real- and Financial Sector Interactions (Channels)

The economic rationale of channel I is that the nominal value of financial assets owned

by firms increases when stock prices are rising. Firms’ production is largely financed by

credit. If their asset side of the balance sheet increases this leads to a rise in their credit

worthiness and credit rating. Consequently, they have access to cheaper credits (compare

Minsky (1986)). Hence, their costs of production fall which leads to lower prices. Channel IIIa

results from intertemporal utility optimization of households. If households expect increasing

real stock prices, they also expect falling marginal utility of consumption for the next period.

Intertemporal utility smoothing makes them increase consumption today.

Channel II goes in the opposite direction and can be interpreted as follows. The true

fundamental value of a given stock is hard to identify in reality (compare Rudebusch (2005),

Bernanke et al. (1999)). If the true value of sft is unknown, agents have to form assumptions

about it. In our model they use proxies like the recent economic development. If output

is high, they assume the fundamental value to be high and adjust their demand for stocks

accordingly. The fourth channel, ch. IIIb, also results from the microfounded SINU approach.

According to eq. (4), stock demand increases if (1) output increases, (2) the real stock price

decreases, or (3) the nominal interest rate decreases. In all three cases, increasing demand

will drive stock prices upward.

The intensity of each channel is given by the corresponding interaction parameters κ (Chan-

nel I), h (II), c1 (IIIa) and k (IIIb). In the special case of κ = h = c1 = k = 0 the two

submodels operate in isolation.
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4. Stability Analysis

In this section we are going to determine for each channel whether it is stabilizing or destabi-

lizing the economy. For this purpose, we will vary the interaction parameters κ, h, c1 and k

on an interval from zero (i.e. no interaction) upwards. All other parameters are kept constant.

We report them in table 1 and keep them as our baseline parameterization throughout the

entire paper. The impact on (in)stability of the real sector is measured by a typical cen-

tral banks’ loss function which is given as a weighted sum of the unconditional variances of

inflation and output:20

Real Sector: Lr = var(π) +
1

2
var(x) (27)

The interpretation of (27) is that volatile goods price inflation and production are associated

with utility losses, where output stabilization is weighted half as much as price stability.

Similarly, we set up a loss function for the financial sector

Financial Sector: Lf = var(s) (28)

that associates volatile daily21 stock prices with losses.

Table 1: Baseline parameterization

Real sector Financial sector
Structure Learning Noise Structure Learning Noise
σ = 1.0 ζ = 0.5 σǫ = 0.15 ℓ = 1 kC = 0.04 σC = 0.05
β = 0.99 φ = 10 a = 1 kF = 0.04 σF = 0.01
γ = 0.33 αx = απ = 0.2 e = 300 σs = 0.01
δx = 0.5 m = 0.975
δπ = 1.5

Source: The Financial market parameterization is identical to Westerhoff (2008). The structural
parameters of the real sector are standard in NKM (compare Gali (2008)): σ = 1.0 gives rise to log
utility, β = 0.99 yields a steady state interest rate of about 4%. γ = 0.33 follows if a unitary Frisch
elasticity, a markup of 20%, constant returns to scale and price stickiness of θ = 0.67 are assumed.
For the NKM learning parameters we follow De Grauwe (2010a,b,c) and Lengnick and Wohltmann
(2013). For the new extrapolative heuristic, we assume a positive but mild trend extrapolation of
0.2.

20Compare e.g. Svensson (2003).
21Recall that daily stock prices are given by st, while quarterly are given by sq.
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To evaluate the effect of the four different interactive channels on economic stability, we

proceed as follows. First, we pick pairs of two interaction parameters with opposed direction.22

Second, we run the model for different values of the interactive parameters and for different

realizations of the noise terms (ǫiq, ǫ
x
q , ǫ

π
q , ǫ

s
t ) ∀ q, t. Finally, we compute the average loss values

(eq. (27) and (28)) for a given parameterization which yields (approximately) the theoretical

values Lr and Lf .
23

In fig. 3 we illustrate the stabilization impact on the real sector. White areas (in the

north-east) denote parameterizations for which no stable solution exists, i.e. the generated

trajectories diverge/explode. Gray areas denote parameterizations that are non-explosive

and the darkness indicates the corresponding loss value. The darker a region, the lower

the associated loss Lr. The corresponding results for financial sector stabilization (Lf ) are

displayed in figure 4.

Channel I (κ) The influence of κ on welfare is clearly negative for both, the real and financial

subsystem. For a given h or k, an increase of κ leads to higher loss values. For h > 0.45 or

k > 0.14 it even gives rise to explosive developments. E.g. if, in the top left panel of fig. 3, we

fix h = 0.2 and let κ increase from 0 upwards, we successively reach areas of higher Lr (i.e.

higher loss/volatility, lower welfare). If we fix h = 0.8, the system even becomes explosive

(i.e. no stable trajectory) as soon as κ > 0.12.

The economic explanation for this explosive behavior is straightforward. If stock prices

increase, inflation will fall due to (negative) cost effects (eq. (6)). Lower inflation leads to lower

inflation expectations (eq. (14)) and therefore also to an increase in output (if the extended

Taylor principle δπ > 1 + σc1 holds). The rising output creates a feedback mechanism that

drives stock prices up further, no matter which of the opposing channels (II or IIIb) is active.

If channel II is active (h > 0), a higher perceived fundamental value leads to higher demand

for stocks (eq. 25), while if channel IIIb is active (k > 0), households directly demand more

stocks (eq. 4) which drives prices up.

Channel II (h) For parameter h we find somewhat ambiguous results. Financial markets

are always destabilized (for I and IIIa being the opposing channel). For sufficiently large κ,

22For example, the parameter pair (κ, h) constitutes one channel that effects the financial sector from within
the real sector and one channel of the opposite direction.

23This procedure is related to the approach of Naimzada and Pireddu (2013) who also vary the interaction
parameter (ω in their paper) to analyze stability. But instead of a loss function, the authors use bifurcation
plots to illustrate stability impacts.
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Figure 3: (De)stabilization of real submodel. Light gray areas denote parameterizations that
yield high loss values (i.e. low welfare), while dark gray areas denote low losses.
White areas, on the contrary, denote explosiveness.

an increase in h could even lead to explosive behavior. With respect to the real sector the

results are not as clear. In combination with a significant strength of channel IIIa (c1 > 0.1),

increasing values of h are stability neutral w.r.t. Lr, while for c1 < 0.1 a rise in h increases

stability. In combination with channel I, higher h lead to more stable developments at first.

If, however, h is increased above a certain threshold, the model suddenly becomes explosive.

Channel IIIa (c1) Results for c1 are again ambiguous. When combined with channel IIIb,

the impact of higher c1 is stabilizing for both, the real and the financial sector. When combined
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Figure 4: (De)stabilization of financial submodel. Light gray areas denote parameterizations
that yield high loss values (i.e. low welfare), while dark gray areas denote low losses.
White areas, on the contrary, denote explosiveness.

with channel II, higher values of c1 are only stabilizing the real sector but are almost neutral

with respect to the financial one.

The economic intuition behind these results is the following. If channels IIIa and IIIb

are active, an increase in output leads to higher stock demand of households (eq. (4)) and

therefore higher stock prices. Through channel IIIa (eq. (5)), output depends positively on

the expected future change in stock prices (Ẽq [∆sq+1] = Ẽq [sq+1] − sq). Higher stock prices

(sq), therefore negatively effect output which dampens the original effect and stabilizes the

economy.

If IIIa is combined with II one would expect the same results, since channel II (just as

IIIb) positively relates stock prices to output development (eq. (25)). Channel II, however,
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depends on market sentiments: Only if the fraction of fundamentalists in the financial market

is significantly high, we could expect the misperception effect (channel II) to have a significant

impact. Obviously, this dependence on market sentiments weakens the stabilizing effect of

larger values of c1: Only for c1 < 0.12 we find a positive stabilization for both markets, while

for c1 > 0.12 only the real sector is stabilized by further increases of c1.

Channel IIIb (k) The stability impact of k also depends on the active channels: In combi-

nation with channel I, channel IIIb has a stabilizing effect on the real market as long as k is

sufficiently small. At the same time, it has a destabilizing effect on the financial sector. If k is

increased by too much, however, the model dynamics become explosive (compare explanation

under paragraph ’channel I (κ)’).

In combination with channel IIIa, results are very different. Higher values of k have a pos-

itive impact on real sector stability but only for low values of c1. Financial market stability,

in contrast, is monotonically decreasing.

In a last step, we check whether the stabilizing effect of one channel could counteract the

destabilizing effect of other channels by so much that a formerly explosive parametrization

becomes unexplosive. As an example, we pick the parameter combinations (h = 0.8, κ = 0.25)

or (k = 0.25, κ = 0.25) which both yield explosive dynamics (figure 4, top left and top right).

If, additionally to these two channels, we set c1 = 0.15 the model becomes stable again in

both cases. Increasing c1 therefore shifts the unstable (white) region outwards.

From this section we can conclude that there is no easy answer to the question whether

interaction between financial markets and the real economy is stabilizing or destabilizing. The

results depend strongly on the channels under consideration. Hence, future research has to

clarify which of the proposed channels is most relevant empirically.24

5. Optimal Monetary Policy

In this section we will derive simple optimal policy rules for the central bank. In subsection 5.1

we derive optimal values for the Taylor parameters δπ and δx under different types of policy

rules and for different objective functions. In subsection 5.2 we analyze whether monetary

policy should optimally be forward- or backward-looking.

24Estimation of ACE models is relatively involved so that we have to leave this issue for future research.
Compare Franke (2009) and Franke and Westerhoff (2012b) on the estimation of ACEs.
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5.1. Optimal Simple Rule

We use the Taylor rule (7) and define the optimal simple rule [OSR] as the central banks’

reaction (δ⋆π, δ
⋆
x) that yields the minimal loss value. In analogy to the previous section, we

derive (δ⋆π, δ
⋆
x) as the minimizers of the average loss value over different realizations of the

noise vector (ǫiq, ǫ
x
q , ǫ

π
q , ǫ

s
t ) ∀ q, t:

(δ⋆π, δ
⋆
x) = arg min

δπ ,δx
Lr (29)

In this context, two straightforward questions arise in our interactive model: Does the presence

of a financial sector change the optimal policy rule? If it does, to what extend do the different

interactive channels matter?

To answer these questions, we are going to perform the optimization (29) for different

cases: On the one hand, we assume different objective functions for the central bank. In a

first setting we assume the typical form of a loss function where only the stability of the real

subsystem is taken into account:

Real sector only: Lr = var(π) +
1

2
var(x) (30)

In a second scenario we also add financial market stability var(s) with a relatively smaller

weight:

Real & fin. sector: Lr+f = var(π) +
1

2
var(x) +

1

10
var(s) (31)

Given this loss function the central bank tries to stabilize inflation with highest priority,

followed by output and by stock prices with least priority.

On the other hand, we also vary the set of interactive channels that are operating: we start

with no channels, continue with all possible pairs of two channels of opposite direction, and

end by activating all channels simultaneously. The resulting optimal values (δ⋆π, δ
⋆
x) are given

in table 2.

The first interesting result is that, if the central bank additionally aims to stabilize fi-

nancial markets, it should less strongly react to variations in inflation (δ⋆π) while reaction

to variations in output is unchanged. This result is closer examined in table 3 which shows

the percentage change in both, the policy coefficients (δ⋆π, δ
⋆
x) and in the volatility measures

(var(π), var(x), var(s)) that occur in the OSR if the CB minimizes Lr+f instead of Lr. For
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Table 2: Optimal simple rules for different channels and objective functions.
Parameterization of channels: κ = 0.100, h = 0.500, c1 = 0.200, k = 0.200.

Channels Real Market Real & Fin. Market

none δ⋆π = 3.47 δ⋆x = 1.29 δ⋆π = 3.47 δ⋆x = 1.29

I & II δ⋆π = 3.44 δ⋆x = 1.28 δ⋆π = 3.42 δ⋆x = 1.28

IIIa & II δ⋆π = 3.18 δ⋆x = 1.25 δ⋆π = 3.16 δ⋆x = 1.25

I & IIIb δ⋆π = 3.45 δ⋆x = 1.27 δ⋆π = 3.43 δ⋆x = 1.27

IIIa & IIIb δ⋆π = 3.26 δ⋆x = 1.27 δ⋆π = 3.24 δ⋆x = 1.27

all δ⋆π = 3.10 δ⋆x = 1.18 δ⋆π = 3.06 δ⋆x = 1.18

all channel parameterizations, the CB achieves a decrease in the volatility of x and s by ac-

cepting an increase in var(π). The reason is that both channels (II & IIIb) that affect the

financial sector are directly related to the output gap x. Stabilizing x therefore also indirectly

stabilizes the financial market. This explains the CB’s higher interest for output stabilization

(which also decreases var(s)).

To bring these results about, the CB has to lessen its reaction towards inflation (decrease

in δ⋆π; table 2, second column) no matter which channels are active. The change in optimal

reaction towards output is ambiguous: If the strongly destabilizing channel I (compare section

4) is active, δ⋆x increases (table 2, third column). If channel IIIb (that weakly stabilizes the real

sector; sec. 4) is active, δ⋆x is decreased instead. This change in optimal reaction parameters,

however, is very small and irrelevant for most practical considerations.

Table 3: Percentage change in OSR policy coefficients and
in volatility measures if CB switches from Lr to Lr+f .

Policy Coefficients Volatility Measures

Channels δ⋆π δ⋆x var(π) var(x) var(s)

none 0.00% 0.00% 0.00% 0.00% 0.00%

I & II -0.56% +0.05% +0.46% -0.50% -0.08%

IIIa & II -0.60% +0.41% +0.51% -0.53% -0.08%

I & IIIb -0.58% -0.04% +0.47% -0.51% -0.08%

IIIa & IIIb -0.55% -0.12% +0.40% -0.43% -0.07%

all -1.39% +0.40% +1.14% -1.18% -0.37%

Another robust finding is, that the central bank’s reaction becomes weaker, the more

17



interactive channels exist. Policy reaction is strongest, if no channel is active at all. If two

channels of opposite direction are added, the policy reaction becomes weaker. If all channels

are active simultaneously, the central bank’s intervention is decreased further. This is not

caused by the interactive channels alone stabilizing the economy and making stabilization

policy by the CB superfluous. On contrast, the loss values monotonically increase the more

channels are taken into account (compare first column of tab. 4). Instead, the interactive

channels make the economy harder to control, therefore CB policy is less efficient and has to

be reduced. This finding is robust across both objective functions (Lr and Lr+f ) as well as

different weights25 within the objective function.

5.2. History-dependent or Foreward-looking?

It is known that an inverse relationship exists between the forward-/backward-lookingness of

optimal monetary policy and that of the underlying model: The more forward-looking the

model becomes, the more backward-looking monetary policy should be and vice versa.26

Our boundedly rational model was originally composed in a forward-looking way (eq. (6)

and (5)). However, the boundedly rational character of expectations makes the model depend-

ing on past variables (eq. (18)) and therefore backward-looking. The question therefore arises

whether monetary policy should optimally be forward- or backward-looking, or something in

between.

To answer this question, we derive the (expected) loss values Lr that correspond to the

optimal simple rule under three different scenarios: In scenario one, monetary policy depends

on expectations only (compare eq. (7)):

iq = δπ

(

Ẽq [πq+1]− π⋆
)

+ δxẼq [xq+1] + ǫiq

In the second scenario it depends on contemporaneous values

iq = δπ (πq − π⋆) + δxxq + ǫiq (32)

25 If we change, for example, the weight of output stabilization from 1

2
to 1 (compare Wollmershäuser (2006)),

our results remain qualitatively identical.
26This issue has been extensively discussed in macroeconomics. Consult, for example, Svensson (1997), Carl-
strom and Fuerst (2000), Benhabib et al. (2003), Svensson and Woodford (2003), Eusepi (2005) and Leitemo
(2008).
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and in a third one it depends on the most recent past:

iq = δπ (πq−1 − π⋆) + δxxq−1 + ǫiq (33)

The resulting minimal loss values Lr are given in table 4. The alternative loss definition Lr+f

is given in parenthesis. In analogy to the previous subsection we report values for different

sets of interactive channels.

Table 4: Comparison of minimal loss values Lr for forward-looking, contempora-
neous and backward-looking optimal simple rules. Loss values Lr+f in parentheses.

Policy Rule depending on

Channels Ẽq [πq+1], Ẽq [xq+1] πq, xq πq−1, xq−1

none 0.086 (0.090) 0.039 (0.043) 2.60 (2.61)

I & II 0.088 (0.093) 0.041 (0.046) → ∞ (→ ∞)

IIIa & II 0.090 (0.094) 0.039 (0.044) → ∞ (→ ∞)

I & IIIb 0.088 (0.092) 0.040 (0.044) → ∞ (→ ∞)

IIIa & IIIb 0.087 (0.091) 0.039 (0.043) → ∞ (→ ∞)

all 0.093 (0.098) 0.041 (0.046) → ∞ (→ ∞)

Smallest loss values result if monetary policy reacts to contemporaneous values of output

and inflation. If it reacts to agent’s expectations instead, loss values increase by about 50%.

This result is again robust across all combinations of interactive channels and different loss

functions. If policy becomes backward-looking, the loss value increases dramatically in the

case of no interaction between the financial and real sector. If interaction is taken into account,

the model even becomes explosive (i.e. Lr → ∞ and Lr+f → ∞).

The standard results, mentioned in the beginning of this subsection, are generally con-

firmed in our boundedly rational NKM: The model is de facto backward-looking. Therefore,

monetary policy should depend on information as recent as possible. Since computation of

rational expectations is (by assumption) not possible, the most up-to-date information the

CB can use is given by contemporaneous values. An interesting new aspect is that wrongly

conducted (backward-looking) monetary policy could cause high volatility (large loss values)

although it is strictly rule-based. In the presence of financial markets, such policy could even

create explosive behavior.

To verify these results, we compare the system matrices of the real market subsystem

(h = c1 = 0) for the three policy rules (7), (32) and (33). All system matrices are time
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dependent. E.g. for rule (7) the system matrix is given by A−1
q Cq with Aq and Cq defined

in eq. (18).27 In each time step q the fractions of agents ωy,j
q using the different heuristics

(i.e. the state of the learning algorithm; (15) and (16)) are determined by recent economic

development. To get an idea of how often the learning algorithm creates instabilities, we

calculate the eigenvalues [EV] ofA−1
q Cq for 47916 different realizations over the entire possible

range of learning states. In figure 5 we report the percentage of learning states that result in

an unstable system matrix. Obviously, the probability of becoming explosive is much lower

for Taylor rules depending on contemporaneous or expected future values of π and x. If the

central bank reacts to past values, we observe an increase from about 5% to 55%.

As a second verification, we introduce persistence (interest rate smoothing) into the Taylor

rule

iq = ηiq−1 + (1− η)
{

δπ

(

Ẽq [πq+1]− π⋆
)

+ δxẼq [xq+1]
}

+ ǫiq (34)

where η ∈ (0, 1) determines the degree of persistence or smoothness.28 In figure 6 we illustrate

the (expected) loss value Lr as a function of η for different interactive channels. Smallest loss

values result for η ∈ (0, 0.2). For higher η we find exponentially increasing losses. The result,

that backward-looking monetary policy destabilizes the economy is therefore again confirmed.

If a financial sector is active, losses even approach infinity.

27Compare appendices C and D for system matrices of rules (32) and (33).
28This approach is common in the literature. Consult e.g. Clarida et al. (1998) and Clarida et al. (1999).
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Figure 7: Bifurcation plot of parameter απ for different monetary policy rules depending on
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As a third verification, we follow Naimzada and Pireddu (2013) by checking if, in a bi-

furcation plot29, the system looses stability earlier if the TR depends on πq−1 and xq−1.

Exemplary30, we show the bifurcation plots of απ (compare eq. (14) ) in figure 7 for the three

different Taylor rules (7), (32) and (33). For rules depending on expected and contempo-

raneous values (panel (a) and (b)) the system looses the unique steady state at απ ≈ 1.8.

29 In the bifurcation plots we show the long run developments of the deterministic core, i.e. all stochastic terms
are set to ǫiq = ǫxq = ǫπq = ǫst = 0 ∀ q, t.

30A bifurcation analysis for all relevant parameters can be found in appendix E.2. Here, we consider απ only,
because all other parameters do not give rise to bifurcations, except for αx, which produces very similar results
to απ (compare fig. 10 in appendix).
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If monetary policy becomes backward-looking (panel (c)) the first bifurcation takes place

already at απ ≈ 0.37.

5.3. Optimal Unconventional Monetary Policy

Another question that has been debated in the literature31 on optimal monetary policy is,

whether or not the CB should react to over-/under-valuation of financial assets (i.e. bubbles).

This is typically done by adding a stock price reaction term to the Taylor rule, e.g. +δs ·sq. Of

course, we could proceed in a similar way and simply derive the optimal δ⋆s . But the results

of Wollmershäuser (2006) who uses a similar32 NKM without bounded rationality already

suggest that such a welfare increase takes place but is very small.

In light of the policy recently performed by central banks in several advanced countries,

we are going to analyze a slightly different question. Instead of reacting with the conven-

tional instrument only (i.e. the interest rate), we equip the CB with another, unconventional

instrument (i.e. direct purchases of financial assets) and derive the optimal mixture of both.

If the CB’s direct purchases (given by ∆dCB
q ) are added to the price impact function (26)

in just the same way as the excess demand of households, we get:

st+1 = st + a

(

WC
t D

C
t +W F

t D
F
t +

k

64
·
{
∆dq +∆dCB

q

}
)

+ ǫst (35)

The first (conventional) instrument is given by eq. (7) while for the second (unconventional)

we assume that direct purchases are proportional to stock price misalignment:

Conventional instrument: iq = δπ

(

Ẽq [πq+1]− π⋆
)

+ δxẼq [xq+1] + ǫiq

Unconventional instrument: ∆dCB
q = δds ·

(
st − sf

)
(36)

If, for example, the CB buys assets when prices are undervalued and sells when they are

31Rudebusch (2005), Kontonikas and Ioannidis (2005), Wollmershäuser (2006), Kontonikas and Montagnoli
(2006) and Castelnuovo and Nistico (2010).

32The model of Wollmershäuser consists of the typical three equation NKM extended by a nominal exchange
rate, where the development of nominal exchange rates is modeled in several alternative ways. In one case it
is given by a simplified chartist-fundamentalist model (eq. (3.4) and footnote 6) similar to our stock market.
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overvalued, we have δds < 0. The optimal (simple) mixture of conventional and unconventional

instruments is then defined as (compare (29)):

(δ⋆π, δ
⋆
x, δ

d,⋆
s ) = arg min

δπ ,δx,δds

Lj j ∈ {r, r + f} (37)

The results of the optimization problem (37) for conventional versus unconventional policy

are contrasted in table 5. We distinguish between the case where th CB only cares for real

sector stability (Lr) and the case where it also cares for financial market stability (Lr+f ).

Table 5: Conventional versus unconvenventional monetary policy
Parameterization of channels: κ = 0.1, h = 0.5, c1 = 0.2, k = 0.2

Conventional Unconventional
CB Target δx, δπ δx, δπ, δ

d
s

Lr Lr = 0.064 Lr = 0.062
Lr+f Lr+f = 0.069 Lr+f = 0.062

As expected, the loss value increases in the case of conventional policy, if var(s) is added

to the welfare measure. Compared to conventional monetary policy, unconventional policy

leads to a welfare gain for both welfare measures. This gain is larger, if financial market

stability explicitly enters the loss function. In both cases (Lr & Lr+f ), however, the gain of

using unconventional instruments is very small.

For simplicity we assumed in eq. (36) that the CB knows the true fundamental stock price

sf .33 In more realistic settings, where the CB also has to form beliefs about the sf , welfare

gains might be even lower. Furthermore, we did not consider the presence of zero lower

bound for the interest rate iq. Unconventional instruments might be more influential if the

conventional measures fail.

6. Conclusion

This paper extends the work of Kontonikas and Montagnoli (2006), Bask (2011), Scheffknecht

and Geiger (2011), Bask (2011), Westerhoff (2012), Naimzada and Pireddu (2013), and Leng-

nick and Wohltmann (2013). It combines the macroeconomic BR-NKM of De Grauwe (2010a)

with the financial ACE of Westerhoff (2008) by deriving a generalized IS curve that originates

33Recall, that private agents have to form beliefs about sf . Compare eq. (25).
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from a non-separable utility function including stocks. This approach gives rise to additional

completely microfounded interaction channels with the financial sector.

Once the model is set up, we perform a stability analysis with ambiguous results. The cost

channel is clearly destabilizing both, the real and financial sector. For the other channels,

results either differ for both sectors (i.e. stabilizing one while destabilizing the other) or they

change significantly with the opposing channel. In some regimes, the interactive channels

strongly feed back on each other and yield explosive dynamics.

We derive optimal monetary policy rules under a set of different regimes. We find that the

central bank’s response to inflation decreases slightly if financial market stability enters the

central bank’s objective function. Another interesting result is that the optimal central bank

reaction to deviations of inflation to their target becomes weaker, the higher the degree of

interaction between the financial and real sector.

Finally, we test if the standard results that monetary policy should be backward-looking

if the system is forward-looking (and vice versa), can be confirmed for our boundedly ra-

tional NKM. We have shown that because the backward-looking nature of the expectations

algorithm turns the forward-looking model into a backward-looking one, monetary policy

should optimally depend on contemporaneous variables. If, instead, the policy rule becomes

backward-looking, the economy is strongly destabilized. Additionally we analyze the impor-

tance of unconventional monetary policy instruments and find that they increase welfare only

marginally in comparison to conventional policy.

While a number of research questions have been answered in this paper, others had to

remain open. For example, we did only focus on simple rules when deriving optimal monetary

policy. A detailed treatment of optimal unrestricted policy rules in case of boundedly rational

expectations should be conducted in future research.
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Appendix

A. Microfoundation of IS Curve with SINU Approach

The household’s period utility is determined by (1)-(3) and reads

U(Cq, Dq, Nq) =
Z1−σ

q

1− σ
−
N1+η

q

1 + η
(38)

with: Zq =
[
α1C

1−ν
q + α2D

1−ν
q

] 1

1−ν (0 < α1, α2 < 1) (39)

s.t. Cq +
SqDq

Pq

+
T n
q

Pq

+
Bq

Pq

=
Wq

Pq

Nq +
(

d̃q−1 + Sq−1

) Dq−1

Pq

+ (1 + iq−1)
Bq−1

Pq

(40)

Cq = −
SqDq

Pq

−
T n
q

Pq

−
Bq

Pq

+
Wq

Pq

Nq +
(

d̃q−1 + Sq−1

) Dq−1

Pq

+ (1 + iq−1)
Bq−1

Pq
︸ ︷︷ ︸

=:Yq

(41)

The partial derivatives of U and Z are:

∂U

∂Zq

= Z−σ
q

∂Z

∂Cq

= α1Z
ν
qC

−ν
q

∂Z

∂Dq

= α2Z
ν
qD

−ν
q (42)

∂U

∂Cq

=
∂U

∂Zq

∂Zq

∂Cq

= α1Z
ν−σ
q C−ν

q

∂U

∂Dq

=
∂U

∂Zq

∂Zq

∂Dq

= α2Z
ν−σ
q D−ν

q (43)

An infinitely lived household maximizes the expected infinite sum of a discounted utility

stream for q = 0, 1, ...∞. The Lagrangian of the given optimization problem reads:

ℓ = Eq

[
∞∑

k=0

βk {U (Cq+k, Dq+k, Nq+k) + λq+k(Yq+k − Cq+k)}

]

(44)

FOC 1:
∂ℓ

∂Cq

=
∂U

∂Cq

− λq
!
= 0 ⇔ λq =

∂U

∂Cq

= α1Z
ν−σ
q C−ν

q (45)

FOC 2:
∂ℓ

∂Bq

= −λq
1

Pq

+ β(1 + iq) · Eq

[
λq+1

Pq+1

]

!
= 0 (46)
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Plugging FOC 1 into FOC 2 yields the Euler equation

α1Z
ν−σ
q C−ν

q

1

Pq

= βα1(1 + iq) · Eq

[
Zν−σ

q+1 C
−ν
q+1

Pq+1

]

(47)

β · Eq

[(
Zq+1

Zq

)ν−σ (
Cq+1

Cq

)
−ν (

Pq

Pq+1

)]

=
1

1 + iq
(48)

FOC 3:
∂ℓ

∂Dq

=
∂U

∂Dq

+ λq
∂Yq

∂Dq

+ β Eq

[

λq+1
∂Yq+1

∂Dq

]

!
= 0 (49)

⇔ α2Z
ν−σ
q D−ν

q − α1Z
ν−σ
q C−ν

q

Sq

Pq

+ βα1Eq

[
Zν−σ

q+1 C
−ν
q+1

Pq+1

](

d̃q + Sq

)

= 0 (50)

⇔ α2Z
ν−σ
q D−ν

q + βα1Eq

[
Zν−σ

q+1 C
−ν
q+1

Pq+1

](

d̃q + Sq

)

= α1Z
ν−σ
q C−ν

q

Sq

Pq

(51)

⇔
α2

α1

(
Dq

Cq

)
−ν

+ β Eq

[(
Zq+1

Zq

)ν−σ (
Cq+1

Cq

)
−ν

1

Pq+1

]
(

d̃q + Sq

)

=
Sq

Pq

(52)

⇔
α2

α1

(
Dq

Cq

)
−ν
Pq

Sq

+
d̃q + Sq

Sq

β Eq

[(
Zq+1

Zq

)ν−σ (
Cq+1

Cq

)
−ν

Pq

Pq+1

]

︸ ︷︷ ︸
1

1+iq

= 1 (53)

⇔
α2

α1

(
Dq

Cq

)
−ν

=
Sq

Pq

[

1−
d̃q + Sq

Sq

1

1 + iq

]

(54)

⇔
α2

α1

(
Dq

Cq

)
−ν

=
Sq

Pq

[

Sqiq − d̃q

Sq(1 + iq)

]

(55)

⇔

(
Dq

Cq

)
−ν

=
α1

α2

1

Pq

[

Sqiq − d̃q

1 + iq

]

(56)

In the most simple case, the stock price sq should relate to the discounted sum of future

dividends (compare Campbell et al. (1997) chapter 7 for this equation and more general

versions):

sq =
∞∑

k=0

β̃k Eq

[

d̃q+k

]

(57)

For the sake of simplicity we do not model the expectation of future dividends Eq

[

d̃q+k

]
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in a way similar to the boundedly rational expectations (12)-(11) but simply assume static

expectations

Eq

[

d̃q+k

]

= d̃q ∀ k = 0, 1, ... (58)

which imply for (57)

sq = d̃q
1

1− β̃
(59)

Γsq = d̃q with: Γ = 1− β̃ (60)

For the size of Γ there are three cases worth mentioning. First, in the case of riskless dividend

streams and zero inflation (i.e. the central bank’s target i⋆ = 0 always fulfilled), β̃ should be

equal to the discount factor in the utility function (38) and Γ would be less than i because:

β̃ = β : (Γ =) 1− β <
1

β
− 1 (= i) ⇔ (61)

1− β <
1− β

β
⇔ (62)

(1− β)β < 1− β ⇔ (63)

β < 1 holds by assumption (64)

This implies i − Γ > 0. Given the standard parameterization of β we have numerically

i− Γ ≈ 0.0001. Second, in the case of risky dividend payments agents will discount dividend

payments stronger than the save interest payments from bonds (still no inflation risk) and

the discount factor β̃ becomes smaller than β which implies i − Γ < 0. In the third case,

where inflation risk is taken into account, agents could discount payments from stocks less

than from bonds which yields i− Γ > 0. We focus on the last case because i− Γ < 0 would

lead to a negative radicand in expression (103) and (104) and therefore to output levels xq

being complex numbers.

We substitute d̃q in FOC 3 by Γsfq (where Γ depends on the strength of discounting of

bond yields compared to stock yields) to arrive at:

(
Dq

Cq

)
−ν

=
α1

α2

1

Pq

[
Sq(iq − Γ)

1 + iq

]

(65)

=
α1

α2

Sq

Pq

iq − Γ

1 + iq
(66)
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Taking logs (small letters denote log values):

−ν[logDq − logCq] = log

{
α1

α2

}

+ log Sq − logPq + log

{
iq − Γ

1 + iq

}

(67)

−νdq + νcq = log

{
α1

α2

}

+ sq − pq + log

{
iq − Γ

1 + iq

}

(68)

dq = cq −
1

ν
log

{
α1

α2

}

−
1

ν
(sq − pq)−

1

ν
log

{
iq − Γ

1 + iq

}

(69)

Note that the expression above is only defined for iq > Γ.34 Let

f(iq) :=
1

ν
log

{
iq − Γ

1 + iq

}

(iq > Γ) . (70)

Then the first order Taylor approximation around the steady state i without the constant

term f( i ) is given by

f(iq) ≈ f ′( i ) · (iq − i) (71)

≈
1

ν

1 + i

i− Γ

1 + i− (i− Γ)

(1 + i)2
· (iq − i) (72)

≈
1

ν

1 + Γ

(i− Γ)(1 + i)
· (iq − i) (73)

Thus a linearization of (69) around the steady state yields the log-linear stock demand function

dq ≈ cq −
1

ν
(sq − pq)−

1

ν

1 + Γ

(i− Γ)(1 + i)
· (iq − i) (74)

which was reported in eq. (4) in section 2. Next, the Euler equation has to be linearized

(where we follow Gali (2008)). After rearranging (47) a bit

βEq

[(
Zq+1

Zq

)ν−σ (
Cq+1

Cq

)σ−ν (
Cq

Cq+1

)σ (
Pq

Pq+1

)]

=
1

1 + iq
(75)

β(1 + iq)Eq

[(
Zq+1

Zq

)ν−σ (
Cq

Cq+1

)ν−σ (
Cq

Cq+1

)σ (
Pq

Pq+1

)]

= 1 (76)

34 If percentage deviations from steady state are used for linearization (instead of a log-linearization approach)
iq < Γ would also be allowed. This linearization, however, would be mathematically more involved.
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β(1 + iq)Eq

[(
Zq+1

Cq+1

)ν−σ (
Cq

Zq

)ν−σ
]

= Eq








(
Cq+1

Cq

)σ (
Pq+1

Pq

)

︸ ︷︷ ︸

1+πq+1








(77)

we take logs

log β
︸︷︷︸

−r

+ log(1 + iq)
︸ ︷︷ ︸

≈iq

+(ν − σ)Eq [xq+1 − cq+1] + (ν − σ)(cq − xq) (78)

= σ · Eq [cq+1 − cq] + log Eq [1 + πq+1]
︸ ︷︷ ︸

≈Eq [πq+1]

and solve for cq to arrive at:

σcq = σEq [cq+1]− (iq − Eq [πq+1]− r) + (ν − σ) {Eq [cq+1 − xq+1]− (cq − xq)} (79)

cq = Eq [cq+1]−
1

σ
(iq − Eq [πq+1]− r) +

ν − σ

σ
{Eq [∆(cq+1 − xq+1)]} (80)

The expressions Eq [cq+1 − xq+1] and (cq − xq) can be replaced if we, first, linearize the com-

posite index (39) around the steady state

dZq = α1Z
ν
C

−ν
dCq + α2Z

ν
D

−ν
dDq (81)

dZq

Z
= α1Z

ν
C

−ν 1

Z

C

C
dCq + α2Z

ν 1

Z

C

C
D

−ν
dDq (82)

zq = α1

(
C

Z

)1−ν

cq + α2

(
D

Z

)1−ν

dq (83)

where zq =
dZq

Z
, cq =

dCq

C
, dq =

dDq

D
denote percentage deviations from steady state and dZq,

dCq, dDq absolute deviations. The steady state of (39) is given by:

Z
1−ν

= α1C
1−ν

+ α2D
1−ν

(84)

1− α1
C

1−ν

Z
1−ν

= α2
D

1−ν

Z
1−ν

(85)

By subtracting (83) from cq

cq − zq =

[

1− α1

(
C

Z

)1−ν
]

cq − α2

(
D

Z

)1−ν

dq (86)
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plugging (85) into (86)

cq − zq = α2

(
D

Z

)1−ν

cq − α2

(
D

Z

)1−ν

dq (87)

= α2

(
D

Z

)1−ν

(cq − dq) (88)

and plugging (74) into (88) we arrive at

cq − zq =
α2

ν

(
D

Z

)1−ν {

(sq − pq) +
1 + Γ

(i− Γ)(1 + i)
· (iq − i)

}

(89)

which implies for the expected change of cq − zq:

Eq [∆(cq+1 − zq+1)] = Eq [cq+1 − zq+1]− (cq − zq) (90)

=
α2

ν

(
D

Z

)1−ν {

Eq [∆(sq+1 − pq+1)] +
1 + Γ

(i− Γ)(1 + i)
· Eq [∆iq+1]

}

(91)

Equation (80) then becomes

cq = Eq [cq+1]−
1

σ
(iq − Eq [πq+1]− r) +

ν − σ

σ

α2

ν

(
D

Z

)1−ν

· (92)

{

Eq [∆(sq+1 − pq+1)] +
1 + Γ

(i− Γ)(1 + i)
· Eq [∆iq+1]

}

or, if simplified further

cq = Eq [cq+1]−
1

σ
(iq − Eq [πq+1]− r) + c1 · Eq [∆(sq+1 − pq+1)] + c2 · Eq [∆iq+1] (93)

with c1 =
ν−σ
σ

α2

ν

(
D

Z

)1−ν

and c2 = c1 ·
1+Γ

(i−Γ)(1+i)
. We can identify

(
D

Z

)1−ν

by first rewriting

(84) to

Z
1−ν

D
1−ν

= α1
C

1−ν

D
1−ν

+ α2 (94)

and then rewriting (66) to get:

(
D

C

)1−ν

=

(
α1

α2

S

P
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1 + i

) 1−ν
−ν

(95)

34



(
C

D

)1−ν

=

(
α1

α2

S

P

i− Γ

1 + i

) 1−ν
ν

(96)

Plugging (96) into (94) we get

Z
1−ν

D
1−ν

= α1

(
α1

α2

S

P

i− Γ
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) 1−ν
ν

+ α2 (97)
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and the constants c1 and c2 become:
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σ
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1
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) 1−ν
ν

+ 1

(102)

=
ν − σ

σν

(
S

P

i−Γ
1+i

) ν−1

ν

(
α1

α2

) 1

ν

+
(

S

P

i−Γ
1+i

) ν−1

ν

(103)

c2 =
ν − σ

σν

(
S

P

i−Γ
1+i

) ν−1

ν

(
α1

α2

) 1

ν

+
(

S

P

i−Γ
1+i

) ν−1

ν

1 + Γ

(i− Γ)(1 + i)
(104)

To be in line with the notation of (7)-(6) we drop r in eq. (93) so that the nominal interest

rate iq is now interpreted as the difference to steady sate:

cq = Eq [cq+1]−
1

σ
(iq − Eq [πq+1]) + c1 · Eq [∆sq+1 − πq+1] + c2 · Eq [∆iq+1] (105)

In equilibrium, consumption equals production so that cq is replaced by output xq. Finally, a
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noise term ǫx is added and expectations are assumed to be given by the boundedly rational

heuristic Ẽq [ · ]:

xq = Eq [xq+1]−
1

σ
(iq − Eq [πq+1]) + c1 · Eq [∆sq+1 − πq+1] + c2 · Eq [∆iq+1] + ǫxq (106)

With stock demand of period q given as

dq = xq − c3(sq − pq)− c4iq with: c3 =
1

ν
, c4 =

1

ν

1 + Γ

(i− Γ)(1 + i)
(107)

B. Derive Solution of NKM

The three model equations read

iq = δπ

(

Ẽq [πq+1]− π⋆
q

)

+ δxẼq [xq+1] + ǫiq (108)

xq = Ẽq [xq+1]−
1

σ

(

iq − Ẽq [πq+1]
)

+ c1 · Ẽq [∆sq+1 − πq+1] + c2 · Ẽq [∆iq+1] + ǫxq (109)

πq = βẼq [πq+1] + γxq − κsq + ǫπq (110)

where the target inflation level π⋆ is again set to zero and market expectations are given by

Ẽq [xq+1] = ωtar
x,qx + ωhab

x,q xq−1 + ωext
x,q (xq + αx · [xq − xq−1]) (111)

= ωext
x,q (1 + αx)xq + (ωhab

x,q − αxω
ext
x,q )xq−1 (112)

Ẽq [πq+1] = ωtar
π,qπ

⋆ + ωrof
π,qπq−1 + ωext

π,q (πq + απ · [πq − πq−1]) (113)

= ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1 (114)

Ẽq [sq+1] = ωtar
s,qhxq + ωsta

s,q sq−1 + ωext
s,q (sq + αs [sq − sq−1]) (115)

= ωext
s,q (1 + αs) sq +

(
ωsta
s,q − αsω

ext
s,q

)
sq−1 + ωtar

s,qhxq (116)

Ẽq [iq+1] = iq (117)

where –following Lengnick and Wohltmann (2013) and Westerhoff (2012)– the perceived fun-

damental value is set to sfq = h · xq. Plugging (108) into (109) we get:

xq = Ẽq [xq+1]−
1

σ

(

δπẼq [πq+1] + δxẼq [xq+1] + ǫiq − Ẽq [πq+1]
)

+ c1 · Ẽq [∆sq+1 − πq+1] + ǫxq (118)

36



xq =
σ − δx

σ
Ẽq [xq+1] +

1− δπ − σc1

σ
Ẽq [πq+1] + c1 Ẽq [sq+1]− c1 sq + ǫxq −

1

σ
ǫiq (119)

Plugging expectations into (119) and (110) gives

xq =
σ − δx

σ

(
ωext
x,q (1 + αx)xq + (ωhab

x,q − αxω
ext
x,q )xq−1

)

︸ ︷︷ ︸

Ẽq [xq+1]

+
1− δπ − σc1

σ

(
ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1

)

︸ ︷︷ ︸

Ẽq [πq+1]

+ c1
(
ωext
s,q (1 + αs) sq +

(
ωsta
s,q − αsω

ext
s,q

)
sq−1 + ωtar

s,qhxq
)

︸ ︷︷ ︸

Ẽq [sq+1]

−c1 sq + ǫxq −
1

σ
ǫiq (120)

πq = β
(
ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1

)

︸ ︷︷ ︸

Ẽq [πq+1]

+γxq − κsq + ǫπq (121)

After some rearranging

(
σ − (σ − δx)ω

ext
x,q (1 + αx)− σc1ω

tar
s,qh
)
xq − (1− δπ − σc1)ω

ext
π,q(1 + απ)πq

= (σ − δx)(ω
hab
x,q − αxω

ext
x,q )xq−1 + (1− δπ − σc1)(ω

rof
π,q − απω

ext
π,q)πq−1

+ c1σ
(
ωext
s,q (1 + αs)− 1

)
sq + c1σ

(
ωsta
s,q − αsω

ext
s,q

)
sq−1 + σǫxq − ǫiq (122)

−γxq +
(
1− βωext

π,q(1 + απ)
)
πq = β

(
ωrof
π,q − απω

ext
π,q

)
πq−1 − κsq + ǫπq (123)

we arrive at the matrix form

Aq

(

xq

πq

)

= Cq

(

xq−1

πq−1

)

+Dq · sq + Eq · sq−1 +

(

σǫxq − ǫiq

ǫπq

)

(124)

with the time dependent system matrices:

Aq =

(

σ − (σ − δx)ω
ext
x,q (1 + αx)− σc1ω

tar
s,qh −(1− δπ − σc1)ω

ext
π,q(1 + απ)

−γ 1− βωext
π,q(1 + απ)

)

Cq =

(

(σ − δx)(ω
hab
x,q − αxω

ext
x,q ) (1− δπ − σc1)(ω

rof
π,q − απω

ext
π,q)

0 β
(
ωrof
π,q − απω

ext
π,q

)

)

Dq =

(

c1σ
(
ωext
s,q (1 + αs)− 1

)

−κ

)

Eq =

(

c1σ
(
ωsta
s,q − αsω

ext
s,q

)

0

)
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Multiplying with A−1
q we arrive at the solution:

(

xq

πq

)

= A−1
q Cq

(

xq−1

πq−1

)

+A−1
q Dq · sq +A−1

q Eq · sq−1 +A−1
q

(

σǫxq − ǫiq

ǫπq

)

(125)

C. Derive Solution of NKM (Version 2)

In this version, the Taylor rule depends on contemporaneous values. The three model equa-

tions are given by:

iq = δπ
(
πq − π⋆

q

)
+ δxxq + ǫiq (126)

xq = Ẽq [xq+1]−
1

σ

(

iq − Ẽq [πq+1]
)

+ c1 · Ẽq [∆sq+1 − πq+1] + c2 · Ẽq [∆iq+1] + ǫxq (127)

πq = βẼq [πq+1] + γxq − κsq + ǫπq (128)

Plugging (126) into (127) we get:

xq = Ẽq [xq+1]−
1

σ

({
δππq + δxxq + ǫiq

}
− Ẽq [πq+1]

)

+ c1 · Ẽq [∆sq+1 − πq+1] + ǫxq (129)

xq = Ẽq [xq+1] +
1

σ
Ẽq [πq+1]−

δπ

σ
πq −

δx

σ
xq + c1 · Ẽq [∆sq+1 − πq+1] + ǫxq −

1

σ
ǫiq (130)

Plugging in expectations:

xq = ωext
x,q (1 + αx)xq + (ωhab

x,q − αxω
ext
x,q )xq−1

︸ ︷︷ ︸

Ẽq [xq+1]

+
1− σc1

σ

(
ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1

)

︸ ︷︷ ︸

Ẽq [πq+1]

−
δπ

σ
πq −

δx

σ
xq + c1 ·

(
ωext
s,q (1 + αs) sq +

(
ωsta
s,q − αsω

ext
s,q

)
sq−1 + ωtar

s,qhxq
)

︸ ︷︷ ︸

Ẽq [sq+1]

−c1sq + ǫxq −
1

σ
ǫiq

(131)

πq = β
(
ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1

)

︸ ︷︷ ︸

Ẽq [πq+1]

+γxq − κsq + ǫπq (132)

After some rearranging

(
σ − σωext

x,q (1 + αx) + δx − c1σω
tar
s,qh
)
xq −

[
(1− σc1)ω

ext
π,q(1 + απ) + δπ

]
πq

= σ(ωhab
x,q − αxω

ext
x,q )xq−1 + (1− σc1)(ω

rof
π,q − απω

ext
π,q)πq−1
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+ c1σ
(
ωext
s,q (1 + αs) sq +

(
ωsta
s,q − αsω

ext
s,q

)
sq−1

)
− c1σsq + σǫxq − ǫiq (133)

−γxq +
(
1− βωext

π,q(1 + απ)
)
πq = β

(
ωrof
π,q − απω

ext
π,q

)
πq−1 − κsq + ǫπq (134)

we arrive at the matrix form

Aq

(

xq

πq

)

= Cq

(

xq−1

πq−1

)

+Dq · sq + Eq · sq−1 +

(

σǫxq − ǫiq

ǫπq

)

(135)

with the time dependent system matrices:

Aq =

(

σ − σωext
x,q (1 + αx) + δx − σc1ω

tar
s,qh −(1− σc1)ω

ext
π,q(1 + απ)− δπ

−γ 1− βωext
π,q(1 + απ)

)

Cq =

(

σ(ωhab
x,q − αxω

ext
x,q ) (1− σc1)(ω

rof
π,q − απω

ext
π,q)

0 β
(
ωrof
π,q − απω

ext
π,q

)

)

Dq =

(

c1σ
(
ωext
s,q (1 + αs)− 1

)

−κ

)

Eq =

(

c1σ
(
ωsta
s,q − αsω

ext
s,q

)

0

)

Multiplying with A−1
q we arrive at the solution:

(

xq

πq

)

= A−1
q Cq

(

xq−1

πq−1

)

+A−1
q Dq · sq +A−1

q Eq · sq−1 +A−1
q

(

σǫxq − ǫiq

ǫπq

)

(136)

D. Derive Solution of NKM (Version 3)

In this version, the Taylor rule depends on past values. The three model equations are given

by:

iq = δπ
(
πq−1 − π⋆

q

)
+ δxxq−1 + ǫiq (137)

xq = Ẽq [xq+1]−
1

σ

(

iq − Ẽq [πq+1]
)

+ c1 · Ẽq [∆sq+1 − πq+1] + c2 · Ẽq [∆iq+1] + ǫxq (138)

πq = βẼq [πq+1] + γxq − κsq + ǫπq (139)

Plugging (137) into (138) we get:

xq = Ẽq [xq+1]−
1

σ

({
δππq−1 + δxxq−1 + ǫiq

}
− Ẽq [πq+1]

)

+ c1 · Ẽq [∆sq+1 − πq+1] + ǫxq

(140)
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xq = Ẽq [xq+1] +
1

σ
Ẽq [πq+1]−

δπ

σ
πq−1 −

δx

σ
xq−1 + c1 · Ẽq [∆sq+1 − πq+1] + ǫxq −

1

σ
ǫiq (141)

Plugging in expectations:

xq = ωext
x,q (1 + αx)xq + (ωhab

x,q − αxω
ext
x,q )xq−1

︸ ︷︷ ︸

Ẽq [xq+1]

+
1− σc1

σ

{
ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1

}

︸ ︷︷ ︸

Ẽq [πq+1]

−
δπ

σ
πq−1 −

δx

σ
xq−1 + c1

{
ωext
s,q (1 + αs) sq +

(
ωsta
s,q − αsω

ext
s,q

)
sq−1 + ωtar

s,qhxq
}

︸ ︷︷ ︸

Ẽq [sq+1]

− c1 · sq + ǫxq −
1

σ
ǫiq (142)

πq = β
(
ωext
π,q(1 + απ)πq + (ωrof

π,q − απω
ext
π,q)πq−1

)

︸ ︷︷ ︸

Ẽq [πq+1]

+γxq − κsq + ǫπq (143)

After some rearranging

σ
(
1− ωext

x,q (1 + αx)− c1ω
tar
s,qh
)
xq − (1− σc1)ω

ext
π,q(1 + απ)πq

= (σωhab
x,q − σαxω

ext
x,q − δx)xq−1 +

{
(1− σc1)(ω

rof
π,q − απω

ext
π,q)− δπ

}
πq−1

+ σc1
{
ωext
s,q (1 + αs)− 1

}
sq + σc1

(
ωsta
s,q − αsω

ext
s,q

)
sq−1 + σǫxq − ǫiq (144)

−γxq +
(
1− βωext

π,q(1 + απ)
)
πq = β

(
ωrof
π,q − απω

ext
π,q

)
πq−1 − κsq + ǫπq (145)

we arrive at the matrix form

Aq

(

xq

πq

)

= Cq

(

xq−1

πq−1

)

+Dq · sq + Eq · sq−1 +

(

σǫxq − ǫiq

ǫπq

)

(146)

with the time dependent system matrices:

Aq =

(

σ − σωext
x,q (1 + αx)− σc1ω

tar
s,qh −(1− σc1)ω

ext
π,q(1 + απ)

−γ 1− βωext
π,q(1 + απ)

)

Cq =

(

σ(ωhab
x,q − αxω

ext
x,q )− δx (1− σc1)(ω

rof
π,q − απω

ext
π,q)− δπ

0 β
(
ωrof
π,q − απω

ext
π,q

)

)

Dq =

(

c1σ
(
ωext
s,q (1 + αs)− 1

)

−κ

)

Eq =

(

c1σ
(
ωsta
s,q − αsω

ext
s,q

)

0

)

40



Multiplying with A−1
q we arrive at the solution:

(

xq

πq

)

= A−1
q Cq

(

xq−1

πq−1

)

+A−1
q Dq · sq +A−1

q Eq · sq−1 +A−1
q

(

σǫxq − ǫiq

ǫπq

)

(147)

E. Further Comparison with the Original De Grauwe Model

In this section we compare the properties of our real sector submodel (appendix B; no ex-

tension) to those of the original DeGrauwe model (which was also used in Lengnick and

Wohltmann (2013)).

E.1. Expectations Heuristics

In both, the real and financial subsystem, agents make use of boundedly rational heuristics

to form expectations. Unfortunately, those heuristics assumed in De Grauwe (2010a,b,c) and

Westerhoff (2008) are of a different character. E.g.: Westerhoff assumes an extrapolation

of the recently observed stock price (st) movement35 while DeGrauwe simply takes the past

value as the extrapolators’ rule:

Westerhoff: Ẽ [st+1] = st + k · (st − st−1) (148)

DeGrauwe: Ẽ [πq+1] = πq−1 (149)

For consistency, and because Ẽ [xt+1] = xt−1 is typically called static expectations (instead of

extrapolative), we apply

Ẽ
ext

q [πq+1] = πq + απ · [πq − πq−1] (150)

as the extrapolators’ heuristic in the real sector. At the same time we keep the static expec-

tations of DeGrauwe

Ẽ
sta

q [πq+1] = πq−1 (151)

35Westerhoff (2008) does only implicitly use expectations formation. Compare Lengnick and Wohltmann (2013),
section 2.1.
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because they give rise to hybridity (similar to the rule-of-thumb or habit formation argu-

ments). The targeters’ rule corresponds to that of fundamentalists in the financial sector:

Ẽ
tar

q [πq+1] = π⋆
q (152)

Just as fundamentalists believe that stock prices are going to return to the steady state,

targeters believe that inflation is going to return to its steady state.
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Figure 8: Outut gap and its expectations in DeGrauwe NKM

Besides consistency issues, these assumptions also solve a problem that can occur in the

original De Grauwe expectations. In his model agents’ expectations are either given by a

positive (optimists) or a negative value (pessimists).

Optimists: Ẽ
opt

q [xq+1] = gq with: 2gq = µ+ ν · std[xq] (153)

Pessimists: Ẽ
opt

q [xq+1] = −gq

(

= − Ẽ
opt

q [xq+1]
)

(154)

Figure 8 illustrates the development of output (solid line) and the corresponding expectations

of optimists and pessimists (dashed lines). For the parameterization consult table 6. Output

fluctuates in a range between -0.6 and 0.6 while expectations are almost constant at -0.5 and

0.5. Sometimes (e.g. point A) we find the somewhat strange result that optimists expect

falling output, a behavior that can hardly be called optimistic any more. Additionally, the

pessimists would expect a fall of output from 0.6 down to -0.5. Such a huge change is never

observed through the entire series and thus seems a bit too unreasonable to expect. Similar

issues can also arise for pessimists (point B). This problem disappears when heuristics (9)-(14)

are applied.
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E.2. Bifurcation Analysis

The De Grauwe model does also give rise to bifurcations and stable limit cycles. Bifurcation

diagrams of the deterministic core for π and x with respect to the learning algorithm param-

eters µ, φ and ζ are shown in figure 9. The corresponding parameterization is given in table

6. Small levels of belief bias µ ∈ (0; 0.575) guarantee a unique steady state. At µ = 0.575 a

pitchfork bifurcation takes place and above 1.425 stable limit cycles emerge. Note, however,

that these results exploit the problematic expectations heuristic described above.

Table 6: Parameterization of original DeGrauwe model

NKM Hybridity Policy Learning Noise
σ = 1.0 χ = 0.80 δx = 0.5 ζ = 0.5 σǫ = 0.15
β = 0.99 ψ = 0.80 δπ = 1.5 φ = 10
γ = 0.33 µ = 0.5

ν = 2

The parameter φ does not give rise to similar phenomenon while the memory parameter

ζ gives rise to a bifurcation at ζ = 0.63. If agents’ memory is very high (ζ ∈ [0.967, 0.983]),

the system displays stable limit cycles on the intervals x ∈ (−0.062, 0.062), π ∈ (−0.15, 0.15).

For ζ ∈ [0.983, 1[ the system either converges against a positive or a negative steady state,

for perfect memory ζ = 1 the model explodes.

In contrast, our adjusted NKM displayes bifurcation and stable limit cycles for the pa-

rameters αx and απ (figure 10). Like the original De Grauwe model the intensity of choice

parameter φ does not give rise to any bifurcations. In contrast to De Grauwe our version

does also not give rise to bifurcations or limit cycles for high values of the memory parameter.

Even for perfect memory ζ = 1 our model is solvable.

Table 7: Parameterization of our model

NKM Hybridity Policy Learning Noise
σ = 1.0 - δx = 0.5 ζ = 0.5 σǫ = 0.15
β = 0.99 δπ = 1.5 φ = 10
γ = 0.33 αx = απ = 0.2
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Figure 9: Bifurcation plots of original De Grauwe (2010a,b,c) NKM

E.3. The Special Case of Full Price Flexibility

In NKMs, price stickiness is given by the Calvo parameter θ. Perfect price flexibility is

archived if (1− θ) → 1 while for θ → 1 prices are fully rigid. The Calvo parameter is one of

the deep parameters that affect γ in the Phillips curve:

γ =
(1− θ)(1− βθ)

θ

1− α

1− α + αǫ

(

σ +
ϕ+ α

1− α

)

(155)

In the following we set α = 0 (constant returns to scale production function), ǫ = 6 (induces

a markup of 20%), ϕ = 1.0 (a unitary Frisch elasticity of labor supply), σ = 1.0 (log utility).

Compare Gali (2008) on the microfoundation of γ and our parameterization. To test the effect
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Figure 10: Bifurcation plots of adjusted NKM

of price flexibility on our model, we vary 1− θ on the interval from 0 to 1. The calibration of

all other is given in table 6 for the original DeGrauwe model and in table 7 for our model.

To illustrate the impact of changing price flexibility on the system, we plot the (deter-

ministic) steady state of inflation and output for different values of (1 − θ) in figure 11. In

the original DeGrauwe model (panel (a)), stability of the steady state is only guaranteed for

values of (1− θ) up to 0.74. If price flexibility is increased above that value, the model yields

explosive dynamics. This problem does not occur in our model (panel (b)). Even for full

price flexibility, the model has convergent (i.e. stable) solutions.
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(a) Original DeGrauwe

−0.2

0

0.2
in

fla
tio

n 
ra

te

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

price elasticity 1−θ

ou
tp

ut
 g

ap

(b) Lengnick, Wohltmann model

Figure 11: Steady state of deterministic core for different degrees of price flexibility
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