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Abstract 

This paper investigates the Information content of daily trading volume with respect to 

the long-run or high persistent and the short-run or transitory components of the volatility 

of daily stock market returns using bivariate mixture models. For this purpose, the Standard 

bivariate mixture model of Tauchen and Pitts (1983) in which volatility and volume are 

directed by one latent process of Inf ormation arrivals is generalized to the extent that two 

types of i nformation processes each endowed with their own dynamic behavior are allowed 

to direct volatility and volume. Since the latent information processes are assumed to be 

autocorrelated which makes Standard estimation methods infeasible, a simulated maximum 

Iikelihood approach is applied to estimate the mixture models. The results based on German 

stock market data reveal that volume mainly provides information about the transitory com-

ponent of vola tility, and contains only little information about the high persistent volatility 

component. 
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1. Introduction 

Most empirical studies on the volatility of daily returns on financial markets focused on the 

univariate modeling of the autoregressive behavior of the volatility. Two of the most successful 

specifications for characterizing this dynamic behavior of the return volatility are the class of 

autoregressive conditionally heteroskedastic (ARCH) and generalized ARCH (GARCH) models 

introduced by Engle (1982) and Bollerslev (1986), and the stochastic volatility (SV) models 

proposed for example by Taylor (1986), Ruiz (1994) and Jaquier, Polson and Rossi (1994). One 

prominent economic Interpretation for the autoregressive behavior of the volatility is based on 

the mixture of distribution model introduced by Clark (1973) in which the return volatility is 

directed by the random number of price relevant Information which serves as the mixing variable. 

Using this mixture model, Lamoureux and Lastrapes (1990) analyzed whether an autocorrela-

tion in the number of Information can be regarded as the source of the persistence in the return 

volatility. By introducing trading volume as a proxy for the unobservable Information process in 

the volatility equation of a GARCH model they discovered that the persistence in the volatility 

process disappears. However, using trading volume as an exogenous variable in a univariate 

specification for the volatility a simultaneity problem may bias their results since volume and 

returns are possibly Jointly determined. 

Consequently, for investigating the role of trading volume on the return volatility and the sources 

of persistence in the volatility process it is more adequate to use a bivariate framework in which 

the volatility and volume are simultaneously determined. A prominent example for such a bi­

variate specification is provided by the bivariate mixture model proposed by Tauchen and Pitts 

(1983) which represents a refinement of Clark's univariate mixture model. In their approach, 

trading volume is included as an endogenous variable and volatility and trading volume are 

jointly directed by the latent Information axrival process as the common mixing variable. This 

implies that the dynamics of both variables are restricted to depend only on the time series 

behavior of the common mixing variable. Hence, if the bivariate mixture model is the correct 

specification, the time series of trading volume provides Information about the factor which 

generates the persistence in the volatility process. 

Unfortunately, recent empirical studies reveal some shortcomings of the bivariate mixture mo­

del. Lamoureux and Lastrapes (1994) who employed a signal extraction procedure to estimate 

the series of the latent Information arrival process showed that this estimated series does not 

account for the persistence of the return volatility. The studies of Andersen (1996) and Liesen­

feld (1997) who estimated a bivariate mixture model with an autocorrelated latent Information 
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arrival process revealed that in the bivariate return-volume system, the estimated measure of 

volatility persistence drops significantly relative to univariate specifications for return volatility 

only. This also cast doubt on the ability of the bivariate mixture model to account adequately 

for the persistence in the volatility process. An obvious Interpretation of these results is that 

the maintained assumption of the Standard bivariate mixture model that the dynamic behavior 

of volume and volatility is solely determined by the time series behavior of the arrival process 

of one type of information is too restrictive. In particular, as noted by Andersen (1996), there 

possibly exist more types of information processes in the market that have different impacts 

on volume and volatility: one type of information may generate a rather heavy trading volume 

but have only short-run effects on the volatility, another type of information may have long-run 

effects on the volatility but induce only a small trading activity. For example, information based 

on periodic macroeconomic announcements may induce a heavy trading activity, but have only 

short-run effects on volatility. Failing to control in the bivariate mixture model for this difference 

could bias the estimation results. 

In this paper the Standard bivariate mixture model with the latent arrival process of one type of 

information is generalized to the effect that the information process is decomposed in a short-run 

and a long-run component, where both components are allowed to direct volume and volatility 

differently. Such a two-component bivariate mixture model is consistent with the results of Engle 

and Lee (1993) and Ding and Granger (1996). They showed in univariate GARCH specifications 

that it is useful for characterizing the volatility persistence adequately to decompose the overall 

volatility in permanent or long-run components which exhibit a high persistence and transitory 

or short-run components which die out very quickly. A very closely related approach was pro-

posed by Andersen and Bollerslev (1996) who used a univariate multi-component SV model in 

which the overall stochastic volatility process is governed by numerous independent volatility 

components with their own dynamic behavior. However, a bivariate mixture model in which 

the latent Information arrival process is decomposed in a short-run and a long-run component, 

each with possibly different effects on volume and volatility, makes it possible to anaylze the 

Information content of trading volume concerning the different volatility components. 

Since the latent information arrival process and its components are assumed to be autocorre-

lated the marginal Iikelihood of a two-component bivariate mixture model is given by a high 

dimensional integral which makes the estimation by Standard maximum Iikelihood (ML) infea-

sible. Hence, for estimation the simulated maximum Iikelihood (SML) approach developed by 

Danielsson and Richard (1993) is used. This estimation strategy makes it possible to adopt the 
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Standard Instruments of inference of the ML method. 

The outline of the paper is as follows. In section 2, the spezification of the two-component 

bivariate mixture model is discussed. Section 3 describes the simulated maximum likelihood 

(SML) technique. Section 4 presents the emprical results and section 5 concludes. 

2. Model specifications 

2.1. The Standard bivariate mixture model 

To derive the Joint probability distribution of daily returns and trading volume Tauchen and 

Pitts (1983) used a sequential Walrasian equilibrium framework. In this setting the traders' 

demand for a Single security is a linear function of the difference between their reservation 

prices and the Current market price. Within one day a series of events takes place, each of 

which generates Information with direct relevance for the pricing of the security. Every piece 

of price relevant Information leads the traders to adjust their reservation prices resulting in a 

price change and a corresponding transaction volume which are determined by the Walrasian 

equilibrium condition. The return rt and the trading volume Vt for a given day t is the sum over 

within-day price changes and transaction volumes respectively, each of which occur as a result 

of the arrival of new Information. For a sufficiently large number of Information arrivals per 

day the Joint distribution of daily returns and volume follow approximately a bivariate normal 

distribution conditional on the daily number of Information arrivals it, and can represented as: 

where oy, c, pv and ov are positive parameters. The parameter \xT represents the predictable 

part of the returns, and c captures that part of daily trading volume which is independent of 

the arrival of Information. In the study of Tauchen and Pitts (1983) pr and c are restricted to 

be zero. In our study these restrictions are relaxed. Assuming that the unobservable number 

of Information arrivals it is random it follows from (1) and (2) that the unconditional Joint 

distribution of r« and Vt is a mixture of bivariate normals with it as the common mixing variable. 

According to this bivariate specification the conditional variance of the returns is determined 

by the common mixing variable. Hence, the dynamics of the volatility process of the returns is 

rt|it ~ N(/ir , o*it) 

vt\it ~ N(c + n„it , crlU) 

(1) 

(2) 

with Cov(rt, vt\it) = 0 
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solely directed by the time series behavior of it which also affects the dynamics of trading volume. 

This implies that a serial correlation of the information rate it leads to a serial correlation in 

the conditional variance of the returns and the observed persistence in the return volatility 

may be the result of a persistence in the information arrival process. To allow for such an 

autocorrelation in the common mixing variable Liesenfeld (1997) assumed a Gaussian AR(1)-

process for the logarithm of the mixing variable At = In(it): 

~ N(7 + SXt~i , v2) • (3) 

Note, that the bivariate model (1) and (2) together with equation (3) implies a univariate spe-

cification for the returns which corresponds to the SV model anaylzed, for example, by Taylor 

(1986), Jacquier, Polson and Rossi (1994) and Ruiz (1994). In characterizing the persistence 

in the volatility process, this SV model where the persistence is measured by the parameter S, 

represents an alternative to (G)ARCH specifications. However, the results of Liesenfeld (1997) 

revealed a significant reduction in the estimated measure of volatility persistence S in the return-

volume system (l)-(3) relative to the univariate specification (1) and (3) for the returns only. 

The same result is obtained by Andersen (1996) in a slightly modified bivariate mixture model1. 

This significant reduction in the measure for volatility persistence if volume is included indicates 

that the Standard bivariate mixture model (l)-(3) with an autocorrelated arrival process of one 

type of information given by it = exp{A{} fails to capture all of the high persistence in the 

volatility process of the returns. 

2.2. Two-component bivariate mixture models 

Since the Standard bivariate mixture model with one Information process does not fully account 

for the high persistence of volatility, it is straightforward to allow for a second Information 

process that has an impact on the valuation of the asset but does not generate additional trading 

volume. As a further possible source of volatility persistence this additional Information process 

may reflect information which axrives as common knowledge and which is interpreted almost 

unanimously by the Investors resulting in corresponding price movements without considerable 

1 Andersen (1996) used an explicit market m icrostructure framework inspired by the model of Glosten and 

Milgrom (1985) to develop the implications for the Joint distribution of daily retu rns and volume. The Joint dis-
tribution he obtained, differs from the Tauchen-Pitts specification (1) and (2) by a conditional Poisson distribution 
for the daily volu me given the information arriva l process . 
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transactions. To capture this additional type of Information the Standard bivariate mixture 

model (l)-(3) is generalized as follows: 

~ N(c + ̂ eAl'' , <r^eAl'') (5) 

with 

Aj,t|Aj,t-i ~ N(7j + SjXj^ , ;/?) , j = 1,2 . (6) 

In this two-component bivariate mixture specification the logarithm of the additional information 

process which has an impact on volatility only is represented by A2,t, w hereas Xitt is the logarithm 

of the information process which directs volatility and volume as the common mixing variable. 

According to Equation (6) the logarithm of both information processes follow a Gaussian AR(1)-

process where the degree of persistence is measured by the parameters Sj. It is assumed that 

Ai;t and A2,t a re stochastically independent. Note, that for the restrictions 72 = <52 = "2 = 0 the 

two-component specification (4)-(6) is identical to the Standard mixture model with only one 

common mixing variable. However, in the two-component bivariate specification the inclusion 

of a second autocorrelated information process which affects solely the return volatility allows 

for a separate source of volatility persistence, in addition to the persistence captured by the 

information process which directs volatility as well as volume. 

Furthermore, the univariate specification for the returns (4) and (6) implied by the generalized 

bivariate model corresponds to a two-component SV model which is consistent with the two-

component GARCH specifications proposed by Engle and Lee (1993) and Ding and Granger 

(1996), and the multi-component SV model of Andersen and Bollerslev (1996). Using these 

specifications these studies identified different components in the volatility process of returns: 

short-run components which die out very quickly and long-run components which exhibit a 

high persistence. These univariate volatility models are mainly motivated by recent evidence 

that the volatility process on financial markets exhibits a very long memory which can be 

characterized by fractionally integrated processes. So the inclusion of different autocorrelated 

volatility components in these univariate specifications predicts a dynamic behavior of the overall 

volatility process which is characterized by volatility shocks which die out at a slow hyperbolic 

rate of decay. This predicted behavior of the volatility again is similar to that of the fractionally 

integrated GARCH (FIGARCH) models proposed by Bailley, Bollerslev and Mikkelsen (1996) 

and Bollerslev and Mikkelsen (1996). However, from equation (6) it is clear that, when < Ö2, 

the second component A2,t would represent the long-run, and the first component Ai,t t he short-
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run component. Reversing the inequality reverses this result. Hence, with the two-component 

bivariate mixture specification (4)-(6) it is possible to analyze the information content of volume 

concerning the two volatility components. For 81 < 82 v olume provides information about the 

short-run volatility component and vice versa. 

In the two-component bivariate mixture model (4)-(6), the second information arrival process 

A2,t is restricted to have an effect on volatility only. In Order to prove whether the second 

component A2,t also affects volume or not, the specification (4)-(6) can be extended as follows: 

According to Equation (8) both Information processes are allowed to load on volume. The Pa­

rameter w is restricted to fall in the unit Intervall, i.e. 0 < w < 1, and measures the relative 

importance of the two Information processes for trading volume. For w = 0, the second infor­

mation rate A2,t has no influence on trading volume and the extended two-component model 

(7)-(9) is identical to the two-component specification (4)-(6). 

Due to the latent character of the information processes all specifications of the bivariate mixture 

model considered here are invariant with respect to scalar transformations of the incorporated In­

formation processes. In order to normalize the models, the parameter oy in the return equations 

(1),(4) and (7) is set equal to one. Because of the second latent variable in the two-component 

model (4)-(6) and in the extended two-component specification (7)-(9) the normalisation o> = 1 

is not sufficient for identifcation. Hence, to normalize the two-component models we choose 

ar = 1 and 72 = 0 where 72 is the scaling parameter in the equation for A2,t-

The estimation of the bivariate mixture models is not straightforward since the latent variables 

are assumed to be autocorrelated which makes the conventional maximum Iikelihood (ML) me-

thod infeasible. Let YT = {yt}^i be the matrix of the observable variables with yt = (rt, vt), 

and XT = the matrix of the latent mixing variables with xt — Ai)t for the Standard 

mixture model and xt = (Alit, Ag^) for the two-component bivariate models. Then, in order to 

derive the Iikelihood function for the bivariate mixture specifications, XT has to be integrated 

out of the Joint probability function of YT and XT1. 

rt|Ai,t,A2,t ~ N(/zr , ^eAl't+A2'') (7) 

(8) 

with 

Aj,t|Ajit_i ~ N(7j 4- SjXj^t-i , v]) , j = 1,2. (9) 

(10) 
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where 6 denotes the vector of parameters to be estimated. The support A is defined over R2T 

for the two-component bivariate models and IRT for the Standard bivariate model. Hence, the 

likelihood Functions of the bivariate mixture models considered here are multiple Integrals with 

dimensions given by 2T and T, respectively. For these high dimensional Integrals no closed form 

Solution exists nor can Standard numerical Integration methods be applied. 

To estimate the bivariate mixture models the SML estimator developed by Danielsson and 

Richard (1993) is used. This estimator is based on an importance sampling procedure which 

makes it possible to evaluate Integrals such as those given in Equation (10). Another possible 

estimation strategy for bivariate mixture models with autocorrelated latent variables is the 

generalized method of moment (GMM) proposed by Richardson and Smith (1994) and Andersen 

(1996). However, in contrast to the GMM strategy the SML approach allows us to adopt 

the Standard Instruments for inference developed for ML. Furthermore, the GMM estimator is 

only based on certain aspects of the distributional and dynamic assumptions in form of the 

selected moment restrictions, whereas SML retains the complete a priori information given by 

the structure of the model. Therefore, one can expect that the GMM estimator is less efficient. 

Finally, the SML approach is based on an importance sampling procedure that also allows us to 

calculate estimates of the latent Information arrival or volatility process. 

3. Estimation technique 

3.1. SML estimator 

In this section the application of the SML approach to the two-component bivariate mixture 

specifications (4)-(6) and (7)-(9), which involve two latent dynamic variables, is described. For 

the general theory of the SML method, see Danielsson and Richard (1993), and for the app­

lication of the SML method to the Standard bivariate model (l)-(3) with one latent dynamic 

variable, see Liesenfeld (1997). 

Suppose one has a Solution of the high dimensional integral (10), then the estimate of the un-

known parameter vector 9 of the bivariate mixture specifications based on maximum likelihood 

is 

ÖML = arg max ln[/(Yr 10)] • (11) 

In the SML approach of Danielsson and Richard (1993) the high dimensional integral /(YT 10) 

is estimated by a Monte Carlo (MC) technique based on an importance sampling procedure. 
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Given such an estimate of the integral, the log-Iikelihood can be evaluated and maximized over 

the unknown parameter vector 9. 

To obtain a MC estimate of f(Yj 19), the Joint density /{YT, XT | 9) is factorized in an import-

ance sampling function (IF) (J.(XT | YT) and a remainder function (RF) h{Xr, YT) such that the 

equation 

/(^,Xr|6) = /i(Xr,^)XXT|)Y) (12) 

holds. The expected value of the RF h(XT,YT) evaluated over the distribution defined by the 

IF H(XT | YT) is given by 

Eß{h(XT,YT)\ = I h(XT,YT)(i(XT\YT)dXT (13) 
& 

= j f{YT,XT\9)dXT = f{YT\e) . 
A 

Since according to Equation (13) the integral /(YT 19) can be expressed as the expectation 

EM[/i(Xr, YT)\ a natural estimator for /(YT | 9) is the following sample average: 

1 N 

h(YT\e) = -J2HXT,n,YT), (14) 
n=l 

where {-Yr,n}^=i with XT,U = {xt,n}J~i represents a simulated random sample of size N drawn 

from the probability distribution ß(XT\YT). To obtain the SML estimator of the parameter 

vector, /(YT 19) in Equation (11) is replaced by its estimate (14). The precision of the MC esti­

mate of the integral and therefore of the unknown parameter vector can be arbitrarily increased 

by raising the Simulation sample size N. 

A natural factorization of the Joint density /(YT, XT \ 6) for the two-component bivariate mixture 

models, according to the conditions (12) and (13), can be obtained as follows: 

/(YT, XT)0) = /(YT \ X T)/(.XT) (15) 

with /(YT | XT) = H f(Vt I *t) and /(XT) = FI /(^t | ̂t-i), 
i=l t— 1 

where /(yt | xt) represents the Joint density of the return and volume yt = (rt,vt) in period t 

conditional on the values of the mixing variables Xt = (A^j, \2,t)- Since conditional on xt, the 

random variables rt and vt are assumed to be independent, /(yt | xt) can be factorized into the 

product of two normal distributions: /(yt | xt) = f(rt | xt)/(vt | xt). /(xt | Xt_i) is the conditional 

Joint distribution of the mixing variables given their past observations which according to (6) 
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and (9) is a bivariate Gaussian distribution. Since the elements of Xt, A^t and A2,t ar e assumed 

to be stochastically independent f{xt | xt-i) is given by /(Au | Au_i)/(A2,t | A2,i-i). So one can 

dehne the following initial IF and corresponding RF which preserve the condititons (12) and 

(13): 

T 
HO(XT\YT) = JJ f{xt I x t-i) (16) 

t~l 
T 

ho(XT,YT) = f(yt | xt). (17) 
t=i 

These initial remainder and importance functions can be used according to Equation (14) to 

construct a naive MC-estimate of the marginal distribution f{Yr | 0) for a given value of the 

Parameter vector 6. Therefore, a simulated sample (%r,o,n}^=i is drawn from the initial IF /io 

where each XT,o,n is given by the matrix {(Ai)tio,n, A2,tio,n)}£=i- Then, the remainder function 

is evaluated for every XT,O,n and the resulting arithmetic mean of {ho(Xr,o,n, Yr))n=i serves 

according to Equation (14) as a naive MC-estimate of f(Yr 16). 

As shown by Danielsson and Richard (1993) natural factorizations in an IF and a RF such as 

that given in Equations (16) and (17) are inefficient in the sense that the resulting MC samp­

ling variance of the estimator for the integral increases dramatically with the dimension of the 

integral. To eliminate this inefficiency Danielsson and Richard (1993) proposed an acceleration 

method, called Accelerated Gaussian Importance Sampling (AGIS). This AGIS method searches 

for an IF which minimizes the MC sampling variance of the corresponding RF given by 

Var„[M*T,*T)] = J[l^2^1-f{YT\d)ffi(XT\YT)dXT, (18) 
A 

while preserving the conditions (12) and (13). Because this minimizingproblemhas no analytical 

Solution the AGIS method is based on numerical and iterative procedures2. The experiences 

of Danielsson and Richard (1993), Danielsson (1994) and Liesenfeld (1997) showed that the 

reduction of the MC sampling variance which is reached by the AGIS algorithm is so significant 

that it can be regarded as sufficient. 

3.2. Moate-Carlo estimation of the volatility 

One important use of models for the stochastic behavior of return volatility is to infer about 

values of the volatility. For example, option-pricing applications often require an estimate of 

the volatility. Let crt denote the return volatility which is given in the two-component mixture 

2For the description and the Implementation of th e AGIS algorithm, see the Appendix. 
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models by at = exp{0.5(Ai,t + A2,t)}- As an estimate for the unobservable volatility at one can use 

E(<711 YT, #SML) w hich is the conditional mean of at given the whole data matrix Yj = {rt, vt}J=l 

and the SML estimates of the parameter vector. The conditional mean E(at \YT,9) is defined 

as 

E(at | YT, 6) = f e^Xl-t+X2t) f(xt\Yr,d)dxt , (19) 
R2 

where f(xt | YT, 9) is the conditional joint distribution of xt = (Ai,*, \2,t)' given YT- This distri­

bution can be expressed as 

f(xt\YT,9)= J f(XT\YT,0)dXf , (20) 
R2(T-1) 

where X^ denotes XT = {av }̂ =1 without the ith element. Using the fact that f{Xr | YT) = 

f{Yr,XT)/f{Yr), the conditional distribution (20) can be transformed as follows: 

f{xt\YT,9) = j^Q) / f(YT,XT\9)dXf . (21) 

Substituting Equation (21) into (19) the conditional mean can be expressed by: 

/ e^Xl-t+x^f(YT,XT\9)dXT 

Efo I yT, 9) = ? / f(YT,XT\9)dXT • (22) 

R2T 

The integral in the denominator of Equation (22) corresponds to the Iikelihood function (10) and 

the integral in the numerator has the same form as the Iikelihood function. Hence, to evaluate 

E(*t | YT,9) at the SML estimate of 9, one can use the AGIS algorithm. Therefore, the joint 

density /(YT,XT \9) in Equation (22) is factorized according to (12) and (13) in an IF and a 

RF such that 

E(g'i^9) = E"'eiw^'yr)l- (23) 

The expected values are estimated by the corresponding sample means where the factorisation 

in an IF and a RF is determined by the AGIS algorithm. In the same fashion as the overall 

volatility <Tt one can estimate the individual components of ut given by = exp{0.5Aiit} and 

CTi,t = exp{0.5Ai,t} with at = &i,t • <J%t- Note, that this approach of estimating the volatility 

contains two sources of errors: The MC sampling error and the parameter estimation error. 

However, by selecting a large MC Simulation size the MC sampling error can be made arbitrarily 

small. 
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4. Empirical results 

4.1. Data 

The empirical results are based on a dataset consisting of daily closing prices and daily number 

of shares traded for the four major German stocks listed in the DAX: Siemens (SIE), Daimler-

Benz (DAI), Volkswagen (VOW), and Deutsche Bank (DBK)3. The data were obtained from 

the Karlsruher Kapitalmarktdatenbank (KKMDB) and are adjusted for effects of dividends and 

capital changes. The sample period starts on January 2, 1990 and ends on May 31, 1994 which 

gives a sample size of roughly 1100. The daily closing prices pt are transformed to returns 

measured in continuously compounded rates: rt = 100-ln(pt/pt_i). In order to make the volume 

series stationary, the volume data are adjusted by an exponential time trend which is estimated 

by regressing ln(v() on a constant and on time t = 1 The exponential function of the 

residuals of this regression are then linearly transformed in such a way that the raw data and 

the detrended data have the same mean and variance. For all the following results, the detrended 

volume series is multiplied by 10-6. 

The summary statistics of the data are summarized in Table 1. As can be seen from Table 1 the 

returns are not normal. The excess kurtosis exceeds the value of zero which would be expected 

for a normally distributed variable. The Ljung-Box statistics for the squared returns including 

20 lags LBri (20) demonstrate that the squared returns exhibit a significant autocorrelation. 

Furthermore, the Ljung-Box statistics LBV(20) shows that there is also a high autocorrelation 

in trading volume. Finally, there is a significant positive contemporaneous correlation between 

the return volatility and trading volume. As a descriptive measure the correlation coefficient 

between the squared returns and trading volume prs v is calculated. Its significance is tested 

using Fisher's Z-test. All these facts are consistent with the bivariate mixture models4. 

In order to characterize the behavior of the return volatility the univariate SV model which is 

given by r<|At ~ N(/*r , eAt) with ~ N(7-l-<5At_i , v2) is estimated with SML. The SML 

estimation is carried out by using a Simulation sample size of N = 30 and five iterations for the 

AGIS algorithm. The results which are summarized in Table 2 releveal that the estimates of 

the persistence parameter <5 are always highly significant and lie between 0.91 and 0.96. This 

indicates that volatility shocks exhibit a high persistence which is a typical result for financial 

return data. 
3The database used here is exactly the same as in Liesenfeld (1997 ). 
4 For a detailed description of the predictions of b ivariate mixture models see Harris (1987). 
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4.3. SML Results for the Standard bivariate mixture model 

The SML results of the Standard bivariate mixture model (l)-(3) with one dynamic information 

arrival process are given in Table 3 and raise the following remarks. In order to assess the pre-

cision of the SML estimates for the Standard bivariate mixture model which is estimated with 

N = 30 and Ave AGIS iterations, estimates of the MC sampling Standard errors of t he maximi-

zed log-likelihoods (MC Std.err of log-lik.) are calculated. These Standard errors are computed 

by estimating a hundred times the likelihood for given SML estimates of the parameters and 

calculating the Standard deviations of the logarithm of these likelihood estimates. Since these 

estimates vary from 0.0018% (VOW) to 0.0035% (DBK) relative to the corresponding log like­

lihood values the SML estimates seem to be very precise. Furthermore, all important parameters 

such as 6 which measures the persistence of volatility, and u which captures the Variation of the 

logarithm of the information process are highly significant. However, even if the persistence 

Parameter 5 is highly significant for all stocks, the estimates which lie between 0.66 (VOW) 

and 0.70 (DBK) are significantly smaller in all cases than those obtained for the univariate SV 

model in Table 2. These significant differences in the estimates of the parameter which measures 

the volatility persistence resulting from the univariate SV model and the bivariate model which 

includes trading volume cast doubt on the adequacy of the Standard bivariate mixture model. If 

this bivariate model were correctly specified, then the estimator of <5 would be consistent in the 

univariate model as well as in the bivariate setting, and one would expect that the estimates of S 

resulting from the univariate and the bivariate specification are of the same order of magnitude. 

However, the significant reduction in the estimates of <5 if t rading volume is incorporated indi-

cates that the Standard mixture model with one information process fails to account adequately 

for the high persistence of volatility shocks. 

4.4. SML Results for the two-component bivariate mixture models 

Table 4 presents the SML estimates of the two-component bivariate mixture specification (4)-

(6) with two independent information arrival processes X\tt and Ag,* w here X\tt directs volatility 

as well as volume and A2,t has an impact on volatility only. The MC Standard errors of the 

log-likelihood for the two-component model which vary between 0.0078% (SIE) and 0.010% 

(DBK) relative to the log-likelihood values can be regarded as sufficiently small, even if they are 

higher than those obtained for the one-component model in Table 3. Of special interest are the 

estimation results concerning the parameters 82 and vi which characterize the stochastic behavior 
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of the additional information process A2,t, which is a further possible source of persistence in 

addition to the persistence captured by the common mixing variable Ai,f. As indicated by the 

small Standard errors relative to the values of the parameter estimates, Ö2 an d 1/3 are significantly 

greater than zero at the 1% significance level for all stocks. This is further validated by the 

likelihood-ratio-statistic LRS2=^2=Q of the hypotheses H0 : 82 = = 0 which under HQ is 

asymptotically xl-distributed. The values of LRs2-U2=o vary between 132.8 (VOW) and 219.4 

(SIE) showing a significance at any conventional level. These results reveal that the specification 

of the Standard bivariate mixture model with one information arrival process as the only source 

of volatility persistence is rejected against a specification which allows for an additional source 

of persistence. This finding is consistent with the result of Liesenfeld (1996), which shows that 

in bivariate mixture models with one dynamic information process the lagged absolute return 

residuals contain a significant explanatory power concerning the contemporaneous volatility. 

The comparison of 6 % w ith Ö2 a nd v\ with 1/3 in the two-component bivariate model shows that 

for all stocks the inequalities 82 > <$1 and 1/3 < hold. This implies that the component Al t 

which loads on volatility and volume captures the short-run movements of volatility, while A2,; 

affecting volatility only, captures the long-run dynamics. For example, in the case of DAI, shocks 

of the process Ai,t e xhibit a large immediate effect on volatility given by v\ = 0.351, whereas 

the effect of these shocks dies out fast at a rate of 8\ = 0.647. In contrast, shocks of A2,i have 

a small immediate effect given by 1/2 = 0.162 while the effect decays very slowly at a rate of 

82 = 0.975. The same qualitative characteristics concerning the dynamics of the two components 

are given for the remaining three stocks in our sample. These findings axe consistent with those 

of Engle and Lee (1993), Ding and Granger (1996), and Andersen and Bollerslev (1996) which 

also provide evidence for the existence of long-run and short-run volatility components using 

univariate volatility specifications. However, the result that the information process which affects 

volatility and volume captures the short-run component of volatility, while the Information 

process that loads solely on volatility determines the long-run component, indicates that the 

series of trading volume at least provides information about the factor which generates the 

short-run dynamics in the volatility process of the returns. 

In order to investigate the information content of volume concerning the long-run component 

of volatility, the extended two-component specification (7)-(9) is estimated. In contrast to the 

two-component model (4)-(6), in this specification the second Information process A2j< which 

turned out to capture the long-run movements of volatility is also allowed to direct the trading 

volume. The relative importance of Al t and A2,t for volume is measured by the weights 1 — w 
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and w respectively, where for w = 0 the effect of A2,t on volume is nil and the extended two-

component model is identical to the two-component specification (4)-(6). The SML results 

for the extended two-component model which are summarized in Table 5 raise the following 

comments. The SML-estimates of the weighting parameter w are small and vary between 0.013 

(VOW) and 0.128 (DBK) while the remaining parameters are nearly unchanged compared to 

the two-component specification (4)-(6) in Table 3. The likelihood-ratio-statistic £Äu,=o of the 

hypotheses Ho : w — 0 which under the Null is asympotically %2-distributed indicates that 

w is only significantly greater than zero at the 1%-level for DAI and DBK. Thus, the effect 

of the long-run component A2,t on volume which is rather small relative to the effect of the 

short-run component Ai)t is statistically significant only in the case of DAI and DBK. Hence 

one can conclude that trading volume first of all provides information concerning the short-run 

or transitory component of the return volatility and contains, if at all, only little Information 

about the long-run or persistent component of volatility. 

Figure 1 shows the MC estimates of the overall volatility at = E(crt | YT, #SML) together with the 

MC estimates of the individual components <71,4 = E(<7i,t | YT, #SML) and <72,4 = E(CT2,t I YT, #SML) 

resulting from the extended two-component mixture model for the DAI stock. These estimates 

are calculated using a Simulation sample size of N = 30 and five AGIS-iterations. It can be 

seen that the estimated long-run component <72,t o f the overall volatility crt = aij • <?2,t ex hibits 

very smooth movements while the estimated short-run component cr^t shows rather erratic 

fluctuations. 

In order to get further insight into the two Information processes and the individual components 

of the overall volatility one can analyze the contemporaneous correlations of the estimated overall 

volatility ert and its components a and 02,t across the individual stocks. These correlations of 

the estimated volatility resulting from the extended two-component mixture model are presented 

in Table 6. It turns out that the overall volatilities a\, j = SIE, DAI, VOW, DBK for all 

pairs of stocks are highly correlated with correlation coefficients varying between 0.64 (VOW-

DBK) and 0.84 (SIE-DBK). These high correlations are consistent with findings of studies 

analyzing the co-movements in volatility and which show that there is a lot of communality 

in volatility changes across stocks, see for example Schwert (1989). Furthermore, it can be 

seen from Table 6 that for all pairs of stocks the correlations of the long-run components cr^<t 

which lie in the ränge of 0.78 (VOW-DBK) and 0.95 (SIE-DBK) are significantly higher than 

the corresponding correlations of the overall volatilities a\. In contrast, the correlations of the 

short-run components t are smaller in all cases than those of the overall volatility. Hence, 
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the communality in volatility changes across stocks seems to be mainly due to the co-movement 

in the long-run and persistent volatility component. However, the result that the correlations 

of the volatility components which are directed by the high persistent Information process A2,t 

are considerably higher than the correlations of the components driven by the low persistent 

information process A^t suggests the following Interpretation. The high persistent information 

process mainly consists of Information which is relevant for the whole market, while the low 

persistent information process primarilary reflects firm specific information. 

5. Summary and conclusion 

This paper analyzes the information content of daily trading volume concerning the behavior of 

the volatility of daily stock returns using bivariate mixture models. According to the Standard 

mixture model of Tauchen and Pitts (1983) in which the latent arrival process of p rice relevant 

information determines the joint behavior of volatility and trading volume, a serial correlation 

of the information arrival process may be the source of the observed persistence in the return 

volatility. However, since recent empirical evidence revealed that an autocorrelation in this In­

formation arrival process fails to capture all of the observed volatility persistence, the Standard 

mixture model with one information process is generalized. In a first specification, a second 

additional Information process that loads on volatility only is included as a further source of 

volatility persistence, in addition to the persistence captured by the information process which 

loads on volatility and volume (two-component mixture model). In a second specification both 

information processes are allowed to direct volatility as well as volume (extended two-component 

mixture model). These two-component mixture specifications in which both information pro­

cesses are endowed with their own dynamic behavior are consistent with the univariate long 

memory models for the volatility which decompose the overall volatility in long-run and short-

run components. In addition to that, these two-component mixture specifications makes it 

possible to analyze the Information content of trading volume with respect to the long-run and 

short-run movements in the volatility. Since the latent information processes are assumed to 

be autocorrelated, the Iikelihood functions of the mixture models are given by high dimensional 

Integrals which makes the estimation by maximum Iikelihood infeasible. Hence, to estimate the 

mixture models a simulated maximum Iikelihood (SML) approach developed by Danielsson and 

Richard (1993) is used. 

The estimation results using daily data of the four major German stocks can be summarized 
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as follows. First, the Standard bivariate mixture model with one dynamic information pro­

cess is clearly rejected against the two-component mixture models which allow for two types 

of information processes. Second, using these two-component mixture models, it is possible to 

identify a high-persistent and a low-persistent information process which direct the volatility of 

the returns. Furthermore, it turns out that the effect of the high-persistent information process 

on trading volume is very small relative to the effect of the low-persistent information process. 

These results reveal that volume provides information mainly about the short-run or transitory 

components of the volatility process and contains if at all only little information about the long-

run or permanent components. Finally, the analysis of t he contemporaneous correlations of the 

estimated series of the volatility components across the four stocks shows that the long-run vola­

tility components exhibit significantly higher correlations than the short-run components. This 

indicates that the low-persistent information process mainly consists of firm specific information 

while the high-persistent process mainly reflects market information. 
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APPENDIX 

The accelerated gaussian importance sampler (AGIS) 

For a given value of 9 the AGIS method uses a numerical and iterative procedure to solve the 

minimizing problem: 

min VarA,[/i(Xr)yr)] (A.l) 

subject to the constraints 

f(YT,XT\9)=h(XT,YTMXT\YT) and Eß[h(XT,YT)} = f(YT\9) , 

where Vaxß[h(XT, YT)] is given by Equation (18). Therefore, a variance reduction function 

£(XT, Q) is defined where Q is a matrix of parameters to be determined. This variance reduction 

function is used to construct a new pair of a RF and an IF by transforming the initial pair of 

functions (16) and (17) as follows: 

p{XT\YT) = [ßo{XT\YT)aXT,Q)]/<Q) (A.2) 

h(XT,YT) = [h0(XT,YT)K(Q)}/aXT,Q). (A.3) 

K(Q) represents the Integration constant which ensures that the new IF is a proper probability 

function and is given by: 

4P) = 0)d%T. (A.4) 
A 

The transformations (A.2) and (A.3) retain the constraints of the minimizing problem given 

above while changing the variance of the RF. For the variance reduction function the AGIS 

method uses a product of T exponential quadratic functions: 

T 
$(XT, Q) = ff Qt) (A.5) 

t=i 

with £{xt, Qt) = exp{-^Qt77t} and r]'t = (x't, x't_v 1). 

Even if this choice for £(XT,Q) is dictated by analytical and computational reasons, it can be 

shown that it works exeptionally well, see Danielsson and Richard (1993). 

To determine Q = which is a sequence of (5x5) matrixes, an iterative estimation pro­

cedure with k steps is applied. Starting with the IF no, an initial simulated sample {Xr,o,n}£=i 

is drawn and used to run an auxiliary regression for every time period t = 1,...,T in which 
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ln/io(xtio,„) is regressed on a constant, the components of xt,o,n> and the squares and the 

crossproducts of the elements of xt,o,n- Hence, for the two-component mixture models with 

Zt,o,n = (Ai,t,o,n, A2,t,o,n)' the auxiliary regression is: 

ln/lo(Xi,0,n) = ^l,t + ^2,t^l,t,0,n + üf3,tA2,(,0,7i + ^4,fA?itio,n + ^5,(A2,{|o,n (A.6) 

+de,(Ai,t,0,nA2)t,o,n + residual , n=l, 

The OLS-estimates of the coefficients dit are used to construct for every t the matrix 

^ —2ditt ~d&,t 0 0 —<^2,t ^ 

—dß.i —2(^5^ 0 0 —^3,4 

Qi,t — 0 0 00 0 i ^ = li T. (A.7) 

0 0 0 0 0 

—d,2,t —dztt 0 0 —2di,t y 

With Qi = {Qi>t}J=l, a first new IF is given by m(XT | YT) = ^o(*r | YT)£(XT,QI)/K(QI)- A 

second Step IF p2(XT | YT) is constructed in the same fashion by drawing a random sample from 

Hl (XT | YT) and regressing In/io(zt,i,n) on a constant, the components of xt,i,n, and the squares 

and the crossproducts of the elements of xtjin. With the resulting sequence of matrixes Q2 the 

sampler n2 (XT | YT) is determined. This procedure is repeated until Qk is sufficiently close to 

the matrixes Qk-i- Danielsson and Richard (1993) showed that the convergence is reached very 

quickly, typically after less than 5 iterations. The Implementation of this iterative procedure of 

the AGIS algorithm implies the following steps: 

V 

Step (0): Initial Sampler 

(i) Simulate a set of N independent random vectors {£7n}^=1, each of which is drawn from a 

standardized multivariate normal distribution. These simulated random variables are used 

in all steps of the AGIS algorithm and constitute the so-called common random numbers. 

(ii) Use these common random numbers to generate a first set of {^r,o,n}n=i according to 

the initial sampling function given in Equation (16), where the values of the elements of 

%t = (Ai,t, A2,t)' in time period t = 0 are set equal to zero. 

(iii) The initial sampling function is the product of conditional bivariate normal densities: 

T T 
HO(XT | YT) = n MO,t(xt I z,_i) = n f(xt | Xt-i) • (A.8) 

t=i t=i 
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Defining the vectors rj't = (Xut, A2,t, Au_i, A2,t-i, 1) and z[ = (A1^_1, A2,£-I, 1), the indivi­

dual components of the initial sampler are written as: 

i i \ t \ ( VtMo,tVt 1 ßo,t(xt\xt-i) = c0,t(zt) expj 1, (A.9) 

where 

Mo,( = 
Ho,t 

B'o,tHo,t -Do,4 + -Boi/fo.t-Bo.t 

= j- >/det(go,t) exp{ ZtZ?°'tZt } . c°,^~w v v—u.w t- ^ 2 

With Eo(z« | Zg-i) = —BojZt and Va.To(xt | xt-i) = HQJ as the sequential, conditional 

means and covariance matrixes of the initial sampler, which is characterized by the para­

meters given in Equations (6) and (9), the following matrixes are identified: 

/ 1 0 
-* 

0 
-V 

0 1 
vJ 

0 
-% 

0 
( 0 0 0 N 

I
 

II 0 
! 

0 ÄtfL 
vl 

A),t = 0 0 0 

0 0 
% 

0 1° 0 0 J 

r# 
0 s-f 0 

Bo,t = 
0 —YI \ 

Ho,t = 'il 0 

/ 0 — $2 0 

Step (k): Ath step AGIS Sampler and Arth s tep AGIS estimate. 

\ 
° k ) 

(i) Use the set of simulated random vectors of the previous step k-1: {Xr,k-i,n}^=i to run 

the auxiliary regressions described in Equation (A.6) and calculate the matrixes Qk. = 

{Qk,t}l= l according to (A.7). 

(ii) In the same fashion as for the initial sampler the Arth step AGIS sampler can be expressed 

as: 

ßki^r I YT) = II I ®t-i) , 
t= I 

where its components are given by: 

= ck,t{zt) exp{ - T]tM^tT,t j., 
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with: 

Mk,t = 
Hk,t HkjBk.t 

B'htHk,t Dktt + B'ktHk,tBk,t 

°kAZt) = \Jdet(H^t) exp{ZtD*'tZt} . 

The sequential conditional raoments of the Äth step AGIS sampler are Efc(xt \xt-i) = 

-Bk,tH and Vaxfc(xt | xt_i) = H^. Defining the selection matrix 

St = 

1 0 0 0 0 

0 10 0 0 

0 0 0 0 1 

\ 

t = 2,T + 1 , (A.12) 

the matrixes {Mk,t}J=i are calculated by backward recursion, beginning in t = T and 

ending with t = 1: 

Mk,t — M 0,t + Qk,t ^t+i -ffcjt+i St+1 , t — 1,T, (A.13) 

where: 

Pk,t+i = 
Dk,t+1 ~ A),t+i if t — l,T — 1 

0 if t = T . 

Once the matrixes {Mk,t}J=\ have been calculated the sequential, conditional moments 

of the Ath step AGIS sampler are determined and used to generate a new set of random 

vectors • 

(iii) The fcth step AGIS estimate of f(Yr | 9) is calculated as follows: 

N 

N n=l 

where the Integration constant is given with: 

T 

f (Y ho(XT,k,n, YT) K(Qk) 
aXTXnA} • 

(A.14) 

Ä(^)=(SV§S) <*•«> 
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Table 1 

Statistical properties of the returns and the detrended volume data3 

SIE DAI VOW DBK 

Price changes 

Mean 0.004 0.005 -0.001 0.000 
Standard deviation 1.198 1.531 1.798 1.245 
Skewness 0.024 -0.026 -0.084 -0.444 
Excess kurtosis 7.587 4.243 5.394 6.541 
LBr2{ 20) 102.93 278.21 42.29 97.72 

(0.000)b (0.000) (0.003) (0.000) 

Trading volume 

Mean 0.694 0.685 0.662 0.642 
Standard deviation 0.298 0.314 0.326 0.324 
Skewness 1.962 1.116 1.333 2.045 
Excess kurtosis 9.260 3.227 3.079 7.665 
LBV{ 20) 637.61 667.27 829.29 620.27 

(0.000) (0.000) (0.000) (0.000) 

Pr2,v 0.188 0.264 0.212 0.222 
(0.000) (0.000) (0.000) (0.000) 

a Sample size is 1095 for SIE, DAI, VOW an d 1096 for DBK. 
b Marginal significance levels are in parentheses. 

Table 2 

SML estimates of the univariate SV model; N = 30, AGIS iterations = 5 

SIE DAI VOW DBK 

Log-likelihood -1612.9 -1877.5 2117.9 -1641.7 

7 -0.001 0.021 0.084 0.001 
(0.008)» (0.010) (0.026) (0.007) 

<5 0.953 0.954 0.906 0.963 
(0.017) (0.014) (0.029) (0.013) 

i/ 0.249 0.272 0.303 0.241 
(0.041) (0.039) (0.049) (0.036) 

a Standard errors are given in parentheses. 
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Table 3 

SML estimates of the Standard bivariate mixture model; N = 30, AGIS iterations = 5 

SIE DAI VOW DBK 

Log-likelihood -1535.39 -1918.30 -2061.14 -1529.36 
MC Std.err of log-lik. 0.048 0.040 0.038 0.053 

Mr -0.060 -0.069 -0.107 -0.047 
(0.026)* (0.024) (0.021) (0.026) 

c 0.162 0.040 0.076 0.137 
(0.027) (0.026) (0.030) (0.020) 

Mv 0.403 0.311 0.192 0.365 
(0.028) (0.019) (0.013) (0.022) 
0.100 0.079 0.053 0.086 

(0.010) (0.009) (0.009) (0.010) 

T 0.049 0.199 0.335 0.048 
(0.019) (0.027) (0.036) (0.020) 

8 0.683 0.680 0.658 0.701 
(0.031) (0.032) (0.032) (0.029) 

V 0.368 0.357 0.405 0.421 
(0.018) (0.016) (0.018) (0.017) 

a Standard errors are given in parentheses. 
The model is given b y: rt|At ~ N(/ir , eA>) and vt\Xt ~ N(c -t- fi veXt , cr^eA') with 

~ N(7 4- <5At—i , f2) • 
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Table 4 

SML estimates of the two-component mixture model; N = 30, AGIS i terations = 5 

SIE DAI VOW DBK 

Log-likelihood -1425.71 -1824.07 -1994.75 -1442.88 
MC Std.err of log-lik. 0.114 0.153 0.158 0.151 

219.36 188.46 132.78 176.96 

\lT -0.037 -0.041 -0.064 -0.021 
(0.027)» (0.012) (0.023) (0.026) 

C 0.094 O.OOO 0.050 0.082 
(0.036) (0.000) (0.030) (0.019) 

ßv 0.558 0.422 0.247 0.499 
(0.136) (0.038) (0.034) (0.070) 
0.082 0.074 0.046 0.067 

(0.020) (0.008) (0.011) (0.013) 

Ii -0.011 0.136 0.283 —0.008 
(0.088) (0.029) (0.053) (0.046) 

Si 0.631 0.647 0.636 0.656 
(0.037) (0.025) (0.031) (0.026) 

V\ 0.354 0.351 0.402 0.404 
(0.017) (0.012) (0.019) (0.015) 

62 0.982 0.975 0.968 0.975 
(0.009) (0.009) (0.011) (0.010) 

Vi 0.136 0.162 0.158 0.154 
(0.026) (0.023) (0.022) (0.028) 

a Standard errors are given in parentheses. 
The model is given by: \2,t ~ N(/;r , eAl-' +Aa>') and v<|Ai, i ~ N(c + /i„eAl'' , <x*eAl ' ) with 

~N(7J +<JIA1I(_I , ff) and A2,t|A2,i v\) , where Au and A2,t 
are stochastically independent. 
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Table 5 

SML estimates of the extended two-component mixture model; N = 30, AGIS iterations = 5 

SIE DAI VOW DBK 

Log-likelihood -1425.44 -1817.54 -1994.73 -1439.47 
MC Std.err of log-lik. 0.130 0.167 0.151 0.129 
LRuj~o 0.54 13.06 0.04 6.78 

Pr -0.039 -0.054 -0.066 -0.026 
(0.026)* (0.026) (0.022) (0.026) 

C 0.088 0.000 0.048 0.060 
(0.033) (0.023) (0.028) (0.026) 
0.563 0.436 0.251 0.518 

(0.073) (0.044) (0.025) (0.074) 
<?v 0.080 0.076 0.046 0.058 

(0.013) (0.009) (0.011) (0.018) 

71 -0.009 0.151 0.284 -0.031 
(0.031) (0.049) (0.042) (0.061) 

<5i 0.629 0.633 0.636 0.634 
(0.034) (0.027) (0.029) (0.034) 

V\ 0.363 0.399 0.406 0.439 
(0.021) (0.018) (0.020) (0.022) 

<52 0.982 0.976 0.968 0.976 
(0.008) (0.010) (0.011) (0.009) 

Vi 0.138 0.180 0.160 0.171 
(0.026) (0.033) (0.022) (0.027) 

w 0.030 0.128 0.013 0.105 
(0.034) (0.030) (0.015) (0.034) 

a Standard errors are given in parentheses. 
The model is given b y: rt|Ai,t)\2,t ~ N(/*P , eAl ,+Aa ') and 

~N(c + /uve(1-u')A'.'+u'A' ' , ^e(i-"')Ai.'+«'A'.') with Au|Alft_i ~ N(7I + JiAi,,_i , v\) 
and A2,e|A2,t-i ~ N(<J2A2,t-i , v\) , where Aitt and Ag,< ar e stochastically independent. 
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Table 6 

Contemporaneous correlations of the estimated volatilities from the extended two-component modela 

_OAI 

'l,t 
rDAI 

c 

0.84 
0.56 

<72t 0.93 

^vow 

<Tww 0.44 0.44 
0.69 0.73 

0.77 0.81 

<rtDBK 0.84 0.77 0.64 
crfBtK 0.56 0.50 0.43 
<j°f 0.95 0.90 0.78 

a The volatilities are estimated using a MC Simulation sample size of N = 30 and five AGIS Iterationen. 
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— Absolute returns 
Estimcted over all volatility; 

Aik ii 1 j 

0 100 200 300 400 500 600 700 800 900 1000 
Observation 

0 100 200 300 400 500 600 700 800 900 1000 
Observation 

100 200 300 400 500 600 700 800 900 1000 
Observation 

Fig. 1. MC estimates of the return volatility for DAI resulting from the extended two-component mixture 

model. The top panel shows E(at | VT^SML) t ogether with the absolute returns |rt |. The middle panel 

shows E(cr2,t | VT,0SML) and the bottom panel E(<rlit | Vr,0SML)-
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