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Abstract 

This paper presents theoretical models and their empirical results for the return and 
variance dynamics of German stocks. A factor structure is used in order to allow 
for a parsimonious modeling of the first two moments of returns. Dynamic factor 
models with GARCH dynamics (GARCH(l.l)-M, IGARCH(1,1)-M, Nonlinear Asym­
metrie GARCH(1,1)-M and Glosten-Jagannathan-Runkle GARCH(1,1)-\I) and three 
different distributions for the disturbances (Normal, Student's t and Generalized Er­
ror Distribution) are considered, Out-of-sample forecasts for the stock returns based 
upon these models are computed. These forecasts are compared with forecasts based 
on individual GARCH(1,1)-M models, static factor models, naive, random walk and 
exponential smoothing forecasts. 
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1 Introduction 

ARC'H models first introduced by [ENGLE 1982] have been found to be very successful in 
describing the movement of stock returns and other financial time series. Especially their 
ability to model stock return variances and give forecasts for tliem is very appealing. These 
forecasts could be applied in option pricing, hedging and portfolio selection. 
Various enhanced models most of which are named in [HENTSCHEL 1995] performed so-
inetimes even better than the piain vanilla ARCH model. A survey of the application of 
ARCH models for financial time series is given in [BOLLERSLEV ET AL. 1992]. All those 
models have been used primarily to univariate time series of stock and bond returns. Mul-
tivariate models were used seldomly, mainly because a large number of parameters has to 
be estimated which could lead to estimation problems. 
A new class of models which combines traditional asset pricing models, such as the CAPM 
and the APT and the new GARCH methodology in the multivariate case are Factor-
GARCH models, first described by [ENGLE 1987]. They are applied to bond returns by 
[ENGLE ET AL. 1990] and to stock returns by [NG ET AL. 1992] using GARCH(1,1)-M 
models with normally distributed disturbances for the factors. 
This paper compares their GARCH(1,1)-M approach with the IGARCH(1,1)-M, the GJR-
GARCH(1,1)-M, and the NGARCH(1,1)-M model using alternatively Student's t and Ge-
neralized Error distributions. In addition, these models are used to calculate multi-period 
out-of-sample forecasts of the conditional variances of the stocks and their corresponding 
weekly variance forecasts. 
These models are compared with static factor models, a naive variance forecast based upon 
the historical average, random walk forecasts, an exponentially smoothed forecast, and 
forecasts based upon individual GARCH-M models for each stock. 
The rest of the paper is organized as follows: The second part describes the theoretical 
basics of the models used. In the third part the data used for the analysis and the results 
from the estimations are presented. Section 4 describes the forecasting methodology and 
presents the empirical results for this application. In the closing paragraph a summary 
and an outlook for further research is given, Detailed tables showing characteristics of the 
data, the estimation, and forecast results as well as several graphs which visualize some 
properties of the time series and the different estimations and forecasts for one selected 
stock can be found in the appendix. 
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2 Theoretical basics 

2.1 Dynamic factor models 

Valuation models for assets are based upon the theory of economic behaviour in the Situa­
tion of uncertainty. Valuation models for most kinds of assets rely in almost all cases solely 
on the first two moments of the return series, that is the means. variances and covarian-
ces. It is therefore necessary to model these moments in order to apply the asset pricing 
models. If one considers n assets and does not impose any restrictions on the model. one 
has to estimate ^(n2 + 3n) parameters, i. e. n expected returns, n variances and ^(rr - n) 
covariances. Therefore, one tries to introduce a restrictive structure such that the number 
of parameters to be estimated is significantly reduced without lowering the explanatory 
power of the model too much. 
It is well known that the return series of different assets are correlated with each other, i. e. 
the assets follow common influences on their returns. This can be used to reduce the 
number of parameters to be estimated. Various forms of factor models such as the Capital 
Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) are often 
used. The CAPM treats the correlation of individual assets with the market portfolio, i. e. 
the portfolio consisting of all stocks in the market with the weights according to the share 
of the assets in the whole market, as a measure for risk. The APT allows several factors 
to influenae the return series of the assets. For a detailed discussion see [Ross 1976]. 
In general, factor models postulate that the return of an asset is composed as the sum of 
an expected and an unexpected part. The unexpected part of the return is assumed to 
consist of a systematic portion which cannot be diversified and an unsystematic portion 
which is specific to the Single asset. 
Economic theory states that there are common influences such as macroeconomic data 
which drive the returns of different assets. These are known as factors. 
The systematic unexpected part of the return m (i E {l,...,n}) is assumed to follow a 
factor structure. The general model with K factors and n assets can be written in its 
static form as follows: 

unexpected part 
expected part ^" > 

Vi= E (yi) + £>*•/* + • (*) 
ßi v unsystematic 

systematic 

The fk are named factors and the which belong to them are known as factor loadings. 
In order to achieve reduction of the number of parameters the number of factors K should 
be much smaller than the number of assets n. 
Different ways of identifying the factors are discussed in the literature. Some approaches use 
prespecified factors which base upon macroeconomic data such as the Inflation rate. Other 
lines of research build factors which are linear combinations of the time series considered 
with prespecified weights derived from economic theory. 
This paper presents a Solution which is based upon principal components analysis 
following [NG ET AL. 1992]. 
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Because time series of returns are to be modelled and they are known to have a time-
dependent behavior a dynamic factor model is adequate. Let there be n assefcs with returns 
at time t — 1 ,... ,T given in the vector yt. Let Tt-\ be the Information set available at 
time t. Then define the expectation conditional on this set E(-|^r<_i) as E^_i(•). The 
conditional moments are then denoted as follows1: 

Et-i(yt) =: Pt (2) 
Var t-i(yt) =: üt- (3) 

The dynamic factor model is given by the following equation (K < n): 

K 
Vt = Pt + Y^^k- fkt + (4) 

fc=1 

For all t £ {1,... , T} and for all j, k 6 K},j ^ k it is assumed: 

Et-i(At) = 0 (5) 

Vart_i(/jfct) = ölt (6) 
Var«_i(Q) = ^ (7) 

Oovt-i{fkt,fjt) = 0 (8) 

Co vt~\{fkt,Zit) = 0. (9) 

Hence, the factors have a time varying variance (6) and are uncorrelated with each other 
(8). The covariance matrix of the disturbance term is not time-varying. 
The model of [ENGLE ET AL. 1990] also assumes conditional normality of the disturbances: 

(10) 

The conditional covariance matrix (1; of the returns yt can be written as follows: 

K 
fit = Afc • \'k • d\ t 4- (11) 

k~\ 
The conditional variances of the factors are the only time-varying parts of the covariance 
matrix. 
The predicted values of the conditional variances of the factors can be used to predict the 
covariance matrix Qt+S through the following equation: 

K 
E,(n,+,) = E ̂  - ^ - % ((%,+,) + *. (12) 

k—1 
1 The analysis uses conditional moments because they reflect the level o f information an Investor has at 

time of his decision. One assumes that the Investors change their believ es about the means and (co) variances 
in accordance with the new information they get in a period of time (see [B OLLERSLEV ET A L. 1988, PP 
118F]). This reflects the assumption of ef Rcient markets. 
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Since the hypothesized factors /*.; are unobservable they have to be replaced by proxies 
fpkt which are by construction perfectly correlated with them. The factor value vectors ak 

obtained by Principal Components Analysis are used to build these portfolios jpkt •— a' kyt 

with \'&rt-i(n'kyt) = d\t. They are called factor representing portfolio (see [ENGLE ET 
AL. 1990, PP 216F]). 
The risk premium ßt of the assets is priced through the following valuation model which 
resembles the APT formula: 

K 
Pt = • rpkt- (13) 

&== 1 
rPkt is the risk premium of the k-th factor portfolio which consists of a constant 
part crik and a time-varying part • 9kt. This factor risk premium is assumed to be 
a linear function of the conditional variance of the factor portfolio fpkt-

rpkt = cnk + ~/k -92kt. (14) 

7fc can be seen as a coefficient of relative risk aversion assuming constant preferences. 

2.2 The GARCH family 

The dynamics of each factor portfolio fpkt is modelled as following a univariate xGARCH 
process. Two Symmetrie and two asymmetric xGARCH models were chosen from the wide 
ränge of available specifications (c. f. [HENTSCHEL 1995])2. 
The model described in the previous section together with this assumption of a xGARCH 
process for the factor dynamics is called a A>Factor-GARCH model. A main advantage 
of this class of Factor-GARCH models is that the covariance matrix Qt is guaranteed to 
be positive semidefinite without further assumptions (see [ENGLE ET AL. 1990, P 216]). 
In the following, only one-factor models are considered and hence the index k 
is omitted. The different assumptions for the disturbance terms are presented in section 
2.4. 

GARCH-M 

The GARCH(j?,g)-in-Mean, shortly GARCH(p,q)-M-model, was introduced by [ENGLE ET 
AL. 1987]. The conditional variance is allowed to influence the conditional mean resulting 
in a time-varying risk premium (see equation 14). Setting the parameters p and q to one 
has been found to give a good adaption to most financial data. The GARCH(1,1)-M model 
for the factor portfolio has the following form: 

fpt = cn + j-Of+ut (15) 

&t = u2 + a • Ut-i + b ' &t-v (16) 

^The Exponential GARCH (EGARCH) model of [N ELSON 1991] was also used but severe estimation 
Problems occured. This has also been noted by [FRACHOT 1995, p 230]. Especially t he staxting values for 
the numerical optimization were found to be ver y critical. For those estimations which converged to a stable 
Solution prediction results we re found to be worse than those of the xGARCH mode ls described below. The 
predicted variance of a Factor-EGARCH model was in most cases m uch higher than the observed value. This 
could be explained by the exponential growth of the variance function in respons e to rising disturbances. 
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The sum of the GARCH-Parameters a and b is restricted to be less than 1 to guarantee a 
covariance stationary model (see [BOLLERSLEV ET AL. 1992, PP 9F]). Furthermore, a. b 
and uiz need to be positive. 

IGARCH-M 

The sum of the estimated GARCH parameters a and b f rom the GARCH(1.1)-M model is 
often found to be close to 1, resulting in the phenomenon of persistence in variance. i. e. 
the occurence of shocks is relevant for the variance for the whole future3. The Integrated 
GARCH(p,<j)-in-mean, shortly IGARCH(p,g)-M model, introduced by [ENGLE/BOLLER-
SLEV 1 986], takes this into account by setting the sum of the GARCH(l.l)-M-parameters 
a and b equal to one. 
The IGARCH(1,1)-M model has the following form: 

fpt - cn + y-ef + ut (17) 

92 = uP" + o • •+• (1 — a) • 0jf_i • (18) 

The estimation is restricted in requiring that 0 < a < 1 and u>2 > 0. 

NGARCH-M 

High frequency financial data has been found to exhibit the so-called leverage effect 
which means that negative innovations have a larger impact than positive innovations of 
the same size. Hence an asymmetric model may be called for. The Nonlinear Asymmetrie 
GARCH(p, q) (NGARCH(p, q)) model was developed by [ENGLE/NG 1993]. In contrast 
to the models described above it has an asymmetric news impact curve4, i. e. the news 
impact curve is shifted to the right. The amount of shift is determined by the additional 
parameter ß. Negative news has a larger impact on volatility than positive news if ß > 0. 
The NGARCH(1,1)-M model has the following form: 

fpt = cn + -y • + ut (19) 

6? = + + (20) 

a, b and u>2 need to be positive, o 4- 6 < 1. 

GJR-GARCH-M 

The Glosten-Jagannathan-Runkle GARCH(p, q) (GJR-GARCH(p, q)) model (see [GLOS-
TEN ET AL. 1993]) is another way of modeling asymmetry in the news impact curve. 

3The same empirical phenomenon can also resu lt from shifts in the unconditional variance (see [L AMOU-
REUX/LASTRAPES 1990] ). Since t he time series used in our analysis is not very lon g this possibilitv is not 
taken into account here. 

4The news impact curve introduced by [EN GLE/NG 1993] plots the conditional variance for different 
values of the disturbance term which is interpreted as "news". The other parameters, especially t he infor­
mation from the previous periods, are held constant. 
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In this model the news impact curve is rotated. The form of the rotation is driven by 
the additional parameter c. The usual form, i. e. negative news have a larger impact on 
volatility than positive news, results if c > 0. 
The GJR-GARCH(1,1)-M model has the following form0: 

fpt = C71 + 7 • 92t 4- u t 

92 = J2 + a • x • ( {!+(? 
oU 

-2c 
ut-1 
"t-1 

ut-1 
dt-1 

+ b-9f_l. 

(22) 

(23) 

a, b and u>2 have to be positive. 

2.3 Static Factor Model 

Iii order to compare the Performance of the Factor-xGARCH models presented above a 
static factor model without time-varying mean and variance is used. It has the following 
form: 

fpt = cn + ut 

ut\ft-i ~ N(0-,u>2). 

The constant variance UJ2 has to be positive. 
For this model the Normal distribution was applied for the disturbance term. 

(24) 
(25) 

2.4 Distributions of the disturbances 

Most applications of xGARCH models use the Gaussian (normal) distribution assump-
tion for the disturbances. 
The log-likelihood function for a conditionally Gaussian disturbance ut with variance 
92 has the following form: 

lnL = g(-i(ln(9?) + !)+ta^=). <26> 

The unconditional distribution of a xGARCH model with a disturbance which is conditio­
nally normal is leptokurtic. Nevertheless, this leptokurtosis is not large enough to explain 
the leptokurtosis found in most financial data (c. f. [BOLLERSLEV 1987, PP 544FF]). The­
refore one should take this into account and use a conditionally leptokurtic distribution for 
the disturbance6. 
One alternative possibility is Student's t distribution. The degrees of freedom u have 
to be estimated as an additional parameter. If v approaches infinity the t distribution 

5The original specification given in [G LOSTEN E T A L. 1993, P 1787] is: 

— ui2 + g\ • Ut-1 + <72 • • It-1 + b • öt_i (21) 

with It-i =1 if ift -i > 0 and 0 otherwise. This equals the given form if gi = a • (1 + c)2 and <72 = 2a • c". 
6Nevertheless, the Gaussian distribution is often used as a Quasi Maximum Like lihood (QML) method. 

The QML estimates are consistent an d asymptotically normal if the conditional means and variances are 
correctly specified (see [ BOLLERSLEV/WOOLDRIDGE 1992]). 
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converges to a normal distribution. The lower limit for the degrees of freedom has been set 
to 3 in order to guarantee at least the existence of the variance. 
The log-likeiihood function for a conditionally i-distributed error term u« w ith v d. f. 
and variance d'f has the following form: 

r(^: -2)0^ 
I + (27) 

Another generalization of the normal distribution is the Generalized Error Distribution 
(GED). It includes the normal distribution if the parameter u has a value of 2. For degrees 
of freedom v less than 2 a fat-tailed distribution results. The lower limit for v is 0. If u < 1, 
the unconditional variance does not exist. 
The log-likelihood function for a disturbance ut following a conditional GED with v d. f. 
and variance 0t2 has the following form: 

1 aL = Y 
t=l 

/ 
ut 

\ 
In v 

nl + l 
r(!) 2^+:r(l) 

(28) 

2.5 Estimation methods 

The first step in the empirical application of the Factor-xGARCH models was the extraction 
of the factors by means of Principal Components Analysis. 
The Factor-xGARCH models were then estimated by a two-step approach. In the first 
stage, the parameters of the xGARCH(l,l)-M model for the factor dynamics were estimated 
using the BHHH algorithm. 
The estimated conditional factor variances 62 and the estimated factor risk premia fpt = 
fpt — üt were used as predetermined variables for estimating the second stage of the model, 
i. e. the factor loading and the mean value for the z-th stock through the following model: 

Vit = m + Ai • rp it + £it (29) 
ait — ' 9t- (^0) 

crjt is the conditional variance of ^ which is assumed to have the same type of distribution 
as ut in the corresponding first stage. 
An unrestricted ML-procedure using the Gauss-Newton algorithm was used in this 
step. The appropriate likelihood functions which have to be maximized can be found in 
section 2.4. As shown in [LIN 1992] this two-step estimation method is consistent and 
asymptotically efficient. 
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3 Data and estimation results 

3.1 Description of the data 

The results described in the following is based upon daily return series of 30 German 
stocks. These stocks were contained in the German stock index DAX at that time7. Their 
abbreviations used for trading and the füll names are given in Table AI. The continuously 
compounded rat es of return were calculated by8 

Hit •— I nPlt - In/^i-i (33) 

with Pt the closing prices of the stocks corrected for dividend payments and changes of 
the capital basis of the firms9. The data used covers the period from .January 08, 1990 to 
May 31, 1994, resulting in 1082 return values. 
Figure 1 shows the time series of the RWE stock returns10. The empirical phenomenon of 
volatility clustering can be observed, i. e. periods of large changes and periods of small 
changes of returns tend to Cluster. 
Table A2 shows the excess kurtosis and skewness of the return series. All time series are 
leptokurtic, i. e. the excess kurtosis is positive. The skewness is in most cases significantly 
different from 0, hence the assumption of a normal distribution seems not to be justified. 
The Kiefer-Salmon test rejects the hypothesis of a normal distribution for all stocks at 
the 1% level. 
It has the following test statistic for a time series x: 

KS(£) = ^ • sk(x)2 + ^ • ku (x)2 (34) 

with sk(x) being the skewness of x and ku(£) being the excess kurtosis of x. The test 
statistic is asymptotically distributed as xl under the null. 
The autocorrelations of the return series and the squared return series are shown in 
Table A3. In most cases, autocorrelation is highly significant in the squared return series 
which is a sign for ARCH effects. 
The Ljung-Box statistic for a (T x l)-vector x considering 40 lags has the following form 
(QLB40 results if x is chosen to be the squared series): 

LB40(£) = T(T + 2) £ COTI^x-^ (35) 
i=l 1 1 

7The composition of the DA X portfolio is changed sometimes according to major change s in the import-
ance of th e stocks for t he market. 

^This stems from the following relationship: 

Pxt = (31) 

Hence, In P xt - In is a continuous rate of return. Furthermore, for small price changes, ya approxi-
mately equals the relative return 

y,t » (32) 
Pi.t-l 

9These time series wer e kindly provided by the Deutsche Finanzdatenbank (DFDB). 
10This stock was chosen arbitrary for demonstrating the model. 
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with 

corr(f.x_,) = P«) 

The test statistic is distributed as X40 under the null of no autocorrelation. 
Figure 2 shows the autocorrelation function of the squared RWE return series. The 
high autocorrelation of the squared values even at high lags is clearly visible. 
The ARCH effect can also be analysed by inspecting the values of an ARCH-LM test 
proposed by [ENGLE 1982]. For this reason, the following OLS-regression was carried out: 

— ao + c*iuf_i + et (37) 
et ~ i.i.d. iV(0; (T^) (38) 

with ut = yu — E( yi). The test statistic T • R2 with R2 from the above regression is 
asymptotically distributed as Xi under the null of no ARCH. As can be seen in Table A3 
the statistic is highly significant for most stocks and its results coincide with those of the 
QLB40 results in most cases. 
As can be seen in Figure 3, the distribution of the returns of the RWE stock exhibits fat 
tails, i. e. the distribution has more weights in the tails and around the mean than the 
appropriate normal distribution which is also shown in this graph. Note that outliers are 
omitted in constructing the histograms. 

3.2 Estimation results for the factor dynamics 

Results from Principal Components Analysis 

For the unconditional correlation matrix of the stock returns of the 30 German stocks a 
Principal Components Analysis was carried out using the program SPSS for Windows. 
One factor with a corresponding eigenvalue of 17.57 was found. The second largest factor 
had an eigenvalue of 0.96, the third largest of 0.86. Therefore, only one factor was used 
in the following. The factor explains in the static case 58.6 percent of the variance of the 
returns. Its factor score matrix is shown in Table A4. The weights for the individiual 
stocks are of similar magnitude. 
This factor score matrix a was used to build a factor portfolio fpt = a'yt• Its Statistical 
properties are shown in Table A5. The ARCH effect is significant and leptokurtosis is 
present. The time path of the factor portfolio is shown in Figure 4 and the ACF of the 
squared factor in Figure 5. In contrast to the stock RWE, the autocorrelations of the 
squared factor are not that high although the QLB40 statistic is highly significant. The 
histogram in Figure 6 shows severe deviations from the normal distribution. 
This factor portfolio is supposed to follow one of the xGARCH models of section 2.2. 
In the following, the estimation results for the different model specifications of the factor 
dynamics are given. Robust Standard errors are given in parenthesis. Since the results differ 
not too much only the models applying the t distribution are reported. A comparison of 
the results is given below. Note that the factor was multiplied by 1000 in order to ease the 
estimation. 
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Static factor model (without GARCH) 

(0.4545) 
fpt = 0.1941 +ut 

(23.6468) 
0; = 222.9423 

GARCH(1,1)-M models, t distributed errors 

(0.5996) (0.003) 
fpt. = 0.2552 + 0.00174 •92t + ut 

(3.0097) (0.0342) (0.0421) 
e2t = 4.6147 + 0.0823 -u2_i + 0.8966 •&2_l 

ut\Tt-i ~ *6(O:02) 

IGARCH(1,1)-M model, t distributed errors 

(0.5553) (0.0023) 
fpt = 0.2790 + 0.0014 + Ut 

(2.3243) (0.0428) , , 
02t = 2.8997 + 0.0989 •u^_1 + (1 - 0.0989) • 92_x 

ut\Tt-\ ~ ^(O;^2) 

NGARCH(1,1)-M model, t distributed errors 

(0.6050) (0.0032) 
fpt = 0.4841 + -0.0006 dj 4- ut 

ut-1 (1.5893) (0.0326) (u. , (0.2302)\ 2 (0.0461) 
0? = 2.1846 + 0.0685 • -L-i— 0.5387 + 0.8901 •92 (-1 

ut\Tt-i ~ (s(O;02) 

GJR-GARCH(1,1)-M model, t distributed errors 

(0.5297) (0.0024) 
fpt = 0.2483 + 0.0012 •92t + ut 

(1.8386) (0.0312) ( (0.U46)2 (0.1146) 
92 = 2.7960 + 0.0786 -92_{ • f (1 + 0.2438 ) • - 2- 0.24 38 • 

(0.0455) 
+ 0.8887 -0?_i 
~ ^s(O;02) 

ut-1 
7t-1 
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Comparison of the estimation results 

For all models the standardized residuals 

:= y (54) 

were computed and several Statistical properties of them are given in Table A6 and A7. As 
can be Seen by inspecting these tables, all xGARCH models for the factor dynamics can 
explain the ARCH-effects found in the factor, contrary to the Static factor model. The dif-
ferences in the QLB40 and ARCH(l) test statistics for the different xGARCH specifications 
are quite small. 
The fact that the standardized residuals of the Factor-xGARCH models show no further 
ARCH effects supports the idea that the factor explains these effects. 
Table A8 shows that the NGARCH(l,l)-M-£ model has the highest log-likelihood value 
and is thus the best model. But the differences to the other xGARCH models are not 
very large. Table A9 and A10 show the values of the Akaike Information Criteri-
on (AIC) and the Schwarz Information Criterion (SIC). The AIC also selects the 
NGARCH(l,l)-M-f model, followed by the GJR-GARCH(1,1)-M-* model while the SIC 
slightly favours the more parsimoniously parametrized IGARCH(l.l)-M-£ model and the 
NGARCH(l,l)-M-£ model ranking second place. 
For several pairs of models a likelihood ratio (LR) test was carried out. If InL is the 
log-likelihood of the general model and In LQ th e log-likelihood of a nested model, which is 
a restricted case of the general model, the LR test has the following statistic: 

LR = 2 • (In L — InZ/o)- (55) 

This test statistic is asymptotically distributed as Xm under the null where m is the number 
of restrictions. 

Table 1: Likelihood Ratio tests for model restrictions 
General model Special model Restrictions m LR 
GARCH(1,1)-M Static factor model 3 103.27"* 
GARCH(l,l)-M-£ IGARCH(l,l)-M-£ 1 3.20* 
NGARCH(l,l)-M-t NGARCH(1,1)-M 1 185.65*** 
NGARCH(l,l)-M-£ GARCH(l,l)-M-£ 1 8.46*** 

* parameter significant at the 10% lev el 
** parameter significant at the 5% leve l 

*** parameter significant at the 1% lev el 

As can be seen, the differences between the likelihood values of the models compared are 
all significant which means that the factor displays dynamics in the variance, asymmetries 
are present and the ^-distribution has a better fit than the normal distribution. Note the 
restriction of the IGARCH(l,l)-M-£ model (a + 6 = 1) is only refused at the 10% level. 
Because the estimation results from the different xGARCH models are quite close, only the 
results of the NGARCH(l,l)-M-£ model are discussed. The standardized residuals üp are 
plotted in Figure 7. Except for some rare peaks (the large peak in August 1991 stems from 
the Gorbachev crisis) the series seems to be without great regularities. Autocorrelations 
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in the squared standardized residuals are almost non-existent as can be seen in Figure 8. 
Figur« 9 shows that the distribution of the standardized residuals of the NGARCH( l.l)-M-t 
model is closer to the appropriate normal distribution than that of the factor itself. 
A method for comparing the different behaviour of the xGARCH-M models concerning 
the impact of news is to plot the news impact curve which graphs the influence of 
different values of news on the variance. Figure 10 shows this curve for the GARCH(l.l)-
M-t, IGARCH(l,l)-M-f, NGARCH(l,l)-M-£ and GJR-GARCH(l.l)-M-t model. As can be 
seen, the GARCH(1,1)-M and IGARCH(1,1)-M models have Symmetrie news impact curves 
while those of the NGARCH(l,l)-M-£ and GJR-GARCH(l,l)-M-£ models are asymmetric. 

3.3 Estimation results for the factor loadings 

The parameters of the second stage (factor loadings, mean values and, for the Stu-
dent's t and GED-model, the degrees of freedom) are listed in Table All only for the 
NGARCH(l,l)-M-£ factor model11. The mean values for the individual stocks differ qui-
te distinctively in the different models although they are not significant in most cases. 
but the factor loadings of the models are very similar. The degrees of freedom for the 
xGARCH(l,l)-M-GED models lie between 0.90 and 1.62 and the degrees of freedom for 
the xGARCH(l,l)-M-£-models lie between 3.00 and 6.93, both results indicating significant 
deviation from normality. 
Figure 11 shows the standardized residuals from the second stage of the Factor-
NGARCH(l.l)-M-£ model for the stock RWE. 
Table A12 shows the Statistical properties of these standardized residuals. Through looking 
at the QLB40 and ARCH(l) test statistics it can be seen that the GARCH-effects were 
captured for all but two and three stocks, respectively. The time path of the returns of 
the MET (Metallgesellschaft) cannot be explained by any of the nine models. This can 
be easily understood if one has the large loss in mind which MG Corp.. the US branch of 
Metallgesellschaft, has sustained by speculative derivative deals resulting in major changes 
of its stock prices but not of the whole market, which is represented by the factor. Hence, 
the factor does not react sufficiently to this influence. The failure of the model for the SCH 
(Schering) stock is not so obvious. Somewhat surprising is the case of BAY (Bayer) and 
VIA (VIAG). Although their QLB40 statistics are not significant at any reasonable level, 
the ARCH(l) test statistic is highly significant, though both statistics are asymptotically 
equivalent (c. f. [BOLLERSLEV ET AL. 1993, P 16]). The large values of excess kurtosis 
shows that the assumption of a non-Normal distribution for the disturbances is justified. 
Figure 12 shows the autocorrelation function of the squared standardized residuals of the 
second stage of the Factor-NGARCH(l,l)-M-i model for the stock RWE. All autocorre-
lations are not significant. The distribution of the standardized residuals which is shown 
as a histogram in Figure 13 shows less deviation form the normal distribution than the 
distribution of the stock returns themselves. 
As can be seen in Table A13, the likelihood values for the Factor-NGARCH(l,l)-M-£ factor 
model are for all stocks but one (LHA) better than or equal to the appropriate values of 
the other models, although the differences are not very large. 

11 The results for the other models can be requested from the author. 
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4 Models for predictions 

In niany areas of finance accurate forecasts of stock price variances are needed. These 
forecasts are especially useful in application of stock valuation and option pricing models. 
Furthermore, it is interesting to study the behaviour of the Factor-xG ARCH models not on­
ly in-sample but also out-of-sample. Rivaling forecasting models were used as benchmarks 
for the Performance of the Factor-xG ARCH models. 

4.1 Theoretical basics 

The models described above were used to predict the weekly variance12 of the individual 
stocks. Due to the results reported in the empirical part of this paper only the t distribution 
was assumed for the disturbance term. Application of the Factor-xGARCH models for 
prediction purposes was done in several steps. First the parameters of the Factor-xGARCH 
models with dynamics given in section 2.2 and the static factor model 2.3 were estimated 
according to the methodology described in section 2.5. Then the one- through five-step-
ahead out-of-sample forecasts of the conditional factor variance was computed as follows. 

Forecasting of the conditional factor variance with factor models 

The one- and multistep forecasts of the conditional factor variance 92+l = Et(0^+1) can be 
computed as follows: 

1. Static factor model 
One-step-ahead forecast: 

^ (56) 

.s-step-ahead forecast (s > 1): 

(57) 

2. GARCH(1,1)-M model 
One-step-ahead forecast: 

4- o - + 6 - ßf (58) 

.s-step-ahead forecast (s > 1): 

&t+s — ü2 + (ä + b) • Öf+s-i (59) 

3. IGARCH(1.1)-M model 

One-step-ahead forecast: 

+ ö ^ + (l-o) ^ (60) 

12 5 trading days are assumed to form a week. 
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s-step-ahead forecast (s > 1): 

9, 62 
t~hs — 1 (61) 

4. NGARCH(1,1)-M model 
One-step-ahead forecast: 

2 
(62) 

s-step-ahead forecast (s > 1): 

+ (ä • (1 + /32) + b) • d1 +s_l (63) 

5. GJR-GARCH(1,1)-M model 
One-step-ahead forecast: 

(64) 

(65) 

Forecast of the conditional stock variances with a factor model 

The third step consists in forecasting the individual conditional stock variances crft+s using 
the following equation resulting from relation (30): 

Forecast of the weekly stock variances 

The last step in forecasting the weekly stock variances consists in summing up the individual 
daily conditional stock variances. 
Furthermore, in order to compare the forecasts from the Factor-xGARCH models, a naive 
forecast based on the past observations, a random walk forecast and an exponentially smoo-
thed forecast taking into account the last twelve observations of the weekly stock variances 
were also computed. Because univariate xGARCH models are used in stock variance pre-
diction quite often, an individual GARCH(l,l)-M-t model was estimated for each stock and 
used to forecast the stock variances. The reason for choosing the simple GARCH(l.l)-M-£ 
model instead of e. g. a GJR-GARCH(l,l)-M-i model lies in the computation time. The 
estimation of the individual GARCH(l,l)-M-i models and the forecast of conditional stock 
variances took already several days on a HP9000-715 Workstation. 

(66) 
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1. Observed stock variance 

The observed weekly variance of the stock i at time t is given as follows (j/y is the 
daily return of stock i at day j): 

t+ 4 
$lt = S(j/y - Üi,t)2 (67) 

J=t 

with 

1 
Vi,t = - • (68) 

j=t 

2. Naive forecast 

The naive forecast is simply the historical average using all available data: 

&i,t = 5' 7 " (69) 
C j=i 

with 

1 ' 
= 7 (70) 

j=i 

3. Random walk forecast 

The random walk model for the stock return variance assumes that 

ai,t ~ 1 + £i,t- (71) 

Hence, the forecast for the weekly variance is simply 5 times the last observed daily 
variance: 

% = (72) 

4. Exponential smoothing model 

The exponential smoothing model uses the last twelve observations of the stock va­
riance as an exponentially weighted sum. The weighting exponent w is chosen as to 
minimize the mean squared error (MSE) in the observations preceding the forecasting 
period. 
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60 
1% = 5-(1-w)(73) 

1=1 

5. Individual GARCH-M forecast 
For each stock i an individual GARCH(l.l)-\'I-£ model was estimated. The estimated 
parameters in equations (15) and (16) are used to predict the conditional variances 
6'ft+s through equation (58) and (59) and then the weekly stock variances i)f t: 

% = Z (74) 
k~ 1 

6. Factor models 
The forecast of the weekly stock variance is simply the sum of the five predicted 
conditional stock variances. 

'i,t+s 
k~l 

75) 

4.2 Methods for comparing forecasting models 

There are many methods which can be applied in order to compare concurring out-of-
sample forecast models. One of the criterions often used is the Mean Squared Error or 
its square root. It takes into account the squared deviation of the forecasted variance from 
the observed variance. 
The Root Mean Squared Error (RMSE) criterion using N predicted values has the 
following form: 

RMSE (0?) = Z 0% - (76) 
£=1 

Another way of measuring the Performance of a forecast model is based upon the relative 
absolute deviation from the true value. 
The Mean Absolute Percent Error (MAPE) was calculated according to the following 
formula: 

N \M _ I 
MAPE(0?) = £ Mq2 ' (77) 

t= 1 

A measure robust against deviations from normality assumptions is the Median Squared 
Error (MedSE). It is given by: 

MedSE(i)?) = Median (d?, - (78) 

These three measures were compared using a Performance index which is inspired by 
the theory of decision making, i. e. the Savage-Niehans rule: 
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(79) 

with EC being one of the error criterions described above and n being the number of stocks 
for which forecasts have been obtained. It can be interpreted as the relative loss of one 
specific model in forecasting accuracy compared to the model which turned out ex post 
to be the best model for stock j. 
Finally, it is a convenient method to regress the observed variances on the predicted va­
riances, i. e. to run the following OLS regression 

and to test whether the constant v equals zero and the slope coefhcient w equals one, 
resulting in an unbiased forecast. 

4.3 Empirical forecasting results 

The method of rolling estimation and forecasting was used in this study. The first 800 
observations of the stock returns and the stock factor were used to estimate the parameters 
of the models, as described in section 2.5. Then 5 forecasts of the conditional variance of 
the factor were made, as shown in section 4. The forecasts of the weekly stock variance 
were obtained, along with the forecasts using the other prediction models. The observed 
variance of these 5 days was computed, too. Then the estimation time interval was shifted 5 
days towards the future and the same procedura was repeated again. Through applying this 
method 40 times, 40 weekly stock variances were obtained for each stock. This procedure 
was carried out for all 9 different forecasting models. 
The time path of the observed variance of the selected stock RWE along with the naive 
forecast and each of other 6 forecasting models can be found in Figur es 14 through 19. The 
result of the Factor-IGARCH(l,l)-M-£ model has been omitted because it is very similar to 
the Factor-GARCH(l,l)-M-£ result. It can be seen that the Factor-GJR-GARCH(l,l)-M 
and Factor-NGARCH(l,l)-M models give smoother variance forecasts than the Factor-
GARCH(1,1)-M and Individual GARCH(1,1)-M models. On the other hand, especially 
the huge variance in week 37 has almost no impact on the variance forecast of all Factor-
xGARCH models. This is a clear sign that the large observed variance has occured only in 
the individual stock, but not in the whole market which is represented by the factor. 
Since it is not very easy to judge the quality of the prediction models by visual inspection the 
three comparison criteria RMSE, MAPE and MedSE described above were computed for 
all 9 forecasting models. Their values are shown in Table A14, A15 and A16, respectively. 
The lowest and second lowest values of these criteria for the 30 stocks are distributed as 
follows: 

•di,t = v + w • di, t + <f>i,t (80) 
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Table 2: Performance of forecasting models 
Number of Stocks for which a model achieves the (second-)lowest RMSE/MAPE/MedSE 

Model NP ES NG Mt IMt NMt GMt INt RW 
Lowest RMSE 0 20 0 0 1 6 2 0 1 
Second lowest RMSE 1 5 0 2 0 8 8 6 0 
Lowest MAPE 0 19 0 0 0 7 0 0 4 
Second lowest MAPE 0 7 0 0 0 13 2 1 I 7 
Lowest MedSE 0 21 0 1 0 7 1 0 | 0 
Second lowest MedSE 0 7 0 0 1 14 4 1 | 3 

NP = Naive forec ast ES = Exponential Smoothing 
NG = Static factor Mt = GARCH(l.l)-M-t 
IMt = IGARCH(l,l)-M-t NMt = NGARCH(l,l)-M-t 
GMt = GJR-GARCH(l,l)-M-t INt = Ind. GARCH(l.l)-M-t 
RW = Random wal k 

As can be seen, the naive forecast and the Static factor model have the worst prediction 
quality. According to the RMSE, MAPE and MedSE criteria, the Exponential smoothing 
model performs best followed by the two asymmetric Factor-xGARCH models and the 
Random walk on the third place. The Symmetrie Factor-xGARCH models perform in 
many cases worse than the asymmetric ones. 
Notably the individual GARCH(l,l)-M-£ models for the 30 stocks perform worse than the 
Factor-xGARCH models. This is somewhat surprising because the individual GARCH(l.l)-
M-i models should have more flexibility in modeling the dynamics of the stock returns. This 
shows that the correlation of the stock returns expressed by the common factor is a valuable 
Information for forecasting. Hence, multivariate models outperform univariate ones. 
The Performance indices introduced in section 4.2 are shown in the following table. 

Ta )Ie 3: Performance inc ex of forecasting mode 
Model NP ES NG Mt IMt NMt GMt INt RW 
RMSE 15.61 0.44 14.89 6.68 9.17 2.98 3.73 5.58 33.82 
MAPE 62.78 2.67 60.40 28.12 31.62 10.15 18.77 27.73 17.40 
MedSE 309.86 2.35 279.29 63.83 74.50 23.25 36.67 66.14 61.35 

NP = Naive forecast ES -
NG = Static factor Mt — 
IMt = IG ARCH( 1,1 )-M-£ NMt = 
GMt = GJR-G ARCH( 1,1 )-M-f INt 
RW = Random walk 

Exponential Smoothing 
GARCH(l,l)-M-t 
NGARCH(l,l)-M-< 
Ind. GARCH(l,I)-M-i 

The first rank is occupied by the Exponential smoothing model for all criteria, the Factor-
NGARCH(l,l)-M-£ model comes always second. The Factor-G JR-G ARCH( 1,1 )-M-( model 
ranks third place for the RMSE and MedSE criteria and the Random walk takes this place 
for the MAPE criterion. The naive forecast and the static factor model have about the same 
worse Performance. The Factor-GARCH(l,l)-M-£, the Factor-IGARCH(l,l)-M-t model 
and the individual GARCH(l,l)-M-i model are similar in the results. When looking at the 
results for the Random walk model, it can be seen that the ranking depends crucially on 
the error criterion used. The Random walk is the worst model when applying the RMSE 
criterion but the third best when looking at the MAPE values. 

19 



Finally the regression of the observed variances on the forecasted variances was run. The 
results of the tests on the null hypothesis that the intercept is zero and the slope is one 
(acceptance of both nulls would indicate an unbiased forecasting model) are shown in the 
following table: 

Table 4: Results from regression of variance forecasts 
Number of s tocks for which null hypothesis is not rejected at 5% level 

Model Intercept zero Slope one 
NP 7 7 
ES 28 29 
NG 9 8 
Mt 24 16 
IMt 20 7 
NMt 17 17 
GMt 25 23 
INt 19 17 
RW 1 1 

NT = Naive forecas t ES = Exponential Smoothing 
NG = Static Model Mt = GARCH(l,l)-M-t 
IMt = IGARCH(l,l)-M-t NMt = NGARCH(l,l)-M-t 
GMt = GJR-GARCH(l,l)-M-t INt = Ind. GARCH(l,l)-M-t 
RW = Random Walk 

It can be seen that none of the models gives unbiased forecasts for all 30 stocks but dynamic 
forecasting models perform better than static ones. The Interpretation of the coefficient 
of determination R2 of the regressions which can be found sometimes in the literature has 
not be done because it is dangerous to compare this measure if the forecasts are biased. 
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5 Conclusion 

The series of returns from German stocks used in this paper are found to exhibit the 
usual characteristics of financial time series, i. e. leptokurtosis, volatility clustering and the 
leverage effect. 
The data has been found to follow one significant factor determined by Principal Com­
ponents Analysis. This factor has a time-varying variance which can be seen by the signifi­
cant GARCH parameters in different xGARCH models. All xGARCH specifications have 
been found to capture the structure of the factor dynamics. The NGARCH(1.1)-M model 
with t distributed disturbances turned out to be among the best models. 
Dynamic factor models with xGARCH dynamics, i. e. Factor-xGARCH models are able 
to capture the behaviour of the individual stock returns. Asymmetric Factor-xGARCH 
models have been found to perform better than Symmetrie ones. Hence. the ability of these 
models to capture asymmetric behaviour of the conditional variance and the assumption 
of a leptokurtic conditional distribution for the disturbances of the factor dynamic model 
are improvements over the Factor-GARCH( 1,1 )-M approach of [ENGLE E T AL. 1990] and 
[NG ET AL. 1992]. 
These Factor-xGARCH models can be used to forecast stock variances. The forecasts based 
upon this class of models are better than the naive and the static factor forecasts and 
show comparable Performance to individual GARCH(1,1)-M forecasts. The Exponential 
smoothing forecast seems to be better in this case. The forecasts based on the Factor-
GJR-GARCH(l,l)-M-£ and the Factor-NGARCH(l,l)-M-i model showed the second lowest 
RMSE, MAPE and MedSE values in most cases. This might be caused by the ability 
of these models to capture asymmetries such as the leverage effect. A regression of the 
observed variances on their forecasts shows that no model gives unbiased predictions for 
all stocks. However, the Factor-xGARCH, individual GARCH(1.1)-M and the Exponential 
smoothing forecasts are better in this sense than the other models. 
It can be concluded that Factor-xGARCH models give a good fit of the volatility of stock 
returns. They provide forecasts for the stock return volatilities which are much better than 
static volatility models and even outperform individual GARCH models while being easier 
to estimate than the latter. However, time series models without much economic theory 
behind, i. e. the Exponential smoothing model, seem to give more precise forecasts. 
Further research will compare the relative Performance of the models using different fo­
recasting horizons. Furthermore, it will be investigated if it enhances the quality of the 
Factor-xGARCH models if more than one factor is used. Formal tests for the equivalence 
of forecast error statistics will be applied. 
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Tables 

Table AI: List of stocks used 

Shortcut Name of Company 
ALV Allianz AG Holding 
BAS BASF AG 
BAY Bayer AG 
BHW Bayerische Hypotheken- und Wechsel-Bank AG 
BMW Bayerische Motoren Werke AG 
BVM Bayerische Vereinsbank AG 
CBK Commerzbank AG 
CON Continental AG 
DAI Daimler-Benz AG 
DBC Deutsche Babcock AG 
DBK Deutsche Bank AG 
DGS Degussa AG 
DRB Dresdner Bank AG 
HEN Henkel KGaA 
HFA Hoechst AG 
KAR Karstadt AG 
KFH Kaufhof Holding AG 
LHA Deutsche Lufthansa AG 
LIN Linde AG 
MAN MAN AG 
MET Metallgesellschaft AG 
MMW Mannesmann AG 
PRS Preussag AG 
RWE RWE AG 
SCH Schering AG 
SIE Siemens AG 
THY Thyssen AG 
VEB VEBA AG 
VIA VIAG AG 
VOW Volkswagen AG 

24 



Table A2: Statistical properties of return series 

Stock Excess kurtosis1J Skewness14 KS test 
ALV 4.87"* 0.11 1059.7*** 
BAS 4.22"* 0.13* 795.7*** 
BAY 4.14*" 0.20*** 771.0"' 
BHW 7.32'" -0.48*" 2427.8"* 
BMW 5.97*** 0.06 1589.6"' 
BVM 8.27"* -0.19*" 3059.3*" 
CBK 9.44"* -0.70*** 4066.6"* 
CON 2.57*** -0.10 295.5"* 
DAI 4.36*** -0.03 848.4*" 
DBC 5.64**" -0.16" 1425.1*** 
DBK 6.76*** -0.45*** 2073.9*" 
DGS 2.99*** -0.05 399.4"* 
ORB 7.64*** -0.49*** 2649.7**' 
HEN 10.90*** -1.01*** 5482.6"* 
HFA 4.30"* 0.04 822.8'" 
KAR 8.13"* -0.42*** 2983.4**' 
KFH 4.99*" -0.44*** 1143.4*** 
LHA 4.06**" -0.09 734.6*** 
LIN 8.52*** -0.45*** 3275.5*** 
MAN 7.87*** -0.69*** 2852.2"' 
MET 13.36*** -0.77*** 8069.9*** 
MMW 10.52*** -0.73*** 5038.1*** 
PRS 6.19*** -0.63*** 1778.3*** 
RWE 6.78*** -0.04 2050.4*** 
SCH 3.36*** 0.16** 508.1*" 
SIE 7.88*** 0.07 2770.2*** 
THY 4.56*** -0.10 926.8"* 
VEB 7.61*** -0.33*** 2601.7"' 
VIA 6.49*" -0.03 1877.2"* 
VOW 5.65*" -0.09 1423.4'" 

parameter significant at the 10% leve l 
parameter significant at the 5% leve l 
parameter significant at the 1% level 

KS test : Kiefer-Salmon test for deviation from normality 

13Significance according to Kiefer-S almon skewness test. 
I4Significance according to Kiefer-Sal mon kurtosis test. 
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Table A3: Ljung-Box statistics and ARCH tests for stock returns 

Stock LB40 QLB40 ARCH(l) 
ALV 40.01 141.12"* 5.806** 
BAS 43.76 386.42"* 31.338*" 
BAY 50.46 320.60*** 17.200*** 
BHW 34.25 88.66*** 0.391 
BMW 53.54* 108.61"* 17.127*** 
BVM 44.44 53.74* 2.831* 
CBK 51.38 42.68 0.462 
CON 38.57 121.70*" 23.471*" 
DAI 64.12*" 421.87*" 28.531*" 
DBG 46.25 60.54** 2.185 
DBK 39.97 162.26"" 4.026" 
DGS 59.38" 95.91*** 20.418*** 
ORB 62.45" 71.15*** 2.071 
HEN 38.82 72.46*** 38.294*** 
HFA 45.38 181.81"' 18.411*"* 
KAR 36.13 24.88 5.459** 
KFH 46.17 58.82" 7.707"** 
LHA 54.61* 101.07*" 4.045** 
LIN 59.17** 45.59 2.550 
MAN 68.52*** 70.69*** 13.116"* 
MET 86.28"' 228.72*" 9.080*** 
MMW 40.63 46.36 4.445** 
PRS 62.31*" 64.36*** 5.491** 
RWE 57.67** 416.17*** 32.560"" 
SCH 64.59*** 257.08*** 53.704*** 
SIE 37.65 173.44*** 20.426*** 
THY 41.67 141.03*** 5.891** 
VEB 41.57 234.56*** 11.078*" 
VIA 48.06 79.40*** 26.330*** 
vow 33.07 74.71*** 1.256 

* 
** 

*** 

parameter significant at the 10% lev el 
parameter significant at the 5% lev el 
parameter significant at the 1% leve l 

LB40 Ljung-Box statistic of o rder 40 for levels 
QLB40 : Ljung-Box statistic of o rder 40 for squared series 
ARCH(l) ARCH-LM test of order 1 
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Table A4: Factor score matrix 

Stock Factor score 
ALV 0.04701 
BAS 0.04564 
BAY 0.04536 
BHW 0.04489 
BMW 0.04700 
BVM 0.04542 
CBK 0.04755 
CON 0.02961 
DAI 0.04971 
DBC 0.03273 
DBK 0.05178 
DGS 0.03795 
ORB 0.04859 
HEN 0.03665 
HFA 0.04418 
KAR 0.04085 
KFH 0.04183 
LHA 0.03632 
LIN 0.04278 
MAN 0.04358 
MET 0.03044 
MMW 0.04479 
PRS 0.04147 
RWE 0.04747 
SCH 0.03473 
SIE 0.05127 
THY 0.04545 
VEB 0.04965 
VIA 0.04308 
vow 0.04722 

Table A5: Statistical properties of factor portfolio 

Excess kurtosis Skewness LB40 QLB40 ARCH(l) 
10.23*" -0.61*** 34.582 74.794*** 3.043* 

parameter significant at the 10% lev el 
parameter significant at the 5% lev el 
parameter significant at the 1% level 
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Table A6: QLB40 of the standardized residuals of the models (Static Model: 74.937) 

Model/Distribution Normal t GED 
GARCH(1,1)-M 3.219 2.622 2.903 
IGARCH(1.1)-M 6.967 2.257 2.395 
NGARCH(1,1)-M 5.376 2.136 2.769 
GJR-GARCH(1.1)-M 2.691 2.424 2.709 

Table A7: ARCH(l)-LM-test for standardized residuals (Static Model: 3.043) 

Model/Distribution Normal t, GED 
GARCH(1,1)-M 0.120 0.033 0.067 
IGARCH(1,1)-M 0.408 0.023 0.043 
NGARCH(1,1)-M 0.016 0.026 0.015 
GJR-GARCH(1.1)-M 0.136 0.052 0.084 

Table A8: Mean Log-Likelihood of the models (Static Model: -4.12239) 

Model/Distribution Normal t GED 
GARCH(1,1)-M -4.07467 -3.98062 -4.00130 
IGARCH(1.1)-M -4.08875 -3.98210 -4.00426 
NGARCH(1.1)-M -4.06250 -3.97671 -3.99746 
GJR-GARCH(1,1)-M -4.06564 -3.97803 -3.99855 

Table A9: AIC of the models15 (Static Model: 8924.85) 

Model/Distribution Normal t GED 
GARCH(1,1)-M 8827.59 8626.06 8670.81 
IGARCH(1,1)-M 8856.06 8627.26 8675.22 
NGARCH(1,1)-M 8803.26 8619.60 8664.50 
GJR-GARCH(1,1)-M 8810.05 8622.46 8666.86 

Table A10: SIC of the models16 (Static Model: 8934.83) 

Model/Distribution Normal t GED 
GARCH(1,1)-M 8852.52 8655.98 8700.73 
IGARCH(1,1)-M 8876.00 8652.20 8700.15 
NGARCH(1,1)-M 8833.17 8654.51 8699.41 
GJR-GARCH(1,1)-M 8839.96 8657.36 8701.77 

15 AIC = —2 • InL + 2m 
16SIC = -2 • InL + ln(T) • m 
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Table All: Results factor loading estimation 
(Factor-NGARCH(l,l)-M-£, £-distributed errors) 

Stock Mean ß Loading A DF v 
ALV -0.45457 1.05812*** 5.19602*** 
BAS -0.38282 0.94790"* 5.42264"** 
BAY -0.23026 0.93629*** 5.61472*** 
BHW -0.36202 1.03768*** 3.58151"* 
BMW 0.01363 1.07084*** 4.54312*** 
BVM -0.11002 1.03730*" 4.06087"* 
CBK 0.02260 1.01124*** 5.06810*** 
CON -0.28480 1.38245"* 5.53417*** 
DAI -0.32890 1.05766*** 5.26043""" 
DBC 0.97738* 1.49445*** 4.69141*** 
DBK -0.19203 0.85087"* 4.84287"" 
DGS -0.62899 1.22012*** 4.89392*** 
DRB -0.30104 0.91895*** 4.51877*** 
HEN 0.08056 0.84488*" 4.89268""" 
HFA -0.50330 1.07647*** 4.33839*** 
KAR -0.51097 1.03640*** 5.62076*** 
KFH -0.63113 1.19724*** 5.21604*** 
LHA -0.90326 1.80145*** 4.32066*** 
LIN -0.29167 0.87146*** 4.66936*** 
MAN -0.55913 1.16015*** 5.14982"* 
MET -1.22510** 1.79613*** 3.00000*** 
MMW -0.14050 1.19745*** 5.37771*** 
PRS -0.02579 1.15576*** 4.67244*** 
RWE -0.18621 0.87400"* 4.72331*** 
SCH -0.37474 1.02395*** 3.54477*** 
SIE -0.24284 0.80228*** 6.82993*** 
THY 0.04851 1.17866*** 5.94718*** 
VEB 0.28052 0.85659*** 5.37859*** 
VIA -0.23573 1.00565*** 4.33846"" 
vow -0.08169 1.28524*** 6.61800*** 

parameter significant at the 10% level 
parameter significant at the 5% leve l 
parameter significant at the 1% level 
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Table A12: Statistical properties standardized residuals 
factor loading estimation, Factor-NGARCH(l,l)-M-£, t-distributed errors 

Stock LB40 QLB40 Skewness1' Exc. kurtosis18 ARCH(l) 
ALV 39.54215 4.39354 -0.86559*** 13.50540*" 0.134 
BAS 40.55312 29.82837 0.10768 2.80955"" 0.000 
BAY 52.71681* 24.28001 -0.16896** 3.68037"* 5.912*" 
BHW 40.09937 7.27202 -1.82246*** 25.76410*" 0.030 
BMW 52.58479* 6.46013 -0.58515"* 15.63910*" 0.775 
BVM 39.83552 4.27018 -1.75323*** 23.60342*" 0.037 
CBK 38.09279 1.85565 -2.48237*** 36.58589*** 0.036 
CON 31.75677 24.39184 -0.34046*** 3.01537**" 0.322 
DAI 56.67138" 6.55948 -0.41079"** 5.94012*** 0.019 
DBC 40.09937 3.60979 -1.39543*** 19.89826**" 0.016 
DBK 29.74214 2.90164 -1.85385"* 25.84894'** 0.163 
DGS 52.94045* 8.89750 -0.33477"** 8.54075**" 0.000 
DRB 48.72749 2.15822 -1.88333*** 28.22313*** 0.059 
HEN 28.38650 3.27622 -2.17299*" 29.79454*** 0.043 
HFA 47.04126 17.39149 -0.22129*** 6.76304"* 1.888 
KAR 35.87158 2.85271 -2.00459"* 31.20259*** 0.000 
KFH 43.58506 8.14609 -1.37691*** 18.68014*** 0.000 
LEA 54.19215* 16.33018 -0.86585*** 7.74783*** 0.284 
LIN 36.06428 1.75896 -2.04702*** 34.17286*** 0.013 
MAN 53.78918* 2.26598 -1.82287*** 28.67962*** 0.000 
MET 87.11396"* 205.41192*** -0.89386*** 14.72232*** 7.321*** 
MMW 35.09660 1.55784 -2.51988*** 36.51544*** 0.014 
PRS 52.48710* 2.56944 -1.50198*** 21.82999*** 0.004 
RWE 33.82457 4.66956 -1.10201*** 12.03375*" 0.120 
SCH 81.36326*** 96.79932*** -0.26504*** 5.59170*** 0.378 
SIE 27.59364 2.77653 -1.51642*** 22.77836*** 0.103 
THY 36.62039 5.41417 -0.91012*** 10.69908*** 0.119 
VEB 32.70087 7.14285 -1.70868*** 20.12457*** 0.000 
VIA 45.89977 17.05090 -0.40372** 12.39501*** 9.563*** 
VOW 26.42871 4.03121 -1.18646*** 14.62467*** 0.127 

parameter significant at the 10% le vel 
parameter significant a t the 5% le vel 
parameter significant at the 1% lev el 

17Significance according to Kiefer-Sal mon skewness tes t. 
l8Significance according to Kiefer-Sa lmon kurtosis t est. 
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Table A13: Negative mean Log-likelihoods (*100) of the second stages 

Stock M Mt MG IM IMt IMG NM NMt NMG GM GMt GMG NG 
ALV 408 402 403 409 402 403 408 402 403 409 402 403 413 
BAS 395 391 392 397 391 392 395 391 392 395 391 391 402 
BAY 395 390 391 397 391 391 395 390 391 395 390 391 401 
BHW 403 393 394 400 393 394 402 393 393 404 393 394 405 
BMW 410 401 402 412 402 403 410 401 402 410 401 402 414 
BVM 405 396 398 404 397 398 404 396 397 405 396 397 408 
CBK 407 397 399 407 398 399 405 397 398 406 397 399 408 
CON 432 430 429 432 430 430 430 429 428 432 430 429 434 
DAI 408 402 403 410 402 403 407 402 402 407 402 403 415 
DBC 441 435 436 443 436 436 441 435 435 441 435 436 442 
DBK 389 379 380 389 379 380 387 379 380 388 379 380 394 
DGS 419 415 415 421 416 416 420 415 416 419 415 416 421 
DRB 396 386 388 396 386 388 394 386 387 395 386 387 398 
HEN 388 379 380 388 379 380 387 379 380 388 379 380 392 
HFA 406 401 401 408 401 401 406 401 401 406 401 401 411 
KAR 406 401 402 407 402 403 406 401 402 406 401 402 407 
KFH 419 414 415 420 415 415 419 414 414 419 414 414 420 
LHA 456 453 452 460 453 454 455 453 452 456 453 452 459 
LIN 389 381 381 391 382 382 389 381 382 389 381 381 391 
MAN 418 411 412 421 411 413 418 411 412 417 411 412 421 
MET 456 440 441 461 440 441 461 440 441 456 440 441 456 
MMW 424 416 416 427 415 417 423 415 416 423 415 416 427 
PRS 417 409 411 419 410 411 418 409 411 417 409 411 420 
RWE 391 382 383 392 381 383 391 382 383 391 382 383 400 

SCH 396 390 390 401 390 391 401 391 392 397 391 391 398 
SIE 382 376 378 383 376 378 382 376 378 382 376 378 389 
THY 418 414 415 421 415 415 417 414 414 417 414 414 422 
VEB 390 381 383 390 381 382 390 381 383 390 381 382 398 
VIA 401 394 395 405 394 395 405 394 395 402 394 395 405 

vow 427 423 424 428 424 425 426 423 424 427 423 424 430 
M = GARCH(1,1)-M 
IM = IGARCH(1,1)-M 
XM = XGARCH(I,1)-M 
GM = GJR-GARCH(1,1)-
XG = Static Model 

Mt = GARCH(l,l)-M-t MG 
IMt = IGARCH(l,l)-M-t IMG 
NMt = NGARCH(l,l)-M-£ NMG = 

M GMt = GJR-GARCH(l,l)-M-f GMG = 

GARCH(1,1)-M-GED 
IGARCH(1,1)-M-GED 
XGARCH(1,1)-M-GED 
GJR-GARCH(1,1)-M-GED 
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Table A14: RMSE of variance forecast models 

Stock NP ES NG Mt IMt NMt GMt INt RW 
ALV 705.02 476.93 761.97 553.93 590.30 505.56 507.61 564.89 1996.98 
BAS 550.55 381.43 561.90 438.87 471.32 407.75 406.31 457.07 784.66 
BAY 637.17 389.00 619.83 468.10 493.12 388.75 426.06 446.02 710.71 
BHW 722.79 382.41 698.22 614.86 672.35 485.79 555.62 422.06 549.50 
BMW 879.32 625.72 869.81 731.50 783.65 684.18 680.92 776.87 1644.18 
BVM 689.05 364.17 676.85 531.66 581.93 393.70 449.57 383.48 813.91 
CBK 702.39 399.00 677.44 508.10 550.18 391.21 432.93 406.50 831.68 
CON 1263.00 843.66 1263.36 1096.12 1202.60 897.60 949.65 1252.65 1880.98 
DAI 778.47 513.15 757.13 593.15 631.13 510.50 538.48 604.73 1136.48 
DBC 1793.18 1706.18 1778.79 1650.68 1702.81 1820.43 1631.95 1815.62 1930.59 
DBK 551.62 288.42 531.76 364.47 389.06 305.87 324.61 327.25 512.57 
DGS 1045.96 1025.05 1061.36 1018.42 1049.47 1005.05 976.18 1182.26 3742.28 
ORB 522.90 292.59 519.67 378.67 412.74 323.04 328.04 317.89 801.14 
HEN 501.24 358.70 510.20 387.91 411.11 357.76 362.43 395.82 597.58 
HFA 730.65 532.73 739.47 641.14 679.51 525.17 575.48 643.45 939.67 
KAR 685.89 556.98 683.87 601.65 648.62 580.84 572.33 644.24 1296.42 
KFH 879.35 735.03 864.52 786.44 842.50 722.98 726.34 882.39 2987.89 
LHA 1905.73 1161.11 1995.01 1942.36 2227.23 1575.27 1660.78 1402.96 1470.87 
LIN 528.19 292.60 512.22 405.09 444.74 327.42 351.36 500.54 753.71 
MAN 865.37 622.77 853.56 728.18 782.71 688.01 673.77 799.90 1737.57 
MET 8933.14 7898.74 8920.90 8844.17 8749.33 8929.08 8918.64 7739.20 6412.15 
MMW 1144.23 780.19 1104.31 884.45 940.07 820.80 842.59 908.63 974.94 
PRS 1006.67 867.56 977.76 914.32 950.10 898.26 889.46 965.48 1557.06 
RWE 720.99 422.43 684.29 452.96 457.21 444.79 441.96 449.01 778.20 
SCH 1464.67 1382.76 1477.55 1467.79 1444.09 1519.39 1503.75 1469.71 2117.95 
SIE 506.14 260.62 479.60 317.72 342.07 290.42 291.88 326.92 739.01 
THY 819.41 516.36 814.23 676.71 755.48 656.20 619.59 627.13 1056.95 
VEB 658.03 339.39 623.41 423.39 442.48 355.49 382.65 375.68 450.82 
VIA 1537.13 1575.24 1536.69 1504.55 1502.05 1611.73 1545.25 1610.81 1901.59 
vow 1045.41 639.89 1050.49 877.06 980.15 815.76 788.31 783.41 1204.35 

NP = Naive forecast ES = Exponential Smoothing 
NG = Static Model Mt = GARCH(l,l)-M-t 
IMt = IGARCH(l,l)-M-t NMt = NGARCH(l,l)-M-t 
GMt = GJR-GARCH(l,l)-M-t INt = Ind. GARCH(l.l)-M-f 
RW = Random Walk 
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Table A15: MAPE (%, rounded) of variance forecast models 

Stock NP ES NG Mt IMt NMt GMt INt RW 
ALV 408 125 392 221 229 153 190 190 224 
BAS 261 149 263 170 179 129 149 199 181 
BAY 1181 393 1141 628 631 428 512 637 279 
BHW 474 108 461 342 357 222 304 206 181 
BMW 477 160 472 244 249 201 216 287 349 
BVM 372 76 365 236 250 136 188 153 136 
CBK 309 78 297 199 215 105 155 148 156 
CON 546 280 541 453 489 340 375 501 266 
DAI 363 165 355 232 243 150 190 237 219 
DBC 361 164 349 251 269 173 213 330 332 
DBK 425 91 410 230 239 160 196 182 153 
DGS 217 127 222 168 183 117 142 214 174 
DRB 335 108 332 200 209 129 165 174 287 
HEN 330 97 331 185 195 152 165 214 203 
HFA 271 112 269 192 205 107 153 217 155 
KAR 224 96 222 161 177 125 139 198 171 
KFH 569 272 552 398 422 280 328 443 381 
LHA 375 149 393 421 477 294 335 258 131 
LIN 618 209 601 441 475 267 373 500 228 
MAN 320 117 316 190 201 155 164 262 134 
MET 138 125 141 108 116 91 93 163 167 
MMW 440 95 424 228 239 146 187 246 197 
PRS 509 249 475 358 384 218 293 404 342 
RWE 809 203 748 379 385 258 333 320 232 
SCH 207 271 203 154 163 135 141 336 134 
SIE 289 60 273 129 136 101 111 127 158 
THY 207 77 203 133 146 105 115 128 104 
VEB 531 96 500 264 274 167 214 190 124 
VIA 365 178 351 211 219 156 177 253 157 
VOW 273 114 274 205 225 148 171 185 154 

NP = Naive forecast ES = Exponential Smoothing 
NG = Static Model Mt = GARCH(l,l)-M-f 
IMt = IGARCH(l,l)-M-t NMt = NGARCH(l,l)-M-f 
GMt = GJR-GARCH(l,l)-M-t INt = Ind. GARCH(l,l)-M-t 
RW = Random Walk 
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Table A16: Median Squared Error (*1/1000) of variance forecasting models 

Stock NP ES NG Mt IMt NMt GMt INt RW | 
ALV 694.07 81.84 623.68 189.08 226.81 73.56 150.07 147.39 96.06 
BAS 261.08 95.26 249.18 111.68 113.39 92.09 108.14 116.29 195.64 
BAY 402.23 55.26 326.30 88.92 73.34 45.66 58.60 97.13 177.04 
BHW 541.70 28.91 463.37 210.28 248.74 121.33 157.57 89.01 140.28 
BMW 713.73 77.78 654.88 189.86 202.72 97.71 120.13 295.39 368.22 | 
BVM 453.00 25.86 447.16 192.82 176.58 84.94 121.79 98.70 53.13 I 
CBK 459.11 34.87 406.88 164.69 183.50 74.01 123.71 118.48 178.39 j 
CON 1626.27 247.46 1559.17 627.87 702.75 294.51 361.72 1137.44 561.19 
DAI 533.66 85.77 509.66 149.77 157.05 133.28 157.94 180.97 243.57 
DBC 2258.61 390.88 2143.13 1202.04 1589.40 484.39 837.53 1766.24 700.65 
DBK 327.60 8.09 307.74 70.93 85.18 42.42 44.63 45.68 64.45 
DGS 757.92 228.04 784.17 380.56 413.00 213.59 269.06 513.47 308.81 
ORB 224.83 31.86 235.39 57.31 51.98 54.70 54.64 68.25 125.33 
HEN 228.89 30.59 229.98 67.90 83.37 31.30 38.83 82.56 102.21 
HFA 426.13 59.57 407.39 216.95 216.46 50.91 95.53 226.10 132.01 
KAR 467.70 78.59 453.47 123.14 167.20 71.07 80.33 303.28 333.39 
KFH 772.84 165.18 786.89 329.59 370.09 275.83 339.94 626.29 692.39 
LHA 3400.80 414.90 3689.87 2378.16 2917.24 1199.34 1462.62 1354.79 1076.80 
LIN 303.19 25.13 288.48 61.81 69.78 56.55 57.33 176.11 51.68 
MAN 811.80 137.99 812.40 173.65 216.02 62.10 125.16 281.21 189.18 
MET 916.73 532.86 921.28 513.16 650.15 567.28 580.37 1123.83 1210.55 
MMW 1216.83 106.15 1034.30 259.70 326.75 134.20 237.42 364.27 198.36 
PRS 822.16 203.97 757.66 318.66 310.83 209.66 270.38 365.17 271.24 
RWE 480.67 15.03 348.23 70.48 68.79 28.94 45.49 41.56 41.96 
SCH 244.79 226.59 236.52 189.74 192.90 182.83 163.73 213.14 249.74 
SIE 285.72 8.60 257.44 28.52 36.77 29.73 25.25 32.58 51.90 
THY 631.69 100.33 597.59 137.55 133.12 124.01 160.34 231.70 245.33 
VEB 410.50 14.01 354.03 85.53 87.21 42.70 39.27 40.17 36.68 
VIA 408.45 82.43 343.04 165.38 177.21 89.42 135.13 192.57 111.50 

vow 1121.52 202.68 1099.28 333.80 402.18 273.63 230.29 498.67 446.36 
NP = Naive forecast ES = Exponential Smoothing 
NG = Static Model Mt = GARCH(l,l)-M-i 
IMt = IGARCH(l,l)-M-< NMt = NGARCH(l,l)-M-£ 
GMt = GJR-GARCH(l,l)-M-t INt = Ind. GARCH(l.l)-M-t 
RW = Random Walk 
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