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Abstract 

According to the bivariate mixture hypothesis (BMH) as proposed by Tauchen 
and Pitts (1983) and Harris (1986,1987) the daily price changes and the correspond-
ing trading volume on speculative markets follow a joint mixture of distributions with 
the unobservable number of daily information events serving as the mixing variable. 
Using German stock market data of 15 major companies the distributional properties 
of the BMH is tested employing maximum-likelihood as well as generalized method 
of moments estimation techniques. In addition to providing a new approach for the 
pointwise estimation of the latent information arrival rate based on the maximum-
likelihood method, we investigate the time-series properites of t he BMH. The major 
results can be summarized as follows: (i) the distributional characteristics of the data 
(esp. leptokurtosis and skewness in the distribution of price changes and volume re-
spectively) cannot be explained satisfactorly by the BMH; univariate mixture models 
for price changes and trading volume separately reveal a possible specification error 
in the model; (ii) a univariate normal mixture model can account for the observed 
distributional characteristics of pr ice changes; (iii) the estimated process of the latent 
information rate cannot fully explain the time-series characteristics of t he data (esp. 
the volatility clustering or ARCH-effects). 



1. Introduction 

This paper contributes to the rapidly growing field in empirical finance that is concerned 
with the modelling of highly nonlinear dependencies in daily price change data from spec-
ulative markets. In numerous studies for various types of speculative markets, it has 
been shown that the empirical distribution of daily price changes is leptokurtic, meaning 
that it is excessively peaked around zero and that it exhibits fatter tails than the normal 
distribution. An appealing explanation for this departure from the shape of a Gaussian 
distribution was provided by Clark (1973). In his model the variance of the daily price 
change is determined by the number of price relevant information arriving in the market. If 
the information arrives ramdomly from day to day, the daily price changes are realizations 
of random variables with different variances. A mixture of (normal) distributions with 
different variances serves consequently as a suitable Statistical model for the distribution 
of the price changes. 

In order to obtain additional information about the pricing process Tauchen and Pitts 
(1983), Harris (1986, 1987) and Andersen (1994) incorporate the quantitative side of the 
market into the class of mixture models. Using basically the same assumptions as Clark 
they proposed a joint distribution for daily price changes and daily trading volume, result-
ing in a mixture of bivariate distributions. The decisive point is the fact that price changes 
and trading volume are endogenous variables, simultaneously directed by the exogeneous 
information arrival process. Tauchen and Pitts as well as Harris (1987) used a simple 
sequential Walrasian equilibrium framework to derive a bivariate normal distribution for 
the trading volume and the price changes conditional on the daily number of information. 
Andersen developed a market microstructure model with liquidity trading and asymmet-
ric information resulting in a Poisson distribution for the trading volume conditional on 
the number of information events. The theoretical implications of these bivariate mixture 
models are successfull in accounting for the observed leptokurtosis in the distribution of 
price changes as well as in explaining the positive skewness in the distribution of volume 
and the documented positive contemporaneous correlation between trading volume and 
the volatility of price changes1. 

A parallel approach which is also consistent with a fat tailed empirical distribution of 
price changes, is based on the autoregressive conditionally heteroscedastic (ARCH) model 
of Engle (1982) and Bollerslev's (1986) generalized ARCH (GARCH) model. In this class 
of models the conditional variance of price changes is a simple function of past information 
contained in previous price changes. An autoregressive structure in the variance specifi-
cation of price changes allows for the persistence of volatility shocks, enabeling the model 
to capture the frequently observed clustering of similar-sized price changes, the so-called 
ARCH-effects. In the search of the origin of these ARCH-effects in financial price change 
series Lamoureux and Lastrapes (1990), Locke and Sayers (1993) and Bauer, Nieuwland 
and Verschoor (1994) analyze whether these effects can be attributed to a corresponding 
time series behavior of the information arrival process in Clark's mixture model. Inserting 
the contemporaneous trading volume as a proxy for the unobservable information arrival 

'See Karpoff (198 7) for a su rvey of the l iterature dealing with the relationship between price cha nges and 
trading volume. 
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rate in the conditional variance specification of (G)ARCH raodels shows that this variable 
has significant explanatory power regarding the variance of the price changes and that 
previous price changes contain negligible additional information about the variance of the 
price changes if volume is included. A disadvantage of this procedure is the fact that it 
treats volume as an exogeneous variable. But if volume and price change volatility are 
in fact jointly determined, a specification ignoring this fact possibly suffers from a simul-
taneity bias2. We therefore argue along the line of Andersen (1994) and Lamoureux and 
Lastrapes (1994) that it seems to be necessary to analyze the origin of ARCH-effects in a 
setting, in which trading volume is treated as an endogenous variable. This is the case in 
the bivariate mixture model of Tauchen and Pitts and consequently this approach serves 
as a framework for our investigation. 

The main purpose of this study is to evaluate whether the bivariate mixture hypothesis 
(BMH) in the Tauchen-Pitts-Harris specification is able to capture the observed distribu
tional patterns of daily price changes and trading volume for the German stock market 
data and whether the time series behavior of the latent information arrival process in 
this model can be regarded as the origin of the ARCH-effects. The paper is organized as 
follows: In section 2 the BMH is presented together with its implications for the uncondi-
tional moments of the price changes and trading volume. Section 3 briefly describes the 
data used in this study. In section 4 the distributional aspects of the BMH are discussed. 
Results of implied maximum likelihood (ML) estimates of the unconditinal moments of 
the mixture model are presented (section 4.1) together with an explicit specification test of 
the BMH based on the generalized method of moments (GMM) procedure (section 4.2). 
Section 4.3 deals with univariate mixture models for trading volume and price changes 
separately in order to detect possible sources of misspecifiation in the bivariate setting. 
In section 5 the time series properties of the BMH are investigated. For this purpose 
the latent information arrival rate is estimated on basis of the joint distribution of price 
changes and trading volume with the ML-method. Section 6 contains the conclusions. 

2. The Bivariate Mixture Hypothesis 

Using the model developed primarily by Tauchen and Pitts it is possible to specify the 
joint distribution of the daily price changes and the corresponding volume of trading in 
financial markets. Given a set of information the traders demand for a single security is 
a linear function of the difference between their reservation prices and the current market 
price. Within the day a series of events take place, each event generates information 
with direct relevance for the pricing of the security. Every piece of such price relevant 
information leads the traders to adjust their reservation prices. Applying the equilibrium 
condition the resulting change in the market Clearing price is the average of all traders 
reservation price changes. 

If the reservation price changes are assumed to posess a distribution which is inde-
pendent and identical with respect to all traders and with respect to all events and is 

2Lamoureux and Lastrapes (1990) are very we ll awar e of this problem. 
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Symmetrie around zero it is possible to show that the price change and the trading volume 
corresponding to an event are uncorrelated. Furthermore it follows that the post event 
price changes and volumes are realizations of random variables that are independently and 
identically distributed for all events3. The total price change (dPt) and the total trading 
volume (Vt) for a given day t is the sum over within-day price changes and trading vol
umes each of which occurs as a result of a new informational event. For a sufficiently large 
number of events on day t the joint distribution of daily price changes and trading volume 
follow approximately a bivariate normal distribution conditional on the daily number of 
events It 

( dPt | It ' ßdplt v'dpJt 0 
ßvh 1 o 

^ N 
Vt\It J 

with adp > 0, fj,v > 0, av > 0 . 

(1) 

The number of daily information arrivals It is assumed to be a random variable. If follows 
then, that the unconditional joint distribution of dPt and Vt is a mixture of independent 
bivariate normals with It serving as the mixture variable. This is the reason, why (1) is 
called the bivariate mixture model (BMM). 

The implications for the unconditional moments of price changes and trading volume 
from the bivariate mixture model can be summarized as follows4: 

• The excess kurtosis of the marginal unconditional distribution of the price changes 
(«(dP)) is positive and given by 

K(dP) = + m*) + ̂ äPadP(m3 + ™a) + _ 3 

K^ + /4>m*)2 

where ß, m2, m3 and m4 denote the mean, the second, the third and the fourth central 
moment of the mixing variable It respectively. If the mean of the price changes is 
approximately equal to zero (/idp ~ 0) the right hand side of (2) reduces to 3 m2//i2 

which is clearly positive. 

If the distribution of the mixing variable is skewed to the right (i.e. m3 > 0) 
the unconditional distribution of V is also skewed to the right with the skewness 
coefficient 

«V) - • (3) 
(°vl* + ' 

Clearly <;(V) > 0 as long as m3 > 0. 

The unconditional covariance between the squared price changes and the trading 
volume serves as a measure for the price change volatility-volume relationship and 
is given by 

Cov(dP?, Vt) = (iv a2ivm2 + /i„ fj.2dp{m3 + 2 ßm2) . (4) 

The right hand side of (4) is positive and equal to f.ivo2pm2 as long as (idp « 0. 

3For further details see Tauchen and P itts (1983) pp. 490-491 and Harris (1987) p. 129. 
4For a complete description of the predictions of the BMM regarding conditional and unconditional 

moments of price chang es and trading volume see Harris (1987). 
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• Furthermore the BMM implies a positive first-order autocovariance of squared price 
changes if the latent information arrival rate It has a positive first-order autocovari
ance as well. This is due to the fact that 

Cov{dPl dPl J = o\p Cov(/t, /,_,). (5) 

Thus the observed persistence in price change volatility may well be the result of a 
corresponding time series behavior of the latent mixture variable. 

The remainder of this study is devoted to answering two important questions: are these 
theoretical predictions which are only qualitative in nature reconfirmed by the German 
stock market data and is the BMM in the Tauchen-Pitts-Harris specification capable of 
fully capturing the empirical regularities inherent in the data. The former is relatively easy 
to show while the latter is of considerable complexity, thus requiring intensive treatment. 

3. Data Description 

Our data set consists of daily closing prices (Pt) and daily numbers of shares traded 
for 15 German stocks listed in the DAX index5 and were obtained from the Karlsruher 
Kapitalmarktdatenbank (KKMDB). The sample period starts on 2.01.1990 and ends on 
31.5.1994 giving a sample size of over 1100. We adjusted the data for effects of dividends 
and capital changes. In Order to make our results compaxable to other studies we did not 
use the simple price difference Pt — Pt_Y but the log-differences log Pt — log Pt_x instead. 

We detrended the data using a procedure originally proposed by Gallant, Rossi and 
Tauchen (1992) for two reasons: firstly we are not interested in explaining the long-run 
behavior of price volatility and trading volume but rather the day to day movements 
and we wanted to remove a possible non-stationarity in the data, because estimation and 
testing procedures to be employed subsequently rely on the stationarity assumption. For 
the volume data this procedure essentially comprises of the following three steps: In a 
first step volume is regressed on a linear and a quadratic time trend. In a second step the 
logarithm of the resulting residuals are again regressed on a linear and a quadratic time 
trend. The residuals obtained from this second regression are finally transformed in order 
to ensure that the adjusted data's mean and variance is exactly the same as that of the 
unadjusted data. Essentially this procedure is designed to remove a possible significant 
trend both in the mean (step one) and in the variance (step two) of the data. For the 
price change series it is only neccessary to remove a possible trend in the variance and 
to do the linear transformation. It can reasonbly be assumed that after detrending price 
changes and trading volume in this way that both series are stationary6. 
5The DAX index is the leading German stock market index comprising of 30 stocks of major German com-

panies. Appendix I gives a list of the 15 comp anies included in this study together with the corresponding 
abbreviations. 
6Unlike Gallant, Rossi and Tauchen (1992) w e do not correct the data for the well documented systematic 

calendar effects such as the January effect, th e Monday effec t and the weekend effect. In the framework 
of t he bivariate mixture model these effects may be viewed as the results of a specific behavior of the 
information arrival process and should therefore not be removed from the data. 
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The summary statistics for the detrended data are given in Table 1. It is already well 
known that all the empirical regularities found in financial markets data by many other 
studies can be found in the German stock market data as well. Concentrating on the 
important higher moments one can see that the excess kurtosis of the empirical distribution 
of the price changes R(dP) exceeds the value of zero for all 15 stocks. The Kiefer-Salmon 
kurtosis statistic Kdp to test for excess kurtosis as well as the Kiefer-Salmon joint test 
statistic SKdp to test normality against skewness and/or excess kurtosis are both given 
in the table7. Both statistics lead to a rejection of the null hypothesis at any reasonable 
significance level for all 15 stocks in our study. In order to detect ARCH effects in the price 
change series the Box-Pierce statistic <3^2(20) of squared price changes are calculated for 
20 lags8. The results indicate strong persistence in the volatility of the price changes for 
nearly all stocks. 
For the volume data we find a positive empirical skewness coefficient <i{V) as well as a 
highly significant Kiefer-Salmon skewness statistic Sv for all 15 stocks9. 

Finally, for all cases there is a significant positive contemporaneous relationship between 
price change volatility and trading volume. As a descriptive measure the correlation 
coefficient between squared price changes and trading volume p(dP?, Vt) is presented. Its 
significance is proved using Fisher's Z-test. All these statistics show that the price change 
and volume data exhibit properties, which are consistent with the theoretical predictions 
of the BMH described in section 2. 

4. Empirical Results Concerning the Distributional Aspects of the 

BMM 

4.1. Maximum-Likelihood Estimation 

Following the suggestion of Tauchen and Pitts (1983) we estimate the parameters of the 
BMM (1) using the maximum-likelihood method. This is only possible if a distributional 
assumption concerning the unobservable mixing variable /, is introduced. Since the log
normal distribution has been employed quite successfully in several other studies10 we 
adopt this specification. 

Once the distribution of the information rate fi{It) is specified the latent variable It, 
which enters the model in a highly nonlinear fashion, can be integrated out of the mixture 

7See Kiefer and Salmon (1 983) for the derivation of both test statistics and the proofs that under the null 
hypothesis of a norm ad distribution for the price changes Ktp follows a chi-square distribution with one 
degree of fre edom and t he SKdP statistic follows a chi-squaxe distribution with two degrees of fre edom. 
8Under the iid hypothesis Q äp2(20) is asymptotically xfa o) distribute d. 
9Sv follows a X(2D distribution under the null hypothesis. 

l0Clark (1973), Tauchen and Pitts (1983) as well as Richardson and Smith (1994) have tried other distri
butions like the Poisson and the inverted gamma, but in all stud ies find strong evidence in favor of the 
lognormal. F urthermore, the lognormality of I t implies a lognormal price ch ange variance, which is in line 
with diffusion mod els for a stochastic volatility variable (see e.g. Taylor (1994). ) 
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model (1) giving us an unconditional joint distribution of the observable variables dPt 

and Vt 

fiP,V (dPt, Vt) = J fdPy(dPt, Vt | It) • f,(lt)dlt . (6) 

Since conditional on the mixing variable price changes and the corresponding trading 
volume are stochastically independent their joint distribution conditional on It is given by 

fäP,v(dPu Vt | It) = fN(dPt : ßipIt, a2dpIt) • f N(Vt : ßvIt, a2It), (7) 

where fN(-) denotes the density of a normal distribution. 

It should be emphasized at this stage of the analysis that within the mixture model 
framework the only source of autocorrelation in the volatility of the price changes is a 
possible serial dependence in the latent variable It, as already derived in (5). Application 
of the ML-method to the unconditional joint distribution of dPt and Vt after integrating 
out the latent mixing variable I as given in (6) however makes it impossible to distinguish 
between an uncorrelated and an autocorrelated rate of information arrival 11. From this 
perspective the distribution fi{It) can be regarded as the unconditional distribution result-
ing from conditional distributions of It given the history of the series It-2, •••)• 
This leads to inefficient but probably consistent parameter estimates, if It is stationary 
over time. 

Due to the latent character of the mixing variable, the bivariate mixture model is 
invariant with respect to an arbitrary transformation of the scale of It. By setting its 
mean denoted by fi to one, the model can be normalized and the following parameters can 
be estimated and identified: ßdp = fj.dpß, ädp = crdpS/ß, ßv = ßv n, äv = ovyfß and 6, the 
parameter characterizing the Variation in the rate of information arrivals12. 

The resulting log-likelihood function is of the following form: 
T 

logL{ßdp,ädp,ßv,äv,d\dPt,Vt) = Y,^g[fdPiV{dPt,Vt | •)], (8) 
t=i 

where 

f,r,(dp.,v.i-) = J2 -••<«• - «•/»]-• ̂  y} 

1 2^ x (2TT)~* exp(——)dz. 

The log-likelihood function is made up of T infinite integrals one for each Observation pair 
of dPt and Vt. There is no way to arrive at a closed form Solution for these integrals. 
Consequently the ML-estimation has to be based on numerical integration procedures13. 
11 Note that when applying the ML-method it is impos sible to take into account a serial dependence of the 
variable I ,, since I, is latent. 
12The parameter 6 is related to the coefficient of Variation of /, in the following way: 9 = [In(m2//J2 +1)]1''2 • 
13We used a 20 point Gauss-Hermite quadrature to compute the integrals. The optimization itself was 
carried out using the GAUSS procedure MAXLIK. Both Newton-Raphson and DFP algorithms were 
alternatively applied to crosscheck th e results. Method of moment estimators served as sta rting points of 
the iteration process. To ensure global concavity, different starting values have been used as well. 
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The results of the ML-estimation of the parameters of the normalized mixture model 
are presented in table 2. These estimates are of the expected sign and seem to be reason-
able. With ML-estimates of the parameter at hand it is possible to calculate the implied 
estimates of the unconditional moments of dPt and Vt, which can be compared with their 
corresponding sample moments given in table 1. The necessary formulas to compute the 
implied moments are given in Appendix II and the results are presented in table 3. Since 
it is not possible to conduct a specification test of the mixture model using the ML-results 
directly14, the comparison between the results in table 3 and table I serves as a first 
check of our specification. While the difference between estimates moments and sample 
moments for means as well as Standard deviations of both price changes and trading vol
ume are almost negligible for higher order moments they are often substantial. While the 
estimated excess kurtosis of price changes n(dP) is positiv for all stocks in our sample 
it is quite below their sample counterparts. The same applies to the estimated skewness 
of the trading volume ?(F). In the last column of table 3 the implied estimates of the 
unconditional correlation coefficient between squared price changes and trading volume 
is given. It is positive in every case and for almost all stocks quite close to the sample 
correlation as given in table 1. 

To illustrate the downward bias of the implied estimates of the excess kurtosis compared 
to the sample value for the price change variable, a graph for the (randomly choosen) 
BMW stock of the empirical frequency distribution of price changes and the corresponding 
fitted marginal unconditional density resulting from the ML-estimates of the BMM is 
presented in figure 1. The location and the scale of the empirical distribution is fairly 
well approximated by the fitted density, but there are noteable problems in the tails of 
the distribution. The empirical distribution exhibits data points in the extreme tail axeas, 
which are not captured by the fitted distribution. It should be noted however that the 
empirical excess kurtosis is dominated by a very few data points (two or three) in the 
very extrem tail areas15. This demonstrates the downward bias of the implied estimates 
of the excess kurtosis compared to the sample value. Figure 2 gives the empirical and 
the estimated marginal distribution for the trading volume. The observed strong positive 
skewness in the volume data can be approximated quite well by the estimated distribution. 
It is also remarkable that the fitted density tends to be polymodal a result of Atting small 
Clusters of data points by mixing normal distributions with different means. To summarize 
the results of the ML-estimates one can conclude that the BMM (1) has shortcommings 
as far as the adequate description of the distributional patterns of the unconditional joint 
distribution of trading volume and price changes is concerned. 

4.2. Generalized Method of Moments Estimation 

So far we did not present a rigorous specification test of the BMM. As mentioned above, 
such a test based on the likelihood principle is not readily available. Hence, following a 
14 For the information matrix test proposed by White (1980) for example, the third derivatives of the 
likelihood function are needed. Since we had to rely on numerical approximaitions of these functions the 
third derivatives are not availabl e. 
15One of these extrem values for nea rly all stocks is reported for the day of the Gorbachev putsch in August 
1991 with negative retur ns of up to 10 percent. 
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recent proposal by Andersen (1994) and Richardson and Smith (1994), we applied the 
J-test, based on Hansen's (1982) Generalized Method of Moments (GMM) procedure, 
in order to test the adequacy of the model specification. The test requires only weak 
assumptions like stationarity and ergodicity of the price changes and volume series. It rests 
on the idea that the mixture model places certain testable restrictions on the unconditional 
moments of dPt and Vt. The hypothesis of a correct model specification will be rejected 
if at least some of the moment restrictions are systematically violated. In a way the 
test compares the implied moment estimates with the corresponding sample moments. 
We have used a similar but more heuristical approach based on the ML-estimtes above. 
Exploiting the fact that given the specification is correct, the selected sample moments 
converge in probabilty to the corresponding (unconditional) expected values resulting from 
the underlying model. 

A critical step in the practical application of the generalized method of moments is 
the choice of a set of moment restrictions. For our study we focused on those moment 
restrictions which reflect the typically mentioned stylized facts characterizing the data on 
stock markets16. Thus the set of moment restrictions is made up of the first four uncon
ditional moments of dPt, the first three moments of Vt and the unconditional covariance 
between dPf and Vt resulting from the BMM (1) and the lognormality assumption for the 
mixing variable17. After normalizing the mixture model by setting /j = lwe employed the 
following set of moment restrictions: 

E [dPt] 

EN 
E[(dP, - ßdp)2} 

E[(K-£J2] 
E[(dP, - ßdp)3] 

mv.-ß»)3) 
E[(dPt - ßdp)') 

E[(dP? - (ßlp(fh2 + 1) + ä2ip)) (Vt - ßj] 

= ßdP 

= ßv 
= dlP + 
= ö2v + ßlrh2 

= ^ßäP^%rni + ß3äp(m32 + 3m22) (9) 
- Zßvö2m2 + ß3(rh\ + 3fh\) 
= 3äjp(l + m2) + 6ßlpä2äp(ml + 3 in\ + m2) 

+ £d„(6(l + ™a) + (! + - 3 - 4(1 + m2)3) 
= ä2ipß„in2 + ß2dpßv (ml + 3m22 + 2m2) . 

The vector of unknown parameters is given by (ßdp,ädp,ßv,äv,fh2), where fh2 = m2/ß2 = 
exp(02) — 1. Thus the system of moment restrictions consists of eight equations and five pa
rameters leaving us with three over-identifying restrictions to be tested. The parameters 
are estimated by minimizing a quadratic form of the distance between the sample mo
ments and their theoretical counterparts over the parameter space18. Hansen's J-statistic 

16In principle there is an infinite number of moment restrictions resulting from the bivariate normal mixture 
model, which could be used. 
17For the ML-estimation a distributional assumption for I, is inevitably neces sary, whereas for the GMM-
procedure it is n ot. In contrast to the studies by Andersen and Richardson/Smith we explicit ly include 
moment restrictions resulting from the lognormali ty assumption into our model since we a xe interested in 
getting results, which are comparable to those of the ML-estimations. 
The resulting additional restrictions concer ning the standardized higher moments of / , are given in Ap
pendix II. 
18To get consistent but inefficient GMM-estimates of the parameter vector in a first step the identiy 
matrix is used E IS the weighting matrix in the quadratic form. In the second step we emplo yed the Newey 
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based on three over-identifying restrictions is under the null-hypothesis of a correct model 
specification asymptotically x2-distributed with three degrees of freedom. 

Table 4 presents the results of the GMM-estimation. Several points are noteworthy. 
The parameter values are very close to the estimates obtained from the ML-estimation, 
the only exception being the äv-parameter. For four stocks (BAS, BAY, HFA, MMW) 
the estimates of this paramter are zero indicating as noted by Lamoureux and Lastrapes 
(1994), that the GMM estimator for öv may contain little information about the true value 
and should not be regarded as an evidence against the model19. The estimated Standard 
errors of the parameters are noteably larger than the Standard errors obtained from the 
ML-estimation. This is especially true for the CT„ parameter and the fh2 parameter. This 
result is not surprising given the fact that the ML-estimation rests on the entire information 
about the assumed shape of the unconditional joint distribution of dP and V, whereas the 
GMM procedure is based only on certain aspects of the distributional assumption in form 
of the selected moment restrictions. Therefore less a priori information is taken into 
account by the GMM estimation and it is therefore less efficient. 

The result of the J-test is given in columns seven and eight of table 4. Choosing a level 
of significance of 5-percent for five out of the fifteen stocks contained in our study the null 
hypothesis of a correct model specification has to be rejected. We conclude from this that 
the bivariate mixture model in the specification used in this study is able to capture the 
distributional properties of price change and trading volume series from the German stock 
market only to a limited extent. It should however be noted that the obtained result is 
only valid given the selected set of unconditional moments in (9). Choosing another set of 
moment restrictions would shift the scope of the test away from those aspects of the model 
that we are interested in (kurtosis of the price changes, skewness of the trading volume 
and correlation between volatility of price changes and volume). Among other things 
this would imply the incorporation of moments of a growing order. Since the infiuence 
of extreme data points and outliers on higher order moments can be very drastic, the 
thus obtained results would have to be interpreted with great caution. That it is not 
a sensible strategy to incorporate all possible moment restrictions is also the result of 
an extensive Monte Carlo study conducted by Andersen and S0rensen (1994). For an 
univariate stochastic volatility model the authors are able to show that there exits a trade 
off between the number of moments incorporated and the quality of the objective function 
used in the GMM procedure for estimation and testing purposes20. The optimal number 
and the optimal set of moment restrictions for the bivariate mixture model still has to be 
developed, but this is left for future work. 

and West (1987) matrix as a consistent estimate of the optimal weighting ma trix. To determine the 
bandwidth parameter we foll owed Andrews (1991), who proposed a data dependent choice procedure 
based on univ ariate AR(1) estimations for each moment restriction seperately. 
19 In a small Monte Carlo study whose design and results is not reproduced here w e were able to show that 
whenever t he true value of c r„ is much smaller than the value of ßv a considerable share of ä ,_,- estimates 
exhibits a value of zero, eve n if the true value is indeed positiv. This Simulation result is reflected in the 
fact that for the four stocks with a zero GMM-estimate of ä„ the magnitude of ML-estima tes of ö v is small 
relative to the value of ML-estimat es of /i„. 
20In our study we als o used several other sets of moment restrictions. Our results indicate that higher 
order moments (e.g. fourth moment of V, or higher cross product s of dP, and V, ) have a strong tendency 
to dominate the results obtained. 
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4.3. Two Univariate Mixture Models 

In the BMM the conditional marginal distributions of price changes and trading volume 
are given by two normal distributions respectively. The means and variances of these dis
tributions are directly proportional to the same mixing variable. Therefore price changes 
and volume depend in a Symmetrie fashion on the information arrival rate. As noted 
by Richardson and Smith (1994) one possible interpretation of the shortcomings of the 
bivariate mixture model may be that the Symmetrie dependence of the two observable 
variables on the same mixing variable is not the correct specification even if a mixture 
model is adequate. Thus one way to analyze the reasons for the misspecification is to look 
at the unconditional marginal distributions of dPt and Vt separately. From (1) it follows 
that these distributions can be written as 

fäp(dPt) = J fdNP(dPt | It) • 0)dlt 

r (10) 
fv(VI) = fy {Vt j I t) • 9)dlt . 

This specification allows us to separately test the adequaey of the normal mixture hypoth
esis for price changes and trading volume. Furthermore, it should be noted that both price 
changes and trading volume are still linked to the same mixing variable It. But estimating 
the two mixture models separately allows us to abstract from the assumption of a Sym
metrie impact of It on dPt and Vt. Accdrding to the BMM the estimated values for the 
parameter 9 measuring the standardized Variation in the daily number of price relevant 
informations should not differ systematically in the two univariate models. 

Again using the lognormality assumption for the mixing variable (i.e. It ~ LN(0)) as 
in the bivariate specification above, the log-likelihood function for the price changes has 
the following form: 

T 
logL(ßdp,ädp,0dp\dPt) = ^log[/dP(dPt | •)], (11) 

t=l 

where 

fäp(dP, | •) = J ^27r<7jp exj){0dp • z — > 

(dPt - fiJp • exp{Qdp • z - 0%/2}) 
x exp 2ä2dp exp{9ip z - Q%/2} 

(2T) ^exp{-y} dz. 

For the trading volume Vt the corresponding log-likelihood function logL(ßv,av,9v\Vt) is 
of the same form21 as (11). The strueture of the likelihood problem remains the same 
as compared to the bivariate form of (8) and therefore the same remarks concerning the 
estimation procedure apply here as well. 

The results of the univariate mixture models are summarized in table 5. Compared to 
the results of the bivariate model the parameter estimates of ßdp,ädp, fiv, are almost 
21 For the parameter 9 we introduce the subscripts (v) and (dp) respect ively in order to differentiate between 
the estimation results for the two univariate mod els. 
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identical. This is not the case for the parameter 9. The univariate specification reveals 
quite a distinct effect of It on the dPt and Vt. Since the estimated values of 9dp are 
significantly larger for all stocks than the estimated values of Qv it seems that far more 
Variation in the mixing varibale is needed to explain the stochastic behavior of price 
changes than that of trading volume. This can be interpreted as a further hint for a 
possible misspecification of the BMM. Furthermore in the estimation of the bivariate 
model the Variation of trading volume dominates the estimation of 9 as can be seen from 
the fact that 9V in the marginal model is in contrast to 6dp very close to 6 in the bivariate 
model. 

In order to investigate the adequacy of the univariate specifications we calculated the 
implied unconditional moments resulting from the ML-estimates of the parameters of the 
univariate models. Comparing the sample moments with these estimated unconditional 
moments (see table 6) reveals that with respect to the excess kurtosis in dPt the univariate 
specification leads to significantly better predictions as compared to the bivariate model for 
all 15 stocks. The reason for this improvement stems from the fact that the estimated 9dp 

values almost solely determines the excess kurtosis of dPt through K(dP) RS 3 [exp(0^p) — 1] 
(as long as ßdp « 0). For the BAY stock, for example the value of the 9dp is more than 
twice as high as compared to the bivariate estimate of 9. This leads to an increase in 
the explained excess kurtosis of dPt from 0.565 to 3.591 which is sufficiently close to the 
sample value of 3.730. As shown in table 6, the estimated unconditional moments of the 
trading volume do not differ substantially from those of the bivariate case. This is due 
to the fact, that the estimates for 9V are very close to the estimates of 9 in the bivariate 
model. 

As in the bivariate case we applied Hansen's J-test to test the mixture of distribution 
model along with the lognormality assumption for It on the two univariate models. For 
this purpose we selected the following set of moment restrictions for dPt: 

For the trading volume the analogous set of moment restrictions apply. 

Given the three unknown parameters and the four moments restrictions, we have one 
over-identifying restriction to be tested. Under the null hypothesis of a correct model 
specification, the test statistic asymptotically follows a chi-square distribution with one 
degree of freedom. The resulting p-values for the tests are reproduced in table 5, where 
it can be seen that in the univariate case the model specification for the price changes 
dPt cannot be rejected since the p-values lie well above the critical 5 precent level for all 
stocks in our sample. So one can conclude that the univariate normal mixture model fits 
the observed distributional characteristics of price changes reasonably well. With respect 
to trading volume we have to reject the null hypothesis of a correct univariate specification 
for the same stocks (BAS, DGS, BAY and HFA) as we have done for the bivariate mixture 

E [dPt] ßdp 
+ ßlprhi 

ZßdPä2d pm2 + ß3dp(ml + 3m j) 
3*2,(1 + rh2) + 6 ß2dpö2Jp(fhl + 3 fh2 + m2) 
+ AdP(6(l + ™a) + (1 + rö2)6 - 3 - 4(1 + m2)3) 

E[(dP, - ßdp)2] 
E[(dP, - ßipf\ 
E[(dP, - £J4] 

(12) 
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model itself. Together with the fact that the p-values for volume are substantially lower 
than for price changes this indicates that the BMM is rejected because of a specification 
error in the conditional marginal distribution of volume. 

Since the BMM is developed from a simple Walrasian type of equilibrium model, in 
which trading is only caused by the arrival of new information, our results with respect to 
the bivariate model as well as to the univariate specifications cast doubt on the validity of 
this theoretical framework. From the empirical point of view at least another conditional 
marginal distribution for trading volume is necessary. Recently, Andersen (1994) devel
oped a modified version of the bivariate mixture model using a theoretical microstructure 
framework with liquidity trading and asymmetric informations. His model employs a 
Poisson distribution for the trading volume conditional on the daily rate of information 
instead of a normal distribution we are using. Furthermore, it explicitly considers a part 
of the trading volume which is not related to the daily number of informational events. 
This part of the demand for trade is caused by unique liquidity desires. The empirical 
results concering this modified version of the BMM does not indicate any misspecification 
using US stock market data. Thus our findings for the German stock market seem to 
be consistent with the results of Andersen (1994). But from a theoretical point of view 
it is not clear whether the modified version of Andersen's mixture model is adequate for 
the German stock market which operates without a market-maker system, an essential 
ingredient of Andersen's microstructure framework. This question is left for future work. 

The findings of this section can be summarized as follows: We found evidence in favor of 
the hypothesis that the distributional characteristics of price changes can be captured by 
a univariate normal mixture model. Furthermore there is evidence against the hypothesis 
that price changes and volume are linked to the mixing variable It in a Symmetrie fashion 
as implied by the BMM. 

5. Empirical Results Concerning the Time Series Properites of the 

BMM 

So far the main focus has been on the distributional aspects of the BMM. An issue of at 
least equal importance is the time series property of the mixture model. An important 
question in this context is whether the observed time series behavior of the data is due 
to the corresponding time series properties of the latent mixture variable. We especially 
want to investigate whether a positive serial correlation in the daily number of information 
is indeed the origin of the so called ARCH-effects in the price change series. As can be 
seen from relation (5), this explanation is consistent with the theoretical implications of 
the bivariate mixture model. 
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Empirical evidence on this issue can be gathered employing the following simple regres-
sion model: 

20 
dPf = a + 7 It + £ ßi • d Pl, + e, , (13) 

i=l 

where the squared price changes serve as a measure for the price change variance on 
day t. This approach is adopted from the work of Engle (1982) where (13) with the 
parameter 7 set to zero is used to conduct a test on the existence of persistence in the 
price change volatility. Persistence in the price change volatility is said to exist if the 
the /3-coefficients are significantly different from zero. The inclusion of the daily number 
of information as an explanatory variable in our setting should render the /3-coefficients 
statistically insignificant if the serial correlation in the latent mixing variable It is the only 
source of the ARCH-effects. A straightforward application of the regression model (13) to 
the data is impossible due to the unobservable nature of It. While there have been several 
proposals for adequate proxy variables in the literature recently the results are not quite 
unanimous. Lamoureux and Lastrapes (1990) and Bauer et al. (1994) for example were 
able to show that after Controlling for the contemporaneous trading volume the volatility 
persistence is removed from the price change data. Locke and Sayers (1993) report a 
significant variance persistence even after Controlling for the number of daily information 
using different proxy variables like trading volume, number of recorded transactions and 
quoted number of price changes. 

We persued a somewhat different approach in our study and estimated the series of 
the unobservable variable It exploiting both the information contained in the price change 
series as well as the trading volume series. The estimate of the It series is based on the 
joint conditional distribution of dPt and Vt given the value of the latent mixing variable 
for day t 

f'dPiVi^PtiVt I It ) ßdp) &dp) ®v) I | It J ßdpl&dp) ' f {Vt { I t > ßvi&v) ) (^) 

where fN(-) again denotes the density of a normal distribution and It is the normalized 
mixture variable It/n. Substitution of the parameters (ßdp, ßv,äip,av) by their correspond-
ing ML-estimates22 based on the unconditional joint distribution of dPt and V, as given in 
section 4.1, the following log-likelihood function results: 

logL(It | dPt,Vt, ßdp,ßv,äJp,äv) = - log(27r) - i 
.2 - (dP, -ßJpIt, log (adpI,) + + 

+ log(g;/t) + {Vt jJt? (15) 

Estimation of the information arrival rate for each day separately is carried out by max-
imizing (15) with respect to It. Set up in this paxticular way, the unknown value of the 
mixing variable is treated as a parameter to be estimated and the estimate of It is the value 
with the highest probability given the pair of observations (dPt, Vt) and the ML-estimates 

220ne could also use the GMM estimates of the parameters, since for a correct model specifi cation both 
ML and GMM procedures a re consistent. But since the finite sample properties of the ML estimates seem 
to be better than of the GM M estimates, we based the estimation of It on the forrner ones. 
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(ßdpi ßvi&dpi&v)- Hence the estimation of the value of It at a single day t is based on two 
observations. Repeating this procedure for all pairs of (dPt,Vt) contained in our sample 
gives us the entire series 

This procedure of extracting the latent mixture variable is similar to that proposed by 
Lamoureux and Lastrapes (1994), who investigate the sources of the ARCH effects in a 
bivariate mixture framework without any restrictions concerning the joint distribution of 
price changes and volume conditional on the mixing variable. Since ML-estimation is not 
feasible without distributional assumptions, Lamoureux and Lastrapes (1994) define the 
estimate of It as that value, which sets the observed dPf and Vt as close as possible to 
their corresponding conditional means E[dP?\It] and E[Vt\It] respectively, resulting from 
the BMM. As noted by Lamoureux and Lastrapes (1994), even if for the estimation of a 
single It only one pair of observations (dPt,Vt) is used, the total sample information is 
regarded by using the ML estimates of the parameters. In addition to that one can expect 
that if the model specification is correct the estimated series of mixing variable maps the 
time series behavior and the distributional pattern of the true latent variable, even if the 
errors in the estimates of the single 7t's may be large. 

Naturally the question about the precision of our estimated It series arises. Using a 
Monte Carlo framework we tried to gain at least a small insight into this subject. Our 
setting is as follows: using an AR(l)-process for the logarithms of the mixing variable 
together with a normally distributed error term we generated an observable information 
axrival series according to 

log/t = S0 + log/t_! + 52vt , (16) 

where vt ~ iidiV(0,1). This is the Standard lognormal stochastic volatility process as 
used e.g. by Taylor (1994) and Andersen (1994). Now the obtained series is used as an 
input into the BMM (1) giving us T pairs of generated (dPt, Vt) values which can be used 
to obtain an estimated It series according to our procedure discussed above. Comparing 
the thus obtained estimated series with the now known It series allows us to make at 
least a qualitative statement about our proceeding. Note that the assumptions about the 
data generating process of It together with the bivariate mixture framework is consistent 
with the observed persistence in the price change volatility and with the lognormality 
assumption for the unconditional distribution of the mixing variable used for the ML and 
the GMM-estimation in section 4. 

To keep the paper short, we only present one typical time series plot of the estimated 
series and the the true series of the mixing variable obtained from our Monte Carlo study23 

in figure 3. The estimated series maps the structure of the true series very well, even if 
the former exhibits more volatility than the latter. We therefore argue that an estimated 
series for the daily number of information can be regarded as a reasonable proxy variable. 

Applying the discussed pointwise estimation procedure we extracted an estimated It 

series for every single stock in our sample and estimated the regression (13) substituting 
23For the Monte Carlo s tudy we used a sample size of 1100 and following parameter values: ßdp = 0, 
(JdP = 0.01, = 0.0003, erv = 0.0014. For th e data generating process of I, in equation (16) we set 
50 = 0.25, Si = 0.95, 62 = 0.196, which leads to the following values of identifiable parameters in the 
BMM: ßdp = 0, ädp = 0.013, fiv = 0.054, e r„ = 0.018 and 9 = 0.62. 

14 



It by the extracted series. As a test of insignificance of variance persistence we used the 
F-test of the joint hypotheses that all coefficient other than a and 7 are zero. Under the 
Null hypotheses the test statistik is F-distributed with (20, T — 22) degrees of freedom. 
The results are reported in table 7. For every Single stock the coefficient 7 of the extracted 
series is highly significant, but it appears insufücient in explaining the ARCH-effects in 
the price change series. In fact, for all stocks in which ARCH effects are evident the 
persistence parameters ßt,... ,ß20 remain statistically significant after Controlling for the 
extracted series of the mixing variable of the BMM. Thus even if the process of daily 
number of information, which is extracted exploiting the information from the volume 
series has explantory power concerning the daily volatility, it can not explain the observed 
dynamic structure of volatility. 

6. Conlusions 

The aim of this study was to evaluate the ability of the bivariate mixture model- (BMM) 
in the Tauchen-Pitts-Harris specifiation to capture the well known stylized facts in price 
change and trading volume data for the German stock market. While the BMM is in 
principle able to explain the most importarit distributional patterns (e.g. the excess kur-
tosis in the price changes or the positive skewness in the trading volume) a comparison 
between the implied unconditional moments obtained form a ML-estimation and the corre-
sponding sample moments reveal non negligible shortcommings in the model specification. 
This finding is confirmed by the tests we conducted based on the generalized method of 
moments (GMM). Using univariate mixture models for price changes and trading volume 
separately we were able to show that the impact of the latent information arrival rate on 
the two variables is far from being Symmetrie as implied by the BMM. 

Of at least equal importance are the dynamic properties of the BMM. The key ques-
tion in this context is whether the ARCH-effects in the price change series can soley be 
contributed to the positive serial correlation in the information arrival process. Due to 
the latent character of this process a formal test of this issue has to be based on a proxy 
variable for the information arrival. We developed a new procedure for obtaining a suit-
able proxy variable based on the ML-technique. It allows us to estimate the information 
arrival rate for each trading day separately given the price change and trading volume 
and ML-estimates of the parameters of the BMM. Our results suggest that although the 
proxy for the information arrival process has some explanatory power concerning the daily 
volatility in the price change series, there remains to be a considerable amount of dynamics 
unexplained by the BMM. 
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Appendix I: List of the companies in the sample 

DAX firms 

Symbol Firms füll name Symbol Firms füll name Symbol Firms füll name 

BAS BASF DBC Deutsche Babcock LIN Linde 

BAY Bayer DGS Degussa MAN MAN 

BMW BMW HEN Henkel MET Metallgesellschaft 

CON Continental HFA Hoechst MMW Mannesmann 

DAI Daimler-Benz KAR Karstadt PRS Preussag 

Appendix II: Implied estimates of the unconditional moments 

Since It is assumed to be lognormally distributed, the following standardized moments 

result: 

fh2 = ~T = exp(02) - 1 

~ _ m3 ~ 3 , Q — 2 7713 = — = m2 + 6m2 

ni4 = ^ = (1 - m2)6 + 6(1 + m2) - 3 - 4(1 + m2)3 . 

Using the implied estimates of these moments it is possible to calculate: 

E (dP) = ßdp 

Vax(dP) = ä2dp + ß2dpfh2 

(,p, _ 3ßdp ä2pm2 + ßlpmz 

<[ > (<j2p + ßdp "^2)3/2 

„X 3ä4p(l+m2)+ 6A2pä2p(m3+ m2)+/idP^4 0 

The moments of the unconditional marginal distribution of are calculated in an analo-

gous way. 

For the unconditional correlation between squared price changes and volume the follow

ing formula applies: 

/ ,p2 yx _ ßvVdp™* + fivßdP(™3 + 
^ ' (Var(JP2)Var(F))1/2 ' 

with: 

Var{dP2) = äj (3m2 + 2) + ß%^dp(^i + 16m2 -I- 4) + ß\p(rhA + 3m3 -(- 6fh2 + (m2 + l)2 +1). 
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Table 1: Empirical properties of the Volume and price change data 

Stocks 
Price changes Volume Correlation 

Stocks 
KdP Kdp SKdP Qdps(20) Sv p(dP?,V() 

BAS 5.738 1503.4 1535.3 39.3 5.342 5213.2 0.2182*** 

BMW 7.528 2601.9 2620.2 21.2 3.767 2606.6 0.2636*** 

CON 2.511 289.5 293.0 58.9 11.477 24193.0 0.1137*** 

DAI 3.882 691.5 691.9 141.8 1.225 275.4 0.2413*** 

DBC 9.632 4255.6 4269.7 65.6 7.670 10795.5 0.1584*** 

DGS 3.314 502.9 506.3 74.2 2.467 1114.3 0.1905*** 

BAY 3.730 638.7 640.1 50.4 7.394 10041.8 0.2397*** 

HFA 4.157 794.8 797.2 51.9 4.928 4463.9 0.2089*** 

MAN 8.746 3509.3 3609.5 36.3 2.205 892.5 0.1939*** 

HEN 10.949 5505.2 5695.9 40.6 2.873 1515.8 0.1500*** 

KAR 8.731 3493.7 3562.2 67.9 2.723 1359.3 0.1902*** 

LIN 10.969 5519.4 5592.9 42.0 4.246 3308.4 0.1691"** 

MMW 22.017 22218.1 22219.7 171.1 3.228 21915.3 0.2025*** 

MET 7.625 2660.1 2687.6 62.2 3.799 2640.9 0.3356*** 

PRS 7.996 2930.4 3080.5 12.5 4.958 4507.6 0.1571*** 

* * * significant at the level of 1 percent 
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Table 2: Maximum likelihood estimates of the 
parameters of the bivariate normal mixture model. 

Standard errors are given in parentheses. 

Stocks ßdp &dp flv ffv 9 LL 
BAS 0.0000 0.0129 0.3808 0.0576 0.4978 3525.8 

(0.0004) (0.0003) (0.0049) (0.0028) (0.0050) 
BMW 0.0003 0.0147 0.1232 0.0298 0.6145 4548.0 

(0.0004) (0.0002) (0.0023) (0.0045) (0.0103) 
CON -0.0001 0.0189 0.1210 0.0596 0.7205 3920.6 

(0.0005) (0.0005) (0.0031) (0.0023) (0.0123) 
DAI 0.0000 0.0144 0.6850 0.1447 0.4053 2924.6 

(0.0004) (0.0003) (0.0096) (0.0116) (0.0143) 
DBC 0.0000 0.0196 0.0626 0.0141 0.6518 5001.3 

(0.0006) (0.0005) (0.0011) (0.0008) (0.0093) 
DGS 0.0000 0.0164 0.0592 0.0149 0.5869 5219.1 

(0.0005) (0.0004) (0.0012) (0.0009) (0.0147) 
BAY 0.0001 0.0129 0.5653 0.0732 0.4155 3262.8 

(0.0004) (0.0003) (0.0065) (0.0045) (0.0040) 
HFA 0.0001 0.0142 0.3274 0.0621 0.5302 3612.1 

(0.0004) (0.0003) (0.0051) (0.0036) (0.0075) 
MAN -0.0001 0.0154 0.1118 0.0211 0.4938 4701.9 

(0.0005) (0.0004) (0.0016) (0.0015) (0.0089) 
HEN 0.0001 0.0118 0.0463 0.0114 0.5453 5908.5 

(0.0004) (0.0003) (0.0008) (0.0008) (0.0127) 
KAR -0.0001 0.0140 0.0609 0.0128 0.5452 5458.6 

(0.0004) (0.0003) (0.0010) (0.0008) (0.0102) 
LIN 0.0000 0.0116 0.0404 0.0102 0.6178 6042.9 

(0.0003) (0.0003) (0.0009) (0.0006) (0.0193) 
MMW 0.0001 0.0160 0.3806 0.0653 0.5167 3391.6 

(0.0005) (0.0004) (0.0055) (0.0039) (0.0092) 
MET -0.0010 0.0229 0.0627 0.0250 0.8907 4674.2 

(0.0007) (0.0006) (0.0017) (0.0010) (0.0204) 
PRS 0.0001 0.0167 0.1268 0.0333 0.6045 4369.5 

(0.0005) (0.0004) (0.0024) (0.0018) (0.0109) 
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Table 3: Implied estimates of the unconditional moments of 
price changes and trading volume resulting from the 

ML estimation of the bivariate normal mixture model. 
Sample values are given in parentheses. 

Stocks 
Price changes Volume Correlation 

Stocks 
ß(dP) a(dP) K{dP) KV) a(V) <(V) p{dP\ V) 

BAS 0.0000 0.0129 0.8435 0.3808 0.2099 1.6623 0.3023 
(0.0000) (0.0141) (5.738) (0.4076) (0.3288) (5.342) (0.2182) 

BMW 0.0003 0.0147 1.3780 0.1231 0.0885 2.1731 0.3473 
(0.0003) (0.0158) (7.528) (0.1255) (0.1037) (3.767) (0.2636) 

CON -0.0001 0.0188 2.0418 0.1209 0.1162 2.4792 0.3522 
(-0.0001) (0.0186) (2.511) (0.1310) (0.1927) (11.47) (0.1137) 

DAI -0.0000 0.0144 0.5354 0.6850 0.3235 1.1876 0.2373 -
(-0.0001) (0.0153) (3.882) (0.6846) (0.3138) (1.225) (0.2413) 

DBC 0.0000 0.0195 1.5880 0.0625 0.0476 2.4203 0.3668 
(0.0001) (0.0201) (9.632) (0.0627) (0.0573) (7.670) (0.1584) 

DGS 0.0000 0.0164 1.2338 0.0591 0.0407 2.0036 0.3319 
(0.0000) (0.0165) (3.314) (0.0598) (0.0448) (2.467) (0.1905) 

BAY 0.0001 0.0129 0.5654 0.5653 0.2561 1.3200 0.2597 
(0.0001) (0.0138) (3.730) (0.5895) (0.4102) (7.394) (0.2397) 

HFA 0.0001 0.0142 0.9738 0.3273 0.1965 1.7798 0.3134 
(0.0001) (0.0151) (4.157) (0.3378) (0.2825) (4.928) (0.2089) 

MAN -0.0000 0.0154 0.8282 0.1118 0.0624 1.6044 0.2940 
(-0.0001) (0.0164) (8.746) (0.1145) (0.0705) (2.205) (0.1939) 

HEN 0.0001 0.0118 1.0391 0.0462 0.0295 1.7890 0.3114 
(0.0001) (0.0122) (10.94) (0.0468) (0.0327) (2.873) (0.1500) 

KAR -0.0001 0.0139 1.0384 0.0608 0.0380 1.8329 0.3179 
(-0.0001) (0.0144) (8.731) (0.0613) (0.0424) (2.723) (0.1902) 

LIN 0.0000 0.0115 1.3941 0.0404 0.0293 2.1785 0.3469 
(0.0000) (0.0122) (10.96) (0.0404) (0.0330) (4.246) (0.1691) 

MMW 0.0001 0.0160 0.9182 0.3805 0.2204 1.7324 0.3093 
(0.0001) (0.0180) (22.01) (0.3796) (0.2387) (3.228) (0.2025) 

MET -0.0009 0.0229 3.6807 0.0627 0.0733 4.2108 0.4372 
(-0.0001) (0.0232) (7.625) (0.0593) (0.0661) (3.799) (0.3356) 

PRS 0.0001 0.0166 1.3232 0.1268 0.0905 2.0883 0.3387 
(0.0001) (0.0170) (7.996) (0.1278) (0.1080) (4.958) (0.1571) 
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Table 4: GMM estimates of the parameters of the bivariate nnrmnl 
mixture model. Standard errors are given in parentheses. 

X2-statistics and p-values of the Hansen's J-test. 

Stocks ßdp 0"dp P>V cr„ »12 X(3> p-value S-opta) 

BAS 0.0003 
(0.0004) 

0.0128 
(0.0006) 

0.3810 
(0.0116) 

0.0000 
(—) 

0.3513 
(0.1112) 

8.0943 0.0441 11 

BMW 0.0004 
(0.0005) 

0.0143 
(0.0006) 

0.1226 
(0.0053) 

0.0094 
(0.0674) 

0.5989 
(0.1291) 

7.0860 0.0692 9 

CON 0.0000 
(0.0007) 

0.0179 
(0.0005) 

0.1265 
(0.0051) 

0.1073 
(0.0118) 

0.4687 
(0.1091) 

4.7098 0.1943 1 

DAI 0.0000 
(0.0005) 

0.0140 
(0.0006) 

0.6841 
(0.0169) 

0.0482 
(0.0965) 

0.2134 
(0.0292) 

6.1071 0.1065 10 

DBC -0.0002 
(0.0006) 

0.0184 
(0.0006) 

0.0611 
(0.0017) 

0.0246 
(0.0078) 

0.3898 
(0.1454) 

6.3329 0.0965 1 

DGS 0.0002 
(0.0005) 

0.0151 
(0.0005) 

0.0593 
(0.0019) 

0.0120 
(0.0042) 

0.5044 
(0.0536) 

12.738 0.0052 4 

BAY 0.0002 
(0.0004) 

0.0125 
(0.0004) 

0.5692 
(0.0127) 

0.0000 
(—) 

0.2985 
(0.1150) 

10.857 0.0125 2 

HFA 0.0001 
(0.0004) 

0.0139 
(0.0005) 

0.3227 
(0.0088) 

0.0000 
(—) 

0.4552 
(0.0704) 

13.354 0.0039 2 

MAN 0.0000 
(0.0005) 

0.0157 
(0.0006) 

0.1133 
(0.0029) 

0.0084 
(0.0175) 

0.3487 
(0.0374) 

3.7822 0.2859 4 

HEN 0.0002 
(0.0004) 

0.0113 
(0.0004) 

0.0465 
(0.0012) 

0.0087 
(0.0071) 

0.4069 
(0.0872) 

3.6554 0.3011 3 

KAR 0.0000 
(0.0004) 

0.0136 
(0.0004) 

0.0598 
(0.0016) 

0.0149 
(0.0047) 

0.3309 
(0.0623) 

9.9428 0.0191 3 

LIN 0.0000 
(0.0004) 

0.0111 
(0.0004) 

0.0392 
(0.0012) 

0.0123 
(0.0042) 

0.4096 
(0.0916) 

5.9961 0.1112 5 

MMW 0.0002 
(0.0005) 

0.0156 
(0.0008) 

0.3738 
(0.0107) 

0.0000 
(—) 

0.3151 
(0.0882) 

4.8008 0.1869 10 

MET -0.0008 
(0.0007) 

0.0215 
(0.0010) 

0.0577 
(0.0275) 

0.0294 
(0.0067) 

0.8607 
(0.1997) 

4.4803 0.2141 3 

PRS 0.0003 
(0.0005) 

0.0159 
(0.0006) 

0.1254 
(0.0049) 

0.0421 
(0.0170) 

0.4355 
(0.1151) 

3.9435 0.2676 6 

a) used bandwidth parameter for the Newey and West (1987 ) matrix calculated by 
the data dependent choice procedure o f Andrews (1991) based on univ ariate AR(1) 
estimations for each moment restriction. 
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Table 5: Maximum likelihood estimates of the unconditional marginal 
distributions of price changes and trading volume and the p-values 

of the Hansen's J-test. Standard errors are given in parentheses. 

Stocks 
Price changes Volume 

Stocks 
ßdp &dp ddp LL p-value fj>v Öv ev LL p-value 

BAS 0.0000 
(0.0004) 

0.0138 
(0.0005) 

0.9620 
(0.0692) 

3214.7 0.2214 0.3838 
(0.0050) 

0.0581 
(0.0028) 

0.4962 
(0.0063) 

276.7 0.0313 

BMW 0.0003 
(0.0005) 

0.0154 
(0.0006) 

0.9744 
(0.0812) 

3119.3 0.3567 0.1235 
(0.0031) 

0.0290 
(0.0020) 

0.6155 
(0.0145) 

1386.3 0.0562 

CON -0.0002 
(0.0006) 

0.0187 
(0.0006) 

0.8401 
(0.0725) 

2874.9 0.5162 0.1202 
(0.0032) 

0.0567 
(0.0030) 

0.7260 
(0.0214) 

1037.2 0.3323 

DAI 0.0000 
(0.0005) 

0.0153 
(0.0005) 

0.9280 
(0.0703) 

3110.4 0.8741 0.6847 
(0.0094) 

0.1783 
(0.0133) 

0.3601 
(0.0218) 

-205.8 0.3298 

DBC 0.0000 
(0.0006) 

0.0195 
(0.0007) 

0.8542 
(0.0863) 

2826.4 0.6978 0.0600 
(0.0013) 

0.0148 
(0.0010) 

0.5806 
(0.0134) 

2131.3 0.3199 

DGS 0.0000 
(0.0005) 

0.0165 
(0.0006) 

0.8807 
(0.0778) 

3010.6 0.5858 0.0595 
(0.0026) 

0.0138 
(0.0006) 

0.5944 
(0.0318) 

2200.0 0.0222 

BAY 0.0001 
(0.0004) 

0.0127 
(0.0005) 

0.8871 
(0.0685) 

3228.9 0.6144 0.5654 
(0.0074) 

0.0749 
(0.0050) 

0.4150 
(0.0063) 

1.8 0.0062 

HFA 0.0001 
(0.0004) 

0.0150 
(0.0005) 

0.9724 
(0.0692) 

3147.1 0.5895 0.3284 
(0.0050) 

0.0624 
(0.0028) 

0.5281 
(0.0063) 

425.6 0.0004 

MAN -0.0001 
(0.0005) 

0.0160 
(0.0006) 

0.8608 
(0.0808) 

3042.6 0.3265 0.1117 
(0.0017) 

0.0202 
(0.0012) 

0.4929 
(0.0081) 

1629.0 0.0820 

HEN 0.0001 
(0.0004) 

0.0118 
(0.0005) 

0.8750 
(0.0879) 

3387.1 0.1978 0.0461 
(0.0008) 

0.0094 
(0.0005) 

0.5587 
(0.0101) 

2538.3 0.3035 

KAR -0.0001 
(0.0004) 

0.0140 
(0.0005) 

0.7653 
(0.0790) 

3171.1 0.4288 0.0611 
(0.0013) 

0.0125 
(0.0006) 

0.5466 
(0.0125) 

2256.2 0.0681 

LIN 0.0000 
(0.0004) 

0.0118 
(0.0005) 

0.8898 
(0.0871) 

3383.1 0.4569 0.0394 
(0.0007) 

0.0104 
(0.0005) 

0.5726 
(0.0108) 

2617.0 0.1118 

MMW 0.0001 
(0.0005) 

0.0167 
(0.0007) 

0.9098 
(0.0953) 

3007.2 0.9671 0.3705 
(0.0063) 

0.0626 
(0.0044) 

0.4721 
(0.0105) 

349.9 0.1503 

MET -0.0009 
(0.0007) 

0.0226 
(0.0009) 

1.0069 
(0.0762) 

2693.4 0.8182 0.0628 
(0.0023) 

0.0244 
(0.0009) 

0.8868 
(0.0340) 

1915.3 0.0718 

PRS 0.0001 
(0.0005) 

0.0166 
(0.0006) 

0.8894 
(0.0752) 

3005.8 0.1431 0.1266 
(0.0031) 

0.0305 
(0.0014) 

0.6077 
(0.0146) 

1356.7 0.1540 
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Table 6: Imolied estimates of the unconditional moments of 
price changes and trading volume resulting from the 

ML estimation of the univariate normal mixture models. 
Sample values are given in parentheses. 

Stocks 
Price changes Volume 

Stocks 
ß(dP) a(dp) K{dP) ß(V) a(V) W) 

BAS 0.0000 
(0.0000) 

0.0138 
(0.0141) 

4.5698 
(5.738) 

0.3838 
(0.4076) 

0.2109 
(0.3288) 

1.6547 
(5.342) 

BMW 0.0003 
(0.0003) 

0.0154 
(0.0158) 

4.7733 
(7.528) 

0.1235 
(0.1255) 

0.0886 
(0.1037) 

2.1879 
(3.767) 

CON -0.0002 
(-0.0001) 

0.0187 
(0.0186) 

3.0783 
(2.511) 

0.1202 
(0.1310) 

0.1150 
(0.1927) 

2.5556 
(11.47) 

DAI -0.0000 
(-0.0001) 

0.0153 
(0.0153) 

4.0979 
(3.882) 

0.6847 
(0.6846) 

0.3109 
(0.3138) 

0.9428 
(1.225) 

DBC 0.0000 
(0.0001) 

0.0195 
(0.0201) 

3.2231 
(9.632) 

0.0600 
(0.0627) 

0.0407 
(0.0573) 

1.9751 
(7.670) 

DGS 0.0000 
(0.0000) 

0.0165 
(0.0165) 

3.5159 
(3.314) 

0.0595 
(0.0598) 

0.0411 
(0.0448) 

2.0702 
(2.467) 

BAY 0.0001 
(0.0001) 

0.0137 
(0.0138) 

3.5914 
(3.730) 

0.5654 
(0.5895) 

0.2563 
(0.4102) 

1.3150 
(7.394) 

HFA 0.0001 
(0.0001) 

0.0150 
(0.0151) 

4.7251 
(4.157) 

0.3284 
(0.3378) 

0.1964 
(0.2825) 

1.7688 
(4.928) 

MAN -0.0000 
(-0.0001) 

0.0160 
(0.0164) 

3.2948 
(8.746) 

0.1117 
(0.1145) 

0.0619 
(0.0705) 

1.6091 
(2.205) 

HEN 0.0001 
(0.0001) 

0.0118 
(0.0122) 

3.4528 
(10.94) 

0.0461 
(0.0468) 

0.0294 
(0.0327) 

1.9095 
(2.873) 

KAR -0.0001 
(-0.0001) 

0.0140 
(0.0144) 

2.3892 
(8.731) 

0.0611 
(0.0613) 

0.0381 
(0.0424) 

1.8458 
(2.723) 

LIN 0.0000 
(0.0000) 

0.0118 
(0.0122) 

3.6217 
(10.96) 

0.0394 
(0.0404) 

0.0266 
(0.0330) 

1.9092 
(4.246) 

MMW 0.0001 
(0.0001) 

0.0167 
(0.0180) 

3.8655 
(22.01) 

0.3705 
(0.3796) 

0.1954 
(0.2387) 

1.5260 
(3.228) 

MET -0.0009 
(-0.0001) 

0.0226 
(0.0232) 

5.3790 
(7.625) 

0.0628 
(0.0593) 

0.0728 
(0.0661) 

4.1844 
(3.799) 

PRS 0.0001 
(0.0001) 

0.0166 
(0.0170) 

3.6180 
(7.996) 

0.1266 
(0.1278) 

0.0899 
(0.1080) 

2.1349 
(4.958) 
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Table 7: The estimated coefficients of the extracted 
mixing variable and the F-statistic of the 
variance persistence test. Standard errors 
and probability values respectively are 
given in parentheses. 

7 F(20, T — 22) 
BAS 0.016 1.663 

(0.002) (0.034) 
BMW 0.028 0.567 

(0.002) (0.935) 
CON 0.009 2.631 

(0.001) (0.000) 
DAI 0.038 3.384 

(0.004) (0.000) 
DBC 0.030 3.277 

(0.004) (0.000) 
DGS 0.020 2.506 

(0.002) (0.000) 
BAY 0.016 1.930 

(0.002) (0.008) 
HFA 0.015 1.897 

(0.002) (0.009) 
MAN 0.033 1.187 

(0.004) (0.2569) 
HEN 0.017 1.647 

(0.002) (0.036) 
KAR 0.023 3.325 

(0.003) (0.000) 
LIN 0.015 1.666 

(0.002) (0.032) 
MMW 0.055 10.955 

(0.007) (0.000) 
MET 0.065 1.324 

(0.005) (0.154) 
PRS 0.020 0.789 

1 (0.003) (0.729) 
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Figure 1 

Theoretical and empirical distribution of price changes for BMW 
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Figure 2 

Theoretical and empirical distribution of trading volume for BMW 
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Figure 3 

Estimated and true mixing variable for a simulated data set 
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