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Abstract 

This paper models the competition of user networks as a continuous-time Markov pro-
cess. It presents a dynamic version of the Discrete Choice Analysis with state-dependent 
choice probabilities. Among other things, we show that the network competition can be 
characterized by the coexistence of lock-in regimes and a 'metastable' state - i.e. a State 
which is a probability maximum for a finite period of time. Then, unlike in the case of 
ergodicity or of simple lock-in scenarios, the networks can coexist for a considerable period 
of time, although the market is a natural monopoly. 
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1. Introduction 

Often the surplus from the use of a good depends positively on the total number 
of users of this good. In this case, the totality of users of this good constitute a 
user network. Obvious examples are communication systems such as fax systems 
and e-mail systems. Here a growth in the total number of users directly induces 
positive network effects, because then each user can contact and be contacted by 
more other users. Furthermore, most Information processing systems and a lot of 
consumer electronics systems are characterized by network effects as well. Clear 
examples are hardware-software systems such as Computer systems or home video 
systems (with the recorder as 'hardware' and the prerecorded tapes as 'Software'). 
Here the network effects are market-mediated: an increasing total number of users 
leads to a rising variety of Software, and this in turn results in a higher surplus 
of each user. A further example is (world-wide-) web browsers, where the network 
effects are due to the fact that, with a more populär browser, a user has access to 
more web servers. In the following, we present an analysis of the competition of two 
incompatible user networks, A and B, which focuses on those cases where the choice 
of a network is not binding and where each user can review and revise her decision 
whenever she wants. We have in mind a user who, for example, has installed on her 
PC the newest versions of two (partly) incompatible web browsers and whose choice 
varies from case to case depending on the concrete circumstances. Or imagine a 
user who owns both a console for video game cartridges and a PC with a CD drive, 
and who has to choose whether she next buys a video game or a PC game. 

In our model, the current network membership of a user is determined by her 
last (software) choice. Hence, a network's current share of the last choices of all 
users is its (standardized) network size and current market share. A user's decisions 
are modelled as a sequence of discrete choices which are, due to the network effects, 
state-dependent. We follow the Discrete Choice Approach in assuming that the 
basic willingness to pay, i.e. that part of the willingness to pay which does not stem 
from the network effects, is subject to exogenous shocks. These shocks are caused by 
new features of a network, for example a new video game or an innovative Software 
update, and/or by new information about the characteristics of a network. Hence, 
the individual choices are guided by state-dependent choice probabilities. In Order 
to take into account that the typical user does not make her decisions at discrete 
points in time but can revise her last choice whenever she wants, we treat time as 
a continuous variable, i.e. in modelling the evolution of the probability distribution 
of the network sizes, we follow a Master Equation Approach. 

Our analysis will show that depending, among other things, on the strength of 
the network effects and on the significance of the exogenous shocks, four qualitatively 
different cases can be distinguished. In the first case, the probability distribution 
converges to a unique continuous stationary distribution with positive probabilities 
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of all states; i.e. the stochastic processes are 'ergodic'. In the second case, one of the 
two boundary states 'all users are in network A' and 'all users are in network ß' is 
a unique probability mass 'absorbing' State. Hence, every realization of a stochastic 
process is sooner or later 'locked in' to the respective network. In the third case, 
both boundary states are absorbing states and are not accompanied by a 'metastable' 
state - i.e. a State which is a long-lived probability maximum. Here there is a strong 
tendency towards the realization of a monopoly, and it is a priori an open question 
as to which network will prevail. Finally, there is a fourth case where both lock-
in regimes coexist with a metastable state. Unlike the other three cases, this can 
only happen if it is taken into account that network effects typically decrease with 
increasing network size.1 This fourth case can explain why competing networks 
can coexist for a considerable period of time, although the market is a natural 
monopoly. 

Pioneering work in the modelling of user (or consumer) behavior as a stochastic 
process with state dependence is Smallwood/Conlisk (1979) and Arthur/Ermoliev/ 
Kaniovski (1987). There, however, discrete-time processes are analyzed.2 Further-
more, the nonlinear Polya processes popularized by Arthur et al. are restricted to 
the modelling of irreversible choices. Our continuous-time approach with endoge-
nous review rates follows the Master Equation Approach of Weidlich et al.; see 
for example Weidlich/Haag (1983) and Weidlich/Braun (1992).3 However, whereas 
usually the transition rates of the stochastic processes are specified by behavioral 
assumptions, we present a version of the Master Equation Approach in which they 
are microfounded along the lines of the Discrete Choice Approach [see Anderson/de 
Palma/Thisse (1992), especially pp. 257ff, and de Palma/Lefevre (1983), for the Dis­
crete Choice Approach]. In this version, the functional form of the transition rates 
can be derived from the distribution of the users' basic willingness to pay and from 
the specification of the 'network effect function', i.e. that part of the willingness to 
pay which is due to the existence of network effects. Against the background of the 
static Discrete Choice Analysis, the following approach can be seen as a dynamiza-
tion in continuous time. The second aim of the paper is to introduce the concept 
of metastability into economic analysis [for this concept, see van Kampen (1992), 
pp. 326ff]. We see this concept as central for the understanding of the evolution of 
markets for network effect goods, because it is the only way to explain the often 
observed long-term coexistence of competing user networks against the background 

lrThat means, for example, that in most user networks, ten thousand additional users increase 
the individual surplus of a user in the case of a network size of fifty thousand users by a higher 
amount than they do in the case of a network size of a million users. 

2See also Conlisk (1976) and the related work of Kirman (1993) and Orlean (1995). 
3Recent economic applications of this approach axe Woeckener (1993), Aoki (1996) and Witt 

(1997), pp. 763ff. 
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that almost every user network has to exceed a critical mass, i.e. that in most cases 
both lock-in regimes exist. 

In the next section, first the choice probabilities of our model are derived and 
then aggregated to a master equation for the evolution of the probability distribu­
tion of the network sizes. In the third section, the model is discussed under the 
assumption that the network effects are approximately constant. There we discuss 
the cases of ergodicity and of lock-ins in the absence of metastable states. We will 
demonstrate how nonlinear stochastic continuous-time processes can be analyzed 
with the help of the corresponding Fokker-Planck equation and by means of the 
so-called 'corresponding deterministic model'. Finally, in section 4, we allow for 
the fact that network effects are typically decreasing and discuss the concept of 
metastability. 

2. The model 

2.1 The individual decisions: choice probabilities 

We assume that the competing user networks are horizontally differentiated ä 
la Hotelling with network A at the left-end point and network B at the right-end 
point of the unit line; i.e. network A has the 'address' i = 0 and network B has 
the 'address' i = 1. At each point in time, the users' basic Willingnesses to pay for 
being a member of network A and for being a member of network B are uniformly 
distributed along the unit line. Furthermore, it is supposed that the total number 
of users is very high and that they cannot coordinate their choices.4 For simplicity, 
the total 'mass' of users is normalized to one, so that the total size of a network 
is identical with its market share. We presume that users do not differ in their 
valuation of the network effects and that each user's surplus is increasing in network 
size. The network effect functions are specified as nxc and n( 1 — x) c with x and 
1 — x as the size (market share) of network A and network B, respectively, and 
n as a measure of (the general level of) the network effect strength. As for the 
curvature of the network effect function, it is assumed that 0 < c < 1 holds, where 
the case of constant network effects (c = 1) is considered as an approximation for 
only modestly decreasing network effects. With h as a measure of the extent of the 
horizontal differentiation, the current surplus of a user with address 0 < i < 1 from 
being a member of network A ox B can be formulated as 

4 For a model with two groups of users with conflicting preferences where the users of each group 
can perfectly coordinate their choices, see Woeckener (1997), pp. 400ff. 
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SiA — a,A + nxc — h i and (1) 

siB = Oß + n (1 — x)c — h (1 — i) , (2) 

respectively. Here, aA and ÜB are the differences between the address-independent 
parts of the basic Willingnesses to pay and the current user costs. We assume that 
O-A > O'B h olds, i.e. network A can have a 'systematic basic advantage' b = aA — aß > 
0. This i- and x-independent systematic basic advantage is due to a quality and/or 
a cost advantage [or a quality (cost) advantage which is not overcompensated by 
a cost (quality) disadvantage]. It is the systematic part of /Ts 'basic advantage' 
bi = b + h (1 — 2 i) (which can be negative). 

In line with the Discrete Choice Analysis, we take into account that a user's 
address i is subject to exogenous shocks. In our model, these shocks are Information 
shocks and/or technology shocks affecting the product characteristics of network 
components. We assume that i is a random variable which is uniformly distributed 
along the unit line.5 Together with the assumption of a very high total number 
of users, this results in the equivalent distribution of users at each point in time 
presumed above. Hence, h can be re-interpreted as a measure for the significance 
of the exogenous shocks. A user with current address i chooses A whenever ÜA + 
nxc — h i > aß + n (1 - x)c — h (1 — i) holds. This condition can be reformulated 
as —b — h {1 — 2 i ) < n [xc — (1 - x)°]-, i.e. network A is chosen whenever B's basic 
advantage — &,• ( which can be negative) is smaller than (or equal to) A's 'network size 
advantage' (which can be negative as well). As i is uniformly distributed between 
zero and one, B's basic advantage is uniformly distributed between —b — h and 
—b + h. Hence, its cumulative distribution is 

*(-W = 

0 

0.5 + 

1 

b- bi 
2h 

if — b{ 5: —b — h 

otherwise 

if — bi ^ —b + h 

(3) 

By substituting A's network size advantage for B's basic advantage, we obtain the 
choice probabilities of network A as 

a(x) 0.5 +i>+"[*C-(1-*)Cl otherwise 

if x° — ( 1 - x)c < —(h + b)/n 

2h 
(4) 

if x° — ( 1 — x) c > (h — b )/n . 

5The decisive feature of t he assumed uniform distribution is its truncatedness. This contrasts 
with most Discrete Choice Models, which presume a logistic or a normal distribution. In these 
models, shocks of any extent are admitted, so that lock-ins cannot occur when choices are reversible. 
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The choice probabilites of network B are ß(x) = l — a(x). These choice probabilities 
are the probabilities that network A or B is chosen given that a user reviews her 
last choice. They are the 'individuaP transition probabilities of the process. Due to 
the network effects, they are state-dependent. Hence, the individual choice process 
is a Markov process. For the special case of constant network effects (c = 1), we 
obtain 

0 if x < 0.5 — (h + b)/(2n) 
( \ o r b — n n a(x) = < 0.5H—— h — x otherwise 

2 h h 
1 if x > 0.5 + (h - b)/(2ri) . 

2.2 The evolution of networks: master equations 

In order to derive the equations of motion for the probability distribution of /Ts 
network size z, let us suppose for a moment that time is a discrete variable and 
that in fixed time intervals r one of the users reviews her choice (for example, on 
the occasion of a Software purchase). Let us further assume that the probability of 
doing so is of the same value for each user (at a given point in time), and let e be 
the inverse of the total number of users. Then if at a point in time t the State x 
is realized, the probability that at time t + r the State x + e is realized amounts 
to A(x) = (1 — x )a{x)\ a member of network B reviews her choice (appears at 
the market) and chooses network A. Analogously, the 'total' one-period transition 
probability for transitions from State x to State x — e (after having been in x at time 
t) can be derived as B = x ß(x). If at time t one of the two neighboring states x — e 
and x + e is realized, the one-period transition probabilities for transitions to State 
x are A(x — e) = [1 — (x — e)] a(x — e) and B(x + e) = (x + e) ß(x + e), respectively. 
Hence, the Chapman-Kolmogorov forward equation for this discrete-time Markov 
process is 

P(x; t+r)—P(x; t) = A(x—e) P(x—e; t) + B(x+e) P(x+e~, t) — [«4(z)+5(a;)] P(x; t). 

So far the time span r which elapses until a review takes place is constant and 
exogenously given. As we want to endogenize it, we pass over to continuous-time 
processes. This requires an expansion of the discrete-time transition probabilities in 
a Taylor series around a point in time and the subsequent calculation of its limit for 
r -> 0 in order to obtain the continuous-time transition rates (hazard rates). Here 
we presume that the probability that two users revise their last choices exactly at the 
same point in time is negligible.6 Then the short-term behavior of a realization of 
the process is characterized by phases of constant x which are interrupted by jumps 

GGiven that the users cannot coordinate their choices, this is not a strong assumption. 
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of size e (with e near to zero). In such a case, a Taylor expansion results, for example, 
in A{x) T+Ö(T) with limT_^0 0(r)/r = 0, where ö(r) are the higher-order terms [see 
Honerkamp (1990), p. 73f]. This means that transition probabilities and transition 
rates are of the same form.7 Hence, the master equation of the continuous-time 
Markov process is 

P{x\t) = (1 - x -t- e) a(x — t) P(x — e; t) + (x + e) ß(x + e) P(x + e; t) 

- [(1 -x)a(x) + x ß(x)]P(x-,t) (5) 

for all 0 < x < 1 and with P(x;; t) = dP(x; t)/dt. This master equation can be seen 
as a probability flux balance, where the first line yields the probability influx into a 
state x, and the second line yields the probability outflux from this State.8 

In the absence of network effects, i.e. with state-independent choice rates a and 
ß, the master equation would be linear in x and a closed differential equation system 
for the motion of all moments of the probability distribution could be derived from 
it via the generating function [see van Kampen (1992), pp. 149ff]. For n > 0, i.e. in 
the case of nonlinearity, no such explicit dynamic Solution is feasible. However, an 
approximate Solution can be obtained insofar as x is a quasi-continuous variable 
and as long as the transition rates are continuously differentiable. Then the master 
equation can be approximated by a state-continuous Fokker-Planck equation, from 
which we can derive a differential equation system for the moments. While the first 
condition is, due to our assumption of a very high total number of users, always 
fulfilled, the second condition requires that the choice rates do not take on the 
values zero and one [see equation (4)]. If the latter is not fulfilled, the nonlinear 
process can be analyzed by means of its 'corresponding deterministic model'. In 
the next section, both the approximate Solution via the Fokker-Planck equation and 
the analysis via the corresponding deterministic model is carried out for the case of 
(approximately) constant network effects. 

7Of course, when passing over to rates, they must be appropriately rescaled. In the following, 
for simplicity we have normalized the velocity parameter of the master equation to one. 

8Alternatively, it can be interpreted as a generalized Poisson process; see Cox/Miller (1965), 
pp. 146ff. 
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3. Network competition with constant network effects: 

ergodicity vs. lock-ins 

3.1 Ergodicity 

In the case of constant network effects, the choice rate of network B remains 
positive even with z = lforn</i — b [ and the choice rate of network A remains 
positive even with x = 0 for n < h + 6; see equation (4) with c = 1]. In this 
case, the transition rates are continuously differentiable and the master equation 
can be approximated by a state-continuous Fokker-Planck equation. The condition 
n < h — b is met if both n < h and b < h — n holds, i.e. if the network effects are 
'relatively weak' (compared to the extent of the horizontal differentiation/exogenous 
shocks) and A's systematic basic advantage is 'relatively low' (compared to the 
difference between the extent of the horizontal differentiation/exogenous shocks and 
the network effect strength). In this case, sooner or later all states have a positive 
probability of being realized (which, however, can be very small for some states). 
Hence, every process is sooner or later characterized by a continuous probability 
distribution which Covers the whole State line. 

As an example, figure 1 shows three transient probability distributions which 
are generated by a master equation with h = 1, n = 0.5 and b = 0.2 for an initial 
condition x(t = 0) = xQ = 0. Then, in the first stage, the whole distribution moves 
towards higher z-values, and sooner or later, due to b > 0, the most probable z-value 
is higher than 0.5. Obviously, during the whole process, the distribution remains 
unimodal, relatively sharply peaked and more or less Symmetrie. Hence, the evo-
lution of the mean value of the distribution is a good approximation for the most 
probable trajectory of a realization of the process. For t oo, the transient distri­
butions converge to the stationary distribution shown in figure 2 (dotted). Here the 
'detailed-balance condition' holds: the probability flux into each State is equal to 
the probability flux out of it [see van Kampen (1992), p. 142]. Once the stationary 
probability distribution has been reached, the probability of a State is equivalent 
to its relative frequency realized in the course of time; this is the so-called 'ergodie 
property' [see van Kampen (1992), p. 93]. Therefore, the moments of the stationary 
probability distribution are of the same value as the moments calculated from a 
realized trajectory (provided that it is long enough). Obviously, ergodicity of the 
stochastic process means coexistence of competing user networks, where, among 
other things, the systematic basic advantage is decisive for the evolution of the net­
work sizes. 

In order to obtain some general results, we derive the state-continuous Fokker-
Planck equation by expanding the master equation as a Taylor series up to the 
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Fig. 1. Transient probability distributions of an ergodic process for x0 = 0 
(c = 1, h = 1, n — 0. 5, b = 0.2) 

Fig. 2. Stationary probability distributions of tbree ergodic processes 
(c = 1, h = 1) 
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second-order term.9 This leads to 

^(z; *) = —jg[D(x) P(x'> Ol + J <)] (6) 

with 

D(x) = A(x) - B(x) = a(x) - x = 0.5 + ^ ™ - 1 j x (7) 

and 

F(x) = A(x)+B(x) = (l-x) a(x)+xß(x) = 0.5+-^r-r— + —-7—- x-~-x2 . (8) 
Ah n n 

Here the drift D(x) can be interpreted as the systematic part of the process, and the 
fluctuation term F(x) as the added influence of the random shocks. By multiplica-
tion of the Fokker-Planck equation with x or x2 and subsequent partial Integration, 
we can obtain the equations of motion for the mean value and for the second mo-
ment, respectively. Here we assume that the probabilities of the boundary states 
x = 0 and x = 1 remain negligible. Then the dynamic mean-value equation turns 
out to be 

< x > = < D(x) > , (9) 

and the differential equation for the second moment results as < x2 >= 2 < x D(x) > 
+ e < F(x) >. Hence, the differential equation for the variance is 

<C x2 » = 2 < xD(x) > + e < F(x) > — 2 < x > < D(x) > . (10) 

From equation (9), it becomes clear that the drift of the stochastic process gives 
the best possible approximation for the most probable trajectory of a realization. 
With < x >= 0, we obtain (the best approximation of) the most probable State 
after the stationary distribution has been reached: 

<X>'=°-5+2Jihn}' (U) 

According to equation (10), the variance of the stationary distribution is 

e h 
4C af 

4 [h — n ( 1 — e)] 
1 -

h — n 
(12) 

Hence, a higher systematic basic advantage b (with b < h — n ) of network A, for 
example due to lower Software prices, leads on average to a higher network size 

9 For the general procedure of the derivation of a Fokker-Planck equation and its moment equa­
tions, which are the best possible approximations of the moment equations of the master equation, 
see Weidlich/Haag (1983), pp. 22ff. 
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of A as well as to a lower variance. The two stationary distributions for n = 0.5 
depicted in figure 2 provide an example. From equation (11), we can deduce that 
network effects work like a multiplier of a systematic basic advantage and that a 
higher network effect strength (with n < h) results on average in a larger size of 
network A (given b > 0). Moreover, as long as b is not too high, a higher n means 
a higher variance, i.e. stronger network effects make the network competition more 
uncertain. Figure 2 provides an example for 6 = 0. With b near to h — n (< x >* 
near to one), however, the contrary is true. 

The drift D(x) serves not only as the approximate mean-value equation but also 
as the corresponding deterministic model x = a(x) — x of the process. Its equilibria 
x* result from equation (11) and, as long as the process is ergodic, the following 
correspondence holds [cf. van Kampen (1992), pp. 254ff]: stable equilibria of the 
deterministic model correspond with (local) maxima of the stationary distribution of 
the stochastic process, and unstable equilibria of the deterministic model correspond 
with local minima of the stationary distribution of the stochastic process. If the 
process is not ergodic, but rather absorbing states exist, the whole probability mass 
is absorbed by these states for t —> oo . Here stable equilibria of the deterministic 
model correspond with states which are (local) probability maxima for a finite period 
of time. We will return to this case of metastability in section 4. 

3.2 Lock-ins 

If the ergodicity condition n < h — b is not fulfilled, two qualitatively different 
cases have to be examined. For h — b < n < h + b, B's choice rate takes on a 
value of zero if x is high, but A's choice rate remains positive even for x = 0. In 
contrast, if n > h + b holds, both choice rates can become zero. The first case is 
characterized by a 'relatively high' systematic basic advantage of user network A: if 
the network effects are relatively weak (n < h), b > h — n holds, and if the network 
effects are relatively strong (n > h), b > n — h holds. Here, due to the fact that 
choices are reversible, sooner or later each realization of the process must be locked 
in to A. The interior boundary state of the lock-in regime can be calculated as 
xlsA = 0.5 + (h — b )/{2n). Once a realization of the process has entered the lock-in 
regime X^A < x < 1, the only question is whether a member of A appears at the 
market and chooses A again or whether a member of B appears and switches to 
A. However, sooner or later all users are members of network A, i.e. x = 1 is an 
absorbing state. 

Whereas in this first case the final market outcome is always an A-monopoly, the 
second case is characterized by the fact that it is a priori uncertain which network will 
prevail. Here the network effects are relatively strong (n > h), and the systematic 
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basic advantage is relatively low (b < n — h). In this case, both lock-in regimes exist, 
and the interior boundary State for lock-ins to network B is xitB = 0.5 — (h+b)/(2n). 
The two states X^A and x^g are the critical masses of network B and A, respectively, 
which must be exceeded in order to enter the market. As in reality most user 
networks possess a critical mass, we concentrate in the following on processes with 
both lock-in regimes. 

Using equation (7) and taking into account the lock-in regimes, we obtain the 
corresponding deterministic model of the second case as 

Here this deterministic model cannot be interpreted as an approximation of the 
mean-value equation, but it reflects some qualitative features of the stochastic pro­
cess. It has three equilibria: x = 0, x = 1 and an interior equilibrium x* which can 
be calculated from equation (11). The two boundary equilibria are stable (the eigen-
values are dx/dx = —1) and correspond with the absorbing states of the stochastic 
process. In contrast, the interior equilibrium is unstable (dx/dx = n/h — 1 > 0 due 
to n > h). This means that every realization of the process with an interior initial 
condition X^B < xo < X^A more or less quickly enters one of the lock-in regimes. 

In figure 3, this is demonstrated for a stochastic process with h = 1, n = 2 and 
b = 0.6. There are two large lock-in regimes with X^B = 0.1 and xliA = 0.6, and 
the unstable interior equilibrium amounts to x* — 0.2. Starting the process with 
x0 = 0.24, initially the distributions have a unique maximum near this state. But 
due to the competition of the absorbing boundary states for probability mass, they 
soon become bimodal. In the first stage, there are two local interior maxima inside 
the lock-in regimes, but the both absorbing states become most probable relatively 
quickly. As the process progresses, they absorb all probability mass before t = 500 
is reached. 

Figure 4 depicts the influence of the initial condition, the network effect strength 
and of the systematic basic advantage on the outcome of the network competition. 
There we have depicted the numerically calculated relationship between the station­
ary lock-in-to-A probability and the initial condition for n = 2 and b = 0 as well 
as for n = 1.1 and b = 0.06 (and h = 1 in both cases). It turns out that these 
relationships are functions with turning points at the interior equilibria (which are 
x* = 0.5 and x* = 0.2, respectively). Of course, a higher systematic basic advantage 
of network A due to lower prices and/or higher quality shifts the whole function to 
the left. Moreover, the significance of the initial condition on the success probabil-
ities of network A is higher, the stronger the network effects are. In other words, 
stronger network effects make the process more deterministic. 

—x if x < 0.5 — (h + b)/(2 n) 

otherwise (13) 

1 — x if x > 0.5 + (h — b )/(2 n) . 
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Fig. 3. Transient probability distributions of a process with both lock-in regimes 
for XQ = 0.24 (c = 1, h = 1, n = 2, b = 0.6] 

Fig. 4. Stationary probabilities of a lock-in to A for two processes with both 
lock-in regimes (c = 1, h = 1) 
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4. Network competition with decreasing network effects: 

metastability 

Usually, network effects become noticeably weaker with increasing network size. 
If this fact is taken into account, we can explain why competing user networks often 
coexist for a considerably long time, although one or both networks have a critical 
mass - i.e. although the market is a natural monopoly. The key for explaining this 
phenomenon is the concept of metastability: one or both lock-in regimes can coexist 
with an interior (local) probability maximum which can be arbitrarily long-lived 
[cf. van Kampen (1992), pp. 328f]. 

Returning to the choice probabilities [equation (4)] with c < 1 and examining 
the conditions for the existence of lock-in regimes, it becomes clear that they are the 
same as with c = 1: for % — » 1, we have x° - (1 — x)c —> 1, i.e. (h — b)/n< 1 results 
in the existence of a lock-in-to-^4 regime; and for x —¥ 0 , we have xc — (1 — x)c —>• — 1, 
i.e. (h + b)/n < 1 results in the existence of a lock-in-to-2? regime.10 In the case of 
ergodicity, it makes no qualitative difference whether the network effects are (ap-
proximately) constant or (noticeably) decreasing. In the case of one or both lock-in 
regimes, however, the existence of a metastable State changes the characteristics of 
a stochastic process considerably. As in the previous section, we focus on processes 
with both lock-in regimes. 

If the network effects are constant, the eigenvalues of the corresponding de-
terministic models amount to n/h — 1 (as long as X^B < x < X^A), i.e. they are 
x-independent. In contrast, if the network effects are decreasing, not only the value 
of the eigenvalues is state-dependent, but also their sign can be state-dependent. 
From x — a (z) — x with a(x) according to equation (4), we obtain 

dx cn^ + ^-i)'"1] 
aT Th (14) 

This is a parabolic function with its minimum at x = 0.5, where the minimum 
eigenvalue is dx/dx = cn2l~c/h — 1. Furthermore, limx->o dx/dx = +oo and 
lim^i dx/dx = +00 hold, i.e. for (very) low as well as for (very) high x-values, 
the eigenvalues are always positive. Hence, there are two parameter regimes: 
- For n/h > 0.51-c/c, the minimum eigenvalue is positive. Then x is increasing over 
the entire ränge x^g < x < X^A, SO t hat there is either a unique unstable interior 
equilibrium or no interior equilibrium at all. Therefore, either one or both lock-in 
regimes exit, and the stochastic processes do not differ qualitatively from those dis-
cussed in subsection 3.2. 

10In the special case of c = 0.5, the interior boundary states of the lock-in regimes can be 
calculated as xttA = 0.5 + [(h - b)/(2n)] 1/2 - [(/i - b)/n]2 and = 0.5 - [(h + b)/(2n)\ 
sj2 - [(/i+ b)/n]2. 
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- For n/h < 0.51-c/c, the minimum eigenvalue is negative. Here x is increasing for 
low as well as for high z-values but decreasing in between. In this case, the deter­
ministic model can have three interior equilibria: two unstable ones and between 
them a central stable equilibrium. The latter corresponds with a metastable state 
of the stochastic process. 

Figure 5 shows the corresponding deterministic models of three stochastic pro­
cesses with c = 0.5 and h = 1. Two of them are Symmetrie (b = 0), so that x = 0.5 
is the stable equilibrium. While n = 1.15 results in an unstable equilibrium at 
x = 0.0275 as well as at x = 0.9725 and has lock-in regimes with X^B = 0.015 and 
xe,A = 0.985, a higher network effect strength (n = 1.25) leads to larger lock-in 
regimes (see the blips of the funetions) and to unstable equilibria which lie fur­
ther inside. In the third example, network A has a systematic basic advantage of 
b = 0.04, so that the stable equilibrium amounts to x = 0.72. From the equilibria of 
these deterministic models, we can infer the qualitative properties of the stochastic 
processes and, thus, of a typical realization. Let us assume, for example, that /Ts 
network size is initially a little bit higher than its critical mass. Then, in the first 
stage, there is a considerably high probability that a realization will be locked in 
to network B. If, however, network A 'survives' this critical stage and sueeeeds in 
exceeding the State which corresponds to an unstable equilibrium of the determinis­
tic model, it becomes increasingly probable that a realization fluetuates around the 
metastable state for a very long time. 

Figure 6 provides an example for n = 1.15 and x0 = 0.2, i.e. with an initial 
state to the right of the left-hand unstable equilibrium. In this case, a long-term 
coexistence of both user networks is more probable than an early lock-in to B right 
from the start. In the first stage, however, the escape probabilities for switches 
from interior states to the lock-in-to-B regime are comparatively high. This be­
comes clear from the fact that, for t = 200, the minimum probability between states 
near /Ts critical mass and those further to the right is comparatively high. In the 
second stage, these escape probabilities diminish dramatically, see the distributions 
for t = 600 and t = 1000. Here the unimodal sub-distributions along the interior 
states center (more or less) symmetrically around the metastable state, which gains 
probability until ca. t = 800. In the third stage from ca. t = 800 onwards, this inte­
rior sub-distribution is depleted very slowly in favor of the two absorbing boundary 
states. Of course, for t oo, the whole probability mass is absorbed by these two 
states. This, however, can take arbitrarily long. 

How strong the metastability is, i.e. how long competing user networks can 
coexist although the market is a natural monopoly, depends, among other things, 
on the general strength of the network effects. This is demonstrated in figure 7 
via the comparison of the probability distributions for t — 1 000 and x0 =0.2 of the 
processes with n = 1.15 and with n = 1.25. Obviously, stronger network effects mean 
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Fig. 5. Corresponding deterministic models of three processes with a 
metastable state (c = 0.5, h — 1 ) 

Fig. 6. Transient probability distributions of a process with a metastable 
state for x0 = 0.2 (c — 0 .5, h = 1, n = 1.15, b = 0) 
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Fig. 7. Transient probability distributions of three processes with a metastable 
State for t = 1000 and XQ = 0.2 (c = 0.5, h = 1) 

a stronger tendency towards the driving out of one of the networks: the probabilities 
for being locked in (for being in the neighborhood of the metastable State) are 
higher (lower), the higher n is. This can also be deduced from the corresponding 
deterministic models depicted in figure 5: a higher n means larger lock-in regimes 
and a lower eigenvalue (in absolute terms) of the stable equilibrium. Finally, in order 
to illustrate the effect of the existence of a systematic basic advantage of network 
A, figure 7 shows the probability distribution for t = 1000 and x0 = 0.2 which 
results from b = 0.04. Here the peak of the interior distribution lies to the right of 
x — 0 .5, and the probabilities for a lock-in to A (B) are comparatively high (low). 
Of special importance for realizations of this process are the relatively high escape 
probabilites for switches to i = 1. These are due to the fact that the distance 
between the metastable State (x = 0.72) and the state which corresponds to the 
right-hand unstable equilibrium of the deterministic model (x = 0.81) is relatively 
small. 

17 



5. Conclusions 

This paper applies a dynamic version of the Discrete Choice Model to the Prob­
lem of competing user networks. In order to determine the evolution of the proba­
bility distribution of the network sizes, we have employed a continuous-time Master 
Equation Approach with state-dependent choice rates. We have shown how these 
nonlinear stochastic continuous-time processes can be analyzed by means of the 
moment equations of the Fokker-Planck equation and/or with the help of a cor­
responding deterministic model. It turns out that, depending on the strength of 
the network effects, the extent of the horizontal differentiation (the importance of 
the exogenous shocks), the significance of a systematic basic advantage and on the 
curvature of the network effect function, four cases can be distinguished: 
- If the systematic basic advantage is relatively high, a unique absorbing state ex-
ists, and, sooner or later, every realization of a stochastic process is locked in to the 
network with the systematic advantage. 
- If both the systematic basic advantage and the network effect strength are rela­
tively low, the stochastic processes are ergodic; i.e. every realization of a stochastic 
process results in a coexistence of networks. 
- If the systematic basic advantage is relatively low and the network effects are con-
siderably strong (given the curvature of the network effect function), both lock-in 
regimes but no metastable state exist. Hence, there is a strong tendency towards a 
quick driving out of one of both networks, and it is a priori an open question as to 
which network this will be. 
- If the systematic basic advantage is relatively low and the network effects are 
relatively strong but not considerably strong, the two lock-in regimes could coexist 
with a metastable State. Here if both networks have exceeded sufficiently their crit­
ical masses, a long-lasting coexistence becomes probable, although the market is a 
natural monopoly. 
The latter can only happen when the fact that network effects are decreasing is taken 
into account. Unlike the second case, it can explain the long-lasting coexistence of 
user networks in the presence of critical masses. 
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