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1 Introduction 

The estimation of unknown parameters generally involves optimizing a criterion function 

based on the likelihood function or a set of moment restrictions. Unfortunately, for manv 

econometric models the likelihood function and/or the relevant moment restrictions do 

not have a tractable analytical form in terms of the unkown parameters rendering the 

estimation by maximum likelihood (ML) or the generalized method of moments (GMM) 

infeasible. This estimation problem tvpically arises in situations, where unobservable va­

riables enter the model nonlinearly, leading to multiple Integrals in the criterion function, 

which cannot be evaluated by Standard Integration methods. Prominent examples for 

such econometric models in the field of financial econometrics are continous-time models 

for the evolution of stock prices or interest rates and discrete-time stochastic volatility 

models for the dynamics in the volatility of financial data. 

Until recently, estimation problems due to the lack of some tractable criterion function 

were often circumvented by using approximations of the model with criterion functions 

simple enough to evaluate. An alternative Solution in such situations that has received 

increased attention over the last few years, favoured by the permanently growing Computer 

power, are estimation procedures that use Monte Carlo Simulation methods to compute 

an otherwise intractable criterion function1. Seminal for the development of this type of 

estimation procedures were the contributions of McFadden [1989] and Pakes and Pollard 

[1989] who introduced the Method of Simulated Moments (MSM) for a cross-sectional 

context. This approach, which was extended to time-series applications by Lee and Ingram 

[1991] and DufRe and Singleton [1993], modifies the traditional GMM estimator by using 

moments computed from simulated data of the model rather than the analytical moments. 

Like the GMM estimator, the MSM estimator is consistent and asymptotically normal 

when the number of observations tends to infinity, and is asymptotically equivalent to 

GMM if the number of simulations approaches infinity. However, in a fully parametric 

model one can expect that MSM, just as GMM, is inefficient relative to procedures based 

on the likelihood due to the arbitrary choice of moment restrictions. This issue is addressed 

by the indirect inference estimators proposed by Gourieroux, Monfort and Renault [1993], 

Bansal, Gallant, Hussey and Tauchen [1993, 1995] and Gallant and Tauchen [1996a]. 

These approaches which represent extensions of MSM introduce an auxiliary model in 

order to estimate the parameters of the model of interest. The first version of indirect 

inference as proposed by Gourieroux, Monfort and Renault [1993] employs the parameters 

of the auxiliary model to define the GMM criterion function, whereas in the second 

version as suggested by Bansal, Gallant, Hussey and Tauchen [1993, 1995] and Gallant 

and Tauchen [1996a] the scores of the auxiliary model generate the moment restrictions 

LIt is worth noting that Monte Carlo Simulation methods themselves have already been used for a 
long time in the Bayesian econometrics for evaluating posterior distributions, see e.g. Kloek and van Dijk 
[1978]. 
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used in the GMM criterion Function. Since in both procedures the GMM criterion is 

an intractable Function in terms of the parameters of interest, simulations are used to 

evaluate it. Both indirect inference estimators are consistent and asymptotically normal 

as the number of observations tends to infinity and approach the fully efficient estimator 

if the auxiliary model is appropriately chosen. Specifically, if the auxiliary model is based 

on the semi-nonparametric model of Gallant and Nychka [1987], as proposed by Gallant 

and Tauchen [1996a], one may hope that the loss of efficiencv of the indirect inference 

estimator is small. 

The purpose of this chapter is to give a selective review of MSM and indirect inference 

which represent Simulation based methods of moments, and to discuss their applications 

to models for financial data. Besides these moment based Simulation approaches, a variety 

of other Simulation estimators are proposed in financial econometrics including simulated 

maximum likelihood (Danielsson and Richard [1993] and Richard and Zhang [1997]), 

and Markov-Chain Monte-Carlo procedures (Jacquier, Polson and Rossi [1994] and Kim, 

Shephard and Chip [1996]). Surveys on these likelihood-oriented Simulation methods are 

given by Ghysels, Harvey and Renault [1996] and Shephard [1996]. 

This chapter is organized as follows. In section 2 we outline the estimation context 

and give some examples. The MSM and the indirect inference estimator are discussed in 

sections 3 and 4, respectively. Section 5 reviews the semi-nonparametric auxiliary model 

and in section 6 we address selected practical issues concerning the application of these 

estimators. Section 7 concludes. 

2 General Setup and Applications 

Let yt, t = 1,..., T denote an n-dimensional vector of observable dependent variables and 

xt is a fc-dimensional vector of observable strongly exogenous variables. For expositional 

convenience it is assumed that yt and xt are stationary. The nonlinear dynamic model is 

characterized by the conditional density h0(yt\zt), where zt = [y't-i, • • •, y[, y'o> x'u ••••> x'i\' 

is the vector of conditioning variables and the initial conditions are represented by yo- We 

want to estimate the p-dimensional parameter vector 9 from the model 

M := {h(yt\zt; 9), & € 0}, where © denotes the parameter space. The true value 9o 

is a unique value of 9 such that h0(yt\zt) = h(yt\zt; %)- In the following, we use h(-) as a 

generic notation for all density functions. 

The estimation of 90 is generally based on the likelihood function LT{9) = 

I~]J=i h(yt\zt] 9) or on moment restrictions based on a set of moments such as E[yt\zt} 

or E[yty't\zt}. Here we are interested in cases where the likelihood function or the relevant 

moments have an intractable form, rendering ML estimation or method of moments esti­

mation infeasible. Nevertheless, we assume that the model allows us to simulate values of 

the process {yt} given some value of the parameter vector 9 and the initial conditions yo-

For dynamic models with lagged endogenous variables two different Simulation schemes 
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mav he possible (see. Gourieroux and Monfort [1996, p. 17]). If the model admits a reduced 

form yt = o(zt,Zt\9), where ct is an error term stochasticallv independent of z, and with 

a known distribution independent of 9, simulated random variables y[r](9), (r = 1 R) 

from the distribution h(yt\zt\9) can be generated as follows. Artificial random variables 

g:[r) from the distribution of et are generated and used to calculate 

for the observed values of zt = [y[_y, •• - ,y [, y'0, x't,..., x'J' and some value of the pa-

rameter vector 9. For a large number of replications iü, the empirical distribution of 

the simulated values ytT\0), (r = 1 ,...,R) approximates the conditional distribution 

h(yt\zt;9) for every t. Since the simulations are performed conditionallv on the ob­

served lagged endogenous variables, this Simulation scheme is called conditional simu­

lations. The second approach, termed path simulations, is to generate simulated va­

lues of yt conditionally on simulated lagged endogenous variables, i.e. conditionally on 
ZV{Q) = [j/t-iW. ••••> y\\0)', Voi x'v • • • > x'\]', using some kind of recursion. For large R, 
the empirical joint distribution of y[r\9),..., y^(9), (r = 1,..., R) approximates the 

distribution h{yx,..., j/rki, - , xT\ 9). 

In order to motivate the estimation context addressed here, we discuss in the following 

some examples from financial econometrics2. 

EXAMPLE 1: Discrete-time stochastic volatility model 

The Standard discrete time stochastic volatility (SV) model proposed by Taylor 

[1986, 1994] and others is given by 

yt = exp{iüt72}ut (1) 

w* = 7 + Swt_i + VT)t , t = 1,..., T , (2) 

where yt is the observable return of a financial asset and u>* i s the unobservable log 

volatility. The error processes ut and r)t are mutually and serially independent with 

known distributions. In accounting for the observed autocorrelation in the variance 

of financial time series, this SV model represents an alternative to the ARCH and 

GARCH specifications proposed by Engle [1982] and Bollerslev [1986]. Since the 

latent log volatility w* enters the model in a nonlinear fashion, the conditional den­

sity h(yt\zt; 9) with 9 = [7, S, v]' and zt = [yt~i,yo}' does not have an explicit 

analytical form. To obtain the (marginal) likelihood function associated with the 

observable variables, the latent variables are "integrated out" from the joint distribu­

tion of 2/1,..., yT, w{,..., U)T denoted by h(yi,..., yT, w{,..., w^\9). This distribu­

tion can be factorized as h(yi,... ,yr, w\,..., w?\9) = flLi ! ö)Hw*\wt-v 

"'As in most applications in financial econometrics, a time series framework is used. Examples for 
cross-sectional applications are given by Gourieroux and Monfort [1993, 1996] and Stern [1997]. 
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where h{yt\wl; 6) is the conditional density of the returns given the log volatility 

and h(w*|u^_L; 8) denotes the conditional density of the log volatility given its past 

value. Hence, for a given initial value of the log volatility the marginal likelihood 

has the following form 

LT(&) =/•••/ II h(Vt\wt'^)h{w*t\w*t_ t; 0) dw\... dwmT . 
J J t=I 

For this T-dimensional integral no closed-form Solution exists, nor can Standard 

numerical methods be applied to evaluate it making ML estimation infeasible. Fur-

thermore, even if the Standard SV model can be estimated by GMM using uncon-

ditional moments such as jE7[|yt|], E[yf] or GMM is relativelv inefficient, 

especiallv, if the persistence parameter 5 is close to one (see, e.g. Jacquier. Polson 

and Rossi [1994] and Andersen and Sßrensen [1996]). However, the SV model given 

by (1) and (2) defines a simple data generating process which allows to generate 

values from the Joint distribution h(yi,..., yT\9) implied by the model using path 

simulations. Note though that conditional simulations from h(yt\yt~\,... ,yo',9) ap-

pear to be infeasible since the SV model does not admit an explicit expression of 

the reduced form in terms of lagged endogenous variables yt = Q(yt-i,..., yo,£t] 9). 

EXAMPLE 2: Stochastic differential equations 

Consider the following scalar stochastic differential equation: 

dvt = a(vt,9)dt + b(vt,9)dWt , 0 <t<N, (3) 

where a(vt,9) and b(vt,9) are the drift and the diffusion function, respectively, and 

Wt is a Brownian motion. Such continuous-time processes are often used to model 

stock prices and interest rates. However, in practice the variables are observable 

only at some discrete (possibly equispaced) points. Hence, the observable variables 

yt, (t = 1,... ,T) are given by yt = for some A > 0, where the time interval 

between two observations is [t, t + A). For arbitrary drift and diffusion functions, 

the distribution of the observable variables generally does not have a closed form 

expression. A closed-form can be obtained only for some special drift and diffusi­

on functions. As an example, consider the Square root process proposed by Cox, 

Ingersoll and Ross [1985] to model the evolution of interest rates: 

dvt = (a0 + a\vt)dt + ßo,/vldWt . 

This stochastic differential equation implies a Joint distribution of the observable 

variables yi,...,yr given by Uj=i^(yt\yt-i',9), where k(yt\yt-i:9) is a non-central 

X2-distribution. However, for more complicated specifications the conditional den­

sity h(yt\yt-i9) and, in general its moments, do not have a tractable form since 
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h(yt\yt-i9) appears as a multiple integral (see, e.g. Gourieroux and Monfort [1996. 

p. lOf]). This motivates the use of alternatives to Standard ML and GMM estima-

tors. An example for a specification with an intractable density h(yt\yt_l: 9) is rhe 

following generalisation of the Cox-Ingersoll-Ross model: 

dvt = (a0 + a\vt)dt + 3QUtäld\Vt , 

which is proposed by Chan, Karolyi, Longstaff and Sanders [1992]. 

To simulate values of the observable discrete-time variables according to a continous-

time model, one can use a discrete-time approximation, for example, the Euler 

approximation. If the time interval between two observations [t, t + A) is divided 

into subintervals of length r, the corresponding Euler approximation of (3) becomes 

Vt+kr — Vt+(k-l)T 4" T ß(^ t+(A:-l)r j 9) -+- \ /T I)T , 9)t]tjc , k = 1, 2, ... . 

where rjt%k is an i.i.d.N(0,1) random variable. If the time interval T is sufficientlv 

small, this approximation can be used to simulate values from h(yi,...,yr\9) ac­

cording to yt = g(yt-i,£t', 9), where et = [%,i,..., 77t,i/r]' is the vector of error terms. 

The common feature of Examples (1) and (2) is that (partially) unobservable processes 

enter the model nonlinearly, making criterion functions commonly used for estimation 

intractable. Further examples for this estimation context in financial econometrics are 

the continous-time stochastic volatility models of Hull and White [1987] and Chesnev 

and Scott [1989], the market microstructure model proposed by Forster and Viswanathan 

[1995], the dynamic equilibrium model for asset prices estimated by Bansal, Gallant, 

Hussey and Tauchen [1995] and the multifactor latent ARCH models of Diebold and 

Nerlove [1989] and Engle, Ng and Rothschild [1990]. 

3 The Method of Simulated Moments (MSM) 

Consider a dynamic model with a well defined reduced form yt — g(zt, ey, 9) allowing us to 

simulate values of yt from h(yt\zt,0) for observed values of the conditioning variables zt = 

[y't-i> • • • > y'i) 2/o> x'ti x't-1) • • • i x\}'- We will focus on the m-dimensional moment function of 
the form 

<p{yt, zt', 0) = s(yt, zt) - a{zt-, 9) , (4) 

with m > p and where s(yt,zt) is a function on the data and a(zt\9) is the theoretical 

counterpart defined as 

o(zt\Q) = Ed[s{yt,zt)\zt\. 

Here Eg(-\zt) indicates that the expectation is computed with respect to the densi­

ty h(yt\zt;9) and a(zt\9) represents conditional moments as, for example, Eg(yt\zt) or 
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E6{yty[\zt). The index is dropped if the expectation is taken with respect to the true 

process, i.e., E = Eg0. We assume that for 90 the empirical moment condition 

E[<p(yt,zt;90)\zt} = 0 for all t 

is satisfied. Let f(yt,zt]90) = B(zt)'(p{yt,zt;9o), where B(zt) is some nonlinear matrix 

function on zt, then the corresponding set of unconditional moment restrictions is given 

by (see, e.g. Newey [1993]) 

E[f{yt,zt;90))=0 for all t . 

If the expression a(zt;9) cannot be computed analytically, it may be approximated 

using Simulation methods. Since a(zt\9) is the expectation value of s(yt, zt) evaluated 

with respect to h(yt\zt]9), a natural unbiased estimator for a(zt\9) is given by 

ÖR{ZU9) = Zs[y(tr)(9),zt] , 
R 

where y^\9), (r = 1,..., R) are simulated random variables drawn from the distribution 

h{yt\zt',9) for the observed values of zt. The natural estimator of a(zt;9) given in equa­

tion (5) results from sampling data using h(yt\zt, 9). However, this estimator may have 

undesirable properties. For example, it may not be differentiable with respect to 9 or 

it may have a large variance. Therefore, alternative methods of estimating a(zt, 9) such 

as importance sampling procedures were proposed to obtain an estimator with improved 

properties (see, e.g. Gourieroux and Monfort [1993] and Stern [1997]). 

If the natural Monte Carlo estimator (5) is used to estimate the moment restrictions 

the method of simulated moments (MSM) estimator for 90 is obtained by minimizing the 

criterion function 

ÖMSM = argmin 
9 

where 

.t= 1 

" T 
E /ß(y«, ZÜ 9) 
t=\ 

(6) 

/R{VU ZÜ 9) = B{zt)'[s{yt, zt) - aR(zt; 9)} 

and A denotes an appropriately chosen positive definite weight matrix. If the Simulation 

sample size R tends to infinity, aR{ZÜ9) converges almost surely to Eg[s(yt, zt)\zt\ and 

the MSM estimator equals the corresponding GMM estimator. However, as the sample 

size T tends to infinity, the MSM estimator is consistent for any fixed R > 1 as long as 

different random draws are used across t (cf. McFadden [1989]). The reason for this is 

that for the estimator 9^SM the Simulation error is "averaged out" by using the mean of 

<M-Zt;0), (« = i,...,T). 

The fact that the MSM estimator is consistent for any R > 1 should not be taken as 

an indication that R is irrelevant for the asymptotic properties of 9%{SM as T —> oo . This 
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becomes clear from considering the asvmptotic distribution of the MSM estimator. which 

results as T1/2(§MSM - 9o)-^N(0, avar(0^SAf)). The asvmptotic covariance matrix of 

9MSM, as it results from the fact that {f(yt,zt;9o)} is by construction serially uncorrelated 

with identical distributions, has the form (see, Gourieroux and Monfort [1996, p. 29]) 

avar{&MSM) = 1 + lD'A v&v[f(y\ ^(#0). zt;9o)\ .4Z?Sj~L . (7) 

where 

D = 

2i = D' AD 

E2 = D'Avav[f(yt,zt;do)}AD. 

The lower bound of the asymptotic covariance matrix obtained for R —>• o o is given by 

the asymptotic covariance of the corresponding GMM estimator However, 

the asymptotic covariance matrix of the MSM estimator contains, compared to that of 

the GMM estimator, an additional component which is due to the Variation in the Monte 

Carlo estimates of the moment restrictions. This additional Monte Carlo sampling va-

riance vanishes as the Simulation sample size increases and the MSM estimator attains 

the efficiency of the corresponding GMM estimator. 

The asymptotic optimal weight matrix which minimizes the asymptotic covariance of 

9MSM f°r a given set of moment restrictions is: 

A0 = (var[/(yt, zt\0O)] + ^var[/(yt(r)(0o), z*; 0o)])_1 • 

For this optimal choice of the weight matrix the asymptotic covariance matrix of the MSM 

estimator is avar(0$SM) = [D'AQD}~X. 

The MSM estimator given above is based on conditional moments of the function 

s(yt,zt) given zt = [y't_lt..., y[, y'0, x't, x't_Y,..., x\]'. A necessary requirement for using 

such conditional moments for MSM estimation, is that the model admits a well defined 

reduced form yt = g(zt, 6) in terms of exogenous and lagged endogenous variables in Or­

der to perform conditional simulations from h(yt\zt] 9). These conditional simulations are 

necessary to obtain unbiased estimates for a(zt, 9) based on estimators such as that given 

in equation (5). However, for models which include unobservable variables nonlinearly as, 

for instance, the SV model in Example 1, a reduced form in terms of lagged endogenous 

variables is generally not available. Hence, in such cases the MSM estimation based on 

conditional moments given lagged endogeneous variables is infeasible. In those situations, 

we may use restrictions based on moments conditional only on exogenous variables or for 

pure time series models restrictions derived from unconditional moments. Such an MSM 

approach for pure time series applications has been proposed by Duffie and Singleton 

[1993], and has been applied by Forster and Viswanathan [1995] and Gennotte and Marsh 
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[1993] for estimating a market microstructure model and a dynamic asset pricing model. 

respectivelv. 

This unconditional version of the MSM estimator is based on a m-dimensional moment 

function of the form 

f{yt,...,yt-r,0) = s(yt,...,yt-i) - <r{9) , t = l,....T, (8) 

where a(9) represents the unconditional expectation value Ee[s(yt,..., yt-*)]- The corre­

sponding set of moment restrictions is given by E[f(yt,... ,yt-f,90)\ — 0. These restric­

tions include moments such as Eg(yt) and Eg(yty't) as well as cross order moments of the 

form Eg(yty't_i). If yt{9), (t = 1,..., R) denotes a simulated path from the distribution 

h{yu ..., yn\9) implied by the model, the MSM estimator based on these unconditional 

moments is obtained by 

ÖMSM = argmin 
9 

if • • •' y*-i) ~ 
11=i 

A 
i T 

11=i 

where 

er Riß) = 4 H s{Vt{ö), - - -, Vt-i{9)\ • 
n t=I 

The matrix A denotes the weight matrix and <5ß(0) is an unbiased Monte Carlo estimator 

for a(9). As the moment function (8) derived from the dynamic model h(yt\zt;9) is 

expected to be serially correlated the asymptotic optimal weight matrix is given by 

= (Tlimj[var{-^^s(yt, ...,yt_,)}]) -l 

Since s(yt,..., yf_;) is independent of the parameter 9 and independent of the simulated 

values yt(9), the matrix A0 can be estimated by pocedures discussed in chapter 3. Ho­

wever, like the MSM estimator based on conditional moments, the MSM estimator using 

unconditional moments is consistent and asymptotically normally distributed as T tends 

to infinity. Specifically, the asymptotic distribution for the optimal weight matrix ^4o re-

sults as Tl/2{9%rSM-90)^+N(0, avar(0&SM)), with avar(9^SM) = [1 + {1/R)][D'A0D}~1 

and D — E[dcr(9o)/d9'] (see, Duffie and Singleton [1993]). The factor [1 + (1/-R)] in 

the asymptotic variance accounts for the additional Variation of the estimator due to the 

Monte Carlo sampling variance which vanishes as R tends to infinity. 

4 Indirect Inference Estimator 

The MSM approach is used to optimize a GMM criterion function, which is too complica-

ted to be computed analytically. Another possible approach as proposed by Gourieroux, 

Monfort and Renault [1993], is to use a criterion function derived from an auxiliary, pos-

sibly misspeeified model and to recover the structural parameters of the original model 
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from the parameter estimates of the misspecified model. Unfortunatelv, the relationship 

between the auxiliary and the structural model is too complicated to admit an explicit 

Solution. Therefore. Simulation techniques are employed to determine the final estima­

tes. Another view of the indirect inference estimator as followed by Gallant and Tauchen 

[1996a] is that the derivatives of the criterion function for the auxiliary model (usually the 

log-likelihood function) can be used as a moment function for a GMM procedure. Thus. 

the scores of the Quasi-ML procedure of the possibly misspecified auxiliary model are the 

moments to be matched by a GMM approach. Hence, in this context the auxiliary model 

is also termed score generator. However, if the indirect inference estimator is combined 

with some flexible data dependent choice of the auxiliary model, the resulting estimator 

can be expected to be more efficient than a GMM procedure based on an ad-hoc selection 

of the moments. For this reason, an indirect inference estimator based on such a flexible 

auxiliary model is called Efficient Method of Moments (EMM). 

Consider a dynamic model characterized by h(yt\zt\9) which allows us to simulate 

values of yt using path simulations but with intractable criterion functions commonlv 

used for estimation. Furthermore, let M* = {h*(yt\zt; A), A G A} denote the auxiliary 

model with the g-dimensional vector of auxiliary parameters A, where q > p, that is, the 

auxiliary model has at least as many parameters as 9. The model is misspecified, if there 

exists no parameter vector A* s uch that h0(yt\zt) = h*(yt\zt\A*). However, it is assumed 

that the auxiliary model has some tractable criterion function - here: the log-likelihood -

allowing us to estimate A. For example, if we are interested in estimating the SV model in 

Example 1, a possible auxiliary model may be a GARCH model which is relatively easv 

to estimate by ML compared to the SV model. 

The Quasi-ML estimate of A are computed by maximizing the criterion function 

Q(Y, X-, A) = T~l \ogh*(yt\zt; A) with Y = [yi,... ,yT\ and X = [xi,..., xT\, that is 

XT = argmax Q(Y, X; A) . 
A 

The first order condition is that the score vector: 

g(Y,X^) = dQlYd*;X)=±j:m0gh]fZ>;» (9) 

is equal to zero. An important concept linking the structural parameters 9 with the 

auxiliary parameters A, is the so-called binding function A = b(6) (see, Gourieroux and 

Monfort [1996, p. 67]). The binding function is obtained from the Solution of the equation 

Egg[Y, X; b($)] = 0, where the expectation value is evaluated with respect to the joint 

distribution h(Y, X\9) implied by the structural model. 

From White [1994] it is known that the estimates Ar converge in probabilitv to the 

pseudo-true value given by A0 = b(90). Hence, if A a nd 9 are of the same dimension and if 

it is assumed that there exists an inverse function ö—1 (•), it is possible to obtain an indirect 

inference estimator for 9Q as 9T = 6_1(AT). The practical problem is, however, that usually 
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the function b{9) is unknown and must be evaluated using Monte Carlo simulations. 

Therefore, we generate R simulated paths y[r\d),..., yP(9), (r = 1, ..., R) from the 

distribution h(y\,.... yr\xi, - - -, %T\ 9 ) for observed values of the exogenous variables. For 

every of these simulated paths we obtain an estimate of the vector of auxiliary parameters 

denoted by Ä^(0). Then the unkown binding function b{9) can be approximated by 

M») = 4 z >•?(«)• 
n r=l 

If b(8) is replaced by 6ß(0) we can construct a simulated minimum distance estimator as: 

9MD ~ argmin[ÄT - 6Ä(fl)]'A[AT - bR(0)], (10) 
9 

where .4 is a positive definite weight matrix. This indirect inference estimator suggested by 

Gourieroux. Monfort and Renault [1993] searches for a value of 9, for which simulated data 

from the structural model approximate the properties of the observed data summarized 

by the estimate Ar as close as possible. 

As the sample size T tends to infinity, the indirect inference estimator is consistent 

and asymptotically normal for any fixed R > 1 (see, Gourieroux, Monfort and Renault 

[1993]). Furthermore, the asymptotic optimal weight matrix is given by 

Ao — Jo I0 Jo, 

where 

* -

For this optimal choice of the weight matrix the asymptotic distribution of the minimum 

distance estimator (10) is obtained as T1^2(9^tD—90)-^N(0, avar(f?^D)), where the asym­

ptotic variance of 9^D is given by avar(0^D) = [1 + (1 /R)][B'A0B]~l with B = db(90)/d9' 

(see, Gourieroux, Monfort and Renault [1993]). 

The second approach for deriving an indirect estimate from the auxiliary model sug­

gested by Gallant and Tauchen [1996a] is to use the moment conditions implied by the 

scores of the auxiliary model 

Ep[y,X;6(%)| = 0. (11) 

Using path simulations from the structural model to approximate Egg[Yr, Xr\b(9)], the 

GMM estimation procedure based on the scores of the auxiliary model results as 

8GT = argmin gR(0, \T)'AgR(9, XT) , (12) 
e 

where 

(13) 
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is the simulated score function which approximates the moment conditions (11) and A is a 

positive definite weight matrix. For this estimator the asymptotic optimal weight matrix 

is given by ,40 = /0~l- Notice, that the score vector (9) for the observed data and the 

estimate Ar is equal to zero as implied by the first order condition. Hence, the estimator 

0§T searches for a value of 9, for which simulated data from the structural model mimic 
this first order condition. 

Both estimators 9^w and 9§T are derived from similar principles although the criteri­

on function is different. Indeed Gourierioux, Monfort and Renault [1993] show that both 

approaches yield asymptotically equivalent estimators as T tends to infinity. Thus, the 

choice between these estimators is a matter of computational convenience. As far as this 

is concerned the following should be considered. As is usual for nonlinear optimization 

Problems, estimations based on 9^D and 9QT are performed with iterative optimizati­

on algorithms. However, at every Iteration Step of the optimization with respect to 9, 

the parameter based estimator 9^D requires "secondary" optimizations to estimate the 

auxiliary parameters A, whereas the score based estimator 9§T requires only one optimi­

zation concerning A. Furthermore, the estimator 9^D, using the optimal weight matrix 

AQ, requires an estimate of Jo based on the Hessian matrix which is not necessary for the 

estimator 9§T. On the other hand, for the computational efficiency of the score based 

estimator 9§T, it is necessary that the score vector of the auxiliary model (9) is available 

in an analytical form which is not essential for the parameter based estimator. 

The asymptotic efficiency of the indirect inference estimators depends on the poten-

tial of the auxiliary model to approximate the true process. In fact, if h(yt\zt]90) = 

h* (yt\zt; b(9o)) in some neighborhood of 0O> t he structural model is "smoothly embedded 

vvithin the score generator" (see, Gallant and Tauchen [1996a]), and it follows that the 

indirect inference estimator is asymptotically efficient. However, in principle two different 

approaches to select an appropriate auxiliary model (or score generator) exists. The first 

approach is to search for an auxiliary model that is able to mimic the salient features 

of the structural model, and that is as dose as possible to it. For the SV model (see 

Example 1), for instance, such a candidate model may be a GARCH specification since 

the predictions concerning the stochastic behavior of the returns resulting from a GARCH 

model and the SV model are very similar. The second approach as advocated by Gallant 

and Tauchen [1996a] is a data dependent choice of the auxiliary model. Specifically, they 

propose to adopt a flexible, possibly nonparametric, score generator which can be expec-

ted to capture any dynamic and distributional feature of the observed data. Such a data 

dependent procedure associated with the term EMM is considered in the following section 

in greater detail. 
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5 The SNP approach 

To achieve a high level of efficiency for the indirect inference estimator, Gallant and 

Tauchen [1996a] suggest to use the class of semi-nonparametric (SNP) models of Gallant 

and Nychka [1987] for constructing the score generator. As shown by Gallant and Long 

[1997], these SNP models can be expected to capture the probabilistic structure of any 

stationarv and Markovian time-series. 

The SNP model as applied bv Gallant and Tauchen [1996b], Andersen and Lund [1997], 

and Gallant, Hsieh and Tauchen [1997] to various financial time series can be represented 

by the following conditional density: 

hMz. K) _ [P(,,.z,)]^(u,)/|det(S,)l (14) 

j [P(v, zt)}2 (!>{v)dv 

Here zt = [y't^i, •. •, y't^i\ and Xq is a ^-dimensional parameter vector. The n-dimensional 

vector ut is obtained from a standardization of yt, i.e., ut = Sj~l(yt — ß t), where ßt and St 

are a location and a scale function, respectively. The density function of a multivariate 

normal distribution with mean zero and unit covariance matrix is denoted by <£(•), and 

V(ut, zt) is a polynomial in ut with coefficients depending on zt. The Integration constant 

f[V(v, zt)}2 <f>(v)dv e nsures that h*(yt\zt; Xg) integrates to unity. 

The parametrizations of the location function, the scale function, and the polynomial 

are as follows. To accommodate the dynamic structure in the mean, the location function 

is the conditional mean of vector autoregression given by 

ßt = b0 + ̂  Biyt-i . (15) 
i=l 

To capture the dynamics in the variance, the following ARCH-type scale function is 

applied: 
's 

vech(St) = c0 + X Ci\yt-i - ßt-i\ , (16) 
t=i 

where vech(6'() is the vector containing the [n(n -t- l)/2] distinct elements of St and 

|yt-i — ßt-i\ indicates the elementwise absolute value. Alternative scale functions app­

lied by Andersen and Lund [1997] and Andersen, Chung and S0rensen [1998] are based on 

corresponding GARCH-type specifications. In order to account for non-Gaussianity and 

dynamic dependencies of the standardized process ut the normal density <$>(•) i s expanded 

using the Square of the polynomial 

V(ut, Zt) = 53 aa(zt)uf , (17) 
|a|=0 

where ua = 11"= i ^ and |a| = |Qi|. The parameter ku denotes the degree of the 

polynomial and controls the extent to which h*(yt\zt', Xq) deviates from the normal density. 
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For ku = 0 the density function h*(yt\zt;Xq) reduces to that of a normal distribution. To 

achieve identification, the constant term of the polynomial is set equal to 1. To allow 

for deviations from normality to depend on past values of yt, the coefficients aa(zt) are 

polynomials in zt given by 
kz 

aa(zt) = ^2 O-aßZ't , 
\ß\—0 

where z3 = 2fl and \3\ = \ßi\- For kz = 0 the deviations from the shape of a 

normal distribution are independent from zt. 
Summing up, the leading term of the SNP model, obtained for ku = k,z = 0. is a 

Gaussian VAR-ARCH specification depending on the lag lengths lß and ls. This leading 

term captures the heterogeneity in the first two moments. The remaining features of 

the data such as any remaining non-normality and possible heterogeneity in the higher-

order moments are accommodated by an expansion of the squared Hermite polynomial 

V(ut, zt)2 4>{ut) controlled by ku and kz. To estimate the parameter vector Xq, whose 

dimension is determined by lß, ls, ku, and kz, the ML method can be used. For this 

purpose, the Integration constant of the SNP model (14) can be computed analytically by 

applving the recursive formulas for the moments of a Standard normal distribution (see, 

e.g. Patel and Read [1982]). 

If the dimension of the SNP model q increases with the sample size T, the Quasi-ML 

estimate of the SNP model h*{yt\zt \ \q) is under weak conditions an efficient nonparametric 

estimate of the true density h0{yt\zt) (see, Fenton and Gallant [1996a,b]). Furthermore, 

Gallant and Long [1997] show that the indirect inference estimator with the SNP model 

as the score generator (or EMM estimator) attains the asymptotic efficiency of the ML 

estimator by increasing the dimension q. However, how to determine the adequate spe­

cification of the SNP model, i.e. to select lß, ls, ku and kz, remains a difficult problem. 

In most practical applications (see e.g. Gallant, Rossi and Tauchen [1992], Gallant and 

Tauchen [1996b] and Tauchen [1997]) the dimension q of the SNP model is successively 

expanded and the model selection criteria of Akaike [1974] or Schwarz [1978] are used to 

determine a preferred specification. Then, in order to prove the adequacy of the Schwarz-

or Akaike-preferred specification, diagnostic tests based on the standardized residuals are 

conducted. 

6 Some Practical Issues 

In many cases the application of Simulation techniques require an immense amount of 

Computer power and thus some care is necessary when implementing the Simulation pro­

cedures. In this section we therefore address some practical problems and report im-

plications of recent Monte Carlo studies concerning the properties of Simulation based 

estimators. 

13 



6.1 Drawing Random Numbers and Variance Reduction 

In most applications the Simulation based estimator is obtained by optimizing the criterion 

function by using an iterative algorithm. At everv Iteration step the criterion function 

must be estimated via simulations given the current parameter values. For the convergence 

of such an algorithm, it is important to use common random numbers at every Iteration 

step for evaluating the criterion function. With regard to the reduced form yt = g(zt. ;t\9) 

of the model to be estimated, the use of common random numbers means that for every 

value of 9 during the iterative optimization procedure, the same set of simulated random 

variables is used to generate simulated values of yt which enter the criterion function. 

If at each Iteration step new values of st were drawn, some extra randomness would be 

introduced and the algorithm would fail to converge (see, e.g. Hendrv [1984]). 

As shown above, the overall variance of Simulation based estimators consists of two 

components. The first component represents the variance of the estimator if it were based 

on the exact criterion function and the second component is the Monte Carlo sampling 

variance arising because the criterion function is evaluated by simulations. The first 

component is irreducible whereas the second component can be made arbitrarily small 

by increasing the Simulation sample size. Unfortunately, this often leads to an enormous 

increase in Computing costs. However, there exists a number of techniques developed for 

reducing the Monte Carlo sampling variance without increasing the Computing costs, for 

instance, the antithetic variates and control variates procedures. 

The idea of the antithetic variates procedure as applied, for example, by Andersen 

and Lund [1997] for an indirect inference estimator is as follows. If we want to estimate 

a quantity u by simulations, here for example, the moment conditions (11), we construct 

two estimates for these moment conditions according to the estimator (13), say u>i and wg, 

that are negatively correlated. Then the average i(u)i 4-a>2) has lower variance than either 

of the two individual estimates. Assuming that the error term et in the reduced form of 

the model has a Symmetrie distribution around zero, negatively correlated estimates of 

moment conditions w can be produced by using a set of simulated values for CJ\ 

and the same set of simulated values but with the opposite sign, i.e. {— 4""'}, for u2. 

The additional Computing costs of these procedure are negligible and the reduction of the 

Monte Carlo sampling variance may be considerable as reported by Andersen and Lund 

[1997]. 

The control variates technique, as applied by Calzolari, Di Iorio and Fiorentini [1998] 

for indirect inference, uses two components for the final Monte Carlo estimate of the 

quantity of interest u. The first component is the natural Monte Carlo estimate for u 

denoted by ü*, and the second component is an estimate Co c reated from the same set 

of simulated random numbers as w* with known expectation and a positive correlation 

with u>*. Then the final estimate of u based on the control variate ü> is given by ui = 

(ei;* — ü) + E(ü>). Under suitable conditions, the variance of ui i s considerably smaller than 
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that of the natural estimator u*. Specifically, Calzolari, Di Iorio and Fiorentini [1998] 

adjust the parameter based indirect inference estimator by control variates created from 

the difference (A — Ar), where Ar is the estimate of the auxiliary parameter A b ased on the 

observed data and Ä is an estimate of A using simulated data from the auxiliary model. 

These simulated data are generated using Ar as the parameter vector and the same set of 

simulated random numbers as for the indirect inference procedure ifself. Based on Monte 

Carlo experiments, they show that the indirect inference estimator combined with control 

variates and applied to continuous-time models (see, Example 2) reduces the Monte Carlo 

sampling variance substantially compared to the simple indirect inference estimator. 

6.2 The Selection of the Auxiliary Model 

Indirect inference has been applied to a variety of models for financial time series. In the 

following we discuss strategies used to select an auxiliary model (or score generator). 

A data dependent choice of the auxiliary model based on an expansion of the SNP 

model (14) has been followed by Gallant and Tauchen [1996b], Tauchen [1997] and An­

dersen and Lund [1997] to estimate continuous-time models for interest rates, as the 

Cox-Ingersoll-Ross and Chan-Karolyi-LongstafF-Sanders specification (see, Example 2). 

The same approach is used by Gallant, Hsieh and Tauchen [1997] for the estimation of 

discrete-time SV models (see, Example 1) for interest rates, stock returns and exchange 

rates. In these applications the dimension q of the SNP auxiliary model determined by 

model selection criteria as those from Akaike [1974] and Schwarz [1978] is typically qui-

te high, resulting in a multitude of auxiliary parameters and hence in a large number 

of moments. Specifically, it turns out, that an expansion of the scale function as that 

in equation (16) is necessary to accomodate for the typically observed conditional hete-

roscedasticity of financial time series and that the expansion of the polynomial (17) is 

important to capture, for instance, the typically leptokurtic distribution of financial time 

series not accomodated by a time varying scale function and possible asymmetries of this 

distribution. 

More simple auxiliary models which are close to the structural model, resulting in a 

comparable number of auxiliary parameters as structural parameters, are chosen in the 

applications of Broze, Scaillet and Zakoian [1995] and Engle and Lee [1996]. To estimate 

the Cox-Ingersoll-Ross and Chan-Karolyi-Longstaff-Sanders specification for interest rates 

Broze, Scaillet and Zakoian [1995] use auxiliary models based on simple discrete-time 

Euler approximations of the corresponding continuous-time model. Engle and Lee [1996] 

apply GARCH specifications as auxiliary models to estimate continuous-time SV models 

for exchange rates, interest rates and stock returns. 

However, the data dependent SNP approach to select an auxiliary model is motivated 

by asymptotic arguments indicating that this approach ensures a high level of efficiencv 

of the indirect inference estimator when the maintained structural model is true. Clearlv. 
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if the structural model is true, a simple auxiliary model verv dose to it in the sense 

that it reflects all salient features of the structural model can also be expected to ensure 

a high level of efficiency. Nevertheless, the data dependent SNP approach seems to be 

more adequate if we are interested in detecting possible misspecifications of the structural 

model based on corresponding specification tests. which are not discussed here3. 

6.3 Small Sample Properties of Indirect Inference 

The theory of the indirect inference estimator, as developed by Gourieroux, Monfort and 

Renault [1993], Gallant and Tauchen [1996a] and Gallant and Long [1997], is based on 

asymptotic arguments. This raises the question on the finite sample properties of the 

indirect inference estimator. A comprehensive Monte Carlo study of the Performance of 

EMM in finite samples is conducted by Andersen, Chung and Sßrensen [1998]. Specifi­

cally, they use the stochastic volatility model (see, Example 1) to compare EMM with 

GMM and likelihood-based estimators and to address the adequate parametrization of the 

auxiliary model. Their key findings are that EMM provides, independent of the sample 

size, a substantial efficiency gain relative to the Standard GMM procedure. Furthermore, 

the likelihood-based estimators are generally more efficient than the EMM procedure, but 

EMM approaches the efficiency of the likelihood-based estimators with increasing sample 

size, as it is consistent with the asymptotic theory of the EMM estimator. Finally, they 

find evidence that score generators based on an over-parametrized SNP model lead, espe-

cially in smaller samples, to a substantial loss of efficiency. Specifically, they show that 

the substitution of an ARCH-type scale function in the SNP model as given in equation 

(16) by a GARCH-type specification, improve the efficiency of the EMM estimator. In 

fact, this substitution reduces the number of parameters which are necessary to capture 

the autocorrelation in the variance as implied by the SV model. 

7 Conclusion 

In recent years, Simulation based inference procedures have become populär in particu-

lar in empirical finance. This is due to the complexity of Standard models implied by 

latent factors or continuous-time processes, for example. This chapter reviews different 

approaches based on a GMM criterion function for the estimation of the parameters. 

The MSM approach is the simulated counterpart of the traditional GMM procedure and 

is applicable if the theoretical moments cannot be computed analytically. However, in 

many applications it is not clear how to choose the moment conditions. In nonlinear 

models the structure implies restrictions on a wide ränge of moments and, therefore, it is 

difficult to represent the main features of the model using a few moment conditions. In 

3For specification tests based on indirect inference, see e.g. Gourieroux, Monfort and Renault [1993], 
Tauchen [1997] and Gallant, Hsieh and Tauchen [1997]. 
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such cases it seems attractive to employ a simple auxiliary model which approximates the 

main features of the structural model. However, in most cases, the relationship between 

the parameters of the auxiliary model and the parameters of interest is too complicated 

to admit an explicit Solution. Hence, Simulation techniques are applied to evaluate the 

binding function linking the parameters of interest with the parameters of the auxiliary 

model. Two asymptotically equivalent approaches for such an indirect infererence frame-

work are available. Gourieroux, Monfort and Renault [1993] employ a minimum distance 

procedure whereas Gallant and Tauchen [1996a] use the scores of the auxiliary model as 

the moment condition to be matched by a (simulation-based) GMM procedure. 

Since the efficiency of an indirect inference procedure crucially depends on the potential 

of the auxiliary model to approximate the model of interest, it seems attractive to use 

flexible nonparametric models as score generators. Such estimation procedures are known 

as EMM estimators in the literature and seem to be a fruitful and a promising field of 

future research. 
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