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1. Introduction1 

Düring the last decade, a lot of work was done to extend the Black-Scholes option pricing 

model by allowing for a stochastic variance.2 However, these extended models still have 

the problem that the variance is not observable. A common procedure for estimating this 

variable is to do it implicitly.3 In this paper we follow a different approach by taking a first 

step towards an option valuation model which does not explicitly make use of unobservable 

State variables. Instead of using a stochastic variance variable directly, we assume that the 

variance of stock returns is determined by the trading activity in the stock or the options 

market, respectively. As we will see, this is consistent with many empirical studies which 

report a positive relationship between the volume and volatility of individual securities. To 

our knowledge, this is the first time that an option pricing model uses trading volume in 

order to model the stochastic nature of the stock return variance. The major focus of our 

work is to combine recent theoretical work on option pricing models with results from the 

Statistical literature on volume, volatility and stock returns. 

The rest of the paper is organized as follows: chapter 2 reviews the relevant Statistical 

literature. In chapter 3, we present the two models which we use to test whether variances 

can be replaced by volume. In the next three chapters, we then focus on the question of 

whether it is possible to estimate the parameters of the models using the Generalized Method 

of Moments (GMM). To do this within a controlled environment, we generate time series by 

running Monte Carlo simulations and estimate the parameters from these time series using 

GMM. By doing so we also obtain more Information about the small sample properties of test 

statistics for our specific setup of the GMM procedure. This is Important since the properties 

of the GMM estimators are only known asymptotically. The results of the empirical analysis 

follow in chapter 7. This includes a discussion of the assumptions and estimation problems 

1 We would like to thank the Deutsche Kapitalmarktdatenbank for providing us with the data. Financial 

support of t he Deutsche Forschungsgemeinschaft is gratefully acknowledged. 
2See for example [Hull/White (1987)], [Johnson/Shanno (1987)], [Wiggins (1987)], [Scott (1987)], 

[Hull/White (1988)], [Chesney/Scott (1989)], [Scott (1991)], [Melino/Turnbull (1990)], [Stein/Stein (1991)], 

[Heston (1993)], [Scott (1997)] and [Bakshi/Chen (1997)]. 
3See e.g. [Nandi (1996)] and [Bakshi et al. (1997)]. 
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regarding the market price of risk, as well as in- and out-of-the-sample investigations where 

both models are compared with the simple Black-Scheies model. Chapter 8 summarizes and 

concludes. 

2. Empirical facts 

As many studies have shown, there exists a relationship between stock prices and trading 

volumes. It has been observed for trading volume data from stock markets but also applies to 

data from options markets. Here we review some of the main Undings which have motivated 

our work. 

One of the earliest works is provided by [Ying (1966)], who examines the relationship be­

tween the S&P 500 and the volume of stock sales on the NYSE. He reports contemporaneous 

and delayed dependences of the index on trading volume. One of his conclusions is that 

"... any model that attempts to isolate prices from volumes or vice versa will inevitably 

yield incomplete if not erroneous results."4 In [Crouch (1970a)] and [Crouch (1970b)], the 

author observes a positive relationship between the absolute values of daily price changes 

and daily volumes for both market indices and individual stocks. The positive correla-

tion between volume and absolute price changes or volume and price changes per se has 

been confirmed by many studies. Surveys on the extensive literature on this subject can 

be found in [Karpoff (1987)], [Gallant et al. (1992)], and [McCarthy/Najand (1993)]. More 

recent studies which come to the same conclusions are for example [LeBaron (1993)], and 

[Majnoni/Massa (1996)]. [LeBaron (1993)] uses the log of daily squared returns of the CRSP 

index and log transformed turnover volumes on NYSE stocks and observes a strong contem­

poraneous correlation between these time series. Regarding the direction of this relationship 

he concludes that "... there is a Channel from volume to future volatility".5 The data exam-

ined by [Majnoni/Massa (1996)] consist of stock returns and trading volumes from the Milan 

Stock Exchange. Regarding the interaction between returns and volume, their tests confirm 

4 [Ying (1966)], p. 676. 
5 [LeBaron (1993)], p. 9. 
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the assumption that trading volume affects returns and returns affect volumes. Finally, they 

conclude that trading volume has its own informational content.6 

Other studies focus on the relationship between the trading volume of derivatives and the 

returns of the underlying assets. [Rogalski (1978)] observes significant positive contempora-

neous correlations between the Warrant volume and stock price changes for 7 of 10 stocks on 

a monthly basis. [Easley et al. (1994)] examine the informational role of transaction volume 

in the options market. Their data consist of stock price changes for the 50 most actively 

traded firms on the CBOE and the trading volume of the corresponding options aggregated 

over 5 minute intervals. They obtained the best results by segregating the option volume in 

"positive" (long calls and short puts) and "negative" (short calls and long puts) positions 

when running regressions. Using this approach, it is the contemporaneous volume which ex-

plains most of the stock price changes. Based on their empirical findings, they conclude that 

"there clearly remains much to be learned, and much benefit to be gained, from a greater 

understanding of volume in asset markets."7 Strong evidence for dependencies between price 

changes and option volumes for the S&P 100 has also been found by [Chatrath et al. (1995a)] 

and [Chatrath et al. (1995b)].8 

3. The models 

We model the stock price behavior in the usual way by using a geometric Brownian motion 

of the form 

dS(t) = /j,S(t)dt + y/v(t)S(t)dw i (t). (3.1) 

The stock price is denoted by S(t). It has an expected instantaneous rate of return fx a nd 

a stochastic instantaneous variance v(t). The latter follows a mean reverting square-root 

process which is given as 

dv (t) = K[0 — v( t)] dt + cry/v(t)dw2(t). (3.2) 

6 [Majnoni/Massa (1996)], p. 29 and p. 33. 
?[Easley et al. (1994)], p. 35. 
8Even though [Chatrath et al. (1995b)] focus on the impact of lagged variables, their Table III shows 

that the contemporaneous regression coefficient is the most significant one. 
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Here, 6 is the long-run target variance and K th e mean reversion parameter. The volatility of 

this process is given by er, which can be interpreted as the "volatility of variance". One of the 

essential features of this model is that the two-dimensional Brownian motion [u>i(£), u>2(£)] 

is correlated according to 

dwi(t)dw2(t) = pdt. 

Based on this model, [Heston (1993)] provides a closed-form Solution for European options. 

For the remainder of this paper we will refer to this model as the stochastic variance model. 

It will serve as a benchmark which enables us to measure the impact of using volume as a 

State variable. 

In order to replace the unobservable State variable v(t) by the observable variable volume 

h(t), we assume a simple linear relationship: 

v(t) = a. + ßh(t). (3.3) 

Hence, we obtain 

dS(t) = /j,S(t)dt + y/a + ßh(t)S(t)dw\(t) 

and, using Ito's lemma, 

dh(t) = — K [ 6 — a — ßh(t)] dt + + ßh(t)dw2(t) 
fj L 

(3.4) 

(3.5) 

It can be shown that equations (3.4) and (3.5) lead to a slightly modified version of Heston's 

call option pricing formula. We will refer to it as the stochastic volume model: 

C(S,h,t) = SP1-Ke-r(-T-t)P2 with 

Pj{S, h,t-,lnK) 

fj{S,h,t\<f>) 

oo 

= \+fs Re 
i(f> 

d(j) 

_ „C, (T-t)+Dj (T—t)(a+ßh)+i<t> In S 

= ri(j>(T — t) + ^{(bj-pai pcri(j) + d) (T — i) — 2 In 
1 -ged(T-t)< 

1 -9 



Dj(t] 4>) — 

9 = 

bj — p cri<j) + d r i _ ed(T-t) 
Dj(t] 4>) — 

9 = 

er2 

bj — pa cf)i + d 
bj — per eßi — d 

1 — ged^T~^ 

d yj(perifi - bj)2 

1 1 , 

2' ^ " "2' 

— a 2 (2uji<f) -.^) 

iL i = 

yj(perifi - bj)2 

1 1 , 

2' ^ " "2' 
= K + A — per, &2 

j = 1,2. 

The parameter A d enotes the market price of variance risk induced by dw2(t). 

4. Monte Carlo Simulations 

Applying the transformation y(t) = InS(t) to equation (3.1) leads to 

dy{t) =(^~ ~"$r) dt + y/vtf)dwi(t). (4.1) 

We have to transform the continuous-time model into its discrete-time counterpart to run 

Monte Carlo simulations. In order to value non-path-dependent options, it is sufficient to 

simulate trajectories which merely need to have final values which are consistent with a given 

distribution, e.g. the normal distribution. In our case we want to use the whole sample paths 

to apply the GMM procedure. Therefore, we need a discretization that leads to so-called 

strong approximations of the trajectories.9 The Milstein approximation has this property. 

Its gener al form is as follows: 

dx = adt + bdw => x t = xt-i + aAt + bA.wt 4- ^6— [(Atüt)2 — A i] . 

For the stochastic variance model, we derive for the discretized stock return process:10 

dy(t) = dt + \/v(t)dwi(t) 

9See [Hofmann et al. (1992)], p . 169f. and [Kloeden/Platen (1992)]. 
10For equation (4.1), the Milstein approximation leads to the same result as the Euler approximation. 
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— Vt-i + — 

= Vt-l + (JA — 

^ + y/vt-lAwi,t 

Ti)Ai + £l'1 

(4.2) 

£i,t\vt-i ~ N [0, vt-iAt], 

and for the discretized variance process: 

dv(t) = K [9 — v( t)] dt + <J\Jv(t)dw2(t) 

Vt — Vt~i + ^K, [9 — Vt- i] — At + &y/vt~[Aw2tt + -er2 (Aw2,t)2 (4.3) 

= Vt-1 + [9 — l»t -l] — At + s2tt 

1 2 
— ^t-i + K* \ß ~ ^t-i] — -<?* + £2,t (4.4) 

(^2,t + Vt_i) |^4—1 ~ Xl 

If we used the Euler approximation to derive the discrete variance process, e2,t would have 

0, a* vt_i Locally, this would not be a normal distribution according to £2,t |ut-i ~ N 

consistent with the stochastic process given in equation (3.2). There the conditional distri­

bution of v(t + At) given v(t) belongs to the class of non-central x2-distributions12, as is the 

case for (4.3). 

For the stochastic volume model, the derivation of the discrete stochastic processes proeeeds 

as described above. This leads to the following system of equations, using the transformation 

y = ln(S): 

dy(t) = - 01 + dt + OL + ßh{t)dw\(t) (4.5) 

11 See Appendix. 
12See e.g. [Cox et al. (1985)] and [Chen (1995)]. For the properties of the non-central x2-distribution, see 

[Johnson/Kotz (1970)], chapter 28. 



Ut — Vt-1 + 2 { ^ ^ + \A* + ßht-\Aw\,t (4.6) 

= yt~i + (ß-a + ̂ ht~l^ At + ei,t 

£i,t |^t-i ~ ^ [0, (a + ßht-i) At] 

ht = ht-1 + — [# — a — ß ht-1] — — A( + — + ßht~iAw2tt (4.7) 

+^CT2 (A™2,t)2 

K* 1 2 
= + -ß[0 — a — ßht-1] — — er* 4- £2,t 

^2 {ß^2,t + o: + ßht-i) \ht-i ~ x'i ^^2 (a + • 

In equations (4.2), (4.3), (4.6), and (4.7), which we use to simulate the sample paths, the 

variable t represents the discrete points within the time interval [1, We choose time 

intervals of one day which correspond to a value of .004 for At. To avoid any dependence 

from the starting values, we only use the second half of the simulated sample paths which 

have an overall length of T = 1000 data points. In other words, the trajectories consist of 

500 data points, therefore representing a time horizon of two years. That is the same size as 

the empirical time series used in this study. We apply the GMM procedure to 5000 simulated 

time series to get reliable results. This enables us to draw conclusions on how the estimates 

are distributed. 

5. The Moments 

We apply the Generalized Method of Moments, developed by [Hansen (1982)], to estimate 

the parameters. In order to ease computational bürden, we use the Euler approximation to 

derive the moment restrictions. As the results from the Monte Carlo simulations will show, 

the parameters can be estimated when using the Euler-based moments. 

7 



For the stochastic variance model, the discrete-time Etiler Approximation of (3.2) is given by 

vt - vt-i + K(6 - vt_i) At + ery/vt-iAw2!t 

— vt-\ + K9At — K Vt-iAt + e2,t 

— vt-1 + &var ~ KvarVt-l + e2,t> t = 1? •••> T. (5.1) 

e1)t and e2tt are described by a bivariate normal distribution of the form 

£i,t \ „ / Vt-iAt pcrlarvt-iy/Äi 
et |ut_i ~ N(0, £), with et = , S = 

£2,t / \ pcr*aTvt-iy/Äi erfarvt-i 

Next we derive the moments which are applied in the estimation procedure. Using the 

discrete-time approximation of the model as given in equations (4.2) and (5.1), we define 

vt-1 

and 

with 

ui,t = yt - yt~i - pAt —AZ, t = l,...,T 

%2,( — vt ~ Vt-1 — avar + KlerVt-i, t — 1 , ..., T 

E |ft—i] — E [u2tt — 0, E [uljt \vt~i] — Vt-iAt, E [u2t 

We choose the subsequent specifications for the moments: 

ui,t 

u2 ,t 

ui,tyt-i 

U2,tVt-\ 

ft (<p) = 

w i ,t — Vt-iAt 

ult - <lrvt-1 

(u\t - Vt-iAt) yt-1 

(u2,t - <lrvt-1) Vt-i 

ui,tu2tt - pcr*varvt^\fAt 

Ul,tU2,t - PKarVt-lV^i) yt-1 

- PKarVt-iVÄtj Vt-l 

( 

(p = 
P 

K. 

vor 
* 
var 

7* var 
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For the stochastic volume model, we also use the Euler approximation to construct the 

moment restrictions. For the purpose of comparison, we use the same type of moments. 

The discrete-time approximations of (4.5) and (3.5) are given by 

yt = Vt-1 + ( ß - a + ̂ ht 1 ) A t + eM, t = l,...,T 

ht = K(9 — ot — ßht-i) At + eryjOL + ßht~\ Au^t 

K> 
= ht-1 4- —At — — A^ (a + ßht-1) + £2 ,t 

= ht~\ + avoi — K* O1 (a + ßht-i) + £2,t> t = l,...,T. 

£i>t and £2,t are distributed according to 

£t\ht~i ~ N( 0,E), 

with £ _ 1 £I.M S= [ (ö; + ̂ t-i)At po-*oi(o; + /3/it_i) 

£2,t / l P<0/ (« + ßht-1) VÄi (a + ßht-i) 

The empirical values of the residuals can be calculated as follows: 

u\,t — yt - yt-1 — ß At ^ At, t — 1,..., T 

^2,t = ht — h t-i — a voi + /c*oi (a + ßht-1), £ — 1,..., T 

with 

E[uht\ht-i] = E[u2,t \ht-\] = 0 

E [ul^ht-x] = (a + /?/it_i) At, E[u\t\ht-i] = <rl20l(a +ßht-i) 
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This leads to the following moment restrictions: 

«i,t 

u2,tht-1 

ui,t — (o: + ßht-1) At 

/t (W = «2,t - <1 (a + At-i) 

K,t - (« + ßht-1) At) j/t-i 

(ult ~ <h (a + ßht-1)) fct-i 

<o( 

a 

P 

®vol 

ui,tu2,t ~ pv*vol (a + /3/it-i) \/Ät 

•t-i 

Of course, the number of moments and in particular their specification are the most crucial 

decisions to be made when using GMM. According to [Andersen/S0rensen (1996)], the op­

timal number of moments "... depends critically on sample size."13 This is due to the fact 

that the estimates from GMM are merely asymptotically eflicient. Thus, the properties of 

estimates from different sample sizes can vary. Hence, it is our opinion that only by apply-

ing GMM to simulated time series, can we study the properties of the estimates for a given 

model and a given length of the time series. 

Assuming that our specification described above is true, E[/t (</?)] has to be zero. Using 

empirical data, we get the corresponding sample counterpart <7T(V?) which is defined as 

Minimizing the quadratic form 

= g'T (W WT((p)gT (<p), 

where WT(<P) is a positive-definite Symmetrie weighting matrix, enables us to estimate the 

parameters ß, p, avar, «*ar, and o*ar. Using the approach advocated by [Newey/West (1987)], 

13 [Andersen/S0rensen (1996)], p . 329. 

t=l 
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Wr(<p) depends on the estimated values of <p. In a first step, we use Wr{<p) = I to obtain an 

inefficient estimate of Lp. In a second step, we use this estimate to get an efficient estimate 

of <p. This is done recursively until the procedure converges.14 

Due to the results in [Nagel/Schöbel (1996)], the number of sample autocovariances to be 

used in the calculation of WT{LP) is chosen to be 3.15 

All calculations are done with GAUSS, using the Davidon-Fletcher-Powell optimization al-

gorithm. We want to emphasize that we use an unconstrained optimization routine, i.e. 

we do not restrict the estimated parameter values in any way. By doing so, we can check 

whether the setup of the models is consistent with empirical data. 

6. GMM results from simulated data 

6.1. Stochastic variance model 

In order to run the simulations, we use the following parameter values which are chosen to 

be consistent with estimates from empirical data: 

So A* P K er dt 
100 .15 .1 -.1 4 .15 .20 .004 

Table 6.1: Parameter values used for running Monte Carlo simulations. 

In order to make the results easier to compare we not only report results for the originally 

estimated parameters, but also for the transformed ones which are used as input variables 

of the models. In Table 6.2 these are K, VÖ, and a. We do not estimate them directly, since 

the use of a reduced form of the model as described in (4.4) leads to better estimations. 

As Table 6.2 shows, we are able to estimate the parameter values with sufficient precision. 

On average, all estimates except of /c*ar and avoi are almost exactly at their true values. The 

parameter which leads to the most significant problems in regard to its estimation is K*var. 

14For details see e.g. [Ferson/Foerster (1994)] and [Hansen et al. (1996)]. 
15The same number of lags is chosen by [Bühler/Grtlnbichler (1996)], who also use empirical time series 

of length T = 500. 
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The first problem arises from its biased estimation. On average, the values of K*var are too 

large.16 But since the sensitivity of the model with respect to K is low, this problem is of 

secondary importance. The next problem arises from the fact that K*var can become negative. 

This is due to the fact that the time series consist of only 500 data points. Tims, it can 

happen that a given trajectory shows the behavior of a random walk with a negative trend 

rather than the characteristics of a mean-reverting process. The smaller the true value of K is, 

the more often its estimate is negative. One possibility to avoid this problem is to use longer 

time series. But as it is shown in [Nagel/Schöbel (1996)], longer empirical time series do not 

necessarily lead to more precise estimations because the parameter values themselves are not 

constant Over time. The latter result can also be found in [Bühler/Grünbichler (1996)]. 

Another interesting point is the interdependence between the estimates of K,*ar and avar. 

Table 6.2 clearly shows that both estimates are too large on average. Looking at K and 9, 

things are different. In particular for avar, the bias is reduced by some 50% to about .8% 

for VÖ. Since avar has to be transformed according to 9 = to obtain 9, the bias in the Kvar 
estimation of avar is obviously mainly due to the problems with the estimation of «*ar. This 

is confirmed by [Nagel/Schöbel (1996)], who estimate the parameter 9 separately. Their 

results show that the estimation of 9 is unbiased.17 Another point we would like to mention 

is that negative values of avaT only occur when K*V(XT is negative as well.18 

As already stated, the estimated parameter values are not restricted in any way. Therefore, 

it is theoretically possible to get values for p which are not within the interval [—1,1]. As 

we can see in Table 6.2 this never occurs. Hence, our choice of moments appears to be very 

robust in this regard. 

Using GMM, one also obtains estimates for the Standard deviations of the estimated pa­

rameter values. They can be used to calculate t-statistics to test for the significance of 

16This problem is confirmed by [Ball/Torous (1996)], who apply the GMM to simulated interest rates 

which follow a square-root process as proposed by [Cox et al. (1985)]. Their results also show that K is 

upward biased. 
17The same is found by [Ball/Torous (1996)]. To estimate the long-run level 6, they also use a reduced 

model. Although their estimates of K are upward biased, the resulting values of 6 are not. 
18Here negative values of K*ar are obtained 7 times. For 3 of th ese estimations, the corresponding values 

of a var are negative as well. 
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True 
value 

Mean Minimum Maximum Standard 
deviation 

Mean of estimated 
Standard deviations 

ß .1000 .0979 -.3280 .5136 .1112 .1013 
p -.1000 -.0999 -.2756 .0714 .0469 .0433 

^var .0016 .0261 -.0102 .1137 .0127 .0100 
&var .0004 .0006 -.0001 .0035 .0003 .0003 
rf* var .0126 .0125 .0111 .0143 .0004 .0004 

K 4 6.5320 -2.5625 28.4372 3.1770 — 

x/? .1500 .1488 .0854 .5009 .0200 — 
<7 .2000 .1981 .1749 .2260 .0066 — 

Table 6.2: Summary statistics of parameter values estimated from simulated time series. 

the parameter values. Table 6.2 shows that the estimated Standard deviations all perform 

reasonably well compared to the actual calculated Standard deviation of the estimates.19 

A test which is often applied when using GMM is the x2 test for goodness of fit of the overi-

dentifying restrictions. The test statistic is distributed according to x2 (?)• Q is the difference 

between the number of moments M minus the number of parameters to be estimated N. 

For the stochastic variance model, M = 11 and N = 5, i.e. the test statistic's appropriate 

distribution is of type x2 (6). [Andersen/Sßrensen (1996)] show that the test statistic and its 

p-value depend crucially on the number of moments and the length of the time series. Using 

their results, we report and discuss the main characteristics of the x2 test in the context of 

our setup. 

In theory, p-values of test statistics are uniformly distributed. As Figure 6.1 shows, this is not 

the case for the p-values of the x2 test when applying our test procedure. The distribution of 

the p-values is skewed to the left. This could be avoided by using shorter time series or more 

moments, which leads to a rightward shift in the distribution of the p-values. But reducing 

the length of the time series results in a decreased quality of the estimations. Since this is of 

primary concern, we reject this approach. An increase in the number of moment restrictions 

can be harmful because this has to be chosen in accordance with the sample size. Including 

too many moments "... is generally not optimal... if the sample size is limited"20. Since we 

19For a more detailed examination of t he properties of t he t-statistics, see [Nagel/Schöbel (1996)]. 
2O[Andersen/S0rensen (1996)], p . 349. 
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Figure 6.1: Distribution of p-values based on the x2 test of overidentifying restrictions for 
the stochastic variance model. 

work with short time series, we restrict ourselves to moments which reflect the main features 

of the models under consideration. 

In order to provide additional insight into the distribution of the p-values, we refer to Table 

6.3. We can see that 2.8% of all time series lead to p-values which are within the interval 

[0, 0.01]. If the conditions for the x2 test were optimal, we would expect 1% of the time 

series to result in p-values of this magnitude. Sorting the p-values in increasing order, the 

last column shows the 50th, 250th, 500th, lOOOth, and 2500th p-value. In other words, these 

are the small sample p-values for the given quantiles. The mean of the p-values is .367. If the 

Percentage of time small sample p-value 
p* series with p < p* for the p* quantile 
.01 2.8 .0032 
.05 11.9 .0187 
.10 20.3 .0402 
.20 35.7 .0979 
.50 68.9 .3148 

Table 6.3: p-values obtained from the x2 test for goodness of fit of the overidentifying 
restrictions. 

14 



p-values were uniformly distributed, the mean should be at about .5. Hence, the x2 test for 

goodness of fit of the overidentifying restrictions is conservative in the context of our setup. 

This means that the hypothesis that our model correctly describes the data is rejected too 

often. Keeping these results in mind, we can still use the p-values to Interpret the results. 

6.2. Stochastic volume model 

In contrast to the stochastic variance model, we have to estimate 7 parameters. Their values 

are chosen to correspond to the simulations of the stochastic variance model. 

So ho P K a a 0 dt 
100 1 .1 -.1 4 .15 .20 0 .0225 .004 

Table 6.4: Parameter values used for running Monte Carlo simulations. 

The most important parameter is ß since its precise estimation is crucial to the calculation of 

K, 9, and a. As Table 6.5 shows, there is a tendency toward underestimating ß. On the other 

hand, a is too large on average, although, compared to the corresponding Standard deviation, 

True 
value 

Mean Minimum Maximum Standard 
deviation 

Mean of estimated 
Standard deviations 

ß .1000 .0998 -.3102 .5126 .1085 .1021 

P -.1000 -.0982 -.2518 .0744 .0465 .0442 
K* vol .7111 1.3036 -.1541 5.7916 .7126 .6044 
0>vol .0160 .0273 .0014 .1348 .0151 .0122 

^vol .5622 .5668 .4667 .6749 .0277 .0265 
a .0000 .0011 -.0184 .0197 .0039 .0035 
ß .0225 .0207 .0075 .0386 .0042 .0038 
K 4 6.4147 -.7103 23.6244 2.9730 — 

V? .1500 .1468 .0944 .6965 .0224 — 
<7 .2000 .1851 .0644 .3683 .0377 — 

Table 6.5: Summary statistics of parameter values estimated from simulated time series. 
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Distribution of p-values 
0.12 

0.09 

Fractiles: From [0, .05] to [.95,1] 

Figure 6.2: Distribution of p-values based on the x2 test of overidentifying restrictions for 
the stochastic volume model. 

this error is marginal. We also observe that the estimation of cr*ol is very precise on average, 

but due to the underestimation of ß the values of o are slightly too low. For and avoi, we 

face the same problems as in case of the stochastic variance model. But in contrast to avar 

we never get negative values for avoi and the number of negative estimates of K*O1 is reduced 

to 4. 

As for the stochastic volume model, the distribution of the p-values calculated using the x2 

test of overidentifying restrictions is skewed to the left. Figure 6.2 and Table 6.6 show that 

the main characteristics are very similar, although the shift itself is less pronounced. 

Table 6.6: p-values obtained from the x2 test for goodness of fit of the overidentifying 
restrictions. 

Percentage of time small sample p-value 
series with p < p* for the p* quantile 

.01 

.05 

.10 

.20 

.50 

1.9 
10.9 
21.0 
37.3 
71.7 

.0056 

.0237 

.0444 

.0948 

.2953 
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7. Empirical Results 

7.1. Data Description 

The empirical work is based on data from the German stock market. The option prices 

which we seek to explain are those of options on the German stock index DAX. Two aspects 

make them very attractive to empirical research: the DAX is a Performance index, i.e. it is 

adjusted for dividend payments, and DAX-options are of European type. 

We use data that covers the period from January 2, 1992 until December 23, 1994 to estimate 

the parameters by aid of GMM. As a first input variable for the GMM estimations, we use 

the daily DAX values reported at 1.30 p.m. In order to generate the time series necessary 

for the estimation of the stochastic variance model, we first calculate daily returns of the 

DAX. In a second step, we calculate the annualized variance of the returns over the last 2, 

10, 22, and 33 days. Thus, we have 4 time series to test the stochastic variance model.21 

They are labeled Var2, Var 10, Var22, and Var33. 

With regard to volume data, we face the problem that the DAX is not a traded asset. Hence, 

we can only measure a proxy of its daily volume. Since the DAX consists of the 30 most 

important and liquid German stocks which account for more than 75% of the daily trading 

activities, we use aggregated volume data for all German stocks. More precisely, we use 

the daily number of transactions in German stocks as reported in the Handelsblatt. This is 

motivated by the results of [Jones et al. (1994)]. They show that a significant part of stock 

return volatilities can be explained by the transactions per day, rather than by the trading 

volume itself. A possible explanation is given in [Chan et al. (1995)]. They report that 

not the volume per transaction, but rather the number of transactions shows a U-shaped 

form during a day.22 This is exactly what is found in many studies examining intraday 

volatilities.23 Similar results are reported by [Abhyankar et al. (1997)], who also find that 

21We also used the squared daily stock returns as a time series describing the variance. But in this case 

the GMM procedure did not converge. 
22 [Kirchner/Schlag (1996)] examine German stocks and find the same pattern for the frequency of 

transactions. 
23Seee.g. [Wood et al. (1985)], [Gwilym et al. (1997)], and [Abhyankar et al. (1997)]. [Röder (1996)] and 

[Kirchner/Schlag (1996)] confirm this result for the variance of intraday returns of the DAX and the intraday 
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the average transaction volume is relatively flat during the day.24 [Kirchner (1996)] confirms 

these results for the trading volume of German stocks. 

We also incorporate the trading volume of the options market when examining the role of 

trading activities on option prices. We use the daily average number of DAX options traded 

at the DTB. The latter are derived as follows: first, we calculate the sum of all traded call 

option contracts across the different exercise prices. The same is done for the put options. 

Next, we divide the results by the number of exercise prices. By doing so, we account for 

the fact that the number of exercise prices and hence the total number of option contracts 

varies over time. In a final step, we calculate the sum of the daily average number of call 

and put options, which leads to a time series for daily option volume. We also calculate the 

moving averages of the stock and option volume time series over the last 2, 10, 22, and 33 

trading days. In other words, we have a total of 10 time series to measure trading activities. 

We label the time series which are computed from the number of transactions NoTl, NoT2, 

NoTIO, NoT22, and NoT33. Equivalently, we label the option volume time series OV1, 

OV2, OVIO, OV22, and OV33.25 These time series are transformed such that the mean of 

every time series is one. This is necessary to obtain convergence of the GMM procedure.26 

We use empirical time series with 500 data points to estimate the parameters. The compar-

ison of the theoretical and empirical option prices is made for 1994. More precisely, it is the 

period from February 10, 1994 until December 23, 1994, which is made up of 220 trading 

days.27 The total number of call (put) option prices for this period is 18341 (18341). We only 

use call (put) prices which obey the restriction C > S — K e~r^T~^ (P > Ke"r^T~^ — 5).28 

volatility of G erman stocks, respectively. 
24[Abhyankar et al. (1997)], p. 360. 
25Possible problems which can arise from a simultaneous equations bias as described e.g. in 

[Hamilton (1994)] are not considered here. 
26Although this procedure seems to be a bit arbitrary, it is correct. This is due to the fact that all 

parameters, including ß, are estimated simultaneously. Hence, different linear transformations of the original 

time series only lead to different estimates of ß. Using the transformed data with the corresponding ß leads 

to the same option prices, regardless of how the original time series are transformed. 
27The first 33 trading days in 1992 are used to calculate the first data points for the time series Var33, 

NoT33, and 0V33. 
28 The maximum value of Ke~r(T~^ for put prices is never exceeded for our sample. 
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After accounting for these minimum values, we have a total of 17275 calls (17831 puts) left. 

To avoid problems which could occur due to short times to maturity, we also exclude all 

options which have less than 14 days left before expiration. This further reduces the number 

of calls (puts) to 15654 (16057). 

In order to calculate the theoretical option prices, we use daily IBIS-DAX data reported 

at 5 p.m. This is because at that time the Deutsche Terminbörse (DTB) calculates the 

settlement prices of all available DAX-options which are based on the DAX at that time. By 

using these option prices we avoid the well-known problems with non-synchronous data. In 

addition the daily trading volume is known at that time, too. The interest rates which we 

use are the 1-, 3-, and 6-month Interbank interest rates which are inter- and extrapolated, 

respectively, to match the given times to maturity of the options. 

7.2. Parameter estimations from historical data 

As described in the previous chapter, we use different time series to estimate the parameters. 

Thus, we first want to look at the estimation results for these time series. The right column 

of Table 7.1 reports the average p-values of the x2 test of overidentifying restrictions. Based 

on these values, we cannot reject the hypothesis that the data is correctly described by the 

models. Using the small sample p-values given in Tables 6.6 and 6.3 the level of significance 

is at least 10% for all time series. 

As for the parameter values themselves, we first want to have a look at the values of K a nd 

<7. Table 7.2 shows that decreasing the number of days used to calculate a Single data point 

of the time series leads to larger values of K and o. This can be explained by the fact that 

taking the average of more data results in time series which show a higher persistence. But 

what are the implications of this result? Assuming that equation 3.2 (3.5) correctly describes 

the instantaneous variance (volume) process, one should expect the time series Var2 (NoTl, 

OV1) to be most consistent with the model. But having a large value of K i mplies that the 

current value of v is almost irrelevant to the option price, since the variance (volume) will 

be pulled back to its long-run level 6 at a very high rate. The same problem arises with 

regard to er. Although large values of K a re accompanied by large values of <r, comparative 



V- P K* vari ^var > 

&vol 

%.r/ 

Ko, 

a ß P 

Var2 .1397 .0068 .6697 .0132 .2035 — — .481 

(.0414) (.0214) (.0146) (.0012) (.0107) 

Var 10 .1381 .0206 .0647 .0016 .0367 — — .606 

(.0499) (.0596) (.0069) (.0002) (.0007) 

Var22 .1193 -.0546 .0178 .0004 .0157 — — .482 

(.0476) (.0564) (.0057) (.0001) (.0007) 

Var33 .1631 -.0440 .0098 .0003 .0111 — — .663 

(.0554) (.0779) (.0038) (.0001) (.0004) 

NoTl .1424 .1520 9.0866 .1962 .9431 -.0055 .0262 .355 

(.0619) (.0288) (2.0457) (.0521) (.0236) (.0093) (.0082) 

NoT2 .1233 .0889 2.8638 .0606 .5709 -.0120 .0324 .411 

(.0562) (.0251) (.5826) (.0139) (.0201) (.0096) (.0087) 

NoTIO .1254 .0663 .1722 .0034 .1525 -.0191 .0390 .229 

(.0612) (.0180) (.0549) (.0011) (.0044) (.0048) (.0039) 

NoT22 .1304 .0854 .0065 .0001 .0806 -.0151 .0352 .145 

(.0573) (.0113) (.0336) (.0007) (.0023) (.0078) (.0068) 

NoT33 .1439 .0660 .0246 .0004 .0542 -.0138 .0341 .104 

(.0464) (.0250) (.0575) (.0013) (.0015) (.0182) (.0166) 

.1473 .0160 15.1367 .3200 2.0638 -.0028 .0267 .314 

(.0543) (.0427) (1.3520) (.0341) (.0799) (.0028) (.0023) 

.1581 .0211 5.5872 .1173 1.3152 -.0075 .0318 .249 

(.0463) (.0387) (.6603) (.0173) (.0298) (.0006) (.0012) 

OVIO .1487 .0102 .5342 .0114 .3334 -.0114 .0360 .166 

(.0373) (.0135) (.1337) (.0033) (.0115) (.0051) (.0045) 

ov&g .1302 -.0231 .0962 .0026 .1422 -.0161 .0409 .081 

(.0440) (.0201) (.0566) (.0013) (.0059) (.0050) (.0042) 

.1651 .0260 .0833 .0024 .1019 -.0100 .0348 .066 

(.0540) (.0231) (.0583) (.0013) (.0029) (.0038) (.0035) 

Table 7.1: Estimated parameter values from empirical time series for the stochastic variance 
and stochastic volume model. The Standard deviations are given in parenthesis. 
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2 4 2 

Var2 167.4298 .0198 3.2179 

(3.6516) (.0014) (.1695) 

Var 10 16.1784 .0245 .5796 

(1.7136) (.0013) (.0108) 

Var22 4.4473 .0250 .2486 

(1.4218) (.0016) (.0106) 

VarSS 2.4613 .0268 .1748 

(.9476) (.0030) (.0070) 

NoTl 55.4216 .0214 .3922 

(2.5391) (.0015) (.1285) 

NoT2 21.9711 .0210 .2949 

(1.2038) (.0013) (.0891) 

NoTIO 1.6936 .0199 .0943 

(.5946) (.0038) (.0115) 

NoT22 .0855 -.0576 .0450 

(.2743) (.8697) (.0098) 

NoT33 .0965 .0252 .0289 

(.4261) (.0283) (.0132) 

0V1 100.835 .0211 .8725 

(10.7775) (.0011) (.0995) 

44.3428 .0209 .6618 

(4.2902) (.0013) (.0206) 

OVIO 4.7495 .0214 .1907 

(1.0406) (.0026) (.0304) 

.9823 .0128 .0922 

(.5606) (.2105) (.0133) 

OV33 .6988 .0226 .0562 

(.4654) (.1874) (.0068) 

Table 7.2: Estimated parameter values from empirical time series for the stochastic 
and stochastic volume model. The Standard deviations are given in parenthesis. 
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statics analysis reveals that the latter cannot offset the influence of K. In other words, if K 

is large, the corresponding value of er h as only a marginal impact on the option price. The 

only parameter which still matters is 9, since it determines the average level of v and h, 

respectively. One possible explanation for the behavior of these time series can be found in 

[Merville/Pieptea (1989)]. They show that "... the mean-reverting hypothesis is correct, but 

in addition (we) find an important discrete noise component in the volatility process."29 

Looking at the variance time series which are more likely to fit to the corresponding model, 

we see that, on average, the values of p are negative. This implies a negative correlation 

between the percentage changes of the DAX and its variance. Such a relationship is often 

reported in other empirical studies as well.30 Using volume data, things are different. With 

the exception of the time series OV22, the average values of p are positive. This is also a 

result that is often found in empirical works.31 

A closer look at the values of 9 reveals that for NoT22 and OV22 we obtain very small 

values as compared to the other time series. In particular the negative value for NoT22 is 

not consistent with the model. This is due to the very small values of K. From chapter 3.4., we 

already know that the estimation of a small K c an result in a negative K. Hence, in a second 

step we check whether all estimated parameter values obey the restrictions —1 < p < 1, 

K>0, 0>O, (7>0 and a + ßh > 0. If one of the daily estimated parameters violates these 

boundaries, the estimation results of this day are excluded from the sample for this time 

series. The resulting average values of the parameter estimates are reported in Table 7.3. 

Here all values of y/d are within a reasonable ränge of about 14% to 18% p.a. This includes 

the results for the volume time series. In other words, our choice of the transformation 

process as given in equation (3.3) leads to estimates of \[Ö which correspond to the results of 

the variance time series. This is an important result regarding the plausibility of the chosen 

transformation. The right column of Table 7.3 reports the number of days for which the 

above restrictions are not violated. Looking at the results for K in Table 7.2 and the number 

of days in Table 7.3, one can easily see that smaller values of K lead to more violations of 

29 [Merville/Pieptea (1989)], p. 195. 
30See e.g. [Schmalensee/Trippi (1978)], [Christie (1982)], and [Nelson (1991)]. 
31See e.g. [Karpoff (1987)] and [Majnoni/Massa (1996)]. 



p K Ve a a ß # of days 
Var2 .0068 167.4298 .1405 3.2179 — — 220 

(.0214) (3.6516) (.0052) (.1695) 

Var 10 .0206 16.1784 .1564 .5796 — — 220 
(.0596) (1.7136) (.0041) (.0108) 

Var22 -.0546 4.4473 .1581 .2486 — — 220 

(.0564) (1.4218) (.0050) (.0106) 

Vor# -.0440 2.4613 .1635 .1748 — — 220 

(.0779) (.9476) (.0091) (.0070) 

NoTl .1520 55.4216 .1461 .3922 -.0055 .0262 220 

(.0288) (2.5391) (.0051) (.1285) (.0093) (.0082) 

NoT2 .0889 21.9711 .1450 .2949 -.0120 0324 220 

(.0251) (1.2038) (.0044) (.0891) (.0096) (.0087) 

NoTIO .0663 1.6936 .1405 .0943 -.0191 .0390 220 

(.0180) (.5946) (.0134) (.0115) (.0048) (.0039) 

NoT22 .0790 .3022 .1784 .0458 -.0157 .0361 101 

(.0047) (.1557) (.1503) (.0098) (.0081) (.0068) 

NoT33 .0762 .3487 .1396 .0221 -.0042 .0255 149 

(.0131) (.1081) (.0185) (.0055) (.0073) (.0063) 

.0160 100.835 .1453 .8725 -.0028 .0267 220 

(.0427) (10.7775) (.0038) (.0995) (.0028) (.0023) 
oyg .0211 44.3428 .1446 .6618 -.0075 .0318 220 

(.0387) (4.2902) (.0044) (.0206) (.0006) (.0012) 

OVIO .0102 4.7495 .1461 .1907 -.0114 .0360 220 

(.0135) (1.0406) (.0091) (.0304) (.0051) (.0045) 

-.0229 1.0479 .1798 .0930 -.0164 .0411 208 

(.0193) (.5021) (.0898) (.0132) (.0050) (.0042) 

.0290 .7973 .1797 .0562 -.0101 .0347 198 

(.0215) (.3763) (.1086) (.0071) (.0039) (.0036) 

Table 7.3: Estimated parameter values from empirical time series for the stochastic variance 
and stochastic volume model. In order to calculate the reported average values, only esti­
mates which obey the restrictions —1 < p < 1,K>O,0>O,<T>O and a + ßh> 0 are used. 
The Standard deviations are given in parenthesis. 
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the model restrictions. We want to emphasize that, for p and d, not only the average values 

but also every daily estimation obeys the relevant boundaries. 

7.3. Implicit parameter estimations 

In order to apply the valuation formulas of the stochastic volume and variance models, 

respectively, we also have to estimate the parameter A, which represents the market price of 

risk which is induced by dw2- In the derivation of the closed-form solutions, we assume that 

the risk premium associated with this Wiener process is proportional to v(t) and a + ßh(t), 

respectively. As [Cox et al. (1985)] have shown, this can be done by assuming that the 

representative consumer has a logarithmic utility function. In the context of such a general 

equilibrium model, A c an mathematically be interpreted as the covariance between changes 

in the variance and percentage changes in optimally invested wealth.32 Since A c annot be 

estimated from the data used so far, we estimate it implicitly using at-the-money calls and 

puts, respectively. The same options are used to estimate the daily implicit volatilities of the 

Black-Scholes model. In order to account for their maturity bias, the implicit estimations 

are done for each of the 5 different maturities which were available during the Observation 

period. These maturities are 1, 2, 3, 6 and 9 months. 

The estimation results for at-the-money calls are given in Table 7.4 and those for at-the-

money puts are reported in Table 7.5. We observe that all average values of A a re negative. 

Having a look at the Standard deviations, it is clear that the Single estimations are within a 

broad ränge as compared to the mean values. Although all of the latter are negative, Single 

estimations lead to positive values of A. This confirms the results of [Kapadia (1995)] and 

[Guo (1996)]. [Guo (1996)] estimates A for PHLX currency options. He also obtains positive 

and negative values for A. This is consistent with the Interpretation of A a s a covariance as 

described above. [Kapadia (1995)] examines call options on the S&P 100 index and estimates 

A fo r a stochastic variance model which has a specification similar to the one given in equa-

tions (3.1) and (3.2). His estimates of A vary from 15 to -148.8, leading to an average value of 

-54.5. Hence, option pricing models which assume that the volatility risk is not priced by the 

32 See [Cox et al. (1985)] and [Schöbel (1995)]. 
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Maturity in days 

14-32 28-60 56-95 91 - 179 182 - 270 

BS-IV .1892 .1934 .1913 .1909 .1829 

(.0274) (.0209) (.0167) (.0128) (.0097) 

Var2 -85.70 -84.53 -79.67 -78.17 -69.26 

(40.42) (22.84) (18.74) (14.20) (12.06) 

Var 10 -13.11 -10.62 -7.77 —6.59 -4.85 

(17.75) (6.28) (3.59) (2.18) (1.62) 

Var22 -10.56 -6.21 -3.93 -2.86 -1.70 

(14.45) (5.29) (3.13) (1.94) (1.27) 

Mir# -7.59 -5.22 -3.07 -2.03 -1.04 

(12.99) (5.33) (2.95) (1.72) (1.11) 

NoTl -34.00 -28.63 -25.12 -23.98 -20.53 

(23.03) (10.97) (8.37) (6.28) (5.30) 

NoT2 -25.82 -17.59 -13.05 -11.13 -8.99 

(19.42) (7.75) (4.74) (3.18) (2.38) 

NoTIO -21.40 -11.82 -6.82 -4.24 -2.39 

(19.08) (7.30) (3.94) (2.51) (1.39) 

NoT22 -23.58 -10.93 -6.36 -3.51 -1.93 

(13.73) (4.91) (2.30) (1.15) (.63) 

NoT33 -12.47 -7.68 -4.47 -2.62 -1.38 

(12.65) (4.88) (2.63) (1.26) (.67) 

0V1 -49.94 -45.94 -43.41 -42.79 -37.32 

(27.89) (15.44) (13.16) (10.59) (8.99) 
oyg -31.55 -23.76 -20.93 -19.88 -17.04 

(19.10) (8.05) (5.83) (4.43) (3.59) 

OVIO -15.02 -9.61 -5.98 -4.20 -2.69 

(12.90) (6.79) (3.80) (2.52) (1.49) 

0V&8 -14.03 -7.39 -4.29 -2.74 -1.38 

(12.78) (5.30) (3.22) (2.30) (1.37) 

-11.04 —6.66 -3.84 -2.40 -1.17 

(10.84) (4.54) (2.66) (1.80) (1.05) 

Table 7.4: Estimated average values of the implied Black-Scholes volatilities and of A for the 
stochastic variance and stochastic volume model, estimated from at-the-money calls. The 
Standard deviations are given in parenthesis. 
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Maturity in days 

14-32 28-60 56-95 91 - 179 182 - 270 

BS-IV .2023 .2073 .2064 .2058 .2037 
(.0372) (.0239) (.0183) (.0142) (.0103) 

Var2 -98.12 -96.99 -93.23 -91.22 -88.82 

(43.21) (20.41) (15.13) (11.98) (9.64) 

Var 10 -18.45 -13.79 -10.36 -8.62 -7.52 

(18.39) (6.66) (3.47) (1.95) (1.41) 

Var22 -15.04 -8.61 -5.60 —3.93 -2.85 

(16.38) (5.67) (3.10) (1.83) (1.24) 

Var33 -12.03 -7.54 -4.62 -2.97 -1.98 

(14.95) (5.46) (2.87) (1.65) (1.06) 

NoTl -41.09 -34.11 -30.49 -28.89 -27.66 

(23.19) (9.26) (6.08) (4.76) (4.07) 

NoT2 -31.13 -20.87 -15.78 -13.33 -11.95 

(19.15) (6.75) (3.63) (2.48) (1.91) 

NoTIO -25.63 -13.94 -8.20 -5.04 -3.12 

(18.34) (6.59) (3.37) (2.28) (1.30) 

woTag -27.23 -12.96 -7.43 -4.13 -2.49 

(14.76) (4.41) (2.12) (1.05) (.59) 

NoT33 -17.18 -10.37 -6.04 -3.45 -2.03 

(13.11) (4.86) (2.26) (1.16) (.60) 

0V1 -59.10 -54.35 -52.24 -51.19 -49.94 

(27.95) (12.39) (9.37) (8.13) (7.70) 

072 -37.88 -28.43 -25.29 -23.77 -22.70 

(18.82) (6.51) (4.15) (3.29) (2.88) 

OVIO -19.47 -11.98 -7.60 -5.23 -3.76 

(13.67) (6.26) (3.48) (2.29) (1.38) 

-18.39 -9.57 -5.68 -3.53 -2.11 

(12.88) (4.90) (2.91) (2.13) (1.26) 

-15.66 -8.91 -5.24 -3.18 -1.88 

(12.00) (4.22) (2.30) (1.65) (.94) 

Table 7.5: Estimated average values of the implied Black-Scholes volatilities and of A for the 
stochastic variance and stochastic volume model, estimated from at-the-money puts. The 
Standard deviations are given in parenthesis. 
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market as proposede.g. by [Hull/White (1987)], [Scott (1987)], and [Wiggins (1987)] are not 

consistent with these findings. These models obviously lack an important model parameter. 

We also observe that the absolute values decrease when more data is used to generate the 

time series. This is consistent with the definition of A a s the market price of risk since these 

time series are less volatile. In contrast to [Kapadia (1995)] and [Guo (1996)], we also exam-

ine whether there are maturity or moneyness biases when estimating A. Looking first at the 

estimates for different times to maturity, we can observe that this factor is obviously crucial 

to the magnitude of A. The longer the time to maturity, the smaller the absolute values of A 

are. This is not consistent with the model assumptions. The same tendency can be found for 

the implicit volatilities of the Black-Scholes model. With the exception of the implicit volatil-

ity for the nearest-to-deliver options, all others decrease for longer times to maturities. These 

patterns are given for both types of options, calls and puts. Comparing Tables 7.4 and 7.5, 

we observe that the absolute values of the estimates from put options are larger than those 

from call options. This implies that put options are more expensive than call options. This 

confirms the results of [Whaley (1986)], [Taylor/Xu (1994)], and [Harvey/Whaley (1992)], 

who examine futures, currency, and stock index options, respectively. A possible explana-

tion for this phenomenon is given in [Harvey/Whaley (1992)]. They conclude that buying 

"... index puts is a convenient and inexpensive form of portfolio insurance. Excess buying 

pressure of puts (relative to calls) may cause prices to increase ...",33 

As many empirical examinations have shown, the implicit Black-Scholes volatilities are low-

est for at-the-money options which leads to the well-known volatility smile. One of the 

explanations for this empirical fact that can be found in the literature is that the Black-

Scholes model does not account for stochastic volatility.34 If this is really the main reason 

for the existence of the volatility smile, we should expect the implicit estimates of A to be the 

same for different moneyness categories. In order to check for this, we calculate the implicit 

market prices of risk for all options and all time series. It turns out that the behavior is quite 

similar to the one of the Black-Scholes implied volatilities. The smallest absolute values of 

33[Harvey/Whaley (1992)], p. 56. 
34See e.g. [Ball/Roma (1994)] and [Renault/Touzi (1996)], who prove that the volatility smile can be 

explained in the presence of a stochastic volatility process as proposed by [Hull/White (1987)]. 
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A a re observed for options which have a moneyness that is slightly below one. For in- and 

out-of-the-money options, the absolute values of A i ncrease. 

This raises the question as to whether the magnitudes of the observed biases are equal. This 

cannot be answered by comparing the implicit estimates of er and A di rectly, since they differ 

not only in their absolute values, but also in their units. That is why we proeeed as follows: 

in a first step, we calculate option prices for the stochastic variance and stochastic volume 

model using the at-the-money estimates of A f or all different moneyness classes. Next the 

implicit Black-Scholes volatilities are calculated from these option prices. If the magnitude of 

the moneyness bias in the case of A is the same as for the Black-Scholes model, these implicit 

volatilities should all be of the same size. If the models which we examine can explain part 

of the Black-Scholes moneyness bias, we expect the volatility smile to be existent but not 

as pronounced as for the original option prices. That is exactly what we observe. In order 

to visualize these Undings, representative results are depicted in Figures 7.1 to 7.3. The 

Black-Scholes implied volatilities are depicted in Figure 7.1 and the market prices of risk for 

the same options based on the parameter estimates of Var33 are shown in Figure 7.2. A 

comparison between the implied Black-Scholes volatilities based on the original option prices 

S/K 

Figure 7.1: Implicit Black-Scholes volatilities calculated out of 3rd-nearest-to-deliver put 
options. 
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Figure 7.2: Implicit market price of risk A calculated out of 3rd-nearest-to-deliver put options 
using the parameter estimates of Var33. 

S/K 

from original option prices from transformed option prices 

Figure 7.3: Implicit Black-Scholes volatiütes from original and transformed 3rd-nearest-to-
deliver put options. The transformation is done by calculating option prices for the stochastic 
variance model using the parameter estimates of Var33 and the corresponding at-the-money 
value of A f or all different moneyness classes. 
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and those which are calculated from transformed option prices is given in Figure 7.3. The 

transformed option prices are derived as described above. 

We want to emphasize that the behavior of A is the same for the stochastic variance and the 

stochastic volume model. 

7.4. In-the-sample option prices 

The main purpose of option pricing models is to explain empirical option prices. But since 

the intrinsic value, which is defined as S — e~TTK for calls and e~TTK — S for puts, is known, 

this problem is reduced to explaining the difference between the empirical option price minus 

its intrinsic value. This difference is often referred to as the time value of the option. Hence, 

we want to focus on the question as to how well the time values are described by the models 

under consideration. 

Using the given parameter estimates, we can calculate the theoretical time value for the dif­

ferent models and time series. This is done by using S, K, r,T — t, the estimated parameters 

for a given day, and the spot value of the time series which describes the variance (volume) 

as input variables for the stochastic variance (volume) model. The resulting theoretical time 

values are compared to the empirical ones. The root mean squared error of relative time 

value differences serves as criterion for the quality of the theoretical results. It is defined as 

Here, the empirical time value is denoted by tv*mp and the theoretical value by tv\h. N is 

the number of options within a given moneyness class aggregated over all maturities. 

Figure 7.4 shows the average empirical time values computed from all call options to provide 

an idea of the magnitude of the time values for our data. 

As reported in the previous chapter, we have different samples for the given time series. 

Hence, we cannot compare the results directly. Therefore, we use the Black-Scholes model 

as a benchmark. In other words, we calculate the Black-Scholes option prices and the cor-

responding RMSE's for the different samples. Next we look at the differences between the 

RMSE's of the Black-Scholes model and the RMSE's of the other models. Positive differ-
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Figure 7.4: Empirical time values computed from call options. 

ences mean that the Black-Scholes model performs better. The opposite applies when the 

differences are negative. Here it is important to remember that the Black-Scholes option 

prices are calculated via implicitly estimated volatilities, whereas only one of the neces-

sary parameters of the other models is calculated implicitly. All others are estimated from 

historical data. But as a number of studies have shown, Black-Scholes implied volatilities 

normally lead to better volatility forecasts than historical volatilities.35 Hence, due to the 

differences in estimating the parameters, the Black-Scholes model has an advantage over the 

other models. 

The main question that we want to answer is how well empirical time values can be explained 

by using the different models and time series, respectively. In a first step, we examine in-

the-sample option prices, that is, parameter estimates and option prices are given for the 

same day. 

In the case of the stochastic variance model, Figure 7.5 shows that the results based on 

the time series Var33 clearly performs best. There is also an obvious tendency that the 

RMSE's become smaller for the time series which are calculated from more data. For NoT, 

things are not quite as obvious. Although NoTl leads to the smallest RMSE differences for 

35See eg. [Latane/Rendleman (1976)], [Chiras/Manaster (1978)], and [Beckers (1981)]. 
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Figure 7.5: Differences between the RMSE's calculated with the Black-Scholes model and 
the RMSE's calculated with the stochastic variance model. 
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Figure 7.6: Differences between the RMSE's calculated with the Black-Scholes model and 
the RMSE's calculated with the stochastic volume model. 
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Figure 7.7: Differences between the RMSE's calculated with the Black-Scholes model and 
the RMSE's calculated with the stochastic volume model. 
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Figure 7.8: Differences between the RMSE's calculated with the Black-Scholes model and 
the RMSE's calculated with the stochastic variance and volume model, respectively. The 
calculations are based on in-the-sample call options. 
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Figure 7.9: Differences between the RMSE's calculated with the Black-Scholes model and 
the RMSE's calculated with the stochastic variance and volume model, respectively. The 
calculations are based on in-the-sample put options. 

in-the-money options, it also has significantly larger RMSE differences for out-of-the-money 

options as, for example, NoT33. A look at Figure 7.7 shows that, except for the magnitude 

of the data, things are similar to Figure 7.6. Here OV33 clearly leads to the smallest values. 

Due to these results, we want to restrict ourselves to the time series Var33, NoT33, and OV33 

for the remainder of the paper. A direct comparison of these 3 time series is depicted in 

Figur es 7.8 and 7.9. With regard to the ability of the used models to explain in-the-sample 

option prices, we can State that the Performance of all models is very similar. The only 

exception is the in-the-money call options case for Var33. For these options, the stochastic 

variance model leads to the largest deviations from the empirical call prices. 

7.5. Out-of-the-sample option prices 

Until now we have restricted our study to in-the-sample option prices. But even more 

important is the question as to how well our model can explain out-of-the-sample time values. 

In order to examine this aspect, we identify the constant model parameters and use them 

to compute the option prices of the one- and five-days-ahead trading days, respectively. By 
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Figure 7.10: Differences between the RMSE's. The calculations are based on one-day-out-
of-the-sample call options. 
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Figure 7.11: Differences between the RMSE's. The calculations are based on five-days-out-
of-the-sample call options. 
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Figure 7.12: Differences between the RMSE's. The calculations are based on one-day-out-
of-the-sample put options. 
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Figure 7.13: Differences between the RMSE's. The calculations are based on five-days-out-
of-the-sample put options. 
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doing so, we proceed in a way which is consistent with the assumptions of the different models 

in regard to their variance processes. In case of the one-day-out-of-the-sample examination, 

this means, for the Black-Scholes model, that we use the implied volatility of the previous 

trading day. The parameters S, t, and r are taken from the current trading day. To test 

the other models, we proceed in a similar way. We take the estimates of p, K, 9, <r, a , and 

ß of the previous day and use them together with the current values of S, t, r, v, and h, 

respectively, to calculate the theoretical option prices. 

Figur es 7.10 and 7.11 show the results for call options with a lag of 1 and 5 days, respectively. 

Looking at the stochastic variance model, we see that on average the Black-Scholes model 

performs better. For the stochastic volume model things are different. It explains out-of-the-

sample time values better than the Black-Scholes model. This is especially true for longer 

lags. As Figure 7.11 shows, the valuation bias of the Black-Scholes model can be reduced 

by up to 60 percentage points. It is interesting to note that both time series, NoT33 and 

OV33, show the same kind of behavior. Although the ability to explain the empirical time 

values better than the Black-Scholes model is given for both time series, NoT33 leads to 

the most significant improvements. That is, stock trading volume seems to have a greater 

explanatory power than option volume. On the other hand, the latter obviously explains at 

least part of the stochastic nature of the stock variance. Otherwise it could not lead to an 

improved option valuation. 

Things are similar in the case of out-of-the-sample put prices. As Figures 7.12 and 7.13 

show, the stochastic variance model performs somewhat better, especially for the one-day-

out-of-the-sample puts. Here the mispricing of in-the-money options is smaller. But again, 

the stochastic variance model does not lead to significant improvements on the Black-Scholes 

model. As for the stochastic volume model, we observe a distinct decrease in the RMSE's 

for in-the-money puts. Once again, this is more pronounced for longer lags and the time 

series NoTSS. These improvements clearly offset the only marginally higher RMSE's of the 

out-of-the-money puts since the latter have lower prices than in-the-money options. In other 

words, an increase in the accuracy of theoretical time values by a certain percentage leads 

to higher gains for in-the-money options when measured, for example, on a DM basis. 
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8. Summary and Conclusions 

In this paper we address several questions regarding the stochastic nature of stock variances. 

We first modify the model of [Heston (1993)] in such a way that it explicitly incorporates 

trading volume as a State variable. This leads to a valuation formula which includes observ-

able state variables only. Next, we examine whether it is possible to estimate the parameters 

of the original Heston model and our modified model from historical data using the Gener-

alized Method of Moments. In order to determine whether this procedure is able to identify 

the parameters of the stochastic processes, we run Monte Carlo simulations. They show that 

only the estimation of the speed of adjustment parameter K is biased. But since the sensi­

tiv! ty of the models to K is very small, this problem is not of primary concern. More serious 

problems arise from the fact that the estimates of K can become negative if its true value 

is positive but only slightly above zero. Furthermore, we find that the estimated Standard 

deviations of the parameter estimates all perform reasonably well compared to the true Stan­

dard deviations of the estimated parameters. With regard to the x2 test of overidentifying 

restrictions, we can State that it is very conservative when our choice of moments is used. 

Knowing this, one can still make use of this test by using modified p-values which can easily 

be derived from the estimation results. 

We apply the GMM procedure to data from the German stock and option markets. The 

historical variances which are used to estimate the parameters of Heston's model are derived 

from time series of the German stock index DAX. These variances are not only used as input 

variables for the GMM procedure, but also for the model itself. That is, we use historical 

variances to verify the accuracy of the theoretical model.36 Volume data used in this study 

are the number of transactions in German stocks and the daily average number of DAX-

options traded at the DTB. We use these data to derive a total of 4 different variance and 

10 different volume time series. The resulting parameter estimates reveal the same problem 

with regard to negative values of K a s we have found for the simulated time series. Interesting 

results are found regarding the specification of v, the instantaneous variance of stock returns. 

36In [Scott (1987)] and [Scott (1991)], t he author also applies the method of m oments, but uses the esti­

mates to compute the daily volatilities implicitly. 
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The time series which should come dosest to this definition results in parameter estimates 

which do not support the assumption that the instantaneous variance follows a pure mean-

reverting process. They rather support the results of [Merville/Pieptea (1989)], who find 

that a noise component is superimposed on the mean-reverting process. Our estimates of 

p from empirical data support evidence from other studies stating that there is a negative 

(positive) correlation between returns and variance (trading volume). 

The only parameter which cannot be estimated from historical time series is the market 

price of risk A. Thus, as usual, we have to compute it implicitly from option prices. It 

turns out that A s hows a similar behavior as the implied Black-Scholes volatilities. For at-

the-money options, we obtain the smallest absolute values. Since the units of A and the 

implicit volatilities do not allow a direct comparison of the moneyness bias, we also calculate 

theoretical option prices using at-the-money values of A and compute the corresponding 

implied Black-Scholes volatilities. Comparing these implied volatilities with the original ones, 

we find that the stochastic models can explain part of the Black-Scholes moneyness bias. 

The estimates of A al so reveal a maturity bias and show that put options are more expensive 

than call options. These new results are not consistent with the model assumptions, which 

imply that the value of A ou ght to be the same across all moneyness classes, maturities, and 

option typ es. 

Having estimated all model parameters we focus on the question as to which model better 

describes empirical option prices. Because the intrinsic value of an option can easily be 

computed without any model, the accuracy of an option pricing model only depends on 

its ability to explain the time value of an option. Thus, we do not compare empirical and 

theoretical option prices, but rather their time values. In order to measure the impact of 

stochastic variance and stochastic volume sepaxately, we use the Black-Scholes valuation 

errors as a benchmark. Comparing these values with those of the Heston model enables us 

to identify the impact of stochastic variance on the explanatory power of the option pricing 

models under consideration. We then look at the differences in the results of the stochastic 

volume model and the original Heston model. These differences must be due to the use 

of volume instead of variance data. Since we employ different time series to estimate the 
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Parameters, we first examine which one of them leads to the best results with respect to 

in-the-sample options only. It turns out that, within all classes of time series, those with 

the highest persistence, corresponding to the longest Observation intervals used to calculate 

one data point, perform best. This again Supports the above result of a superimposed noise 

component. We compare the ability of the different models to explain the time values of 

in-the-sample options. We find that, on average, all models perform equally well. This 

is refiected in the differences of the RMSE's which are all within a ränge of ±4 percentage 

points. The only exception is the case of in-the-money call options when using the stochastic 

variance model. Here we have a distinct increase in the RMSE. 

However, we want to emphasize that the setup of the estimation procedures for the different 

models clearly favors the Black-Scholes model because it is the only model whose parameters 

are either directly observable or implicitly estimated. The other models also incorporate 

parameters which are estimated from historical data. Bearing this in mind, the results 

indicate the potential of the stochastic models to perform better than the Black-Scholes 

model. This is confirmed by [Nandi (1996)] and [Bakshi et al. (1997)], who estimate all 

parameters implicitly. 

The next question which we address is how the models perform when applied to out-of-the-

sample options. We use a setup that takes the assumptions of the models into account. 

In the case of the Black-Scholes model, we have to assume, for example, that the implied 

volatilities are constant. In order to calculate theoretical option prices for the other models, 

we use lagged estimates of p, K, 9, er, a, and ß together with the current values of S, t, r, 

v, and h, respectively. We choose lags of 1 and 5 days. Thus, we use parameters which are 

estimated for a specific day in the past to compute theoretical option prices for subsequent 

days. For the stochastic variance model, we do not find an improved ability to explain 

time values. On average this model is outperformed by the Black-Scholes model. Things 

are different for the stochastic volume model. With the exception of in-the-money puts, 

we obtain theoretical time values which provide significantly improved descriptions of their 

empirical counterparts. The magnitude of mispricing based on the Black-Scholes model can 

be reduced by up to 60 percentage points for a lag of 5 days. This result is even more 
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remar kable because, as mentioned above, it is based on parameters which are estimated 

from historical data. It also supports our choice regarding the relationship between volume 

and variance. 

The use of different volume data for the stochastic volume model enables us to draw some 

conclusions about their importance for the valuation of options. First, using historical vol­

ume data, we can explain empirical time values better as compared to the use of historical 

variances. Second, volume data from the stock market outperforms data from the options 

market. Third, although data from the options market is inferior to those from the stock 

market, they still contain Information which is important for the valuation of options. 

Further research should be directed towards the refinement of alternative option pricing 

models which only incorporate observable variables. This includes modifications of the linear 

relationship between volume and variance which we have used. It would also be interesting 

to estimate the parameters of a stochastic variance model implicitly and investigate the 

relationship between the implied variance and observable volume data. 
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A. Appendix 
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37See [Johnson/Kotz (1970)], p . 130. 
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