~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Liesenfeld, Roman; Jung, Robert C.

Working Paper
Stochastic volatility models: Conditional normality versus
heavy tailed distributions

Tubinger Diskussionsbeitrage, No. 103

Provided in Cooperation with:

University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and
Economics

Suggested Citation: Liesenfeld, Roman; Jung, Robert C. (1997) : Stochastic volatility models:
Conditional normality versus heavy tailed distributions, Tubinger Diskussionsbeitrdge, No. 103,
Eberhard Karls Universitat Tlibingen, Wirtschaftswissenschaftliche Fakultat, Tibingen

This Version is available at:
https://hdl.handle.net/10419/104916

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/104916
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Wirtschaftswissenschaftliche Fakultat
der Eberhard-Karls-Universitit Tibingen

Stochastic Volatility Models:
Conditional Normality versus
Heavy-Tailed Distributions

Roman Liesenfeld und Robert Jung

Tiibinger Diskussionsbeiti'éige



Wirtschaftswissenschaftliche Fakultat

der Eberhard-Karls-Universitat Tubingen

Stochastic Volatility Models:
Conditional Normality versus
Heavy-Tailed Distributions

AT s 15y

Roman Liesenfeld und Robert Jung

roman.liesenfeld @ uni-tuebingen.de

robert jung @uni-tuebingen.de

Diskussionsbeitrag Nr. 103
September 1997

Results of this paper are related to a project which is financially supported by the Deutsche Forschungsge-
meinschaft (DFG). The authors would fike to thank Walter Kramer, Martin Kukuk and Gerd Ronning for helpful
comments. This paper has been presented at the Econometric Society mesting in Toulouse, August 1997.

Wirtschaftswissenschaftliches Seminar
Mohlstra3e 36, D-72074 TUlbingen



Abstract

Most of the empirical applications of the stochatic volatility (SV) model are based on the
assumption that the conditional distribution of returns given the latent volatility process is
normal. In this paper the SV model based on a conditional normal distribution is compa-
red with SV specifications using conditional heavy-tailed distributions, especially Student’s
t-distribution and the generalized error distribution. To estimate the SV specifications a si-
mulated maximum likelihood approach is applied. The results based on German stock market
data reveal that the SV model with a conditional normal distribution does not adequately
account for the two following empirical facts simultaneously: the leptokurtic distribution of
the returns and low but slowly decaying autocorrelation function of the squared returns. It
is shown that these empirical facts are more adequately captured by a SV model with a
conditional heavy-tailed distribution. Finally, it turns out that the choice of the conditional

distribution has systematic effects on the parameter estimates of the volatility process.



1. INTRODUCTION

The stochastic volatility (SV) model introduced by Taylor (1986) is used to account for the well
documented autoregressive behavior in the volatility of financial return series. It represents an
alternative to the autoregressive conditionally heteroskedastic (ARCH) model of Engle (1982) or
Bollerslev’s (1986) generalized ARCH (GARCH) model. The standard version of this SV model

is given by

re = u+exp(Ae/2)uy , ug ~ 1.1.d.(0,1) (la)

A=+ OAor +vve, v ~iidN(0,1), (1b)

where r; is the return on day ¢ and A; is the log volatility. The parameter u represents the pre-
dictable part of the returns. The error processes u; and v; are mutually and serially independent
with mean zero and unit variance. Both, u; and v; are unobservable. Hence A;, which is assumed
to follow a Gaussian AR(1)-process with a persistence parameter 4, is also unobservable. For
|0] < 1 the SV model is covariance stationary. The parameter v measures the standard deviation
of volatility shocks and is assumed to be greater than zero. Most of the empirical applications
of the SV model are based on the additional assumption that u; is normally distributed leading
to a normal distribution for the daily returns conditional on \;; see for example Taylor (1986,
1994), Mahieu and Schotman (1994), Jaquier, Polson and Rossi (1994) and Kim, Shepard and
Chib (1996). In the studies of Ruiz (1994) and Harvey, Ruiz and Shepard (1994) the SV model
is extended to allow the conditional distribution of the returns to be more heavy-tailed than the

normal distribution by using the ad-hoc assumption of a scaled Student ¢-distribution for u;.

The purpose of this paper is to analyze the ability of the SV model to capture adequately the
following empirical regularities of financial return series. First, the leptokurtic distribution of
daily returns meaning that it is excessively peaked around zero and that it exhibits fatter tails
than the corresponding normal distribution. Second, the autoregressive behavior of the volatility
indicated by a typically low but very slowly decaying autocorrelation function of the squared
returns. We will demonstrate that the SV model with a conditional normal distribution for the
returns (SV-normal) is too restrictive to account adequately for both above mentioned empirical
regularities simultaneously. Furthermore we will show that the substitution of the conditional
normal distribution of the returns by a conditional heavy-tailed distribution as, for example,
the Student t¢-distribution and the generalized error distribution (GED) can help to capture

adequately both empirical regularities. Finally, it turns out that the assumption concerning the



conditional distribution of the returns affects the estimates of the parameters which governs the

volatility process.

Since the latent volatility process \; is assumed to be serially correlated the marginal likelihood
of the SV model is given by a high dimensional integral which makes the estimation by standard
maximum likelihood (ML) infeasible. Hence, to estimate the SV model with different conditio-
nal return distributions we use the simulated maximum likelihood (SML) approach developed
by Danielsson and Richard (1993). This estimation strategy allows to adopt the standard in-

struments of inference developed for the ML method.

The paper is organized as follows. Section 2 contains a brief description of the data used throug-
hout the paper. Section 3 analyzes the theoretical predictions of the SV model with a conditional
normal and conditional heavy-tailed distributions concerning the kurtosis of the returns and the
autocorrelation of the squared returns. The predicted moments are compared with the cor-
responding empirical moments. Section 4 describes the simixla.ted maximum likelihood (SML)
estimation technique used to estimate the parameters of the SV model. Section 5 presents the

results of the SML estimations of the SV model and Section 6 concludes.

2. DATA

The empirical results are based on a dataset consisting of daily closing prices for the six major
German stocks listed in the DAX, the leading German stock market index: Siemens (SIE),
Daimler-Benz (DAI), Volkswagen (VOW), Deutsche Bank (DBK), Bayer (BAY) and Veba
(VEB). The data were obtained from the Karlsruher Kapitalmarktdatenbank (KKMDB) and
are adjusted for effects of dividends and capital changes. The sample period starts on Janu-
ary 2, 1990 and ends on May 31, 1994 which gives a sample size of roughly 1100. The daily
closing prices p, are transformed to price changes measured in continuously compounded rates:
r. = 100 - In(p:/p;-1)-

The statistical properties of the data are summarized in Table 1. Notice that the kurtosis of
the returns is well above three, the value associated with the normal distribution. In order to
detect a serial correlation in the returns the Ljung-Box statistic for 20 lags LB,(20) is calcula-
ted. Under the null hypotheses of no autocorrelation LB,(20) is X%zo) distributed. The results
indicate that the returns are serially uncorrelated. Table 2 shows the autocorrelation coefficients

of the squared returns at different lags. The autocorrelation starts at a low level indicated by a



first-order autocorrelation smaller than 0.15 and declines with increasing lags very slowly. Even
for lag 40 the autocorrelation for all six stocks is greater than the asymptotic standard error
given by 0.03. The Ljung-Box statistic for the squared data LB,2(30), which is X(Zso) distributed
under the null hypotheses of no serial correlation, demonstrates that the positive autocorrelation

in the squared returns is statistically significant for all stocks.

3. DISTRIBUTIONAL AND TIME SERIES PROPERTIES OF
THE SV MODEL

In this section the theoretical predictions of the SV model (la) and (1b) with regard to the
kurtosis of the returns and the autocorrelation of the squared returns are confronted with the
empirical findings of Section 2.

Defining e; = r; — u as the return residuals, the kurtosis & of the unconditional distribution
of the returns resulting from the SV model (1a) and (1b) is given by (for the derivation see

Appendix A)
k = E(e})/E(e?)? = E(uf) exp{o?}  where o} =v%/(1-6%). (2)

The parameter o2 represents the unconditional variance of ;. Equation (2) clearly shows that
the kurtosis of the unconditional return distribution consists of two components: the baseline-
kurtosis which is due to the kurtosis of the standardized errors in the return equation E(u})
and the kurtosis which is due to the variation in the volatility process );. In the case of the
conditional normality assumption for the returns, the baseline-kurtosis is given by E(uj) = 3
leading to an unconditional kurtosis of the returns of more than three. This is consistent with
the observed leptokurtosis of the empirical distribution of financial return series. Notice that as
v — 0 the kurtosis of the returns predicted by the SV model converges to the baseline-kurtosis
E(u}). For v = 0 the SV model is no longer identified.

The autocorrelation function (ACF) of the squared return residuals e? = (r; — u)? resulting
from the SV model (1a), (1a) can be shown to be of the following form (for the derivation see
Appendix A):

exp{o2d™} — 1

p(r) = E(ug)exp{di} —3 r=12,.. . (3)

Hence for a normally distributed error u; and for § > 0 the SV model predicts a positive auto-

correlation in the squared return residuals, which is in accordance with the observed persistence



in the volatility of returns. Furthermore, the ACF is characterized by an exponetially decaying
rate determined by the parameter 6. Thus the persistence of shocks in the volatility process of

the returns depends on 4.

To evaluate the ability of the SV model to account adequately for the observed high kurtosis
of the returns and the autocorrelation of the squared returns starting with a low first-order
autocorrelation and decaying very slowly, the theoretical ACF can be expressed as a function of
the theoretical kurtosis, as proposed by Terasvirta (1996). According to Equation (2) and (3).

for the SV model this functional relationship between p(7) and « is given by

[s/E@)]” ~1

k-1

p(r) = (4)

For a given lag 7 and given values of E(u}) and § this function provides the theoretically
attainable p(7)/k-combinations of the SV model which tan be compared with the empirical
autocorrelation/kurtosis combinations for the return data. Taking 7 = 1 and assuming that u;
is normally distributed Equation (4) reduces to

(/3% =1

k-1

p(l) = (5)

Figure 1 shows this function for different values of § together with the empirical first-order
autocorrelation/kurtosis combinations of the six DAX stocks. Since typical estimates of ¢ for
return series with a slowly decaying ACF of the squared data show values which are greater than
0.9, we choose § = 0.9, § = 0.95 and § = 0.99. It is obvious from Figure 1 that the empirical
autocorrelation/kurtosis combinations are not attainable by the SV model with a conditional
normal distribution. The empirical autocorrelation/kurtosis combinations lie in a region which
is limited by p(1) < 0.15 and s > 7. In contrast to that, the SV model with normal errors and
with § > 0.9 predicts for a kurtosis k > 7 a first-order autocorrelation p(1) > 0.19. On the
other hand, for a first-order autocorrelation p(1) < 0.15 the predicted values of the kurtosis are
restricted by x < 5.21 if § > 0.9. Hence one can conclude that in the SV-normal model a low
but persistent autocorrelation in the squared return residuals (i.e. p(1) < 0.15 and § > 0.9) is

not compatible with a high kurtosis in the return distribution (i.e. < > 7).

Next we consider leptokurtic distributions for the error u; which are characterized by a kurtosis
E(u?) > 3. As can be inferred from Equation (2) and (3), relative to the normal assumption
for u;, a leptokurtic distribution increases ceteris paribus the kurtosis of the returns and leads

ceteris paribus to a decline in the level of the ACF. A prominent leptokurtic distribution used



in the class of GARCH models is the t-distribution (see for example Bollerslev (1987)). The
density function of a ¢-distributed random variable u;, with mean zero and variance normalized

to one is given by

F{(w+1)/2) [1 u? J_(UH)ﬂ

flug) = [r(w=-2)]7V? [(w/2)

. w>2, (6)

where the parameter w represents the degrees-of-freedom. As long as w > 4 the kurtosis of the
t-distribution is E(uf) = 3(w ~ 2)/(w — 4) which is greater than three if w < co. For w — oo the
t-distribution approaches a normal distribution.

Another distribution which also allows E(u}) to be greater than three is the GED distribution
described by Box and Tiao (1973). The density of a GED distributed random variable u; with
mean zero and variance one is given by

flug) = POR{=1/20/61%)
‘ BL(1/9)21+1/5

0< ¥ <o, (7)

with

5o [2-2/" m/m} v
T@/9)|

For 4 = 2 the GED collapses to a Normal distribution and for 4 < 2 the kurtosis given by
E(uf) = [(1/9)T(5/9)/[[(3/8)]? is greater than three (see Johnson and Kotz (1970)).

Figure 2 shows the first-order autocorrelation/kurtosis combinations which are according to
Equation (4) predicted by a SV model with a leptokurtic error distribution. In the left-hand
panel a baseline-kurtosis of E(uf) = 4 is used resulting from w = 10 in the ¢-distribution and
¥ = 1.4 in the GED distribution. In the right-hand panel the baseline-kurtosis is six representing
either a t-distribution with w = 6 or a GED distribution with ¥ =~ 1. It can be seen that in
contrast to a SV model with a normal error distribution, the predicted p(1)/x combinations
for a persistence parameter § > 0.9 and a leptokurtic error distribution are now able to cover
the empirical points. An increase in the baseline-kurtosis E(u}) moves up the predicted p(1)/x
combinations towards the empirical combinations. Therefore we conclude that in order to make
the SV model compatible with a high kurtosis of the returns and a low but slowly decaying ACF

of the squared returns it seems to be useful to allow for a leptokurtic error distribution.

In the following sections, the SV model is estimated under the assumption of a normal error
distribution as well as under the assumption of a t-distribution (SV-t) and a GED distribution
(SV-GED). These different specifications are compared concerning their ability to capture the

observed distributional and dynamic patterns of the return series.



4. ESTIMATION METHOD

In the SV model (1a) and (1b) the latent variable ), is autocorrelated. Thus in order to estimate
the SV model one has to solve the problem that the likelihood function is defined by an integral

whose dimension is given by the number of observations:

f(R|6) = /f(R,AIG)dA , (8)
RT

where f(R,A|8) denotes the joint probability function of the vectors R = {r;}]_, and A =
{\}E,. The vector 6 contains the parameters to be estimated. For this high dimensional
integral no closed form solution exists and standard numerical integration methods can not be
applied. Hence to estimate the SV model we use the SML estimator developed by Danielsson and
Richard (1993). This estimation strategy relies on Monte Carlo (MC) techniques to estimate the
integral (8)- and can be motivated as follows. If the number of MC replications is large enough
SML allows to adopt the standard instruments for inference developed for maximum likelihood.
Furthermore, the application of SML for the SV model with different assumptions concerning
the error distribution is straightforward, as long as the corresponding density function can be
expressed in an explicit form.

In the SML approach the integral (8) is estimated using an importance sampling technique and
subsequently maximized with respect to 8. Therefore the joint density f(R,A|#§) is factorized
in an importance sampling function (IF) (A | R) and a remainder function (RF) ¢(A, R) such

that the equation
f(R,A|6) = ¢(A,R)Y(A|R) (9)

holds. The expected value of the RF evaluated over the distribution defined by the IF is given
by

Ey(¢(8,R)] = [ 60 R (A IR)dA= [ f(R,A16)dA = F(RI6). (10
RT

RT
Since the integral f(R|0) can be expressed as the expectation E,[¢(A, R)] a natural estimator

for f{R|8) is the following sample average:
R 1 X
fn(RIO) = % 3 $(An R), (11)
n=1

where {An}Y_, represents a simulated random sample of size N drawn from the probability

distribution ¥(A | R). The precision of this estimator of the integral can arbitrarily be increased

6



by raising the simulation sample size N. An initial factorization of f(R,A ) according to the

conditions (9) and (10) is obtained as follows

]
=

wo(A| R) F(At] Ap=) (12)

[

¢0(A’ R) f(rt l ’\t) ' (13)

1]}
=

o
Il
—

where f(A;] Ar—1) is the density of the conditional distribution of A; given A;_, which is accor-
ding to Equation (1b) a Gaussian distribution. f(ry|A;) is the density of the return in period
t conditional on the value of A\;. For a SV-normal model f(r;| ;) is given by the density of a

normal distribution with mean u and variance exp{A:}. In a SV-t specification f(r,|A;) has the

form
_ 12 T((w +1)/2) (re —p)?  7rV2
Frel M) = [m(w — 2)exp{A}] 1/ T2 Teeidw-2 (14)
and in a SV-GED model _
f(rt | At) - ﬂexP{—l/m("t - /J')/(exp{At/2}/B)|0} (15)

exp{X¢/2}BT(1/8)21+1/? ’

where (3 is defined in Equation (7). The initial IF (12) and the corresponding RF (13) can be
used to construct a naive MC-estimate of the integral f(R|§) for a given value of the parameter
vector 8, as outlined in Equation (11).

As shown by Danielsson and Richard (1993) this initial factorization of f(R,A|6) in the IF
(12) and the RF (13) is inefficient in the sense that the resulting MC sampling variance of the
estimator for the integral increases dramatically with the dimension of the integral T'. To solve
this inefficiency problem Danielsson and Richard (1993) proposed an acceleration method, called
Accelerated Gaussian Importance Sampling (AGIS). This AGIS method search for an IF which

minimizes the MC sampling variance of the corresponding RF given by

Varl(A, B) = [ (68, B) - F(RIB)PH(AI R) A, (16)
RT

while preserving the conditions (9) and (10). The numerical solution to this minimizing problem
is provided by the AGIS procedure (see Appendix B for a description of the AGIS procedure).
The experiences of Danielsson and Richard (1993) showed that the application of the AGIS
method to estimate a SV model for T = 2000 observations reduces the necessary MC sample
size to N = 50 or less. Here the SV specifications are estimated using a simulation sample size

of N = 500 and four iterations for the AGIS algorithm described in Appendix B.



5. EMPIRICAL RESULTS

The SML estimation results for the SV-normal model are summarized in Table 3. The estimates
of the persistence parameter § are always highly significant and lie between 0.91 (VOW) and
0.96 (DBK). This result is in accordance to those reported in the studies of, for example, Taylor
(1994) and Jacquier, Polson and Rossi (1994) and indicates a high persistence of volatility
shocks. The fact that the estimates of 4 are greater than 0.9 implies according to Figure 1 that
the combinations of the kurtosis « and the first-order autocorrelation p(1) predicted by the SV-
normal model are not compatibel with the combinations of the data. Thus even if the implied
estimates of x are for all stocks greater than three, in nearly all cases the implied estimate is
not high enough to adequately capture the observed kurtosis given in Table 1. In the case of
SIE, for example, the explained kurtosis is only about a half of the observed kurtosis. On the
other hand the implied estimates of p(1) are for all stocks substantially greater than their sample
counterparts given in Table 2. For example, for SIE the predicted first-order autocorrelation
is 0.18 where as the empirical autocorrelation is only 0.13. Hence one can conclude that the
SV-normal specification does not adequately capture the observed high kurtosis of the returns

and the low first-order autocorrelation of the squared data simultaneously.

The estimation results for the SV-t model are displayed in Table 4. To test the SV-normal
against the SV-t specification the likelihood-ratio statistics LR,,=o of the Null hypotheses
1/w = 0 is used. Since the value of 1/w under the Null hypotheses is on the boundary of the

admissible parameter space the appropriate distribution of LR, /,—o under the Null is given by
1 1
LRy jy=0 ~ §X?0) + §X%1) ,

where xfo) is a degenerate distribution with all its mass at the origin, see Harvey (1989) and
Ruiz (1994). Hence the appropriate critical value for a significance level « is the 2a quantil of
the x%l)-distribution. As can be infered from the values of LR, /,—¢ the SV model with normal
errors is rejected against the specification with t-distributed errors at the 5% level for VOW
and BAY and at the 1% level for the remaining stocks. Thus, in contrast to our results which
show that the SV-t model represents a significant improvement compared to the SV-normal
specification, Ruiz (1994) found only a very weak evidence in favor of the SV-¢t model using a

quasi maximum likelihood approach to estimate the SV model for the yen/dollar exchange rate

In Table 5 the results for the SV-GED specification are summarized. The estimates of 1/9

indicate that the implied kurtosis of the error u; is greater than three for all stocks. But the



LR statistics of the hypotheses 1/9 = 0.5 shows that the SV-normal model is rejected at the
5% level against a GED distribution with 1/9 # 0.5 only for DAI and SIE. Since the SV-¢
and the SV-GED model are non-nested the classical testing procedures cannot be applied to
compare these specifications. Hence we base the choice between the two specifications upon the
maximized log-likelihood values In L. This criterion indicates that the SV-¢ specification has a
better fit than the SV-GED model for all stocks. In view of these results only the SV-t model

will be subject of further comparisons with the SV-normal specification.

As for the SV-normal model the estimated persistence parameters in the SV-t specification are
greater than 0.9 but smaller than one. But the estimates resulting from the SV-t specification
are for all stocks greater than those from the SV-normal model. Furthermore, the estimates
of the variance parameter v from the SV-t model are in all cases smaller than those from the
SV-normal model. We shall return to these differences in the parameter estimates shortly. The
estimated degrees-of-freedom w vary between 6.4 (DBK) and 11.5 (VOW) and the corresponding
baseline-kurtosis E(u}) lie in a range between 5.5 (DBK) and 3.8 (VOW). Thus according to
Figure 2 the increase of the baseline-kurtosis, relative to the SV-normal model, moves the
predicted p(1)/x combinations towards the empirical ones. The comparison of Tables 3 and
4 shows that for all six stocks the specification with a t-distributed error leads to an increase
in the implied estimates of the kurtosis « accompanied with a decrease in the estimate for the
first-order autocorrelation p(1) relative to the SV-normal model. Except for DAI and BAY the
implied estimates of both « and p(1) are closer to the corresponding empirical moments in the
SV-t specification as compared to the SV-normal model. In the case of DAI and BAY only
the estimates of p(1) are closer to their empirical counterparts. Hence one can conclude that
for four stocks substituting the normal distribution by the leptokurtic ¢-distribution helps to
capture simultaneously the observed low first-order autocorrelation and the high kurtosis more

adequately.

As noted above the SML estimates of the persistence parameter of the volatility process § from
the SV-t model are greater than those from the SV-normal model. The differences between the
estimates of § measured in standard errors from the SV-¢t model are 5.1 (SIE), 2.1 (DAI), 2.6
(VOW), 3.8 (DBK), 1.7 (BAY) and 2.9 (VEB). Hence except for BAY the differences can be
regarded as significant. On the other hand the substitution of the conditional normal distribution
by a conditional ¢-distribution leads to a decrease in the SML estimates of the variance parameter
of the volatility v which is in general significant. The differences are 5.4 (SIE), 2.5 (DAI), 3.3
(VOW), 4.6 (DBK), 1.8 (BAY) and 3.3 (VEB) standard errors of the SV-t model, respectively.



Hence for five stocks the choice of the conditional distribution has a significant effect on the SML
estimates of the parameters in the volatility equation § and v which seems to be systematically.
To émalyze this more formally we estimated the SV-t model with predetermined values of 1/w.
Starting at 1/w = 0 which characterizes the normal distribution, 1/w is gradually raised by one
standard deviation of 1/w given in Table 4 until the value of the unrestricted estimate of this
parameter is reached. Figure 3 shows the resulting combinations of the predetermined values
of 1/w and the corresponding SML estimates of § and v. It can be seen that for all stocks the
SML estimates of § are monotonically increasing and the SML estimates of v are monotonically
decreasing in 1/w, respectively. These results demonstrate that the effects of the choice between
a normal and a heavy-tailed ¢-distribution on the SML estimates of the volatility parameters
4 and v are systematic. A possible interpretation of these effects is as follows. The use of
t-distributed errors in the mean equation of the returns filters return data in the extreme tail
areas which are captured in the SV-normal model by a stronger variation in the volatility process
leading to a higher predicted variance parameter of the error in the volatility process v. This
predicted higher variance of the volatility in the SV-normal model dampens the autogeressive
structure in the volatility process which leads to a low persistence parameter § relative to the

SV-t specification.

6. SUMMARY AND CONCLUSION

This paper analyzes the SV model with different assumptions concerning the conditional dis-
tribution of the daily returns. Three distributional assumptions are compared: The normal
distribution (SV-normal), the t-distribution (SV-t) and the GED distribution (SV-GED). To
estimate the SV specifications in which the unobservable volatility process is serially correlated
the simulated maximum likelihood (SML) approach developed by Danielsson and Richard (1993)
is applied.

The results using data from the six major German stocks can be summarized as follows. First,
the SV-normal model does not adequately capture the observed high kurtosis of the returns and
the low first-order autocorrelation of the squared returns simultaneously. Second, according to
the likelihood-ratio test the SV-t model represents for all six stocks a significant improvement
compared to the SV-normal model, whereas the SV-GED model is significantly better than
the SV-normal model only for two stocks. The log-likelihood values shows that the fit of the
SV-model with a t-distribution is better than with a GED-distribution. Third, for four stocks

10



the substitution of the normal distribution by a t-distribution helps to capture simultaneously
the high kurtosis of the returns and the low first-order autocorrelation in the squared returns.
Fourth, the comparison between the SV-normal and the SV-t specification shows that the choi-
ce of the conditional distribution has a significant and systematic effect on the SML estimates
of the parameters which direct the volatility process. In fact, the estimates of the persistence
parameter of the volatility process is systematically higher and the estimates of the variance
parameter of the volatility shocks are systematically lower in the SV-¢ than in the SV-normal

model, respectively.

APPENDIX A: MOMEMTS OF THE STOCHASTIC
VOLATILITY MODEL

The specification for the return residuals e, =ry — p is
€y = exp(/\t/2)ut y Ug ~ zzd(O, 1)

Ag =7+ ) >‘t—1 + vy, vt ~ 'L‘LdN(O, 1) ,

where u; and v; are stochastically independent. For || < 1 the unconditional distribution of A

is given by A; ~ N(ux,02) with gy = v/(1 — §) and o3 = v2/(1 - §%).

The kurtosis for the unconditional distribution of the returns is
k = E[(re — p)*]/E[(re — )% = E(ef)/E(e})? . (A.1)
Defining h; = exp{)\:}, the moments E(e}) and E(e?) are given by

E(ef) = E(hiu{) = E(h})E(u}) (A.2)
E(e}) = E(hw}) = E(h)E(uf) = E(ht) (A.3)

and the kurtosis can be written as

_E@})E(uf) _ Var(hi)
= S =B (g 1) (A-4)

The squared variation coefficient of h; is given by Var(h:)/E(h:)? = exp{o?} — 1. Hence the

kurtosis of the returns is
K= E(uf)exp(ai) , (A.5)

11



which corresponds to Equation (2).

The autocorrelation function of the squared residuals e? is defined by
p(t) = Cov(e?, e?_,)/Var(e?) , r=12... (A.6)

The autocovariance Cov(e?, e?_.) which is independent of the distributional assumption concer-

ning u; is given by (see for example Jacquier, Polson and Rossi (1994), Appendix, p. 387)
Cov(e?,e?_,) = Cov(hs, he—r) = E(he)*(exp{o3d™} - 1). (A7)
The variance of the squared residuals is

Var(ef) = E(hfuf) - E(hii)’ = E(h})E(u;) — E(he)?

= E(ht)2[E(u§)( ‘g’(r,f:;;) + 1>- —-1] (A.8)

= E(h)?[E(uf) exp{o}} - 1].

If the Equations (A.7) and (A.8) are inserted in Equation (A.6) the autocorrelation function is

given by

_ exp{o3d’} -1
A7) = B explof) 1 (A9

which corresponds to Equation (3).

APPENDIX B: THE ACCELERATED GAUSSIAN
IMPORTANCE SAMPLER

The AGIS method uses a numerical and iterative procedure to solve the minimizing problem
min Vary[$(A, R)) (B.1)
subject to the constraints
f(R,A18) =¢(ARy¥(A|R) and  Ey[é(A, R)] = f(R]9),

where Vary[¢(A, R)] is given by Equation (16). Therefore a variance reduction function £(A, Q)

is defined where Q is a matrix of parameters to be determined. This variance reduction function

12



is used to construct a new pair of a IF and a RF by transforming the initial pair given in

Equations (12) and (13) as follows:

(AIR) = [%o(A]R)E(A,Q)]/K(Q) (B.2)
(A R) = [$o(A, R)K(Q)]/E(A.Q) (B.3)

k(Q) represents the integration constant which ensures that the new IF is a proper probability

function and is given by

K(Q) = / wo(A) R) E(A, Q) dA . (B.4)
§RT

The transformations (B.2) and (B.3) retains the constraints of the minimizing problem given
above while changing the variance of ¢(A, R). For the variance reduction function the AGIS

method uses the following functional form
s
EAQ) = [[£0, Q) (B.5)
t=1

with
1
£(z\t,Qt)=exp{—~2-n£th} and 7= (A, A=y 1)

Even if this choice for £(A, Q) is dictated by analytical and computational reasons, it can be
shown that it works exceptionally well. To determine Q = {Q;}]., and hence £(A,Q) the
following iterative procedure with j steps is applied. Starting with the initial IF ¢p(A|R) an
initial simulated sample {Ag }2., is drawn and used to run the following regression for every

time period ¢=1,...,T :
Ing(Aont) =aie+ bitrone + cl,t’\%,n,t + residual n=1,.,N. (B.6)

Then the OLS-estimates of the coefficients are used to construct for every time period t the

matrix
—2¢, 0 by
Que=| 0 0 0 t=1,.,T. (B.7)

=biy 0 —2ay;

With Q;={Q1,}X, a first new IF is given by 11 (A | R)=to(A | R)E(A, Q1)/k(Q1). A second step
IF ¢(A | R) is constructed in the same fashion by drawing a random sample from ¥, (A | R) and
regressing Inp(X,n,¢) on a constant, A; ,; and /\in,t. With the resulting sequence of matrixes

@, one can determine Y2(A| R). This procedure is repeated until Qj is sufficiently close to the

13



one-step-ahead matrixes Qj_l. Danielsson and Richard (1993) showed that the convergence is
reached very fast, typically after less than 5 iterations. Finally the simulated sample {A;n}0_,
from 1;(A| R) is used to calculate the jth step AGIS estimate of the integral:

.V ~

i ) R .
N n=1 f(Aj,na QJ)

To obtain the SML estimate of §, this jth step AGIS estimate of the likelihood function is

fnj(R16) =

maximized with respect to 6.
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Table 1. Summary statistics of the daily returns.

Statistic SIE DAI VOW DBK BAY VEB
Mean 004 .005 ~.001 .000 .031 .036
Std. Dev. 1.198 1.531 1.798 1.245 1.348 1.306
Skewness 024 -.026 -.084 —.444 231 —.266
Kurtosis 10.597 7.250 8.402 9.551 7.052 10.323
Minimum -9.381 -7984  -13.200 -10.167 —5.964 -9.475
Maximum 8.519 8.739 12.497 6.520 8.659 8.630
LB, (20) 22.159 17.396 7.769 22.546 24.641 10.795
(.332) (.627) (.993) (.312) (.215) (.951)

NOTE: Sample size is 1095 for SIE, DAI, VOW and 1096 for DBK, BAY, VEB.

Marginal significance level are in parentheses.

Table 2. Autocorrelation of the squared returns

Lag SIE DAI VoW DBK BAY VEB
Autocorrelation coefficients
1 137 .104 022 053 124 .096
2 .093 217 .088 124 .182 126
3 152 147 118 157 111 144
4 053 .158 .050 .093 134 139
5 .084 .059 .056 .044 .037 .054
6 048 .100 .044 .053 077 .080
7 026 .070 021 045 .039 042
8 053 110 .045 .069 071 077
9 055 .086 .013 .060 114 .085
10 027 .095 .031 .039 051 034
20 .005 .066 .009 .006 064 032
30 .089 044 031 .061 042 053
40 049 .081 .043 .093 144 .080
50 -.005 021 010 -.014 041 037
Ljung-Box statistic
LB.2(30) 140.3 378.5 56.6 1189 200.0 190.5
{.000) (.000) (.002) (.000) (.000) (.000)

NOTE: Marginal significance level are in parentheses.
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Table 3. SML estimation of the SV-normal model.

Parameter SIE DAI VOw DBK BAY VEB
u° —.0010 .0034 0236 .0235 .0356 0592
(.0250) (.0347) (.0385) (.0249) (.0240) (.0264)
v -.0014 0211 0841 .0006 0111 —.0007
(.0079) (.0103) (.0263) (.0074) (.0110) (.0097)
é 9526 9535 .9055 .9629 9322 9515
(.0165) (.0142) {.0285) (.0127) (.0193) (.0162)
v .2488 2715 .3031 .2408 .3439 .3091
(.0408) (.0391) (.0492) (.0359) (.0468) (.0480)
K 5.856 6.754 4.997 6.652 7.399 8.232
p(1) 184 .203 147 204 .206 .223
InL ~1612.93 —-1877.46 —-2117.89 —1641.72 ~1745.56 —1643.33

NOTE: Standard errors are in parentheses. The estimation are based on a simulation sample size NV = 500

and four AGIS iterations.

Table 4. SML estimation of the SV-t model.

Parameter SIE DAI VOW DBK BAY VEB
P 0032 0001 0274 0227 0365 0589
(.0248) (.0237) (.0224) (.0252) (.0293) (.0249)
~ .0006 0133 .0502 0014 .0093 .0016
(.0032) (.0075) (.0160) (.0039) (.0078) (.0057)
5 9881 9753 9475 9877 9621 9794
(.0070) (.0101) (.0157) (.0065) (.0175) (.0096)
v 1058 1795 1941 1229 2341 1842
(.0266) (.0354) (.0331) (.0255) (.0593) (.0376)
1/w 1213 1145 0871 1560 0927 1102
(.0260) (.0316) (.0311) (.0259) (.0372) (.0265)
K 7.084 8.260 5.496 10.182 8.116 9.612
p(1) .098 125 093 092 145 146
InL ~-1605.06 ~ -1872.78  —2115.80 —1628.46  ~174358  —1638.12
LR, /=0 15.74 9.36 4.18 26.52 3.98 10.42
(.000] (.001) [.021] .000] [.023] [.000]

NOTE: Standard errors are in parentheses and p-values are in brackets. The estimation are based on

a simulation sample size N = 500 and four AGIS iterations.
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Table 5. SML estimation of the SV-GED model.

Parameter SIE DAI VOW DBK BAY VEB
) -.0014 —.0026 0220 .0155 0355 0366
(.0249) (.0253) (.0310) (.0250) (.0240) (.0250)
v —.0005 .0164 0761 .0017 .0110 .0009
(.0069) (.0081) (.0230) (.0050) (.0104) (.0076)
) .9603 9673 9160 .9804 9357 9652
(.0168) (.0112) (.0250) (.0090) (.0209) (.0148)
v 2219 2142 .2766 1615 .3320 .2533
(.04835) (.0397) {.0505) (.0327) (.0607) (.0521)
1/9 .5410 6145 5361 .7053 5181 5788
(.0507) (.0459) (.0436) (.0489) (.04835) (.0520)
K 5.798 6.644 4.916 6.802 7.378 8.188
p(1) .168 .162 134 138 200 .196
InL —1612.54 —-1874.90 —2117.82 -1633.03 —1745.45 —-1642.34
LRy /9= 78 5.12 14 - 17.38 22 1.98
[.377] [.024] [.708] [.000] [.639] [.159]

NOTE: Standard errors are in parentheses and p-values are in brackets. The estimation are based on

a simulation sample size N = 500 and four AGIS iterations.
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Figure 1. Combinations of the kurtosis of the returns and
the first-order autocorrelation of the squared returns for
the data, and the predicted combinations of the SV model

with normal errors for various values of 4.
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Combinations of the kurtosis of the returns and the first-order autocorrelation of the squared

for various values of §. In the left-hand panel the baseline-kurtosis is E(uf) = 4 and in the right-hand

panel E(u}) = 6.
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Figure 3. Combinations of predetermined values of 1/w in the SV-t model measured in standard

deviations given in Table 4 and the resulting SML estimates of § and v. The left-hand panel contains the

combinations of 1/w and §, and the right-hand panel those of 1/w and v.
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