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Abstract 

Most of the empirical applications of the stochatic volatility (SV) model are based on the 

assumption that the conditional distribution of returns given the latent volatility process is 

normal. In this paper the SV model based on a conditional normal distribution is compa-

red with SV specifications using conditional heavy-tailed distributions, especially Student's 

i-distribution and the generalized error distribution. To estimate the SV specifications a si-

mulated maximum likelihood approach is applied. The results based on German stock market 

data reveal that the SV model with a conditional normal distribution does not adequately 

account for the two following empirical facts simultaneously: the leptokurtic distribution of 

the returns and low b ut slowly decaying autocorrelation function of the squared returns. It 

is shown that these empirical facts are more adequately captured by a SV model with a 

conditional heavy-tailed distribution. Finally, it turns out that the choice of the conditional 

distribution has systematic effects on the parameter estimates of the volatility process. 



1. INTRODUCTION 

The stochastic volatility (SV) model introduced by Taylor (1986) is used to account for the well 

documented autoregressive behavior in the volatility of financial return series. It represents an 

alternative to the autoregressive conditionally heteroskedastic (ARCH) model of Engle (1982) or 

Bollerslev's (1986) generalized ARCH (GARCH) model. The Standard version of this SV model 

is given by 

rt = fi + exp(At/2)ut , ut ~ 0,1) (la) 

Xt = 7 + 6 At_i + vvt , vt ~ i.i.d.N(0,1) , (lb) 

where rt is the return on day t and At is the log volatility. The parameter /i represents the pre-

dictable part of the returns. The error processes ut and vt are mutually and serially independent 

with mean zero and unit variance. Both, ut and vt are unobservable. Hence Xt, which is assumed 

to follow a Gaussian AR(l)-process with a persistence parameter 5, is also unobservable. For 

|<5| < 1 the SV model is covariance stationary. The parameter v measures the standaxd deviation 

of volatility shocks and is assumed to be greater than zero. Most of the empirical applications 

of the SV model are based on the additional assumption that ut is normally distributed leading 

to a normal distribution for the daily returns conditional on Af; see for example Taylor (1986, 

1994), Mahieu and Schotman (1994), Jaquier, Polson and Rossi (1994) and Kim, Shepard and 

Chib (1996). In the studies of Ruiz (1994) and Harvey, Ruiz and Shepard (1994) the SV model 

is extended to allow the conditional distribution of the returns to be more heavy-tailed than the 

normal distribution by using the ad-hoc assumption of a scaled Student i-distribution for ut. 

The purpose of this paper is to analyze the ability of the SV model to capture adequately the 

following empirical regularities of financial return series. First, the leptokurtic distribution of 

daily returns meaning that it is excessively peaked around zero and that it exhibits fatter tails 

than the corresponding normal distribution. Second, the autoregressive behavior of the volatility 

indicated by a typically low but very slowly decaying autocorrelation function of the squared 

returns. We will demonstrate that the SV model with a conditional normal distribution for the 

returns (SV-normal) is too restrictive to account adequately for both above mentioned empirical 

regularities simultaneously. Furthermore we will show that the substitution of the conditional 

normal distribution of the returns by a conditional heavy-tailed distribution as, for example, 

the Student t-distribution and the generalized error distribution (GED) can help to capture 

adequately both empirical regularities. Finally, it turns out that the assumption concerning the 
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conditional distribution of the returns affects the estimates of the parameters which governs the 

volatility process. 

Since the latent volatility process \t is assumed to be serially correlated the marginal likelihood 

of the SV model is given by a high dimensional integral which makes the estimation by Standard 

maximum likelihood (ML) infeasible. Hence, to estimate the SV model with different conditio

nal return distributions we use the simulated maximum likelihood (SML) approach developed 

by Danielsson and Richard (1993). This estimation strategy allows to adopt the Standard in-

struments of inference developed for the ML method. 

The paper is organized as follows. Section 2 contains a brief description of the data used throug-

hout the paper. Section 3 analyzes the theoretical predictions of the SV model with a conditional 

normal and conditional heavy-tailed distributions concerning the kurtosis of the returns and the 

autocorrelation of the squared returns. The predicted moments are compared with the cor-

responding empirical moments. Section 4 describes the simulated maximum likelihood (SML) 

estimation technique used to estimate the parameters of the SV model. Section 5 presents the 

results of the SML estimations of the SV model and Section 6 concludes. 

2. DATA 

The empirical results are based on a dataset consisting of daily closing prices for the six major 

German stocks listed in the DAX, the leading German stock market index: Siemens (SIE), 

Daimler-Benz (DAI), Volkswagen (VOW), Deutsche Bank (DBK), Bayer (BAY) and Veba 

(VEB). The data were obtained from the Karlsruher Kapitalmarktdatenbank (KKMDB) and 

axe adjusted for effects of dividends and capital changes. The sample period starts on Janu-

ary 2, 1990 and ends on May 31, 1994 which gives a sample size of roughly 1100. The daily 

closing prices pt are transformed to price changes measured in continuously compounded rates: 

rt = 100 • In (pt/pt-i). 

The Statistical properties of the data are summarized in Table 1. Notice that the kurtosis of 

the returns is well above three, the value associated with the normal distribution. In order to 

detect a serial correlation in the returns the Ljung-Box statistic for 20 lags LBr (20) is calcula-

ted. Under the null hypotheses of no autocorrelation LBr(20) is X(20) distributed. The results 

indicate that the returns are serially uncorrelated. Table 2 shows the autocorrelation coefficients 

of the squared returns at different lags. The autocorrelation starts at a low level indicated by a 
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first-order autocorrelation smaller than 0.15 and declines with increasing lags very slowly. Even 

for lag 40 the autocorrelation for all six stocks is greater than the asymptotic Standard error 

given by 0.03. The Ljung-Box statistic for the squared data LBr2(30), which is ^30j distributed 

under the null hypotheses of no serial correlation, demonstrates that the positive autocorrelation 

in the squared returns is statistically significant for all stocks. 

3. DISTRIBUTIONAL AND TIME SERIES PROPERTIES OF 

THE SV MODEL 

In this section the theoretical predictions of the SV model (la) and (lb) with regard to the 

kurtosis of the returns and the autocorrelation of the squared returns axe confronted with the 

empirical findings of Section 2. 

Defining et = rj — p as the return residuals, the kurtosis K o f the unconditional distribution 

of the returns resulting from the SV model (la) and (lb) is given by (for the derivation see 

Appendix A) 

« = E(e?)/E(et2)2 = E(u(4) exp{cr^} where a\ = ^2/(l - <S2) . (2) 

The parameter <j\ represents the unconditional variance of Xf Equation (2) cleaxly shows that 

the kurtosis of the unconditional return distribution consists of two components: the baseline-

kurtosis which is due to the kurtosis of the standardized errors in the return equation E(u*) 

and the kurtosis which is due to the Variation in the volatility process Aj. In the case of the 

conditional normality assumption for the returns, the baseiine-kurtosis is given by E(u*) = 3 

leading to an unconditional kurtosis of the returns of more than three. This is consistent with 

the observed leptokurtosis of the empirical distribution of financial return series. Notice that as 

v —• 0 the kurtosis of the returns predicted by the SV model converges to the baseiine-kurtosis 

E(uf). For v = 0 the SV model is no longer identified. 

The autocorrelation function (ACF) of the squared return residuals e2 = (rt — ß) 2 resulting 

from the SV model (la), (la) can be shown to be of the following form (for the derivation see 

Appendix A): 

exp{cr?(T} - 1 . . 
p(T) = EV 4^ r 2i 7 > r = l,2,... . (3) E(u?)exp{<x^} - 1 

Hence for a normally distributed error ut and for 5 > 0 the SV model predicts a positive auto

correlation in the squared return residuals, which is in accordance with the observed persistence 
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in the volatility of returns. Furthermore, the ACF is characterized by an exponetially decaying 

rate determined by the parameter 5. Thus the persistence of shocks in the volatility process of 

the returns depends on <5. 

To evaluate the ability of the SV model to account adequately for the observed high kurtosis 

of the returns and the autocorrelation of the squared returns starting with a low first-order 

autocorrelation and decaying very slowly, the theoretical ACF can be expressed as a function of 

the theoretical kurtosis, as proposed by Teräsvirta (1996). According to Equation (2) and (3). 

for the SV model this functional relationship between p(r) and K is given by 

_ [«/Ewr -1 
K — 1 

For a given lag r and given values of E(?ij) and <5 t his function provides the theoretically 

attainable p(r)/«-combinations of the SV model which can be compared with the empirical 

autocorrelation/kurtosis combinations for the return data. Taking r = 1 and assuming that ut 

is normally distributed Equation (4) reduces to 

x» - • <5> 

Figure 1 shows this function for different values of S together with the empirical first-order 

autocorrelation/kurtosis combinations of the six DAX stocks. Since typical estimates of 5 for 

return series with a slowly decaying ACF of the squared data show values which are greater than 

0.9, we choose S ~ 0.9, <5 = 0.95 and 8 = 0.99. It is obvious from Figure 1 that the empirical 

autocorrelation/kurtosis combinations are not attainable by the SV model with a conditional 

normal distribution. The empirical autocorrelation/kurtosis combinations lie in a region which 

is limited by p{\) <0.15 and K > 7. In contrast to that, the SV model with normal errors and 

with S > 0.9 predicts for a kurtosis K > 7 a first-order autocorrelation p(l) > 0.19. On the 

other hand, for a first-order autocorrelation p(l) < 0.15 the predicted values of the kurtosis are 

restricted by K < 5.21 if 5 > 0.9. Hence one can conclude that in the SV-normal model a low 

but persistent autocorrelation in the squared return residuals (i.e. p(l) < 0.15 and S > 0.9) is 

not compatible with a high kurtosis in the return distribution (i.e. K > 7). 

Next we consider leptokurtic distributions for the error ut which are characterized by a kurtosis 

E(v,t) > 3. As can be inferred from Equation (2) and (3), relative to the normal assumption 

for ut, a leptokurtic distribution increases ceteris paribus the kurtosis of the returns and leads 

ceteris paribus to a decline in the level of the ACF. A prominent leptokurtic distribution used 
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in the class of GARCH raodels is the ^-distribution (see for example Bollerslev (1987)). The 

density function of a £-distributed random variable ut with mean zero and variance normalized 

to one is given by 

1 4-
u) — 2 

u) > 2 , (6) 
T(u/2) 

where the parameter OJ r epresents the degrees-of-freedom. As long as UJ > 4 the kurtosis of the 

i-distribution is E(uf) = 3(u/ — 2)/(u> — 4) which is greater than three if u> < oo. For u —> oo the 

t-distribution approaches a normal distribution. 

Another distribution which also allows E(u*) to be greater than three is the GED distribution 

described by Box and Tiao (1973). The density of a GED distributed random variable ut with 

mean zero and variance one is given by 

f(„ \ - ̂ 6XP{-V2!"«/^} n <r 4 <r ™ (7\ 
/3r(l/i9)21+1/'? 

with 

0 = U®'1/2 
p r(3/i?)_ 

For T? = 2 the GED collapses to a Normal distribution and for i? < 2 the kurtosis given by 

E(uf) = r(l/i9)r(5/t9)/[r(3/i9)]2 is greater than three (see Johnson and Kotz (1970)). 

Figure 2 shows the first-order autocorrelation/kurtosis combinations which axe according to 

Equation (4) predicted by a SV model with a leptokurtic error distribution. In the left-hand 

panel a baseline-kurtosis of E(uf) = 4 is used resulting from CJ = 10 in the i-distribution and 

$ ~ 1.4 in the GED distribution. In the right-hand panel the baseline-kurtosis is six representing 

either a ^-distribution with w = 6 or a GED distribution with i? « 1. It can be seen that in 

contrast to a SV model with a normal error distribution, the predicted p(l)/K combinations 

for a persistence parameter 8 > 0.9 and a leptokurtic error distribution are now able to cover 

the empirical points. An increase in the baseline-kurtosis E(u£) moves up the predicted p( 1)/K 

combinations towards the empirical combinations. Therefore we conclude that in order to make 

the SV model compatible with a high kurtosis of the returns and a low but slowly decaying ACF 

of the squared returns it seems to be useful to allow for a leptokurtic error distribution. 

In the following sections, the SV model is estimated under the assumption of a normal error 

distribution as well as under the assumption of a f-distribution (SV-£) and a GED distribution 

(SV-GED). These different specifications are compared concerning their ability to capture the 

observed distributional and dynamic patterns of the return series. 
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4. ESTIMATION METHOD 

In the SV model (la) and (lb) the latent variable At is autocorrelated. Thus in order to estimate 

the SV model one has to solve the problem that the likelihood function is defined by an integral 

whose dimension is given by the number of observations: 

f(R\9) = I f(R,A\9)dA, (8) 

where f(R, A|ö) denotes the joint probability function of the vectors R = {rt}J=l and A = 

. The vector 6 contains the parameters to be estimated. For this high dimensional 

integral no closed form Solution exists and Standard numerical integration methods can not be 

applied. Hence to estimate the SV model we use the SML estimator developed by Danielsson and 

Richard (1993). This estimation strategy relies on Monte Carlo (MC) techniques to estimate the 

integral (8) and can be motivated as follows. If the number of MC replications is large enough 

SML allows to adopt the Standard instruments for inference developed for maximum likelihood. 

Furthermore, the application of SML for the SV model with different assumptions concerning 

the error distribution is straightforward, as long as the corresponding density function can be 

expressed in an explicit form. 

In the SML approach the integral (8) is estimated using an importance sampling technique and 

subsequently maximized with respect to 9. Therefore the joint density f(R,A\6) is factorized 

in an importance sampling function (IF) tp(A | R) and a remainder function (RF) </>(A, R) such 

that the equation 

/(R, A | 0) = (f>(A, R)ip(A | R) (9) 

holds. The expected value of the RF evaluated over the distribution defined by the IF is given 

by 

E-0 [0(A, Ä)j = f cf>( A, R) i/>(A | R) dA = J f(R, A\0)dA = f(R 10) . (10) 

Since the integral f(R\ 9) can be expressed as the expectation E^ [0(A, R)] a natural estimator 

for f(R | 0) is the following sample average: 

/iv(Ä|0) = ^X>(An,;?), (11) 
71=1 

where {An}^r_1 represents a simulated random sample of size N drawn from the probability 

distribution if)(A | R). The precision of this estimator of the integral can arbitrarily be increased 
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by raising the Simulation sample size N. An initial factorization of f(R, A | 9) according to the 

conditions (9) and (10) is obtained as follows 

T 
t/>0(A|Ä) = n/^IAt-0 (12) 

t= I 
T 

M^R) = ni A«) > (i3) 
«=1 

where f(Xt | Aj_i) is the density of the conditional distribution of Af given A(_!, which is accor

ding to Equation (lb) a Gaussian distribution. f(rt | A() is the density of the return in period 

t conditional on the value of At- For a SV-normal model f(rt \ X t) is given by the density of a 

normal distribution with mean /x and variance exp{A<}. In a SV-t specification f(rt | At) has the 

form 

f(rt | Xt) = [TT(U; - 2)exp{Af}] l'2 

r(w/2) 
1 + 

{rt ~ n) 2 

exp{At}(w - 2) 

-(w+l)/2 
(14) 

and in a SV-GED model 

f(r | x x _ <?exp{-l/2|(rt - n)/(exp{Xt/2}ß)\*} 
/( t| t}~ exp{Xt/2}ßT(l/m+l/* ' 

where ß is defined in Equation (7). The initial IF (12) and the corresponding RF (13) can be 

used to construct a naive MC-estimate of the integral f(R \ 9) for a given value of the parameter 

vector 9, as outlined in Equation (11). 

As shown by Danielsson and Richard (1993) this initial factorization of f(R, A j 6) in the IF 

(12) and the RF (13) is inefficient in the sense that the resulting MC sampling variance of the 

estimator for the integral increases dramatically with the dimension of the integral T. To solve 

this inefficiency problem Danielsson and Richard (1993) proposed an acceleration method, called 

Accelerated Gaussian Importance Sampling (AGIS). This AGIS method search for an IF which 

minimizes the MC sampling variance of the corresponding RF given by 

Var^[^(A,/?)] = I[<t>(A,R)-f(R\9)]2Tp(A\R)dA , (16) 

while preserving the conditions (9) and (10). The numerical Solution to this minimizing problem 

is provided by the AGIS procedure (see Appendix B for a description of the AGIS procedure). 

The experiences of Danielsson and Richard (1993) showed that the application of the AGIS 

method to estimate a SV model for T = 2000 observations reduces the necessary MC sample 

size to N = 50 or less. Here the SV specifications are estimated using a Simulation sample size 

of N = 500 and four iterations for the AGIS algorithm described in Appendix B. 
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5. EMPIRICAL RESULTS 

The SML estimation results for the SV-normal model are summarized in Table 3. The estimates 

of the persistence parameter 5 are always highly significant and lie between 0.91 (VOW) and 

0.96 (DBK). This result is in accordance to those reported in the studies of, for example, Taylor 

(1994) and Jacquier, Polson and Rossi (1994) and indicates a high persistence of volatility 

shocks. The fact that the estimates of 6 are greater than 0.9 implies according to Figure 1 that 

the combinations of the kurtosis K an d the first-order autocorrelation p( 1) predicted by the SV-

normal model are not compatibel with the combinations of the data. Thus even if the implied 

estimates of K a re for all stocks greater than three, in nearly all cases the implied estimate is 

not high enough to adequately capture the observed kurtosis given in Table 1. In the case of 

SIE, for example, the explained kurtosis is only about a half of the observed kurtosis. On the 

other hand the implied estimates of p( 1) are for all stocks substantially greater than their sample 

counterparts given in Table 2. For example, for SIE the predicted first-order autocorrelation 

is 0.18 where as the empirical autocorrelation is only 0.13. Hence one can conclude that the 

SV-normal specification does not adequately capture the observed high kurtosis of the returns 

and the low first-order autocorrelation of the squared data simultaneously. 

The estimation results for the SV-i model are displayed in Table 4. To test the SV-normal 

against the SV-t specification the likelihood-ratio statistics Li?1/U,=0 of the Null hypotheses 

l/uj = 0 is used. Since the value of 1/u under the Null hypotheses is on the boundary of the 

admissible parameter space the appropriate distribution of LRI/^-Q under the Null is given by 

r_ 1 2 1 2 
^"i/w=o ~ 2*(o) + 2*'1) ' 

where xfo) a degenerate distribution with all its mass at the origin, see Haxvey (1989) and 

Ruiz (1994). Hence the appropriate critical value for a significance level a is the 2a quantil of 

the x^ij-distribution. As can be infered from the values of LRi/u=0 the SV model with normal 

errors is rejected against the specification with f-distributed errors at the 5% level for VOW 

and BAY and at the 1% level for the remaining stocks. Thus, in contrast to our results which 

show that the SV-t model represents a significant improvement compared to the SV-normal 

specification, Ruiz (1994) found only a very weak evidence in favor of the SV-t model using a 

quasi maximum likelihood approach to estimate the SV model for the yen/dollar exchange rate 

In Table 5 the results for the SV-GED specification are summarized. The estimates of l/tf 

indicate that the implied kurtosis of the error ut is greater than three for all stocks. But the 
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LR statistics of the hypotheses l/d — 0. 5 shows that the SV-normal model is rejected at the 

5% level against a GED distribution with l/ß ^ 0.5 only for DAI and SIE. Since the SV-* 

and the SV-GED model are non-nested the classical testing procedures cannot be applied to 

compare these specifications. Hence we base the choice between the two specifications upon the 

maximized log-likelihood values In L. This criterion indicates that the SV-i specification has a 

better fit than the SV-GED model for all stocks. In view of these results only the SV-t model 

will be subject of further comparisons with the SV-normal specification. 

As for the SV-normal model the estimated persistence parameters in the SV-t specification are 

greater than 0.9 but smaller than one. But the estimates resulting from the SV-t specification 

are for all stocks greater than those from the SV-normal model. Furthermore, the estimates 

of the variance parameter v from the SV-t model are in all cases smaller than those from the 

SV-normal model. We shall return to these differences in the parameter estimates shortly. The 

estimated degrees-of-freedom u; vary between 6.4 (DBK) and 11.5 (VOW) and the corresponding 

baseiine-kurtosis E(u^) lie in a ränge between 5.5 (DBK) and 3.8 (VOW). Thus according to 

Figure 2 the increase of the baseiine-kurtosis, relative to the SV-normal model, moves the 

predicted p( 1)/K combinations towards the empirical ones. The comparison of Tables 3 and 

4 shows that for all six stocks the specification with a t-distributed error leads to an increase 

in the implied estimates of the kurtosis K a ccompanied with a decrease in the estimate for the 

first-order autocorrelation p(l) relative to the SV-normal model. Except for DAI and BAY the 

implied estimates of both K an d p(l) are closer to the corresponding empirical moments in the 

SV-t specification as compared to the SV-normal model. In the case of DAI and BAY only 

the estimates of p(l) are closer to their empirical counterparts. Hence one can conclude that 

for four stocks substituting the normal distribution by the leptokurtic t-distribution helps to 

capture simultaneously the observed low first-order autocorrelation and the high kurtosis more 

adequately. 

As noted above the SML estimates of the persistence parameter of the volatility process 6 from 

the SV-t model are greater than those from the SV-normal model. The differences between the 

estimates of S measured in Standard errors from the SV-t model are 5.1 (SIE), 2.1 (DAI), 2.6 

(VOW), 3.8 (DBK), 1.7 (BAY) and 2.9 (VEB). Hence except for BAY the differences can be 

regarded as significant. On the other hand the substitution of the conditional normal distribution 

by a conditional ̂ -distribution leads to a decrease in the SML estimates of the variance parameter 

of the volatility v which is in general significant. The differences are 5.4 (SIE), 2.5 (DAI), 3.3 

(VOW), 4.6 (DBK), 1.8 (BAY) and 3.3 (VEB) Standard errors of the SV-f model, respectively. 
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Hence for five stocks the choice of the conditional distribution has a significant effect on the SML 

estimates of the parameters in the volatility equation S a nd v which seems to be systematically. 

To analyze this more formally we estimated the SV-t model with predetermined values of 1 /UJ. 

Starting at l/u> = 0 which characterizes the normal distribution, l/u is gradually raised by one 

Standard deviation of I/o; given in Table 4 until the value of the unrestricted estimate of this 

parameter is reached. Figure 3 shows the resulting combinations of the predetermined values 

of I/o/ and the corresponding SML estimates of 5 and u. It can be seen that for all stocks the 

SML estimates of <5 are monotonically increasing and the SML estimates of v are monotonically 

decreasing in 1/w, respectively. These results demonstrate that the effects of the choice between 

a normal and a heavy-tailed ^-distribution on the SML estimates of the volatility parameters 

S and v are systematic. A possible interpretation of these effects is as follows. The use of 

i-distributed errors in the mean equation of the returns Alters return data in the extreme tail 

areas which are captured in the SV-normal model by a stronger Variation in the volatility process 

leading to a higher predicted variance parameter of the error in the volatility process u. This 

predicted higher variance of the volatility in the SV-normal model dampens the autogeressive 

structure in the volatility process which leads to a low persistence parameter S relative to the 

SV-f specification. 

6. SUMMARY AND CONCLUSION 

This paper analyzes the SV model with different assumptions concerning the conditional dis

tribution of the daily returns. Three distributional assumptions are compared: The normal 

distribution (SV-normal), the f-distribution (SV-t) and the GED distribution (SV-GED). To 

estimate the SV specifications in which the unobservable volatility process is serially correlated 

the simulated maximum likelihood (SML) approach developed by Danielsson and Richard (1993) 

is applied. 

The results using data from the six major German stocks can be summarized as follows. First, 

the SV-normal model does not adequately capture the observed high kurtosis of the returns and 

the low first-order autocorrelation of the squared returns simultaneously. Second, according to 

the likelihood-ratio test the SV-t model represents for all six stocks a significant improvement 

compared to the SV-normal model, whereas the SV-GED model is significantly better than 

the SV-normal model only for two stocks. The log-likelihood values shows that the fit of the 

SV-model with a f-distribution is better than with a GED-distribution. Third, for four stocks 
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the substitution of the normal distribution by a ^-distribution helps to capture simultaneously 

the high kurtosis of the returns and the low first-order autocorrelation in the squared returns. 

Fourth, the comparison between the SV-normal and the SV-t specification shows that the choi-

ce of the conditional distribution has a significant and systematic effect on the SML estimates 

of the parameters which direct the volatility process. In fact, the estimates of the persistence 

parameter of the volatility process is systematically higher and the estimates of the variance 

parameter of the volatility shocks are systematically lower in the SV-t than in the SV-normal 

model, respectively. 

APPENDIX A: MOMEMTS OF THE STOCHASTIC 

VOLATILITY MODEL 

The specification for the return residuals et = rt — ß is 

et = exp(Af/2)ut , ut ~ i.i.d.(0,1) 

\t = 7 + 8 At_i + uvt , vt ~ i.i.d.N(0,1), 

where ut and vt are stochastically independent. For |<5| < 1 the unconditional distribution of At 

is given by At ~ with /xA = l/(l ~ <*) a nd a\ = f2/( 1 - P)-

The kurtosis for the unconditional distribution of the returns is 

K = E[(rt - M)4]/E[(rt - /x)2]2 = E(e^)/E(e2)2 . (A.l) 

Defining ht = exp{At}, the moments E(e*) and E(e2) axe given by 

E (et) = E(h2tut)=E(h2t)E(ut) (A.2) 

E(e2) = E(/itu2) = E(ht)E(ut) = E(ht) (A.3) 

and the kurtosis can be written as 

EK)E(U?) F(lI4,/'Var(/.,) \ .. . 
*- E(/ie)2 -E("i)lw r ( ' 

The squared Variation coefficient of ht is given by V£ir(/it)/E(/it)2 = exp{<72} - 1. Hence the 

kurtosis of the returns is 

K = E(u$) exp(al) , (A.5) 
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which corresponds to Equation (2). 

The autocorrelation function of the squared residuals e2 is defined by 

P(T) = Cov(e2, e2_T)/Var(ej) , r = l,2,.... (A.6) 

The autocovariance Qov(e2, e2_r) which is independent of the distributional assumption concer-

ning ut is given by (see for example Jacquier, Polson and Rossi (1994), Appendix, p. 387) 

Cov(ef,ej_T) = Cov(ht,ht-T) = E(/it)2(exp{(T^r} - 1) . (A.7) 

The variance of the squared residuals is 

Var(e2) = E(h\ut) - E(htu2)2 = E(h2)E(u}) - E(ht)2 

= E«'")2[E<"?»(w + 1}-1) (A'8> 

= E (/it)2 [E (ii() exp { ff2 } - 1] • 

If the Equations (A.7) and (A.8) are inserted in Equation (A.6) the autocorrelation function is 

given by 

r2 XT\ exp{a2<T} - 1 f . 
"(T) - E(u|)expW}-l ' (A'9) 

which corresponds to Equation (3). 

APPENDIX B: THE ACCELERATED GAUSSIAN 

IMPORTANCE SAMPLER 

The AGIS method uses a numerical and iterative procedure to solve the minimizing problem 

min Var^[0(A, R)] (B.l) 

subject to the constraints 

f(R,A\9)=<f>(A,R)4>(A\R) and E^[0(A, R)] = f(R | 6) , 

where Vart/j[<^>(A, R)] is given by Equation (16). Therefore a variance reduction function f (A, Q) 

is defined where Q is a matrix of parameters to be determined. This variance reduction function 
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is used to construct a new pair of a IF and a RF by transforming the initial pair given in 

Equations (12) and (13) as follows: 

m\R) = tyo(A|Ä)£(A ,Q)}/k(Q) (B.2) 

0(A,Ä) = [0o(A,Ä)fc(Q)]/^(A.g) . (B.3) 

k(Q) represents the integration constant which ensures that the new IF is a proper probability 

function and is given by 

HQ)= / Vo(A|ÄK(A,Q)dA. (B.4) 

The transformations (B.2) and (B.3) retains the constraints of the minimizing problem given 

above while changing the variance of <j>(A,R). For the variance reduction function the AGIS 

method uses the following functional form 

T 
*(A,<?)=n £(*<.&) (B-5) 

t=1 

with 

S&uQt) = ̂ P{-^v'tQfnt} and rj't = (At) At_i, 1). 

Even if this choice for £(A, Q) is dictated by analytical and computational reasons, it can be 

shown that it works exceptionally well. To determine Q = {Qt}J=i and hence £(A, Q) the 

following iterative procedure with j steps is applied. Starting with the initial IF Vo(A | R) an 

initial simulated sample {Ao,n}^-i is drawn and used to run the following regression for every 

time period t=l,...,T : 

lni/>o(Ao,„,i) = aht + &i,tAo,n,t + ci,tA^„)t + residual n = 1,..., N . (B.6) 

Then the OLS-estimates of the coefficients are used to construct for every time period t the 

matrix 

f -2cu 0 -bu ^ 

Qu = t = l,...,T. (B.7) 0 0 0 

^ —bi,t 0 —2ä\j ) 

With Qi={Q\,t}t=i a first new IF ^ given by ^i(A | R)=i>o(A | R)£(A, Q\)/k{Q\). A second Step 

IF %l>2(A | R) is constructed in the same fashion by drawing a random sample from tpi(A | R) and 

regressing In ipo(^i,n,t) on a constant, Ai^j and Xj n t. With the resulting sequence of matrixes 

Q2 one can determine r/>2(A | R). This procedure is repeated until Qj is sufficiently close to the 

13 



one-step-ahead matrixes Qj-i- Danielsson and Richard (1993) showed that the convergence is 

reached very feist, typically after less than 5 iterations. Finally the simulated sample {A_,,n}^=1 

from (A | R) is used to calculate the jth step AGIS estimate of the integral: 

= (a8) 

N ^ $(Aj,n,Qj) 

To obtain the SML estimate of 6, this jth step AGIS estimate of the likelihood function is 

maximized with respect to 6. 
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Table 1. Summary statistics of the daily returns. 

Statistic SIE DAI VOW DBK BAY VEB 
Mean .004 .005 -.001 .000 .031 .036 
Std. Dev. 1.198 1.531 1.798 1.245 1.348 1.306 
Skewness .024 -.026 -.084 -.444 .231 -.266 
Kurtosis 10.597 7.250 8.402 9.551 7.052 10.323 
Minimum -9.381 -7.984 -13.200 •10.167 -5.964 -9.475 
Maximum 8.519 8.739 12.497 6.520 8.659 8.630 
Ißr(20) 22.159 17.396 7.769 22.546 24.641 10.795 

(.332) (.627) (.993) (.312) (.215) (.951) 
NOTE: Sample size is 1095 fo r SIE, DAI, VOW and 1096 for DBK, BAY, VEB 

Marginal significance level are in parentheses. 

Table 2. Autocorrelation of the squared returns 

Lag SIE DAI VOW DBK BAY VEB 
Autocorrelation coefäcients 

1 .137 .104 .022 .053 .124 .096 
2 .093 .217 .088 .124 .182 .126 
3 .152 .147 .118 .157 .111 .144 
4 .053 .158 .050 .093 .134 .139 
5 .084 .059 .056 .044 .037 .054 
6 .048 .100 .044 .053 .077 .080 
7 .026 .070 .021 .045 .039 .042 
8 .053 .110 .045 .069 .071 .077 
9 .055 .086 .013 .060 .114 .085 
10 .027 .095 .031 .039 .051 .034 
20 .005 .066 .009 .006 .064 .032 
30 .089 .044 .031 .061 .042 .053 
40 .049 .081 .043 .093 .144 .080 
50 -.005 .021 .010 -.014 .041 .037 

Ljung-Box statistic 

LBT2( 30) 140.3 378.5 56.6 118.9 200.0 190.5 
(.000) (.000) (.002) (.000) (.000) (.000) 

NOTE: Marginal significance level are in parentheses. 
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Table 3. SML estimation of the SV-normal model. 

Parameter SIE DAI VOW DBK BAY VEB 

ß -.0010 .0034 .0236 .0235 .0356 .0592 
(.0250) (.0347) (.0385) (.0249) (.0240) (.0264) 

7 -.0014 .0211 .0841 .0006 .0111 -.0007 
(.0079) (.0103) (.0263) (.0074) (.0110) (.0097) 

<5 .9526 .9535 .9055 .9629 .9322 .9515 
(.0165) (.0142) (.0285) (.0127) (.0193) (.0162) 

V .2488 .2715 .3031 .2408 .3439 .3091 
(.0408) (.0391) (.0492) (.0359) (.0468) (.0480) 

K 5.856 6.754 4.997 6.652 7.399 8.232 

P( 1) .184 .203 .147 .204 .206 .223 
In L -1612.93 -1877.46 -2117.89 -1641.72 -1745.56 -1643.33 
NOTE: Standard errors are in parentheses. The estimation are based on a Simulatio n sample size N = 500 
and four AGIS iterations. 

Table 4. SML estimation of the SV-t model. 

Parameter SIE DAI VOW DBK BAY VEB 

V .0032 .0001 .0274 .0227 .0365 .0589 
(.0248) (.0237) (.0224) (.0252) (.0293) (.0249) 

7 .0006 .0133 .0502 .0014 .0093 .0016 
(.0032) (.0075) (.0160) (.0039) (.0078) (.0057) 

<5 .9881 .9753 .9475 .9877 .9621 .9794 
(.0070) (.0101) (.0157) (.0065) (.0175) (.0096) 

i> .1058 .1795 .1941 .1229 .2341 .1842 
(.0266) (.0354) (.0331) (.0255) (.0593) (.0376) 

1/ÜJ .1213 .1145 .0871 .1560 .0927 .1102 
(.0260) (.0316) (.0311) (.0259) (.0372) (.0265) 

K 7.084 8.260 5.496 10.182 8.116 9.612 
P( 1) .098 .125 .093 .092 .145 .146 
InL -1605.06 -1872.78 -2115.80 -1628.46 -1743.58 -1638.12 

t-«
 

sT Ii o 15.74 9.36 4.18 26.52 3.98 10.42 
[.000] [.001] [.021] [.000] [.023] [.000] 

NOTE: Standard errors are in parentheses and p-values are in brackets. The estimation eure based on 
a Simulation sample size N = 500 and four AGIS iterations. 
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Table 5. SML estimation of the SV-GED model. 

Parameter SIE DAI VOW DBK BAY VEB 

ß -.0014 -.0026 .0220 .0155 .0355 .0566 
(.0249) (.0253) (.0310) (.0250) (.0240) (.0250) 

7 -.0005 .0164 .0761 .0017 .0110 .0009 
(.0069) (.0081) (.0230) (.0050) (.0104) (.0076) 

5 .9603 .9673 .9160 .9804 .9357 .9652 
(.0168) (.0112) (.0250) (.0090) (.0209) (.0148) 

V .2219 .2142 .2766 .1615 .3320 .2533 
(.0485) (.0397) (.0505) (.0327) (.0607) (.0521) 

1/0 .5410 .6145 .5361 .7053 .5181 .5788 
(.0507) (.0459) (.0436) (.0489) (.0485) (.0520) 

K 5.798 6.644 4.916 6.802 7.378 8.188 

P{ 1) .168 .162 .134 .138 .200 .196 
In L -1612.54 -1874.90 -2117.82 -1633.03 -1745.45 -1642.34 

t-i
 

£o
 

Ii .78 5.12 .14 17.38 .22 1.98 
[.377] [.024] [.708] [.000] [.639] [.159] 

NOTE: Standard errors are in paxentheses and p-value s are in brackets. The estimation are based on 
a Simulation sample size N = 500 and four AGIS iterations. 

Figure 1. Combinations of the kurtosis of the returns and 

the ßrst-order autocorrelation of the squared returns for 

the data, and the predicted combinations of the SV model 

with normal errors for various values of S. 
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First —order autocorrelation 

0.05 0.10 0.15 0.20 0.25 0.30 
First —order autocorreIation 

Figure 2. Combinations of the kurtosis of the returns and the ßrst-order autocorrelation of the squared 

returns for the data, and the predicted combinations of the SV model with a leptokurtic error distribution 

for v arious values of 6 . In the Ieft-hand panel the baseiine-kurtosis is E(uf) = 4 and in the right-hand 

0.36 

panel E(uj) = 6. 

SiE 
DAI 
VOW DBK 
BAY *— VEB 

0 1 2 3 4 5 6 
1 /w (Standard deviation units) 

0 1 2 3 4-55 
1 /u (Standard deviation units) 

Figure 3. Combinations of predetermined values of l/ui in the SV-t model measured in Standard 

deviations given in Table 4 and the resulting SML estimates of S and v. The left-hand panel contains the 

combinations ofl/u and S, and the right-hand panel those ofl/ui and v. 
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