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Abstract 

Bivariate mixture models have been used to explain the stochastic behavior of daily price 
changes and trading volume on fmancial markets. In this class of m odels price changes and 
volume follow a mixture of bivariate distributions with the unobservable number of price 
relevant information serving as the mixing variable. The time series behavior of this mi-
xing variable determines the dynamics of t he price-volume system. In this paper, bivariate 
mixture specifications with a serially correlated mixing variable are estimated by simula-
ted maximum likelihood and analyzed concerning their ability to account for the observed 
dynamics on financial markets, especially the persistence in the variance of price changes. 
The results based on German stock market data reveal that the dynamic bivariate mixture 
models cannot account for the persistence in the price change variance. 



1. INTRODUCTION 

The mixture of distributions model introduced by Clark (1973) plays a prominent role in the 

empirical finance literature which is devoted to modeling the distribution of stock price changes. 

In this approach, the variance of daily price changes is directed by the random number of daily 

price relevant information, which serves as the mixing variable. Using trading volume as a proxy 

for the latent number of information, Clark (1973) found that this variable contains significant 

explanatory power with regard to the price change variance. But this inference is based on the 

assumption that trading volume is weakly exogenous, which is not adequate if price changes 

and trading volume are jointly determined. Tauchen and Pitts (1983) refined Clark's univariate 

mixture specification by including trading volume as an endogenous variable and proposed a 

bivariate mixture model in which the price change variance and the trading volume are simul-

taneously directed by the information arrival process as the common mixing variable. However, 

Clark (1973) as well as Tauchen and Pitts (1983) assumed that the information process is serially 

independent which cannot account for the well documented autoregressive behavior of the price 

change variance which is generally addressed by the autoregressive conditionally heteroskeda-

stic (ARCH) model of Engle (1982) or Bollerslev's (1986) generalized ARCH (GARCH) model. 

Using Clark's univariate mixture model, Lamoureux and Lastrapes (1990) analyzed whether an 

autocorrelated number of daily information can be regarded as the source of the autocorrelation 

in the process of price change variance. They found that the persistence in the variance process 

disappears after Controlling for the information arrival rate approximated by trading volume. 

Nonetheless, as the in study of Clark (1973), this analysis suffers from a possible simultaneity 

bias, induced by treating trading volume as an exogenous variable. 

In this paper endogenous trading volume and an autocorrelated latent information arrival pro

cess are combined within a bivariate mixture framework. In addition to the bivariate mixture 

model of Tauchen and Pitts (1983), I consider a modified specification of this model recently 

proposed by Andersen (1996). For both versions a dynamic information arrival variable is ex-

plicitly specified. These dynamic specifications of a bivariate mixture system provide structural 

models for the co-movements of price change variance and trading volume in which the dynamics 

of both series are directed by the time series behavior of the common mixing variable. Given 

that these specifications are correct, trading volume provides information about the factor which 

generates the persistence of the price change variance. The main purpose of this paper is to 

investigate whether these bivariate mixture systems with a dynamic mixing variable capture the 

observed dynamic features of the price change and the volume series, especially the persistence 
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in the price change variance. 

Since the latent mixing variable is serially correlated, the likelihood functions of the mixture 

models are given by high dimensional integrals which make a direct application of maximum li

kelihood (ML) infeasible. Hence, for estimation and inference, I use a strategy which is based on 

a simulated maximum likelihood (SML) approach developed by Danielsson and Richard (1993). 

There are alternative approaches which also allow for endogenous trading volume and a dyna-

mic mixing variable. Richardson and Smith (1994) applied the generalized method of moments 

(GMM) procedure to test the distributional restrictions of the Standard bivariate model of Tau

chen and Pitts (1983). Also using GMM techniques, Andersen (1996) found that his modified 

mixture model outperforms the standaxd specification concering the ability to account for the 

distributional properties of the data. Finally, Lamoureux and Lastrapes (1994) focused on the 

dynamic implications of a bivariate mixture model and employed a signal extraction procedure 

to estimate the time series of the unobservable information arrival rate. They analyzed whether 

the time series behavior of the estimated series can account for the observed persistence in the 

variance process. By using a different estimation and inference strategy this paper can be re-

garded as complementary to the studies mentioned above. 

The remainder of this paper is organized as follows. In section 2 the bivariate mixture models 

are presented. Section 3 describes the SML estimator and its application to the bivariate mix

ture models. The Statistical properties of the data and the estimation results are discussed in 

section 4. Section 5 summarizes the results and contains the conclusions. 

According to the mixture model of Tauchen and Pitts (1983) the price change dpt on day t and 

the corresponding trading volume vt follow a bivariate normal distribution conditional on the 

daily number of price relevant information it: 

with Cov (dpt, vt | it) = 0 , 

where adp, pv and av are positive parameters. Assuming that the unobservable number of daily 

information arrivals it is a random variable, it follows that the unconditional joint distribution of 

dpt and vt is a mixture of independent bivariate normals with it serving as the mixing variable. 

2. BIVARIATE MIXTURE MODELS 

dpt\it ~ N ( ßdp , ajpit ) 

vt \it ~ N ( ßvit , <7% ) 

(1) 

(2) 
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To obtain the mixture model (1) and (2), Tauchen and Pitts (1983) used a sequential Walrasian 

equilibrium framework in which trading volume is only caused by the arrival of information. In 

contrast to this, Andersen (1996) developed a market microstructure model with asymmetric 

information inspired by the models of Kyle (1985), and Glosten and Milgrom (1985). In the 

setting of Andersen (1996) trading volume is not only determined by the demand of informed 

traders which react to the arrival of new information, but also by the demand of liquidity traders. 

The bivariate distribution of price change and trading volume conditional on the daily number 

of information Andersen (1996) obtained is given by 

dpt\it ~ N ( ßdv , adpit ) (3) 

— | it ~ Po ( m0 + m1it) (4) 
c 

with Cov (dpt, Vf | ?t) = 0 , 

where crdp, c and m0 are positive parameters. This modified mixture model differs from the 

Standard Tauchen-Pitts specification by a Poisson distribution for the daily trading volume con

ditional on it, whereas the marginal price change distribution is left unchanged. The parameter 

c is an unknown proportional constant which must be introduced due to a scaling indetermi-

nancy that arises if detrended volume data are used to estimate the model. The parameter m0 

captures that part of daily volume which is generated by liquidity trading and which is the-

refore independent of the arrival of information. The remaining part of trading volume which 

is induced by new information is represented by m^. Thus, by accounting for an information 

independent part of trading volume this modified version of the mixture model can be regarded 

as a generalization of the Standard Tauchen-Pitts model. 

The procedure to estimate the mixture models will be based on the SML technique, which relies 

on the füll specification of the conditional density functions. However, in the modified mixture 

model the density of vtJc is defined for integer-valued random variables only. Since c is an 

unkown parameter which must be estimated it is impossible to ensure that for an estimate c, 

the series vt/c consists of integer values. Hence, for the SML procedure the Poisson distribution 

cannot be used directly and an approximation must be applied. If one assumes that (m0 + mxit) 

is large enough due to a sufficiently large number of daily information the Poisson distribution 

can be approximated by a corresponding normal distribution: 

— | it ~ N ( [m0 + rriyit} , [m0 + m,«,] ) . 
c 

To estimate the modified bivariate mixture model, the volume specification in (4) is replaced by 
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the above approximation to the Poisson distribution. 

The bivariate mixture models have many implications for the price-volume system. I focus on 

the implications with regard to the dynamics of price changes and trading volume, especially 

to the behavior of the variance of price changes over time. Since the conditional variance of 

dpt is determined by the common mixing variable it, the dynamics in the variance process of 

price changes are solely due to the time series behavior of it which also affects the dynamics of 

trading volume. As noted by Lamoureux and Lastrapes (1990, 1994) a positive serial correlation 

in it leads to a serial correlation in the squared price changes and the observed persistence in 

the variance of dpt may be the result of a persistence in the information arrival process. To 

incorporate such an autocorrelation in the information arrival process, I assume for ln(it) — At 

the following time series model: Xt = 7 + 5At_j + with et ~ n<iN(0,1). This Gaussian 

AR(l)-process for the logarithm of the mixing variable generalizes the assumption of Tauchen 

and Pitts (1983) that this variable is serially independent and lognormally distributed. 

Due to the latent character of the mixing variable, the bivariate mixture models are invariant 

with respect to scalar transformations of it. In order to normalize the models, the parameter 

adp in the price change equations (1) and (3) is set equal to one. Thus combining the dynamic 

specification of the mixing variable with the bivariate systems, for the Standard mixture model 

results: 

dpt | At ~ N ( ßdp , eXt) (5) 

vt | At ~ N (/i„eAt , a*eXl ) (6) 

and 

AtlAt-^Nfr + 6\t_1,v2). (7) 

For the modified mixture model Equation (6) is substituted by 

^ | At ~N( [m0 +mjeA4] , [mo+mje^]). (8) 

Notice that these bivariate models imply a univariate specification for price changes (5) and (7), 

which corresponds to the stochastic volatility model used, for example, by Danielsson (1994), 

Jacquier, Polson and Rossi (1994) and Ruiz (1994). In accounting for the persistence in the va

riance process of price changes, this stochastic volatility model, where the persistence is measured 

by the parameter 8, represents a successful alternativ to (G)ARCH-specifications. However, gi-

ven that a bivariate dynamic mixture system is adequate to model the joint dynamics of price 

changes and trading volume, the time series behavior of the common latent factor filters the 
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persistence in the variance of price changes and one can use the series of trading volume as an 

additional information to infer the latent process which directs the dynamics of the price change 

variance. 

Due to the presence of a dynamic latent variable, the ML procedure cannot be applied directly 

to the estimation of the bivariate mixture specifications. In order to derive the marginal dis

tribution of the observable variables the vector of the latent variable A = {Xt}J=l has to be 

integrated out of the trivariate joint probability function of dP = {dpt)J=x , V = {vt}J=l and 

where 6 denotes the vector of the parameters to be estimated. Thus the unconditional joint 

distribution of the observable variables f(dP, V \6) is given by an integral with a dimension 

determined by the number of observations T. The fundamental problem is that for this high 

dimensional integral which does not have a closed form Solution no Standard numerical Integra

tion methods can be applied to compute it. 

To estimate a dynamic bivariate mixture model Richardson and Smith (1994), and Andersen 

(1996) proposed the GMM strategy which avoids the calculation of the high dimensional integral. 

In contrast to this approach, I use a SML method developed by Danielsson and Richard (1993) 

which is based on Monte Carlo (MC) integration to evaluate the integral (9). This estimation 

strategy has the following advantages over the GMM. First, applying SML avoids the problem 

of the GMM technique related to the appropriate choice of moment restrictions. Second, if the 

number of replications is large enough, using SML it is possible to adopt the Standard instru-

ments of inference developed for maximum likelihood methods. Finally, GMM estimators are 

only based on certain aspects of the distributional and dynamic assumptions in form of the se-

lected moment restrictions, whereas SML retains the complete a priori information given by the 

structure of the model. So one can expect that the GMM estimator is less efficient. However, 

SML is a more Computer intensive estimation procedure compared to GMM. 

A: 

(9) 
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3. THE SIMULATED MAXIMUM LIKELIHOOD 

ESTIMATOR 

Suppose one has a Solution of the T dimensional integral given in (9), then the estimate of the 

unknown parameter vector 9 based on maximum likelihood is 

ÖML = arg max In[f(dP, V \9)\. (10) 

To evaluate the high dimensional integral f(dP, V | 0), I use the MC technique developed by Da-

nielsson and Richard (1993). This MC technique is based on an importance sampling procedure 

and allows the integral to be estimated with a high degree of precision. Given such an estimate 

of the integral, the log-likelihood can be evaluated and maximized over the unknown parameter 

vector 9. 

To obtain such a MC estimate of f(dP, V \ 9), the trivariate joint density f(dP, V,A\6) is fac-

torized in an importance sampling function fi(A\dP, V) and a remainder function h(A,dP,V) 

such that the following equation holds 

f{dP,V,A\9) = h(A,dP,V)(i(A\dP,V). (11) 

Since the importance sampling function is a density function of A, the integral can be expressed 

in terms of the expectation value of h(A, dP, V) evaluated over the distribution ß(A | dP, V): 

f (dP, V19) = [ f(dP,V,A\9)dA 

= f h(A,dP,V)n(A\dP,V)dA (12) 

= Eß[h(A,dP,V)} . 

Because the sample mean is a natural estimator of an expectation value, a MC estimator of the 

integral can be constructed by 

1 N 
fN(dP, V\9) = -Y, ' (13> 

n=l 

where {Ai,..., An,..., AN} represents a simulated random sample of size N drawn from the 

probability distribution /i(A | dP, V). To obtain the SML estimator of the parameter vector, 

f(dP,V, | 9) in Equation (10) is replaced by its estimate (12). 

Under weak assumptions the estimator fx(dP, V, 19) converges almost surely to f(dP, V \ 9), see 

Danielsson and Richard (1993) and Geweke (1989). Furthermore, the precision of the MC esti

mate of the integral and therefore of the unknown parameter vector can be arbitrarily increased 
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by raising the Simulation sample size N. 

A natural factorization of the trivariate density f(dP, V, A 16) for the bivariate mixture models 

(5)-(8), according to the conditions (11) and (12), can be obtained as follows. The trivariate 

joint density is factorized in 

f(dP, V,h\6) — f(dP, V | A) /(A) (14) 

with f{dP,V\A) = n f(dpt,vt\\t) and /(A) = U f{\t \ \t_,), 
«=i t=l 

where / (dpt, vt \ \t) represents the joint density of price change and volume in period t conditional 

on the corresponding value of the mixing variable. Since conditional on At, the random variables 

dpt and vt are assumed to be independent, f{dpt,vt | At) is given by the product of two normal 

distributions for the Standard mixture model, and by the product of an approximation to a 

Poisson distribution and a normal distribution in the case of the modified one. /(At | At_i) is 

the conditional distribution of the mixing variable given its past Observation which according to 

(7) is a Gaussian distribution for both mixture models. So one can define the following initial 

sampling function and corresponding remainder function which preserves the condititons (11) 

and (12): 

T 
/io(A| dP,V) = IJ/^IV:) (15) 

t=i 
T 

ho(A, dP, V) = flf(dpt,vt\\t). (16) 
t=l 

These initial remainder and importance functions can be used to construct a naive MC-estimate 

of the marginal distribution f(dP, V16) for a given value of the paxameter vector 0. Therefore, 

a simulated sample {A0in}^=1 is drawn from the initial remainder /zo, wh ere each A0,„ is a vector 

of length T given by (A0,„,i,,..., A0,n,ti)..., A0,n,T,)- Then, the remainder function is evaluated 

for every A0,„ and the resulting arithmetic mean of {ho(A0^n,dP, l )̂}^=1 serves according to 

Equation (13) as a naive MC-estimate of f{dP, V \ 0). 

Danielsson and Richard (1993) demonstrated that this initial choice for the remainder and 

importance function is not efficient in the sense that the resulting MC sampling variance of the 

estimator for the integral increases dramatically with the sample size T, and therefore with the 

dimension of the integral. If T is greater than 200 a prohibitively high Simulation sample size N 

would be necessary to achieve a reasonable degree of accuracy for the MC estimate of the integral. 

But since the factorization of f(dP, V, A10) in a remainder and an importance function, which 

preserves the conditions (11) and (12), is not unique Danielsson and Richard (1993) proposed 
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an acceleration method, called Accelerated Gaussian Importance Sampling (AGIS). This AGIS 

method transforms the initial remainder and importance function fxQ and ho in such a way that 

the MC sampling variance is minimized while retaining conditions (11) and (12). In this way, the 

AGIS method searches for an importance function which minimizes the MC sampling variance 

of the corresponding remainder function: 

min Va.vß[h(dP, V, A)] (17) 

with Varß[h(dP, V, A)] = j - f(dP, V16)} \(A | dP, V) dA . 
3tT 

Because this minimizing problem has no analytical Solution numerical and iterative procedures 

are used. Therefore, an auxiliary variance reduction function £(A,Q) is defined where Q is a 

matrix of parameters. 

With such an auxiliary function, one can construct a new pair of remainder and importance 

functions by transforming the initial pair of functions in as follows: 

ß(A\dP,V) = Vo(k\dP,VH(A,Q) (lg) 

K[Q) 

h(A,dP,V) = h0(A,dP,V)K(Q) (19) 

£(A, Q) 

K(Q) represents the integration constant which ensures that the new importance function is 

indeed a proper probability distribution function and is given by: 

K(Q) = f /z0(A | dP, V) £(A, Q) dA. (20) 

With the new remainder (19) and the new importance function (18) the integral to be estimated 

can be re-written as: 

«'"'•'-/(öSrä)(aöSrM)" 
9tT 

= f h(A, dP, V) n(A | dP, V) dA . 

3tT 

Thus, the minimizing problem given in (17) is transformed into searching for an auxiliary func

tion £(A, Q) which minimizes the MC sampling variance of the remainder function h(A, dP, V). 

In principle, an infinitely large number of functional forms for ^(A, Q) are possible. But for ana

lytical and computational reasons the AGIS method of Danielsson and Richard (1993) restricts 
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the seaxch for a function £(A, Q) to that class of functions for which the new importance sampler 

in (18) is a T-dimensional multivariate normal distribution. Furthermore, instead of minimizing 

the total MC sampling variance of the remainder function itself, the variances of the individual 

components of the logarithm of the remainder are minimized for each time period separately. 

These modifications lead to an auxiliary function which is a product over T exponential quadratic 

functions: 
T 

£(A,Q) = PJ ̂ (At, Qt) (22) 
t=1 

with £(A„Qt) = exj>{-\r)[Qtr}t} and rft = (A„ A,_1?1). 

To determine Q = {Qt}t=i, which is a sequence of (3x3) matrixes, an iterative estimation 

procedure with k steps is applied. Starting with the initial sampler ßo, an initial simulated 

sample {A0,n}^=1 is drawn and used to run the following auxiliary regression for every time 

period t = 1, ...,T : 

ln/i0(A0,„,() = di,t + bl>tXQn,t + ci,t^o,n,t + residual , n = l,...,N. (23) 

The OLS-estimates of the coefficients au, bht and cM can be used to construct for every t the 

matrix 
( -2cu 0 —bht ^ 

Qi,t — (24) 0 0 0 

^ ~b\,t 0 —2alit j 

With Qi = {Qitt}f=1, afirst new sampler is given by ^i(A | dP, V) = /io(A | dP, V)^(K, QI)/K(QI). 

A second step sampler p.2(h.\dP,V) is constructed in the same fashion by drawing a random 

sample from ni(A\ dP,V) and regressing ln/io(AlrM) on a constant, AljrM and A^nt. With the 

resulting sequence of matrixes Q2 the sampler p,2(A\dP,V) is determined. This procedure is 

repeated until Qk is sufficiently close to the matrixes Qk-i- Danielsson and Richard (1993) sho-

wed that the convergence is reached very quickly, typically after less than 5 iterations (see the 

Appendix for the implementation of the complete AGIS algorithm). 

Finally, the simulated sample {A*,from /ifc(A | dP, V) is used to calculate the &th step 

AGIS estimate of the integral: 

fN,k(dP, V\6) = ±jr dP. V) "(&> , (25) 
N n^l ,Qk) 

To obtain the SML estimate of d, this fcth step AGIS estimate of the marginal distribution is 

maximized with respect to 0. 



Cleary, with the modifications noted above, the AGIS algorithm does not ensure that one obtains 

an importance function with the smallest possible MC sampling variance of the corresponding 

remainder. But Danielsson and Richard (1993) showed that for a univariate mixture model the 

reduction of the MC sampling variance which is reached by the AGIS algorithm is so significant 

that it can be regarded as sufficient. This holds especially if one considers the trade-off between 

Computing costs and vaxiance reduction. So the experiences of Danielsson and Richard (1993) 

showed that the application of the AGIS algorithm to estimate a univariate mixture model for 

T = 2022 observations reduces the necessary sample size of simulated random vectors to N = 50 

or less. 

4. EMPIRICAL RESULTS 

4.1 Data 

The empirical results are based on a dataset consisting of daily closing prices and daily number 

of shares traded for the four major German stocks listed in the DAX: Siemens (SIE), Daimler-

Benz (DAI), Volkswagen (VOW), and Deutsche Bank (DBK). The data were obtained from 

the Karlsruher Kapitalmarktdatenbank (KKMDB) and are adjusted for effects of dividends and 

capital changes. The sample period starts on January 2, 1990 and ends on May 31, 1994 which 

gives a sample size of roughly 1100. The daily closing prices pt are transformed to price changes 

measured in continuously compounded rates: dpt — 100 • In (pt/pt-i)- In order to make the 

volume series stationary, the volume data are adjusted by an exponential time trend which is 

estimated by regressing ln(vt) on a constant and on time t = 1, ...,T. The exponential function 

of the residuals of this regression are then linearly transformed in such a way that the raw data 

and the detrended data have the same mean and variance. For all the following results, the 

detrended volume series is multiplied by 10~6. 

The statistial properties of the price change data and the detrended volume series are summa-

rized in Table 1. As can be seen from Table 1, the empirical distributions of price changes are 

not normal. The excess kurtosis exceeds the value of zero for all stocks. In order to detect se

rial dependencies the Ljung-Box statistics including 20 lags are calculated for the price changes 

LBdp(20) and for the squared data LBdp2 (20). Under the null hypotheses that all autocorrelati-

on coefficients are zero, LBdp(20) and LBdp2(20) are X(20) distributed. The results demonstrate 

that the price change series appear to be serially uncorrelated, whereas the squared data exhibit 
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a significant autocorrelation which indicates the presence of ARCH-effects. This is confirmed by 

the Engle (1982) test statistic Fdp(20), which is xf20) distributed under the null hypotheses of no 

ARCH-effects. The Ljung-Box statistic LBV{20) displayed in Table 1 shows that there is a high 

autocorrelation in the series of trading volume for all stocks. Note that the autocorrelation in 

trading volume is substantially higher than that in the squared price changes, as can be inferred 

from the comparison of LBdp2(20) and LBV(20). This fact is consistent with the predictions of 

the bivariate mixture models, see Harris (1987). 

4.2 Estimation Results 

4.2.1 Univariate Mixture Model for Price Changes 

This section will be devoted to the estimation of the univariate mixture model for the price 

change series resulting from the bivariate systems and which is given by the Equations (5) and 

(7). Since this specification is compatible with the stochastic volatility model, it can be used to 

prove whether the price change data of the four analyzed stocks exhibit the properties similar 

to those generally reported for financial markets or not. The SML estimation of the univariate 

model is carried out by using a Simulation sample size of N = 500 and four iterations for the 

AGIS algorithm. 

The SML results are given in Table 2. In order to assess the precision of the SML method 

the estimated MC sampling Standard deviations of the maximized log-likelihoods are given in 

brackets below the log-likelihood values. These estimated Standard deviations are calculated by 

estimating a hundred times the likelihood for the given SML estimates of the parameters and 

Computing the Standard deviation of the logarithm of these likelihood estimates. Since these MC 

Standard deviations are about 0.003% for all stocks relative to the corresponding log-likelihood 

values, the SML estimates seems to be reasonably precise. The SML estimates of the parameter 

5 are always highly significant and lie between 0.91 and 0.96, indicating a high persistence of 

variance shocks which is a typical result for financial price change series. 

4.2.2 Bivariate Mixture Models 

In this section the SML estimates of the joint price change-volume specifications are presented. 

The results for the Standard bivariate mixture model given by the Equations (5), (6), and (7) 
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are displayed in Table 3 and raise the following remarks. The estimated MC Standard deviations 

of the maximized log-likelihood show that the MC sampling errors are much smaller than in 

the univariate specification, although the same Simulation sample size and the same number 

of AGIS iterations are used for both. The MC Standard deviations for the bivariate setting 

vary from 0.00001% (DBK) to 0.0003% (DAI) relative to the log-likelihood values, indicating 

a very high precision of the SML results. Furthermore, even if the persistence parameter 5 is 

highly significant in all cases, the estimates which lie between 0.60 (SIE) and 0.65 (DAI) are 

obviously lower for all stocks than those obtained in the univariate price change model, whereas 

its estimated Standard deviations for both specifications are equally small. These significant 

differences between the estimates of <5 res ulting from the univariate and the bivariate setting 

cast doubt on the validity of this bivariate specification. If the bivariate mixture model were 

correctly specified, then the estimator of the paramter 6 would be consistent in the univariate 

as well as in the bivariate setting, and the estimates of <5 res ulting from the univariate and the 

bivariate specification should be of the same order of magnitude. However, the sharp decrease 

of 5 if trading volume is included indicates that the bivariate mixture model fails to capture the 

high persistence in the variance process of price changes. I shall return to this issue shortly. 

Table 4 displays the results of the modified bivariate mixture model given by Equations (5), (7), 

and (8). The MC Standard deviations of the log-likelihood can be regarded as sufficiently small, 

even if they are generally higher than those obtained for the Standard model in Table 3. Of 

special interest are the estimation results concerning the parameter c-m0, which captures that 

part of daily trading volume which is independent of the information arrival and which is not 

included in the Standard mixture model. This parameter is significant at the 1% level for all 

analyzed stocks. This result is consistent with the findings of Andersen (1996), whose estimates 

for the US stock market are based on GMM techniques. To compare the modified model with 

the Standard bivariate mixture model directly, the classical testing procedure cannot be applied, 

since the specifications are non-nested. Hence the comparison is based on the information cri-

terion (SIC) of Schwarz (1978). With the exception of DAI, SIC favours the modified bivariate 

specification over the Standard bivariate model. But even if the modified version of the mixture 

model is generally the preferred specification, Table 4 shows that the estimates of the persistence 

parameter 8 remain significantly lower than those obtained in the univariate price change model. 

Hence, both versions of the bivariate mixture model in which the dynamics of the price change 

variance and of trading volume are solely driven by the information arrival rate, seem to be 
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inadequate in accounting for the high persistence in the variance process of price changes. To 

prove this by a formal Statistical test, I allow for a separate source of persistence in the variance 

of price changes, in addition to the persistence captured by the common mixing variable it = 

exp(At). Therefore, in the bivariate models the price change specification (5) is generalized as 

follows: 

dpt | At, ht ~ N ( ßdp , eXt+ht ) (26) 

k 
with ht = J2 ai] \dpt_j - ßdp\ , 

3=1 

whereas the volume specifications are left unchanged. The additional term ht is a function of 

lagged absolute residuals \dpt_]—ßdp\, which represent lagged variances of dpt. Under the hypo-

theses that the time series behavior of the common mixing variable is the only source for the 

persistence in the variance of price changes, the lagged absolute residuals should not have any 

explantory power with regard to the contemporaneous variance of dpt, and the coefficients a3 

should be small and statistically insignificant. Otherwise, the bivariate mixture model with one 

common factor must be rejected. To test this hypotheses by a Standard likelihood ratio test, I 

use the lag length k = 5. Under the null hypotheses that the additional source of persistence 

captured by the ht is nil, the likelihood ratio statistic is xf$) distributed. 

The SML estimates of the Standard bivariate model with the separate persistence given by the 

Equations (6), (7), and (26) are summarized in Table 5. It shows that the coefficients a.3 are 

significantly positive in almost all cases. Furthermore, the statistics of the likelihood ratio test 

of the hypotheses HQ : = • • • = a5 = 0 are significant at any level for all stocks and vary 

between 50 (VOW) and 146 (DAI). This result reveals that an additional source of persistence 

in the price change variance exists which is not captured by the common mixing variable. Table 

6 contains the SML results for the modified bivariate mixture model with the generalized price 

change specification (26). As for the Standard model, the lagged absolute price change residuals 

contain a significant explanatory power concerning the contemporaneuos price change variance. 

Thus, I conclude that the restriction of both versions of the bivariate mixture model, that the 

dynamics in the price change variance are solely due to the time series behavior of the informa

tion arrival process which also determines the dynamics of trading volume, have to be rejected. 

This empirical conclusion is consistent with the findings of the studies of Lamoureux and La-

strapes (1994) and Andersen (1996). Lamoureux and Lastrapes (1994) found that in their signal 

extraction approach, the estimated series of the latent information arrival variable does not ac

count for the persistence in the price change variance; Andersen (1996), who used GMM, also 
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found a reduction of the measure of variance persistence if trading volume is included. 

A possible interpretation of this sort of mis-specification of the bivariate mixture models could 

be that more than one information process exists which directs trading volume and price change 

variance differently. As can be inferred from the empirical autocorrelation functions, not repor-

ted here, the shocks in the variance process of price change have a longer memory compared to 

the shocks in the volume process. Thus it seems to be necessary to decompose the information 

arrival process in a long-run component which has a greater impact on price change variance 

than on trading volume, and a short-run component which affects trading volume more than 

the variance of price change. The results concerning the price change and volume dynamics 

presented here indicate that future research should be along this line. 

5. SUMMARY AND CONCLUSION 

This paper analyzes the bivariate mixture models of Tauchen and Pitts (1983) and Andersen 

(1996) concerning their abilities to explain the dynamic features observed in financial maxkets. 

In these models the joint distribution of daily price changes and daily trading volume are given 

by a mixture of conditional bivariate distributions. The unobservable number of daily price 

relevant information serves as the conditioning variable, the so-called mixing variable. In order 

to account for the observed persistence of volatility shocks, a serially correlated mixing variable is 

specified. Due to the serially correlated mixing variable, the likelihood function consists of a high 

dimensional integral which makes Standard maximum likelihood techniques infeasible. Hence, a 

simulated maximum likelihood (SML) approach developed by Danielsson and Richard (1993) is 

used to estimate the dynamic bivariate mixture models. This SML approach uses Monte Carlo 

techniques based on an importance sampling procedure to evaluate the high dimensional integral 

which constitutes the likelihood function. 

The estimation results using the four major German stocks can be summarized as follows: 

First, the dynamic bivariate mixture models can be estimated by SML with a high degree of 

precision. Second, for both bivariate mixture models the implied persistence of variance shocks 

are significantly smaller than the persistence generally reported for stochastic volatility models 

for price changes only. Finally, allowing for a separate persistence in the price change variance, 

in addition to the persistence implied by the common dynamic mixing variable, reveals that the 

common mixing variable does not eliminate the high persistence in the price change variance. 
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APPENDIX: THE ACCELERATED GAUSSIAN 

IMPORTANCE SAMPLER 

Step (0): Initial Sampler 

(i) Simulate a set of N independent random vectors {{/n}^=1, each of which is drawn from 

a T-dimensional standardized multivariate normal distribution. These (TxN) simulated 

random variables are used in all steps of the AGIS algorithm and constitute the so-called 

common random numbers. 

(ii) Use these common random numbers to generate a first set of {A0i„}^=1 according to the 

initial sampling function given in Equation (16), where the value of At in time period t = 0 

is set equal to zero. 

(iii) The initial sampling function is the product of conditional univariate normal densities: 

T T 
/io(A I dP, V) = n Mo,«(At | At_x) = n /(At I A(_0 . 

Defining the vectors T)[ = (At, At_!, 1) and z't = (At_x, 1), the individual components of the 

initial sampler are written as: 

/ \ i \ \ \ / Vt-^o,t'nt "i Ato,t(At | At_J = c0,t(z() expj - J, 

where 

M0,t = Ho,t H0itB0t 

t \ ^ frr \ ZtDo,tzt 1 
= V2^ ,f exp^ 2 j ' 

With Eo(AtjAt_x) = —B0itzt and Varo(A, | Ae_i) = H^} as the sequential, conditional 

means and variances of the initial sampler, which is characterized by the parameters given 

in Equation (7), the following matrixes are identified: 

/ 

M0it — 2 

1 —8 —7 

-6 S2 6j 

\ -7 6-y 72 

AM — 

B0.t — ( 8, —7) > Äo,t — /2 ' 

16 



Step (k): kth step AGIS Sampler and kth step AGIS estimate. 

(i) Use the set of simulated random vectors of the previous step k-l: {Afc_l n}^/=;1 to run the 

auxiliary regressions described in Equation (23) and calculate the matrixes Qk = {Qk,t}T=i 

according to (24). 

(ii) In the same fashion as for the initial sampler the kth. step AGIS sampler can be expressed 

as: 
T 

//jfc(A | dP, V) = ßk,t(\t | At_x) , 
t=1 

where its components are given by: 

/ \ i \ \ \ f rftMhitrit\ 
I VO = cM(zt) expj - 1, 

with: 

( Hk,t Hk,tBk,t 
-

y Dk<t + BktHktBk,t 

( \ i m (zt^k,tzt i 
c"(z,) = 7ST * 'expiT~r 

The sequential conditional moments of the kth step AGIS sampler are Efc(At|At_1) = 

—Bkttzt and Varfc(A( | At_i) = Hk}. Defining the selection matrix 

\ 
, t = 2, ....,T + 1 , 

.10 0 St = 
0 0 1 J 

the matrixes {Mk%t}J=l are calculated by backward recursion, beginning in t = T and 

ending with t = 1: 

Mie.t = M0tt + Qjtit + St+1 Pk,t+i St+1 , t = 1,..., T, 

where: 
j Dk t+i — Do t+l if t — 1, ...,T — 1 

Pk,t+1 = S 
{ 0 if t = T . 

Once the matrixes {Mkit}J=1 have been calculated the sequential, conditional moments 

of the fcth step AGIS sampler are determined and used to generate a new set of random 

vectors {A^}^ 
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(iii) The fcth step AGIS estimate of f{dP, V 16) is calculated according to Equation (25) by: 

f„k(dP,V\9) = 1 •£ V)«(Ö.) 
((K.M 

where the integration constant is given with: 
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Table 1. Statistical properties of the price changes and the 
detrended volume data 

Statistics SIE DAI VOW DBK 
Price changes 

Mean .004 .005 1 o
 

o
 

.000 
Standard deviation 1.198 1.531 1.798 1.245 
Excess kurtosis 7.587 4.243 5.394 6.541 
LBdp{ 20) 22.55 17.64 7.96 23.05 

(.3112) (.6110) (.9921) (.2862) 
LBdp,{ 20) 102.93 278.21 42.29 97.72 

(.0000) (.0000) (.0025) (.0000) 

Trading volume 
Mean .694 .685 .662 .642 
Standard deviation .298 .314 .326 .324 
LBV( 20) 637.61 667.27 829.29 620.27 

(.0000) (.0000) (.0000) (.0000) 

NOTE: Sample size is 1095 for SIE, , D AI, VOW and 1096 fo r DBK. 
Marginal significance levels are in parentheses. 

Table 2. SML estimation of t he univariate mixture model for price changes 

Parameter SIE DAI VOW DBK 

ßdp -.0010 .0034 .0236 .0235 
(.0250) (.0347) (.0385) (.0249) 

7 -.0014 .0211 .0841 .0006 
(.0079) (.0103) (.0263) (.0074) 

6 .9526 .9535 .9055 .9629 
(.0165) (.0142) (.0285) (.0127) 

V .2488 .2715 .3031 .2408 
(.0408) (.0391) (.0492) (.0359) 

Log-likelihood -1612.9 -1877.5 -2117.9 -1641.7 

[.0512] [.0604] [.0611] [.0595] 
NOTE: The estimated model is described in Equations (5) and (7). Standard errors are in paren-
theses and estimated MC sampling Standard deviations are in brackets. Th e estimation are based 
on a Simulation sample size N = 500 and four AGIS iterations. 
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Table 3. SML estimation of t he Standard bivariate model 

Parameter SIE DAI VOW DBK 

Mdp -.0569 -.0683 -.1063 -.0495 
(.0315) (.0368) (.0416) (.0012) 

ßv .5276 .3298 .2194 .4655 
(.0217) (.0132) (.0091) (.0086) 

(7 v .0590 .0690 .0324 .0118 
(.0117) (.0082) (.0059) (.0002) 

7 .0791 .2193 .3864 .0853 
(.0205) (.0275) (.0303) (.0025) 

6 .5986 .6538 .6117 .6012 
(.0293) (.0282) (.0206) (.0128) 

V .3143 .3467 .3770 .3712 
(.0109) (.0135) (.0095) (.0082) 

Log-likelihood -1545.6 -1919.2 -2063.8 -1544.4 
[.0037] [.0073] [.0031] [.0002] 

SIC 3133.1 3880.5 4169.6 3130.7 
NOTE: The estimated model is described in Equations (5), (6), and (7). S tandard errors are in paren-
theses and estimated MC sampling Standard deviations axe in brackets. The estimation are based 
on a Simulation sample size N = 500 sind four AGIS iterations. 
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Table 4. SML estimation of t he modified bivariate model 

Parameter SIE DAI VOW DBK 

ßdp -.0650 -.0719 -.1117 -.0519 
(.0273) (.0230) (.0231) (.0305) 

c .0174 .0229 .0113 .0145 
(.0026) (.0041) (.0031) (.0026) 

c • mo .2115 .1176 .0906 .1858 
(.0304) (.0427) (.0297) (.0229) 

C • J7ll .3589 .2716 .1860 .3219 
(.0307) (.0254) (.0139) (.0235) 

7 .0459 .1770 .3378 .0418 
(.0196) (.0268) (.0341) (.0202) 

5 .6850 .7041 .6543 .7057 
(.0301) (.0314) (.0277) (.0282) 

V .4091 .3944 .4215 .4729 
(.0242) (.0262) (.0217) (.0232) 

Log-likelihood -1532.6 -1916.5 -2060.2 -1524.6 
[.1806] [.0697] [.0533] [.2086] 

SIC 3114.1 3882.0 4169.3 3098.1 
NOTE: The estimated model is described in E quations (5), (7), and (8). St andard errors are in paren-
theses and estimated MC sampling Standard deviations a re in brackets. Th e estimation are based 
on a Simulation sample size N = 500 and four AGIS iterations. 
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Table 5. SML estimation of t he generalized Standard mixture model 

Parameter SIE DAI VOW DBK 

ßdp -.0616 -.0354 -.1068 -.0195 
(.0262) (.0256) (.0224) (.0093) 

fiv 1.2628 .7136 .3602 .9297 
(.0248) (.0221) (.0256) (.0460) 

<JV .0753 .1008 .0426 .0259 
(.0217) (.0107) (.0105) (.0110) 

7 -.2811 -.0484 .1917 -.1892 
(.0227) (.0156) (.0318) (.0220) 

s .5856 .6527 .6158 .6044 
(.0312) (.0284) (.0266) (.0220) 

V .3212 .3464 .3753 .3692 
(.0120) (.0135) (.0121) (.0083) 

O-i .0531 -.0213 -.0331 -.0383 

(.0244) (.0245) (.0211) (.0118) 

a 2 .1119 .1270 .0882 .0837 
(.0246) (.0246) (.0216) (.0184) 

<*3 .3453 .2403 .1525 .3235 

(.0249) (.0246) (.0257) (.0290) 

0-4 .1456 .2010 .0664 .2274 

(.0260) (.0227) (.0246) (.0267) 

Ot5 .2251 .0811 .0710 .1027 

(.0250) (.0224) (.0206) (.0334) 

Log-likelihood -1473.4 -1864.2 -2038.9 -1493.2 
[.0023] [.0068] [.0033] [-0005] 

SIC 3023.7 3805.4 4154.8 3063.3 

Likelihood ratio test 144.2 146.0 49.8 102.4 
NOTE: The estimated model is described in Equations (6), (7), and (26). Stan dard errors are in paren-
theses and estimated MC sampling Standard- deviations are in brackets. The estimation eure based 
on a Simulation sample size N = 500 and four AGIS iterations. 
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Table 6. SML estimation of t he generalized modified mixture model: 

Parameter SIE DAI VOW DBK 

Mdp -.0618 -.0361 -.1089 -.0192 
(.0261) (.0233) (.0247) (.0255) 

c .0124 .0152 .0100 .0117 
(.0027) (.0038) (.0030) (.0024) 

c • m o .1421 .0145 .0713 .1494 
(.0337) (.0355) (.0293) (.0235) 

c • mi .9699 .6958 .3149 .6770 

(.1009) (.0674) (.0306) (.0604) 

7 -.2413 -.0475 .1735 -.1564 

(.0327) (.0282) (.0296) (.0229) 

S .6471 .6590 .6478 .6852 

(.0254) (.0299) (.0289) (.0248) 

V .3759 .3516 .4094 .4461 

(.0210) (.0183) (.0209) (.0215) 

dl .0429 -.0224 -.0364 -.0571 

(.0363) (.0281) (.0224) (.0288) 

C*2 .1059 .1261 .0866 .0714 

(.0326) (.0264) (.0223) (.0281) 

a 3 .3480 .2396 .1500 .3095 

(.0293) (.0259) (.0245) (.0424) 

C*4 .1395 .2008 .0666 .2223 

(.0303) (.0246) (.0228) (.0413) 

a 5 .2284 .0816 .0735 .1213 

(.0344) (.0240) (.0229) (.0383) 

Log-likelihood -1467.8 -1864.1 -2036.6 -1480.2 

[.0845] [.0096] [.0389] [.1610] 

SIC 3019.5 3812.2 4157.1 3044.3 

Likelihood ratio test 129.6 104.8 47.2 88.8 

NOTE: The estimated model is described in Equations (7), (8), and (26). Sta ndard errors are in paren-
theses and estimated MC sampling Standard deviations are in brackets. The estimation are based 
on a Simulation sample size jV=500 sind four AGIS iterations. 
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