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Abstract

One of the leading methods of estimating the structural parameters of DSGE mod-
els is the VAR-based impulse response matching estimator. The existing asympotic
theory for this estimator does not cover situations in which the number of impulse
response parameters exceeds the number of VAR model parameters. Situations in
which this order condition is violated arise routinely in applied work. We establish the
consistency of the impulse response matching estimator in this situation, we derive
its asymptotic distribution, and we show how this distribution can be approximated
by bootstrap methods. Our methods of inference remain asymptotically valid when
the order condition is satisfied, regardless of whether the usual rank condition for the
application of the delta method holds. Our analysis sheds new light on the choice
of the weighting matrix and covers both weakly and strongly identified DSGE model
parameters. We also show that under our assumptions special care is needed to en-
sure the asymptotic validity of Bayesian methods of inference. A simulation study
suggests that the frequentist and Bayesian point and interval estimators we propose
are reasonably accurate in finite samples. We also show that using these methods
may affect the substantive conclusions in empirical work.
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1 Introduction

Structural impulse responses play a central role in modern macroeconomics. It is common

to estimate the structural parameters of a dynamic stochastic general equilibrium (DSGE)

models by choosing these parameters so as to minimize a suitably weighted average of the

distance between the structural impulse responses implied by the DSGE model and the

corresponding structural impulse responses implied by an approximating vector autore-

gressive (VAR) model fit to actual data. One advantage of this approach compared with

full information maximum likelihood estimators of DSGE models is that it does not require

the model to fit well in all dimensions, but allows the user to focus on the dimension of

the model that matters most to macroeconomists (also see Dridi, Guay and Renault 2007;

Hall et al. 2012).

Such impulse response matching estimators have been employed in Rotemberg and

Woodford (1997), Altig, Christiano, Eichenbaum and Lindé (2011), Boivin and Giannoni

(2006), Christiano, Eichenbaum and Evans (2005), DiCecio (2005), DiCecio and Nelson

(2007), Dupor, Han and Tsai (2007), Iacoviello (2005), Jordà and Kozicki (2007) and Uribe

and Yue (2006), among others. In related research, Christiano, Trabandt and Walentin

(2011) propose a Bayesian version of the impulse response matching estimator in which the

quasi-likelihood function based on the distance between VAR and DSGE model impulse

responses is combined with prior information. Other applications of Bayesian impulse

response matching estimators include Christiano, Eichenbaum and Trabandt (2013) and

Kormilitsina and Nekipelov (2013).

Because impulse response matching estimators are classical minimum distance (CMD)

estimators, by construction they inherit all potential problems associated with CMD es-

timation (see, e.g., Newey and Smith 2004). Notably, the use of the optimal weighting

matrix induces finite-sample bias in the estimator, which is why most applied users rely

on a diagonal weighting matrix instead. In this paper we identify another potential prob-

lem that is specific to impulse response matching estimators. In estimating the structural



parameters of DSGE models, macroeconomists often match response functions evaluated

across many horizons such that the number of impulse response coefficients exceeds the

dimensionality of the VAR model parameters (see, e.g., Iacoviello 2005; Uribe and Yue

2006; Altig, Christiano, Eichenbaum and Lindé 2011). We show that this practice may

cause the joint distribution of the structural impulse responses to be singular, which in

turn renders the asymptotic behavior of the resulting impulse response matching estimator

nonstandard. As a result, standard asymptotic and finite-sample results for CMD estima-

tors no longer apply. We develop an alternative asymptotic theory of the impulse response

matching estimator for this practically relevant context. Our paper makes four distinct

theoretical contributions.

First, we show that in this case the impulse response matching estimator has a non-

standard convergence rate when using the optimal weighting matrix. While the estimator

remains consistent, its asymptotic distribution is nonstandard. Both the rate of conver-

gence and the nonnormality of the asymptotic distribution differ from standard results

for CMD estimators. We establish that the nonstandard asymptotic approximation may

be recovered by bootstrap methods. Of course, in the absence of asymptotic normality,

one would not want to report standard errors for this estimator, but rely on bootstrap

confidence intervals that do not rely on asymptotic normality.

In contrast, the impulse response matching estimator based on the diagonal weighting

matrix remains
√
T -consistent and asymptotically normal as in the standard CMD case.

The asymptotic variance of the latter estimator, however, differs from the case in which the

number of impulse responses to be matched is no larger than the number of VAR model

parameters. We show that the asymptotic variance may nevertheless be approximated by

the same bootstrap methods as in the case in which the dimensionality of the impulse

response vector is no larger than that of the VAR model parameters. The latter result

provides a formal justification for the use of the diagonal weighting matrix in applied work

in a case not covered by existing asymptotic theory.
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Second, our asymptotic results matter not only for the construction of point and in-

terval estimates for structural parameters. We also prove that conventional tests of overi-

dentifying restrictions, as employed in Boivin and Giannoni (2006), for example, have a

nonstandard asymptotic distribution when the number of impulse response parameters ex-

ceeds the number of VAR model parameters, invalidating the use of conventional critical

values.

Third, our work also has implications for the use of Bayesian impulse response matching

estimators. Often in the literature, Bayesian estimators are used as a convenient device

for constructing asymptotic approximations. It may be tempting to base inference on a

point estimate constructed from the mean, median or mode of the quasi-posterior of the

structural parameters together with an estimate of the asymptotic standard error based on

the standard deviation of this distribution. Although Markov Chain Monte Carlo methods

may indeed be used to construct point estimators of the structural parameters based on

the mean, median or mode, we show that one cannot use the standard deviations of the

quasi-posterior distribution to approximate the asymptotic standard errors of the struc-

tural parameter estimator when the number of impulse responses exceeds the number of

VAR model parameters. This is true whether one employs the optimal weighting matrix

or the diagonal weighting matrix. In contrast, the frequentist impulse response match-

ing estimator based on the diagonal weighting matrix allows consistent estimation of the

asymptotic standard errors by bootstrap methods, for example. Alternatively, asymptot-

ically valid Bayesian inference may be conducted by constructing the variance using the

sandwich formula of Chernozhukov and Hong (2003).

We observe that the latter two approaches remain asymptotically valid even when there

are fewer impulse response parameters than VAR model parameters, regardless of whether

the rank condition holds or not. This point is important because the order condition in

question is only a necessary and not a sufficient condition for the validity of the conventional

asymptotics of impulse response matching estimators. In practice, the rank condition for
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the application of the delta method may fail, even when the order condition is satisfied.

Using methods of inference on structural parameters that are invariant to the failure of

the rank condition is important, given the difficulty of verifying this condition in practice,

especially in larger-scale macroeconomic models.

Fourth, it is well known that structural parameters of macroeconomic models may not

be strongly identified. This problem also afflicts impulse response matching estimators, as

documented in Canova and Sala (2009). We propose a nonstandard confidence interval for

the structural parameters of the underlying data generating process that is robust to weak

identification problems.

The remainder of the paper is organized as follows. Section 2 examines the consistency

and asymptotic distribution of the impulse response matching estimators in question and

proposes suitable bootstrap methods of inference. Because both the impulse response

estimator based on the optimal weighting matrix and the estimator based on the diagonal

weighting matrix are practically feasible and asymptotically valid, the question arises which

approach implies more accurate confidence intervals for structural model parameters in

finite samples. Section 3 evaluates the quality of these asymptotic approximations based

on a Monte Carlo simulation experiment. Based on a small-scale New Keynesian model

we provide some tentative evidence that confidence intervals for the structural parameters

based on the diagonal weighting matrix tend to be slightly more accurate overall than

intervals based on the optimal weighting matrix. They also appear more robust to the

choice of the VAR lag order and the maximum horizon of the impulse response function.

Moreover, the use of a diagonal weighting matrix typically implies point estimates with

lower mean-squared error (MSE) than alternative estimators, even allowing for corrections

for any finite-sample VAR model misspecification.

In Section 4, we illustrate the implementation of the proposed methods in the context of

a prototypical medium-scale New Keynesian DSGE model of the type used at many central

banks. This empirical example illustrates that basing estimates of the asymptotic standard
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error on the standard deviation of the quasi-posterior of the structural parameters tends

to understate the uncertainty in the structural parameter estimates. For example, whereas

the point estimate of the price-markup factor is quite robust to the choice of method,

its standard error is about three times as large one would have concluded based on the

standard deviation of the quasi-posterior. These results are based on the conventional

premise in empirical work that the structural parameters are strongly identified. We also

present alternative estimates that take account of the possibility that some parameters are

only weakly identified. We illustrate that allowing for weak identification in some cases

affects the substantive conclusions, while in others it does not. The concluding remarks

are in Section 5. The proofs are contained in the appendix.

2 Asymptotic Theory

The thought experiment is that the data are generated by a DSGE model. At least some

of the structural parameters of this DSGE model are unknown. The DSGE model is

approximated by a finite-order structural VAR model with identifying restrictions that are

consistent with the underlying DSGE model.1 The objective is to recover an estimate of

the unknown structural parameters in the DSGE model by searching the space of these

parameters for the parameter values that result in the closest match between the structural

VAR impulse responses based on the actual data and those from the DSGE model evaluated

at the hypothesized parameter values. We are concerned with the asymptotic properties

of this impulse response matching estimator in repeated sampling. As is standard in this

literature, it is assumed that the structural impulse responses obtained from the VAR

model are strongly identified.

Let γ0 denote the q × 1 vector of the population structural impulse responses (exclud-

ing all impulse responses that are not estimated). Then the structural impulse response

1Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) make precise the conditions under
which a DSGE model may be approximated by a finite-order VAR model.
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estimator γ̂T of γ0 is obtained from an estimated VAR model fitted to the actual data, its

bootstrap analogue γ̂∗T is obtained from a VAR model fitted to data simulated from the

estimated VAR model, and the double-bootstrap estimator γ̂∗∗T is obtained from a VAR

model fitted to data simulated from the VAR model evaluated at the bootstrap parameter

estimates. Closed-form solutions for the structural impulse response estimator from VAR

models are provided in Lütkepohl (1990). Because structural impulse responses are func-

tions of the slope parameters and of the error covariance matrix of the VAR model, which

in turn are an implicit function of the first and second moments of the data, we can write

γ0 = γ(µ), γ̂T = γ(X̄T ), γ̂∗T = γ(X̄∗T ) and γ̂∗∗T = γ(X̄∗∗T ) where µ, X̄T , X̄∗T and X̄∗∗T are k× 1

vectors of the population moments, the sample moments, the bootstrap sample moments

and the double-bootstrap sample moments, respectively. k corresponds to the number of

VAR model parameters, defined as the total number of slope parameters plus the number

of unique elements in the error covariance matrix.

In impulse response matching estimation, an l × 1 vector of structural parameters of a

macroeconomic model, θ, is estimated based on a restriction of the form:

γ0 = f(θ0). (1)

In this paper, we consider two types of impulse response matching estimators. One is based

on the optimal weighting matrix,

θ̂opt,T = argminθ∈Θ(γ̂T − f(θ))′Σ̂∗−1
T (γ̂T − f(θ)), (2)

where Σ̂∗T is the bootstrap covariance matrix estimator of impulse responses,

Σ̂∗T =
1

B

B∑
b=1

(γ̂
∗(b)
T − ¯̂γ

∗
T )(γ̂

∗(b)
T − ¯̂γ

∗
T )′, (3)

γ̂
∗(b)
T is the bth bootstrap estimator of impulse responses for b = 1, 2, ..., B, and ¯̂γ

∗
T =
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(1/B)
∑B

b=1 γ̂
∗(b). The other is based on the suboptimal weighting matrix

θ̂diag,T = argminθ∈Θ(γ̂T − f(θ))′WT (γ̂T − f(θ)), (4)

where WT is a positive definite matrix. The leading example of WT is the diagonal matrix

whose diagonal elements are the reciprocals of the diagonal elements of Σ̂∗T .

2.1 Asymptotic Properties of Impulse Response Matching Esti-

mators of Structural Model Parameters

We initially focus on a situation in which the structural parameters are strongly identified.

Our results are based on stochastic expansions and matrix decompositions. Suppose that

there are conformable matrices B0,...,Bh such that

T
1
2 (γ(X̄T )− γ(µ)) = B0ZT + T−

1
2B1(ZT ⊗ ZT )

+ · · ·+ T−
h
2Bh(ZT ⊗ · · · ⊗ ZT ) + op(T

−h
2 ), (5)

where B̂j = Bj + op(1) for j = 0, 1, ..., h. It follows from the Schur decomposition theorem

(Theorem 13 of Magnus and Neudecker, 1999, p.16) that there exists an orthonormal matrix

S whose columns are eigenvectors of B0B
′
0 and a diagonal matrix Λ whose diagonal elements

are the eigenvalues of B0B
′
0 such that

S ′B0B
′
0S = Λ. (6)

Stack the eigenvectors associated with the k largest eigenvalues of B0B
′
0 in S0 and let

q0 = k. Using a subset of the q − q0 remaining eigenvectors that are not used in S0, form

S1 so that S ′1B1 contains no row vector of zeros. Let q1 denote the number of columns in

S1. Using a subset of the q − q0 − · · · − qj−1 remaining eigenvectors that are not used in

S0, S1,...Sj−1, form Sj so that S ′jBj contains no row vector of zeros. Let qj be the number
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of columns in Sj. Stop when q0 + q1 + · · ·+ qr = q. Let S = [S1 S2 · · · Sr]. The stochastic

expansion (5) and the decomposition (6) allow us to analyze the asymptotic behavior of

the impulse response matching estimator when the number of impulse response parameters

exceeds the number of VAR model parameters.

To be more precise, our analysis requires the following conditions.

Assumptions.

(a) ZT ≡ Ω−
1
2

√
T (X̄T − µ)

d→ Z ≡ N (0, Ik) and Z∗T ≡ Ω−
1
2

√
T (X̄∗T − X̄T )

d→ Z∗ ≡

N (0, Ik) where Ω is a positive definite matrix and the convergence of Z∗T is with

respect to the bootstrap probability measure conditional on the data.

(b) There are conformable matrices B0,...,Bh and B̂0,...,B̂h such that

T
1
2 (γ(X̄T )− γ(µ)) = B0ZT + T−

1
2B1(ZT ⊗ ZT )

+ · · ·+ T−
h
2Bh(ZT ⊗ · · · ⊗ ZT ) + op(T

−h
2 ), (7)

T
1
2 (γ(X̄∗T )− γ(X̄T )) = B̂0Z

∗
T + T−

1
2 B̂1(Z∗T ⊗ Z∗T )

+ · · ·+ T−
h
2 B̂h(Z

∗
T ⊗ · · · ⊗ Z∗T ) + o∗p(T

−h
2 ), (8)

where B̂j = Bj + op(1) for j = 0, 1, ..., h, and o∗p(T
−h

2 ) is defined with respect to the

bootstrap probability measure conditional on the data with probability one.

(c)

ΥTS
′(γ(X̄∗T )− γ(X̄T ))(γ(X̄∗T )− γ(X̄T ))′SΥT

is uniformly integrable, where S is the orthonormal matrix whose columns are eigen-

vectors of B0B
′
0 such that S ′B0B

′
0S = Λ and Λ is a diagonal matrix whose diagonal

elements are the eigenvalues of B0B
′
0.
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(d) J = E(ξξ′) is nonsingular where

ξ =



S ′0B0Z

S ′1B
′
1(Z ⊗ Z)

...

S ′rB
′
r(Z ⊗ · · · ⊗ Z)


,

and S1, ..., Sr are submatrices of S such that S = [S0 S1 · · · Sr].

(e) There is a unique value of θ, θ0, in the interior of a compact set in <p, Θ, such that

γ(µ) = f(θ0), where f : Θ → <q is continuously differentiable in θ in the interior of

Θ. The Jacobian matrix of f at θ0, F0 = F (θ0), has rank l where F (θ) = ∂f(θ)/∂θ′.

(f) WT and W ∗
T are sequences of positive definite matrices such that WT = W + op(1)

and W ∗
T = WT + o∗p(1) where W is positive definite.

(g) (1) For the optimal weighting matrix, if q > k, then θ0 is the unique value of θ in

Θ that satisfies S ′r(f(θ0) − f(θ)) = 0qr×1 where Sr is the q × qr submatrix of S

that consists of the last qr columns of S as defined in the proof of Theorem 1.

(2) For the diagonal weighting matrix, F ′0WB0 has rank l.

Remarks. 1. Assumption (a) holds, for example, when applying the residual-based boot-

strap to stationary vector autoregressive processes without conditional heteroskedasticity.

2. Assumption (b) follows from a Taylor series expansion of the left-hand side of equations

(7) and (8). The delta method is based on the first-order term of the stochastic expansion

on the right-hand side. The higher-order stochastic terms on the right-hand side have

also been used to develop Edgeworth expansions of the distribution of estimators (see Hall

1992). Assumption (b) holds, for example, for stationary vector autoregressive processes

with positive definite error covariance matrices and short-run exclusion restrictions. For

more primitive assumptions for the existence of asymptotic expansions of the distribution

of estimators in stationary time series models see Bao and Ullah (2007) and Bao (2007).
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3. Assumption (c) guarantees that the bootstrap method can be used to estimate the

limiting covariance matrix. The existence of S is guaranteed by the Schur decomposition

theorem (Theorem 13 of Magnus and Neudecker, 1999, p.16).

4. Assumption (d) requires the impulse response matching estimator with optimal weight-

ing matrix to have a nonsingular asymptotic covariance matrix when scaled and rotated

properly.

5. Assumptions (e) and (f) are standard assumptions for classical minimum distance esti-

mators.

6. Assumption (g)(1) is for the impulse response matching estimator based on the op-

timal weighting matrix and is stronger than the identification condition in Assumption

(e). Because qr < q can be smaller than l, there may be another value of θ at which

γ(µ)− f(θ) = f(θ0)− f(θ) 6= 0q×1 and S ′r(f(θ0)− f(θ)) = 0qr×1.

7. Assumption (g)(2) is for the impulse response matching estimator based on the diagonal

weighting matrix. When rank(B0) = q, it simplifies to the standard assumption that the

Jacobian has full rank, i.e., rank(F (θ0)) = l.

Theorem 1 (Consistency of Impulse Response Matching Estimators). Suppose that Assump-

tions (a)–(g) hold. Then

(a) θ̂opt,T
p→ θ0.

(b) θ̂diag,T
p→ θ0.

Next, we derive the asymptotic distributions of the impulse response matching estimator.

Theorem 2 (Asymptotic Distributions of Impulse Response Matching Estimators). Suppose

that Assumptions (a)–(g) hold. Then
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(a)

T
r+1
2 (θ̂opt,T − θ0)

d→ (F ′0SrJ
rr−1S′rF0)−1F ′0SrJ

r−1ξ, (9)

T
r+1
2 (θ̂∗opt,T − θ̂opt,T )

d→ (F ′0SrJ
rr−1S′rF0)−1F ′0SrJ

r−1ξ∗, (10)

where Jrr−1 is the qr×qr lower-right submatrix of J−1 and Jr−1 is the qr×q lower submatrix

of J−1, and

(b)

T
1
2 (θ̂diag,T − θ0)

d→ (F ′0WF0)−1F ′0WB0Z, (11)

T
1
2 (θ̂∗diag,T − θ̂diag,T )

d→ (F ′0WF0)−1F ′0WB0Z
∗. (12)

Here the convergences in (10) and (12) are with respect to the bootstrap probability measure

conditional on the data.

Remarks. Theorem 2(a) shows that the impulse response matching estimator based on

the optimal weighting matrix has a nonstandard convergence rate that is faster than T
1
2

and has a nonstandard asymptotic distribution, when the number of impulse responses

exceeds the number of VAR model parameters. While the bootstrap can mimic the conver-

gence rate and nonstandard asymptotic distribution, the estimator has higher-order bias

in that the limiting distribution has nonzero mean if r is even. In contrast the impulse

response matching estimator based on the diagonal weighting matrix in Theorem 2(b) is
√
T -consistent and asymptotically normal because Z and Z∗ are normal.

2.2 Asymptotic Distributions of the Test Statistic for Overiden-

tifying Restrictions

The results of section 2.1 not only have implications for the construction of point and

interval estimates of the structural parameters, but they also affect tests of overidentifying
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restrictions. The conventional test statistic for overidentifying restrictions for testing the

null hypothesis that γ(µ) = f(θ0) is defined as

JT = (γ̂T − f(θ̂opt,T ))′Σ̂∗−1
T (γ̂T − f(θ̂opt,T )). (13)

Under standard assumptions including q ≤ k, the test statistic has an asymptotic χ2

distribution under the null hypothesis. This test has been used, for example, in Boivin and

Giannoni (2006). The bootstrap analogue of this test statistic is defined as

J∗T =
(
γ̂∗T − f(θ̂∗opt,T )− γ̂T + f(θ̂opt,T )

)′
Σ̂∗∗−1
T

(
γ̂∗T − f(θ̂∗opt,T )− γ̂T + f(θ̂opt,T )

)
, (14)

where the term γ̂T −f(θ̂opt,T ) accomplishes the required recentering (see Hall and Horowitz

1996).

Theorem 3 (Asymptotic Distribution of the Test Statistic for Overidentifying Restrictions).

Suppose that Assumptions (a)–(f) and (g)(1) hold. Then

JT
d→ η′η, (15)

J∗T
d→ η∗′η∗, (16)

where

η = J−
1
2 ξ − J−

1
2S ′rF0(F ′0SrJ

rr−1S ′rF0)−1F ′0SrJ
r−1ξ,

η∗ = J−
1
2 ξ∗ − J−

1
2S ′rF0(F ′0SrJ

rr−1S ′rF0)−1F ′0SrJ
r−1ξ∗.

Theorem 3 shows that the asymptotic distribution of the test statistic for overidentifying

restrictions is nonstandard if q ≤ k, but can be mimicked by the bootstrap.
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2.3 Asymptotic Distributions of Bayesian Impulse Response Match-

ing Estimators

Next, we evaluate the Bayesian impulse response matching estimator of Christiano et al.

(2011) and Christiano et al. (2013) from an asymptotic point of view. Christiano et al.

motivate their approach as building on the analysis in Kim (2002) in particular. Define the

quasi-posterior density as

p(θ) =
exp(−qT (θ))π(θ)∫

Θ
exp(−qT (θ))π(θ)dθ

(17)

where π(θ) is the prior density and

qT (θ) =
1

2
(γ̂T − f(θ))′Σ̂∗−1

T (γ̂T − f(θ)). (18)

Under the standard assumptions the quasi-posterior density converges to the asymptotic

distribution of the impulse response matching estimator. As in Chernozhukov and Hong

(2003), the quasi-posterior density is concentrated in a T−(r+1)/2 neighborhood around θ0,

which is characterized by the local parameter

h = T
r+1
2 (θ − θ0) + T

r+1
2 (∇2qT (θ0))−1∇qT (θ0), (19)

where T
r+1
2 is used because of the convergence rate of the impulse response matching

estimator. Define the quasi-posterior density for h as

p∗T (h) = T−
l(r+1)

2 pT

(
h

T
r+1
2

+ θ0 − (∇2qT (θ0))−1∇qT (θ0)

)
(20)

The next theorem establishes the asymptotic behavior of this quasi-posterior distribution.

Theorem 4 (Asymptotic Behavior of the Quasi-Posterior Distribution). Suppose that Assump-
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tions (a)–(f) and (g)(1) hold.

‖p∗T (h)− p∗∞(h)‖TVM(α) ≡
∫
HT

(1 + ‖h‖α)|p∗T (h)− p∗∞(h)|dh = op(1), (21)

where

HT = {h ∈ <l : h = T
r+1
2 (θ − θ0)− T

r+1
2 (∇2qT (θ0))−1∇qT (θ0) for some θ ∈ Θ},

p∗∞(h) =

√
|T−(r+1)∇2qT (θ0)|

(2π)l
exp

(
− 1

2T r+1
h′∇2qT (θ0)h

)
.

Remarks. 1. Theorem 4 shows that the quasi-posterior is concentrated around the impulse

response matching estimator θ̂T and will be locally asymptotically normal. Heuristically,

this follows from a quadratic expansion of qT (θ) around θ̂T in a neighborhood of θ̂T :

qT (θ) ≈ qT (θ̂T ) +
1

2
(θ − θ̂T )′∇2qT (θ̂T )(θ − θ̂T ), (22)

where the linear term is zero due to the first-order condition for θ̂T . Because qT (θ̂T ) is

constant in θ, the quasi-posterior is approximately proportional to

exp

(
−1

2
(θ − θ̂T )′∇2qT (θ̂T )(θ − θ̂T )

)
, (23)

provided π(θ0) > 0, which basically implies a normal density with mean θ̂T and covariance

matrix [∇2qT (θ̂T )]−1.

2. This result means that the posterior distribution in equation (23) is different from

the asymptotic distribution of the impulse response matching estimator in equation (11).

Hence, Markov Chain Monte Carlo draws, which are designed to characterize the quasi-

posterior distribution, cannot be used to estimate asymptotic standard errors and confi-

dence intervals when q > k . Under Assumption (g)(1), a necessary condition for estimating

the asymptotic standard errors from the quasi-posterior is that q ≤ k.

3. It can be shown that the same problem arises when Assumption (g)(1) is replaced by
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Assumption (g)(2). In that case, the quasi-posterior again is normal, but different from

equation (11), so we cannot rely on the standard errors of the quasi-posterior for asymptotic

inference. Instead, one has to evaluate the sandwich formula in Chernozhukov and Hong

(2003, p. 307), whether q > k or q ≤ k. Likewise, it is not asymptotically valid to compute

confidence bands based on the upper and lower percentiles of the quasi-posterior of the

structural parameters.

2.4 Robust Inference in the Presence of Rank Deficiencies

Although both impulse matching estimators based on the optimal weighting matrix and

impulse response matching estimators based on the diagonal weighting matrix allow asymp-

totically valid inference, there is a reason to favor the impulse response matching estimator

based on the diagonal weighting matrix. The condition that q ≤ k, on which the conven-

tional asymptotic analysis of the impulse response matching estimator is based, is an order

condition, which is only necessary, but not sufficient for the conventional asymptotics to

apply. There are cases in which our alternative asymptotic analysis is required even when

q ≤ k because the rank condition fails. For example, consider the bivariate reduced-form

VAR(1) model

 y1t

y2t

 =

 b11 b12

b21 b22


 y1,t−1

y2,t−1

+

 e1t

e2t

 . (24)

Suppose that one is interested in matching the two-step-ahead impulse responses only.

Without loss of generality suppose that the covariance matrix of [e1t e2t]
′ is known to be

the identity matrix, but that the slope parameters are unknown. Then the two-step-ahead

structural impulse responses are

 b11 b12

b21 b22


 b11 b12

b21 b22

 =

 b2
11 + b12b21 b11b12 + b12b22

b21b11 + b22b21 b21b12 + b2
22

 . (25)
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Because there are four impulse response parameters (q = 4) and four unknown VAR model

parameters (k = 4), the order condition q ≤ k for a nonsingular joint distribution is

satisfied. For the joint distribution of the structural responses to be nonsingular, the

Jacobian has to be of full rank. The Jacobian matrix takes the form



2b11 b21 b12 0

b21 0 b11 + b22 b21

b21 b11 + b22 0 b12

0 b21 b12 2b11


. (26)

This matrix, however, may be rank deficient for certain parameter values even when the

order condition is satisfied. For example, it will have rank 2 when b11 = b22 = 0 and

b12 = b21 = κ 6= 0, indicating that the rank condition is violated and that it is not

possible to rely on conventional asymptotics. A similar point is made in Benkwitz et al.

(2000). While this example is tractable, it is somewhat artificial. It nevertheless illustrates

that in general it is not enough to check the order condition before applying conventional

asymptotic analysis to impulse response matching estimators.

Verifying the rank condition in more complicated models is often difficult as well as

tedious. Our analysis in section 2.2 implies that evaluating this rank condition is not re-

quired in practice because, as long as one uses the diagonal weighting matrix, the same

bootstrap methods may be used to compute the asymptotic standard errors for the struc-

tural parameters, whether the rank condition for the application of the delta method holds

or not. A similar robustness result is obtained for the Bayesian impulse response estimator

in section 2.4, provided the sandwich formula of Chernozhukov and Hong (2003) is used.

2.5 Inference When Identification is Not Strong

A common problem in applied work is that some parameters of the DSGE model may not

be strongly identified. In the GMM context, this problem was first discussed in Stock and

16



Wright (2000). While several methods of inference have been developed that are robust

to weak identification problems in DSGE models, none of these methods are designed for

impulse response matching estimators (e.g., Guerron-Quintana, Inoue and Kilian 2013;

Dufour, Khalaf and Kichian 2013; Qu 2014; Andrews and Mikusheva 2014).

Below we derive the asymptotic distribution of the Wald test statistic without assuming

the identifiability of θ0. Our results apply whether q > k or q ≤ k.

Proposition (Asymptotic Distributions of the Wald Test Statistic of the Structural Impulse

Responses).

Suppose that Assumptions (a)–(d) hold. If γ(µ) = f(θ0) for some θ0 ∈ Θ, then

J0,T
d→ ξ′J−1ξ, (27)

Jγ∗0,T

d→ ξ∗′J−1ξ∗ (28)

where

JT (θ0) = (γ̂T − f(θ0)′Σ∗−1
T (γ̂T − f(θ0)),

J∗T = (γ̂∗T − γ̂T )′Σ∗∗−1
T (γ̂∗T − γ̂T ),

Σ∗T =
1

B

B∑
j=1

(
γ̂
∗(j)
T − ¯̂γ

∗
T

)(
γ̂
∗(j)
T − ¯̂γ

∗
T

)′
,

Σ
∗∗(j)
T =

1

B

B∑
k=1

(
γ̂
∗∗(j,k)
T − ¯̂γ

(j)∗∗
T

)(
γ̂
∗∗(j,k)
T − ¯̂γ

(j)∗∗
T

)′
,

with γ̂
∗∗(j,k)
T = γ(X̄

∗∗(j,k)
T ) denoting the kth bootstrap draw of the structural impulse re-

sponse based on the jth bootstrap estimate and ¯̂γ
∗∗(j)
T = (1/B)

∑B
k=1 γ̂

∗∗(j)
T . The conver-

gence of W γ∗
T is with respect to the bootstrap probability measure conditional on the data

with probability one.

This proposition follows from Theorem 2 in Inoue and Kilian (2014) by replacing γ0 =

γ(µ) with f(θ0). Because the asymptotic distribution does not depend on the strength of
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identification of θ0 and can be approximated by the bootstrap, one can invert the Wald

statistic to obtain a 100(1− ς) asymptotic confidence set for θ0:

{θ ∈ Θ : JT (θ) ≤ J∗1−a} (29)

where J∗1−γ is the 100(1 − ς) percentile of the bootstrap distribution of J∗T (θ). Pointwise

confidence intervals for the individual elements of the structural parameter vector θ may

be obtained by the projection method (see, e.g., Dufour and Taamouti 2005, Chaudhuri

and Zivot 2011; Guerron-Quintana, Inoue and Kilian 2013).

3 Monte Carlo Simulation Experiments

For this section, we focus on a small-scale New Keynesian model that often serves as an

illustrative example in the literature. This model consists of a Phillips curve, a Taylor rule,

an investment-savings relationship, and the exogenous driving processes zt and ξt:

πt = κxt + βE(πt+1|It−1), (30)

Rt = ρrRt−1 + (1− ρr)φππt + (1− ρr)φxxt + ξt, (31)

xt = E(xt+1|It−1)− σ (E(Rt|It−1)− E(πt+1|It−1)− zt) , (32)

zt = ρzzt−1 + σzεzt , (33)

ξt = σrεrt , (34)

where xt, πt and Rt denote the output gap, inflation rate, and interest rate, respectively.

Note that this model has more variables than shocks. The structural shocks εzt and εrt are

assumed to be distributed NID (0, 1). The model parameters are the discount factor β,

the intertemporal elasticity of substitution 1/σ, the probability α of not adjusting prices

for a given firm, the elasticity of substitution across varieties of goods, θ, the parameter

ω controlling disutility of labor supply; φπ and φx capture the central bank’s reaction to
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changes in inflation and the output gap, respectively, and κ = (1−α)(1−αβ)
α

ω+σ
σ(ω+θ)

.

While this model is similar to the model used in Guerron-Quintana et al. (2013), there

is one crucial difference. In this model, inflation and real output do not react contempo-

raneously to the monetary policy shock, ξt, but they do respond contemporaneously to

a shock to the investment-savings relationship, zt. These restrictions are required for us

to be able to identify the structural shocks of interest in the VAR model based on short-

run identifying restrictions. Given this informational constraint, household and firms form

expectations based on the information set It−1.

Given the computational cost of evaluating higher-dimensional models, we focus on the

estimation of one parameter only in the simulation study. For expository purposes, we

concentrate on the problem of estimating the probability of not adjusting prices, α, by

matching the impulse responses of inflation and of the interest rate with the remaining

parameters set to their population values in estimation. The population parameters in the

data generating process are σ = 1, α = 0.75, β = 0.99, φπ = 1.5, φx = 0.125, ω = 1,

ρr = 0.75, ρz = 0.90, θ = 6, σz = 0.30, σr = 0.20.

This model may equivalently be expressed in the state-space representation

xt = Axt−1 +Bεt, (35)

yt = Cxt, (36)

where xt is a vector of state variables, εt is a vector that consists of the technology shock

and the monetary policy shock, and yt is a vector that consists of inflation and the interest

rate. A, B and C are matrices of suitable dimensions. Substitution of xt in equation (36)

yields the structural moving average representation of yt in terms of current and lagged

structural shocks εt. This moving average representation is invertible because, given our

population parameter values, the eigenvalues of A are strictly less than unity in modulus,

so Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson’s (2007) condition for the

existence of an infinite-order VAR representation is satisfied. This structural VAR(∞)
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model in turn may be approximated by a finite-order structural VAR model (see Inoue and

Kilian 2002). Because the structural impact multiplier matrix of the VAR model, CB, is

lower triangular given the informational constraints discussed earlier, we can recover the

two structural shocks εzt and εrt by applying a lower triangular Cholesky decomposition to

the residual covariance matrix with the diagonals of the decomposition normalized to be

positive.

The Monte Carlo study consists of the following steps:

1. First, we generate 500 synthetic data sets of length T for inflation and the interest

rate from the New Keynesian model evaluated at the true parameter values. We

consider two alternative sample sizes: T = 100 and T = 232. The shorter sample

corresponds to the length of a quarterly time series starting in 1984 with the onset

of the Great Moderation. The longer sample corresponds to the period from 1950 to

2008, which represents another common situation in the empirical literature.

2. For each synthetic data set, we fit a bivariate VAR(p) model for inflation and the

interest rate and estimate the four structural impulse response functions at horizons

0, ..., h− 1, which are stacked into a vector and denoted by γ̂T . To this end, we use a

Cholesky decomposition in which inflation does not react contemporaneously to the

second structural shock in the VAR, which identifies this shock as the monetary policy

shock. Using the standard nonparametric residual-based bootstrap for VAR models,

we bootstrap the VAR(p) model and estimate a vector of bootstrap structural impulse

responses γ̂
∗(j)
T for j = 1, ..., B, where B = 500. For each of the B bootstrapped VAR

parameter estimates, γ̂
∗(j)
T , the residual-based bootstrap is applied and B vectors of

bootstrap structural impulse responses, γ̂
∗∗(j,b)
T , are computed for b = 1, 2, ..., B.

3. We estimate α. The other parameters are treated as known in the estimation for
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computational simplicity. Define α̂T by

α̂opt,T = argminα∈A(γ̂T − g(α))′Wopt,T (γ̂T − g(α)), (37)

α̂diag,T = argminα∈A(γ̂T − g(α))′Wdiag,T (γ̂T − g(α)), (38)

where g(α) is a vector of structural impulse responses implied by the macroeconomic

model evaluated at α, Wopt,T = [(1/B)
∑B

j=1(γ̂
∗(j)
T − ¯̂γT )(γ̂

∗(j)
T − ¯̂γ

∗
T )′]−1 and Wdiag,T

is the diagonal matrix whose diagonal elements are given by the reciprocal of the

diagonal elements of (1/B)
∑B

j=1(γ̂
∗(j)
T − ¯̂γT )(γ̂

∗(j)
T − ¯̂γ

∗
T )′.

4. Let α̂∗T be the bootstrap analogue of α̂T . Then

α̂
∗(j)
opt,T = argminα∈A(γ̂

∗(j)
T −g(α)−γ̂T+g(α̂opt,T ))′W

∗(j)
opt,T (γ̂

∗(j)
T −g(α)−γ̂T+g(α̂opt,T )), (39)

α̂
∗(j)
diag,T = argminα∈A(γ̂

∗(j)
T −g(α)− γ̂T +g(α̂diag,T ))′W

∗(j)
diag,T (γ̂

∗(j)
T −g(α)− γ̂T +g(α̂diag,T )),

(40)

where W
∗(j)
opt,T = [(1/B)

∑B
k=1(γ̂

∗∗(j,k)
T − ¯̂γ

∗(j)
T )(γ̂

∗∗(j,k)
T − ¯̂γ

∗(j)
T )′]−1 and W

∗(j)
diag,T is the di-

agonal matrix whose diagonal elements are given by the reciprocal of the diagonal

elements of (1/B)
∑B

j=1(γ̂
∗∗(j,k)
T − ¯̂γ

∗(j)
T )(γ̂

∗∗(j,k)
T − ¯̂γ

∗(j)
T )′. Using these bootstrap esti-

mates we construct nominal 68% and 90% confidence intervals based on Hall’s (1992)

percentile interval to allow for the fact that the asymptotic distribution may not be

normal, depending on the choice of weighting matrix.

Our simulation evidence is necessarily tentative, but nevertheless provides some useful

insights. Table 1 summarizes the properties of the point estimator of α. Because the quality

of the VAR approximation depends on the lag order p, we report results for a range of p.

We also consider a range of values for h to allow for situations in which the asymptotic

theory developed on this paper applies as well as for situations in which the conventional

asymptotic theory for impulse response matching estimators applies.

The upper panel of Table 1 shows that the estimator based on the diagonal weighting
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matrix tends to have a small negative bias, whereas that based on the optimal weighting

matrix tends to have somewhat larger positive bias, consistent with the presence of a higher-

order bias in the theoretical analysis of section 2.1. The estimator based on the optimal

weighting matrix also tends to have higher MSE than the estimator based on the diagonal

weighting matrix.

These results are based on the value of g(α) implied by the underlying macroeconomic

model, which has a VAR(∞) representation. This creates a mismatch with the structural

impulse responses estimated based on a finite-order approximation to this VAR(∞) model.

We can refine the analysis by deriving in population the value of g(α) based on the finite-

order VAR representation of the macroeconomic model with the same choice of p as in the

empirical VAR model. Let Γj = E(yty
′
t−j) denote the population autocovariances implied

by the state space representation given a structural parameter value. Then the population

parameter values of the VAR(p) model fitted to data generated by the model may be

expressed as:

Φ
2p×2

=



Γ0 Γ1 · · · Γp−1

Γ′1 Γ0 · · · Γp−2

...
...

. . .
...

Γ′p−1 Γ′p−2 · · · Γ0



−1 

Γ′1

Γ′2
...

Γ′p


, (41)

Σ
2×2

= Γ0 −
[

Γ1 Γ2 · · · Γp

]


Γ0 Γ1 · · · Γp−1

Γ′1 Γ0 · · · Γp−2

...
...

. . .
...

Γ′p−1 Γ′p−2 · · · Γ0



−1 

Γ′1

Γ′2
...

Γ′p


. (42)

The population structural impulse responses can be calculated from the slope coefficients

Φ and the reduced-form error covariance matrix Σ.

The revised results are presented in the lower panel of Table 1. After correcting for VAR

specification mismatch, the estimator based on the optimal weighting matrix becomes less
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sensitive to the choice of p and h. Nevertheless, overall, by the MSE metric the uncorrected

estimator based on the diagonal weighting matrix is preferred. The finite-sample correction

actually increases the bias, variance and MSE of the estimator of the structural parameter

based on the diagonal weighting matrix. We conclude that overall the impulse response

matching estimator based on the diagonal weighting matrix without corrections for any

finite-sample VAR model misspecification is most reliable.

Table 2 reports the effective coverage probabilities of the corresponding nominal 68%

and 90% bootstrap confidence intervals for α. The confidence intervals based on the diag-

onal weighting matrix tend to be more robust to the choice of p and h than the confidence

intervals based on the optimal weighting matrix. The latter interval may perform errat-

ically in some cases. Finite-sample corrections in those cases substantially improve the

accuracy of the interval based on the optimal weighting matrix, but overall, the intervals

implied by the estimator based on the diagonal weighting matrix tend to be even more ac-

curate with finite-sample corrections having an ambiguous effect on the coverage accuracy

of the interval. Generally, the coverage rates are reasonably close to their nominal levels.

4 Empirical Application

For the empirical application, we consider a prototypical medium-scale New Keynesian

DSGE model (see, e.g., Christiano, Eichenbaum, and Evans 2005; Smets and Wouters 2007;

Altig, Christiano, Eichenbaum and Lindé 2011; Guerron-Quintana, Inoue, and Kilian 2013).

Since this class of models has been extensively discussed in the macroeconomics literature,

we provide only a brief summary. The main features of the model are as follows: The

economy grows along a stochastic path; prices and wages are assumed to be sticky à la

Calvo; preferences display internal habit formation; investment is costly; and finally, there

are three sources of uncertainty: neutral and capital embodied technology shocks, and

monetary shocks.
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4.1 Households

The economy is populated by a continuum of households. Every period households must

decide how much to consume, work, and invest. In addition, they must choose the amount

of government bonds. Agents in the economy have access to complete markets; such an

assumption is needed to eliminate wealth differentials arising from wage heterogeneity.

Households maximize the expected present discounted value of utility

E0

∞∑
t=0

βt

[
log(Ct − bCt−1)− A

∫ 1

0

h1+υ
j,t

1 + υ
dj

]
(43)

subject to

PtCt + Pt
(
It + a(ut)Kt

)
/Ψt +Bt+1 = RK

t utKt +

∫ 1

0

Wj,thj,tdj +Rt−1Bt + Πt + Tt,

and

Kt+1 = (1− δ)Kt + It

(
1− S(

It
It−1

)

)
.

Here, Et is the time t expectation operator conditional on the information set of the house-

hold; preferences display internal habit formation measured by b ∈ (0, 1); and S(.) is a

function reflecting the costs associated with adjusting the investment portfolio. This func-

tion is assumed to be increasing and convex satisfying S = S = 0 and S ′′ > 0 in the steady

state. Tt corresponds to lump-sum transfers from the government to the household. Bt

is the individual demand for one-period government bonds, which pay the gross nominal

interest rate Rt. As in the related literature, it is assumed that physical capital can be

used with different intensities (see, e.g., Christiano, Eichenbaum, and Evans; 2005). Using

capital with intensity ut yields the return RK
t utKt but entails a cost a(ut), which satisfies

a(1) = 0; a′′(1) > 0; a′(1) > 0. For future reference, we define σa = a′′(1)/a′(1). Finally,

Πt corresponds to profits from producers. Ψt is an investment-specific disturbance, which,
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following the literature, is assumed to grow at rate µΨ,t = log(Ψt/Ψt−1), where

µΨ,t = (1− ρψ)µψ + ρµ,ψµΨ,t−1 + σε,ψεΨ,t,

and εΨ,t is distributed NID(0, 1).

4.2 Wage Setting

Households sell differentiated labor services hj,t to a competitive firm that aggregates labor

and sells it to final firms. This labor aggregator pays Wj,t for each unit of differentiated

labor of type j. The technology used by the aggregator is

Ht =

[∫ 1

0

h
1/λw
j,t dj

]λw
, 1 < λw.

It is straightforward to show that the relationship between the labor aggregate, Ht, and

the aggregate wage, Wt, is given by

hj,t =

[
Wj,t

Wt

]−λw/(λw−1)

Ht.

To induce wage sluggishness, it is assumed that there exists a labor union representing all

workers of type j. Each period, the union sets wages in a Calvo fashion. In particular,

with exogenous probability ξw a union does not re-optimize wages each period. In that

case, wages are set according to the rule of thumb Wj,t = π1−ιw (πt)
ιw Wj,t−1µz+ . Here, µz+

is the average growth rate of the economy, as defined below, and ιw is the degree of wage

indexation to inflation.

4.3 Firms

There is a continuum of monopolistically competitive firms indexed by i ∈ [0, 1], each

producing an intermediate good from capital services, ki,t, and labor services, Hi,t. Firms
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rent capital and labor in perfectly competitive factor markets. The production function is

given by

Yi,t = kαi,t (ztHi,t)
1−α − z+

t ψ,

where ψ is a fixed cost of production. The technology shock, zt, grows at rate µz,t =

log (zt/zt−1), which is assumed to follow the process

µz,t = µz + σε,µεz,t,

where εz,t is distributed NID(0, 1). The aggregate trend z+
t = Ψ

α/(1−α)
t zt grows at rate

µz+,t.
2

Intermediate firms must borrow the wage bill in advance. As a consequence, the cost of

hiring one unit of labor is WtRt. These firms choose prices to maximize the present value of

profits; prices are set in Calvo fashion; i.e., each period, firms optimally revise their prices

with an exogenous probability 1− ξp. If, instead, a firm does not re-optimize its price, then

the price is updated according to the rule: Pi,t = πPi,t−1. Here, π is steady-state inflation.

There is a competitive firm that produces the final good using intermediate goods

according to the technology

Yt =

[∫ 1

0

Y
1/λp
j,t dj

]λp
.

The parameter λp determines the degree of monopoly power enjoyed by intermediate pro-

ducers.

4.4 Government

As in most of the recent New Keynesian literature, we assume a cashless economy (see

Woodford 2003). The monetary authority sets the short-term interest rate according to

a Taylor rule. In particular, the central bank smoothes interest rates and responds to

2The growth term in the fixed cost is needed for a well-defined steady state to exist about which the
model can be solved.

26



deviations of actual inflation from steady-state inflation, π, and deviations of output from

its target level, Y .

Rt

R
=

(
Rt−1

R

)ρr [(πt
π

)φπ (Yt
Y

)φy]1−ρr

exp(σε,rεr,t). (44)

The term εr,t is a random shock to the systematic component of monetary policy and

is assumed to be standard normal; σε,r is the size of the monetary shock. Following

Christiano, Trabandt and Walentin (2011), Yt corresponds to de-trended GDP such that

Yt = Ct+It/Ψt+Gt
z+t

. R is the steady-state gross nominal interest rate. Finally, we assume

that government spending is given by Gt = gz+
t . Here, g is a constant and the government

uses lump-sum taxes to finance its purchases.

4.5 Estimation

We estimate the model in two stages. First, a stationary VAR(2) model is used to recover

the dynamic responses of the model variables to three structural innovations: the monetary

policy, the shock to the growth of neutral productivity, and the shock to the growth rate

of investment-specific technology. The sample extends from 1951Q1 to 2008Q4. The set

of variables include the growth rate of the relative price of investment, the growth rate

of the real GDP-to-hours ratio, inflation, the unemployment rate, capacity utilization, the

log of hours, the log of real GDP-to-hours ratio minus the log of real wages, the log of the

nominal consumption-to-nominal GDP ratio, the log of the nominal investment-to-nominal

GDP ratio, vacancies, the job separation rate, the job finding rate, the log of hours-to-labor

force ratio, and the fed funds rate.3

Second, the structural parameters in the model are estimated by minimizing the dis-

tance between the DSGE model’s impulse responses to the structural shocks and the cor-

responding structural VAR responses. There are three identifying assumptions imposed on

3For additional details on the estimation of the structural VAR, the reader may consult Altig et al.
(2011) and Christiano et al. (2011). Note that Christiano et al. (2011) treat the federal funds rate as I(0)
in their analysis.
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the structural VAR model. First, the only variable that the monetary policy shock affects

contemporaneously is the federal funds rate. Second, the only shocks that affect labor pro-

ductivity in the long run are the two technology shocks. Third, the only shock that affects

the price of investment relative to consumption is the innovation to the investment specific

shock. All these identifying assumptions are satisfied in the underlying DSGE model as

well.

As is standard in the literature, in estimating θ a subset of the structural parameters is

set to values typically imposed in the literature and treated as known: The capital share is

α = 0.25; the depreciation rate is δ = 0.025; the discount factor is β = 0.999; the steady-

state gross inflation is π = 1.0083; the government consumption to GDP ratio is 0.2; the

relative price of capital in steady state is 1; the wage indexation parameter is ιw = 1; the

wage markup is λw = 1.01; wage stickiness ξw = 0.75; the gross neutral technology growth

is µz = 1.0041; and the gross investment technology growth is µΨ = 1.0018.

We consider two alternative estimation methods. The first method corresponds to

the classical impulse matching approach as outlined in Rotemberg and Woodford (1997)

and Christiano, Eichenbaum, and Evans (2005). The second method corresponds to the

Bayesian impulse matching framework recently proposed by Christiano, Trabandt and

Walentin (2011). All results shown are based on the diagonal weighting matrix.

4.5.1 Results

Table 3 presents the estimates of the structural parameters based on alternative choices

of the maximum horizon of the impulse response functions. We evaluate the structural

impulse responses at horizons 0, 1, ..., h− 1 with h ∈ {16, 20}. The order condition q ≤ k,

where q is the number of impulse response parameters to be matched and k is the number

of VAR model parameters, is violated for h = 20, given that the approximating VAR model

in this example includes 14 variables and 2 lags. The order condition is satisfied for h = 16.

Whether the rank condition holds for h = 16 is not readily apparent, but our methods are
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designed to be asymptotically valid regardless.

The column labelled Frequentist reports the results from the impulse response matching

estimator based on the diagonal weighting matrix that performed well in the simulation

study. The first column corresponds to the point estimate for each structural parameter

and the second column shows the standard error. Given the asymptotic normality of this

estimator, it makes sense to base inference on these two summary statistics. Alternatively,

one could have reported bootstrap percentile intervals. We focus on the standard errors to

conserve space.

The next three columns labelled Bayesian report results obtained from the quasi-

posterior distribution. The first column shows the mode, median and mean of the quasi-

posterior, respectively, as three alternative point estimates of the structural parameters,

whereas the second column provides the corresponding standard errors. All Bayesian re-

sults are again based on the diagonal weighting matrix and rely on the sandwich formula

of Chernozhukov and Hong (2003).

Finally, the column CTW reports the mean and standard deviation of the quasi-

posterior distributions, computed as in Christiano, Trabandt, and Walentin (2011). As we

proved earlier, the variance of the quasi-posterior cannot be used to estimate the asymp-

totic variance of the structural parameters for h = 20, but these standard deviations are

reported for comparison.

The qualitative pattern of the results is similar for all choices of h. Table 3 shows

that the point estimates are quite robust across alternative methods. This result is not

surprising, as all point estimates reported in these tables are consistent. In contrast, there

is strong evidence that computing asymptotic standard errors based on the standard de-

viation of the quasi-posterior tends to understate the uncertainty about the structural

parameter estimates. Typically, the standard deviation obtained by the other methods is

substantially higher, sometimes by a factor of 3. For example, the standard error of the

price markup for h = 16 increases from 0.08 to 0.22. Whereas the confidence interval
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obtained by adding ±1.96 standard deviations of the quasi-posterior to the point estimate

reported in the CTW column does reject the null hypothesis that there is no markup (i.e.,

λp = 1), 95% confidence intervals based on the point estimates and standard errors in the

Frequentist and Bayesian columns do not. Likewise, the standard error of the consumption

habit parameter, b, increases threefold compared with the asymptotically invalid estimate

reported in the CTW column. For h = 16, it increases from 0.02 to 0.07. Similarly, the

policy reaction function parameters are estimated very imprecisely. For example, φπ is

no longer statistically significantly different from zero when conducting inference based on

the Bayesian intervals, although it does remain significantly different from zero using the

Frequentist interval. The fact that Bayesian priors affect the results is not surprising, given

the high dimensionality of the model. For h = 20, broadly similar results are obtained.

A parameter of particular interest is the price stickiness parameter. The length of

the price contracts is defined as 1/(1 − ξp) quarters, where ξp is the probability of not

reoptimizing prices today. There is an active literature on measuring the degree of price

rigidity at the micro level (see, e.g., Klenow and Kryvtsov (2008), Nakamura and Steinsson

(2008)). For example, Klenow and Kryvtsov (2008) provide evidence that price contracts

last, on average, about 2.3 quarters. Based on the point estimates for h = 16 in Table 3,

a researcher would have concluded that the length of a price contract is 2.94, 2.65 or 2.64,

respectively. The 95% confidence interval constructed from the information in the CTW

column ranges from 2.23 to 3.25 and includes the value of 2.3 from the micro literature.

The 95% confidence interval for the length of the price contract implied by the Frequentist

estimates ranges from 2.12 to 4.79 and includes that value as well, as do the corresponding

three 95% confidence intervals implied by the entries in the Bayesian columns of Table 3.

This pattern of results changes for h = 20. In the latter case, q > k, and the conventional

asymptotic theory for the CMD estimator breaks down. The results in the CTW column

of Table 3 imply a 95% confidence interval with a lower bound of 2.67 that excludes 2.3

for h = 20, whereas the three asymptotically valid intervals computed based on the entries
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in the Bayesian columns all include the value of 2.3, suggesting that the DSGE model

estimate is consistent with the micro evidence. These estimates are all based on the same

prior and hence directly comparable. This example illustrates that the choice of estimation

method may affect one’s views of whether the macroeconomic evidence is compatible with

the length of the price spells found in the micro literature. In contrast, the corresponding

95% confidence interval based on the Frequentist method does not include 2.3 for h = 20,

again illustrating the influence of the prior on the estimates.

The results in Table 3 are based on the conventional premise in empirical work that the

structural parameters of interest are strongly identified. The sensitivity of the results to the

prior is an indication that the structural parameters may not be strongly identified. Table

4 presents an alternative set of results that allows for the possibility that at least some

parameters are only weakly identified. These results are of particular interest for applied

work, as none of the currently available methods of inference allows for weak identification

of the structural parameters, which is a common problem in the estimation of DSGE models

in practice, including the type of DSGE model considered here. We again focus on h = 16

and h = 20, for expository purposes. Of particular interest is a comparison with the

Frequentist results in Table 3.

Table 4 shows the lower and upper endpoints of the pointwise 95% interval for each

parameter. Allowing for weak identification can affect the substantive conclusions. For

example, for both choices of h the null hypothesis that there is no markup (i.e., λp = 1)

is rejected. This result differs from the Frequentist results in Table 3, which did not allow

to reject this null hypothesis for either h. On the other hand, the results for the length of

the price contract are qualitatively consistent with Frequentist results in Table 3 that were

obtained under the premise of strong identification. Whereas the confidence interval for

h = 16 in Table 4 includes 2.3 quarters, the confidence interval for h = 20 in Table 4 does

not.
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5 Concluding Remarks

One of the leading methods of estimating the structural parameters of DSGE models is the

VAR-based impulse response matching estimator. The existing asymptotic theory for this

estimator does not cover situations in which the number of impulse response parameters

(q) exceeds the number of VAR model parameters (k). Such situations often arise in

applied work. We established the consistency of the impulse response matching estimator

in this situation, derived its asymptotic distribution and showed how this distribution

can be approximated by bootstrap methods. Our results provide formal guidance on how

to conduct inference about structural parameters in DSGE models. We also discussed

implications of these results for tests of overidentifying restrictions.

Our analysis shed new light on the choice of the weighting matrix. On the one hand,

we showed that the impulse response matching estimator based on the optimal weighting

matrix, while remaining consistent under our assumptions, does not have an asymptotic

normal distribution. Approximating its distribution requires suitable bootstrap methods

in practice. On the other hand, we provided a formal justification for the use of bootstrap

methods in conducting inference about impulse response matching estimators based on

the diagonal weighting matrix. The distribution of the latter estimator was shown to be

asymptotically normal, but with a nonstandard asymptotic variance. This result is impor-

tant because this estimator to date has been used without a formal asymptotic justification

having been provided for the practically relevant case of q > k. Our analysis also showed

that special care is required to ensure that Bayesian methods of inference remain valid from

an asymptotic point of view when q > k.

We compared the finite-sample accuracy of impulse response matching estimators based

on alternative weighting matrices by simulation. A Monte Carlo study based on a small-

scale New Keynesian macroeconomic model suggested that the proposed point and interval

estimators based on the diagonal weighting matrix are reasonably accurate in finite samples

and robust to the choice of the approximating VAR model and the horizon. In contrast,
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the estimator based on the optimal weighting matrix can be sensitive to the VAR model

specification, unless additional finite-sample VAR misspecifications corrections are made.

Even in the latter case, its accuracy is slightly lower on average than that of the estimator

based on the diagonal weighting matrix.

There is another reason for favoring the impulse response matching estimator based

on the diagonal weighting matrix. The condition that q ≤ k, on which the conventional

asymptotic analysis of the impulse response estimator is based, is an order condition, which

is only necessary, but not sufficient for the conventional asymptotics to apply. There are

cases in which our alternative asymptotic analysis is required even when q ≤ k because the

rank condition fails. Verifying the rank condition for the use of the delta method is often

difficult in more complicated models. Our analysis showed that verifying this rank condition

is not required in practice because, as long as one uses the diagonal weighting matrix, the

same bootstrap methods may be used to approximate the asymptotic distribution of the

impulse response matching estimator and to compute the asymptotic standard errors for

the structural parameters, whether the rank condition holds or not. A similar robustness

result is obtained for Bayesian impulse response estimators, provided the sandwich formula

of Chernozhukov and Hong (2003) is used.

Finally, we extended the analysis to cover weakly identified DSGE model parameters.

Weak identification is a pervasive problem in medium-scale DSGE models. Although sev-

eral solutions to this problem have been proposed in the recent literature, none apply to

impulse response matching estimators. Thus, our analysis greatly extends the range of

applications of the impulse response matching estimator. We showed that robustness to

weak identification may be achieved by inverting the Wald test statistic of the structural

impulse responses to form a joint confidence set and by applying the projection method

to recover confidence intervals for individual structural parameters. The proposed method

remains asymptotically valid whether q > k or q ≤ k.

We illustrated the use of the various new methods proposed in this paper in prac-
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tice. When estimating a prototypical medium-scale New Keynesian DSGE model based

on Christiano, Trabandt and Walentin (2011), inference based on the alternative methods

proposed in this paper generated substantively different conclusions than methods based on

the standard deviation of the quasi-posterior distribution of the structural parameters. For

example, whereas the latter method suggested that the macro evidence is inconsistent with

micro evidence on the degree of price stickiness at conventional significance levels, given a

horizon of 20 quarters, we demonstrated that this result is overturned when using asymp-

totically valid Bayesian methods of inference. Substantively different results regarding the

degree of price stickiness were obtained using frequentist methods, which suggested that the

macroeconomic estimates based on a horizon of 20 quarters are inconsistent with the micro

evidence. The latter result was shown to be robust to allowing for weak identification.
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Appendix

Proof of Theorem 1.

It follows from the definitions of Sj and Assumption (b) that

ΥTS
′(γ(X̄T )− f(θ)) =



S ′0B0ZT + T
1
2S ′0(f(θ0)− f(θ))

S ′1B1(ZT ⊗ ZT ) + TS ′1(f(θ0)− f(θ))

...

S ′rBr(ZT ⊗ · · · ⊗ ZT ) + T
r+1
2 S ′r(f(θ0)− f(θ))


+ op(1), (45)

where op(1) is uniform in θ ∈ Θ due to the continuity of f(·) and the compactness of

Θ. Because of Assumptions (a) and (b) and because of the continuity of eigenvalues and

eigenvectors as a function of matrices, we have

ΥTS
′(γ(X̄∗T )− γ(X̄T ))

d→



S ′0B0Z
∗

S ′1B1(Z∗ ⊗ Z∗)
...

S ′rBr(Z
∗ ⊗ · · · ⊗ Z∗)


= ξ∗, (46)

where the convergence is with respect to the bootstrap probability measure conditional on

the data with probability one. It follows from (46) and Assumption (c) that

ΥTS
′Σ̂∗TSΥT = E∗(ξ∗ξ∗′) + o∗p(1) = J + o∗p(1), (47)

where E∗(·) is the expectation operator with respect to the bootstrap probability measure

conditional on data. It follows from (45), (47) and Assumptions (d) that the objective
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function for θ̂opt,T is asymptotically proportional to

1

T r+1
(γ̂T − f(θ))′Σ̂∗−1

T (γ̂T − f(θ))

=
1

T r+1
(γ̂T − f(θ))′SΥT

(
ΥTS

′Σ̂∗TSΥT

)−1

ΥTS
′(γ̂T − f(θ))

= (f(θ0)− f(θ))′SrJ
rr−1S ′r(f(θ0)− f(θ)) + op(1) + o∗p(1), (48)

where Jrr−1 is the bottom-right qr × qr submatrix of J−1 and op(1) is uniform in θ ∈ Θ.

Therefore the consistency of θ̂opt,T follows from (48), Assumption (e), and the assumption

that θ = θ0 is the only solution to S ′r(f(θ0) − f(θ)) = 0qr×1. This completes the proof of

part (a) of Theorem 1.

To prove part (b), observe that the objective function for θ̂diag,T is proportional to

(γ̂T − f(θ))′WT (γ̂T − f(θ)) = (f(θ0)− f(θ))′W (f(θ0)− f(θ)) + op(1), (49)

from which the consistency of θ̂diag,T follows.

Proof of Theorem 2. It follows from the first-order conditions and the mean value theorem

that

θ̂opt,T − θ0 = (F (θ̂opt,T )′Σ̂∗−1
T F (θ̃opt,T ))−1F (θ̂opt,T )′Σ̂∗−1

T (γ̂T − f(θ0)), (50)

θ̂diag,T − θ0 = (F (θ̂diag,T )′WTF (θ̃diag,T ))−1F (θ̂T )′WT (γ̂T − f(θ0)), (51)

where θ̃opt,T and θ̃diag,T are points between θ̂opt,T and θ0 and between θ̂diag,T and θ0, respec-
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tively, implied by the mean value theorem.

It follows from (45) with θ = θ0 and Assumption (a) that

ΥTS
′(γ(X̄T )− γ(µ))

d→



S ′0B0Z

S ′1B1(Z ⊗ Z)

...

S ′rBr(Z ⊗ · · · ⊗ Z)


≡ ξ. (52)

It follows from (47), Theorem 1(a), and Assumptions (d) and (e) that

F (θ̂opt,T )′Σ̂∗−1
T F (θ̃opt,T )

= F (θ̂opt,T )′SΥT (ΥTS
′Σ̂∗TSΥT )−1ΥTS

′F (θ̃opt,T )

= [T
1
2F ′0S0 TF

′
0S1 · · · T

r+1
2 F ′0Sr]J

−1



T
1
2S ′0F0

TS ′1F0

...

T
r+1
2 S ′rF0


+ op(T

r+1)

= T r+1F ′0SrJ
rr−1S ′rF0 + op(T

r+1), (53)

and

F (θ̂opt,T )′Σ̂∗−1
T S ′−1Υ−1

T

= F (θ̂opt,T )′SΥT (ΥTS
′Σ̂∗TSΥT )−1

= [T
1
2F ′0S0 TF

′
0S1 · · · T

r+1
2 F ′0Sr]J

−1 + op(T
r+1
2 ). (54)

Combining (50), (52), (53) and (54), we obtain

T
r+1
2 (θ̂opt,T − θ0)

d→ (F ′0SrJ
rr−1S ′rF0)−1F ′0SrJ

r−1ξ.
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Repeating similar arguments we obtain

T
r+1
2 (θ̂∗opt,T − θ̂opt,T )

d→ (F ′0SrJ
rr−1S ′rF0)−1F ′0SrJ

r−1ξ∗,

which completes the proof of part (a).

Because

T
1
2 (γ̂T − f(θ0)) = B0ZT + op(1), (55)

by Assumption (b), it follows from (52) that

T
1
2 (θ̂diag,T − θ0)

d→ (F ′0WF0)−1F ′0WB0Z, (56)

T
1
2 (θ̂∗diag,T − θ̂diag,T )

d→ (F ′0WF0)−1F ′0WB0Z
∗, (57)

which completes the proof of part (b).

Proof of Theorem 3.

It follows from the mean value theorem, (46), and Theorem 2(a) that

Σ̂
∗− 1

2
T (γ̂T − f(θ̂opt,T ))

= (ΥTS
′Σ̂∗TSΥT )−

1
2 ΥTS

′(γ̂T − f(θ̂opt,T ))

= (ΥTS
′Σ̂∗TSΥT )−

1
2 ΥTS

′(γ̂T − f(θ0))− (ΥTS
′Σ̂∗TSΥT )−

1
2 ΥTS

′F (θ̃opt,T )(θ̂opt,T − θ0)

= J−
1
2 ξ − J−

1
2S ′rF0(F ′0SrJ

rr−1S ′rF0)−1F ′0SrJ
r−1ξ, (58)

where θ̃opt,T is a point between θ̂opt,T and θ0 and A
1
2 is the matrix such that A

1
2A

1
2 = A.

Thus it follows from (58) that

JT
d→ η′η. (59)

The bootstrap version of this result can be derived in a similar way.

Proof of Theorem 4.
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We follow the steps in the proof of Theorem 1 in Chernozhukov and Hong (2003) by

showing that ∫
HT

‖h‖α|p∗T (h)− p∗∞(h)|dh = op(1), (60)

for every α ≥ 0, from which Theorem 4 immediately follows. It is convenient to write the

localized quasi-posterior as

p∗T (h) = pT

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)

=

π

(
θ0 + h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0)

)
exp

(
−qT (θ0 + h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0))

)
∫
HT

π

(
θ0 + h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0)

)
exp

(
−qT (θ0 + h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0))

)
dh

=

π

(
θ0 + h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))

∫
HT

π

(
θ0 + h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))dh

, (61)

where

ω(h) = −qT
(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
+qT (θ0)+

1

2
∇qT (θ0)′

(
∇2qT (θ0)

)−1∇qT (θ0).

To prove (60), we first show that

∫
HT

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))− π(θ0) exp

(
−1

2
h′F ′0SrJ

rr−1S′rF0h

)∣∣∣∣ dh = op(1).

(62)

Using the second-order Taylor series approximation, ω(h) can be written as

ω(h) = −∇qT (θ0)′
(

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
−1

2

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)′
∇2qT (θ0)

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
−1

2
∇qT (θ0)′∇2qT (θ0)]−1∇qT (θ0) +RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
= − 1

2T r+1
h′∇2qT (θ0)h+RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
, (63)
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where RT (·) is the remainder term. Note that the integral in (62) can be written as the

sum of three integrals over (i) {h ∈ HT : ‖h‖ ≤ M}, (ii) {h ∈ HT : M ≤ ‖h‖ ≤ δT r+1}

and (iii) {h ∈ HT : ‖h‖ ≥ δT r+1}. We evaluate each of the three integrals in turn.

Start with the integral over set (i). It follows from the continuity of π(·), the smoothness

of f(·), (53) and (54) that

sup
‖h‖≤M

∣∣∣∣π(θ0 +
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
− π(θ0)

∣∣∣∣ p→ 0, (64)

sup
‖h‖≤M

∣∣∣∣RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)∣∣∣∣ p→ 0, (65)

from which it follows that

sup
‖h‖≤M

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))− π(θ0) exp

(
−1

2
h′∇2qT (θ0)h

)∣∣∣∣ = op(1).

(66)

Hence, we have that for every 0 < M <∞ and every ε > 0,

lim inf
T

P∗

(∫
h∈HT :‖h‖≤M

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))

−π(θ0) exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h

)∣∣∣∣)
≥ 1− ε. (67)

Thus the integral over set (i) is op(1).

Next consider the integral over set (ii). Note that

∫
M<‖h‖<δT

r+1
2

∣∣∣∣π(θ0) exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h))

)∣∣∣∣ dh (68)

can be made arbitrarily small by choosing sufficiently large M . Using the quadratic ap-
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proximation of ω(h), (63), we can write

exp(ω(h)) ≤ exp

(
−1

2
h′∇2qT (θ0)h+

∣∣∣∣RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)∣∣∣∣) (69)

Because f is twice continuously differentiable, Assumption 4(iv)(a) of Chernozhukov and

Hong (2003) is satisfied. Thus, for every ε > 0, there are some δ > 0 and M > 0 such that

lim inf P∗

 sup
M≤‖h‖≤δT

r+1
2

∣∣∣RT

(
h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0)

)∣∣∣
‖h− T r+1

2 (∇2qT (θ0))−1∇qT (θ0)‖2
≤ 1

4
maxeig(∇2qT (θ0))

 ≥ 1−ε.

(70)

Because (∇2qT (θ0))−1∇qT (θ0) = Op(1), it follows from (69) and (70) that there is C such

that

lim inf
T

P∗

(
exp(ω(h)) ≤ C exp

(
−1

4
h′∇2qT (θ0)h

))
≥ 1− ε. (71)

Combining these results, it follows that

lim inf
T

P∗

(∫
h∈HT :M<‖h‖<δT

r+1
2

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))dh < ε

∣∣∣∣
)
≥ 1−ε

(72)

from which we obtain

lim inf
T

P∗

(∫
h∈HT :M<‖h‖<δT

r+1
2

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)) exp(ω(h))

−π(θ0) exp

(
−1

2
h′∇2qT (θ0)h

)∣∣∣∣)
≥ 1− ε. (73)

Thus, the integral over set (ii) is also asymptotically negligible.

Third, consider the integral over set (iii). As in the second integral,

∫
‖h‖≥δT

r+1
2

∣∣∣∣π(θ0) exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h))

)∣∣∣∣ dh (74)
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goes to zero on set (iii). Note that

∫
h∈HT :‖h‖≥δT

r+1
2

‖h‖α exp(ω(h))π

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
= op(1) (75)

is bounded by

T
(r+1)α

2
+1

∫
‖θ−θ0+(∇2qT (θ0))−1∇qT (θ0)‖≥δ

‖θ − θ0 + (∇2qT (θ0))−1∇qT (θ0)‖απ(θ)

× exp

(
qT (θ0)− qT (θ)− 1

2
∇qT (θ0)′(∇2qT (θ0))−1∇qT (θ0)

)
dθ. (76)

Since

(∇2qT (θ0))−1∇qT (θ0)
p→ 0, (77)

(76) is in turn bounded by

C exp

(
−1

2
∇qT (θ0)′(∇2qT (θ0))−1∇qT (θ0)

)
T 1+

α(r+1)
2

∫
‖θ−θ0‖≥δ

(1+‖θ‖α)π(θ) exp(qT (θ0)−qT (θ))dθ.

(78)

for some C > 0. It follows from equation (48) that there is ε > 0 such that

lim inf
T→∞

P∗

(
sup

‖θ−θ0‖≥δ/2
exp(qT (θ0)− qT (θ)) ≤ exp(−Tε)

)
= 1. (79)

Hence with probability approaching one (78) is bounded by

C exp

(
−1

2
∇qT (θ0)′(∇2qT (θ0))−1∇qT (θ0)

)
T 1+

α(r+1)
2 exp(−Tε)

∫
Θ

‖θ‖απ(θ)dθ = op(1).

(80)

42



Thus we have

lim inf
T

P∗

{∫
h∈HT :‖h‖≥δT

‖h‖α exp(ω(h))π

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
(81)

− exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h)

)
π(θ0)

∣∣∣∣ dh < ε

)
≥ 1− ε (82)

In other words, the integral over set (iii) also converges in probability to zero.

Equation (62) follows from (67), (73) and (82). It follows from (62) with α = 0 that

∫
HT

DTdh ≡ π

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))dh

=

∫
HT

π(θ0) exp

(
− 1

2T 2
h′∇2qT (θ0)h

)
dh+ op(1)

=

∫
HT

π(θ0) exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h

)
dh+ op(1)

=

∫
<p
π(θ0) exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h

)
dh+ op(1)

= π(θ0)(2π)
l
2

∣∣F ′0SrJrr−1S ′rF0

∣∣− 1
2 + op(1). (83)

Thus it follows from (62) and (83) that

∫
HT

‖h‖α|p∗T (h)− p∗∞(h)|dh

=
1

DT

∫
HT

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))

−DT

(
|F ′0SrJrr−1S ′rF0|

(2π)l

) 1
2

exp

(
−1

2
h′F ′0SrJ

rr−1S ′rF0h

)∣∣∣∣∣ dh
= op(1), (84)

from which (60) follows. This completes the proof of Theorem 4.

Proof of the Proposition. The proof follows from results in Inoue and Kilian (2014),
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but is included here for completeness. Recall the definition of Sj and S. It follows from

(52) that the limiting covariance matrix of ΥTS
′(γ(X̄T )− γ(µ)) is

J = E





S ′0B0Z

S ′1B1(Z ⊗ Z)

...

S ′rBr(Z ⊗ · · · ⊗ Z)





S ′0B0Z

S ′1B1(Z ⊗ Z)

...

S ′rBr(Z ⊗ · · · ⊗ Z)



′
. (85)

Similarly, the limiting covariance matrix of ΥTS
′(γ(X̄∗T )− γ(X̄T )) is also (85) conditional

on the data with probability one. It follows from Assumption (c) that

ΥTS
′Σ̂∗TSΥT

p→ J. (86)

The first part of the Proposition follows from Theorem 1, (52) and (86). The proof of the

second part is analogous.
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Table 1: Bias and MSE of the Parameter a in the Small-Scale New Keynesian Model

Baseline Implementation
Diagonal Weighting Matrix Optimal Weighting Matrix

Mean Median Variance MSE Mean Median Variance MSE
T p h Bias Bias Bias Bias
100 6 12 -0.0076 -0.0093 0.0009 0.0009 0.1002 0.0976 0.0020 0.0120
100 6 16 -0.0088 -0.0116 0.0009 0.0010 0.1042 0.1050 0.0020 0.0129
100 8 12 -0.0085 -0.0126 0.0009 0.0010 0.0777 0.0766 0.0015 0.0076
100 8 16 -0.0067 -0.0098 0.0010 0.0010 0.0840 0.0809 0.0017 0.0088
100 10 12 -0.0033 -0.0057 0.0010 0.0010 0.0722 0.0699 0.0011 0.0063
100 10 16 -0.0050 -0.0066 0.0010 0.0010 0.0779 0.0764 0.0014 0.0074
100 12 12 0.0022 -0.0011 0.0012 0.0012 0.0644 0.0639 0.0008 0.0050
100 12 16 0.0023 -0.0004 0.0011 0.0011 0.0792 0.0778 0.0012 0.0075
232 6 12 -0.0224 -0.0236 0.0003 0.0008 0.1201 0.1209 0.0021 0.0008
232 6 16 -0.0208 -0.0223 0.0004 0.0008 0.1254 0.1252 0.0021 0.0178
232 8 12 -0.0211 -0.0226 0.0003 0.0007 0.0687 0.0644 0.0017 0.0064
232 8 16 -0.0199 -0.0212 0.0003 0.0007 0.0760 0.0709 0.0017 0.0075
232 10 12 -0.0193 -0.0196 0.0003 0.0007 0.0510 0.0475 0.0010 0.0036
232 10 16 -0.0188 -0.0198 0.0003 0.0007 0.0536 0.0481 0.0011 0.0040
232 12 12 -0.017 -0.0168 0.0003 0.0006 0.0295 0.0293 0.0004 0.0013
232 12 16 -0.0188 -0.0201 0.0003 0.0007 0.0467 0.0457 0.0007 0.0029

With Finite-Order VAR Misspecification Bias Correction
Diagonal Weighting Matrix Optimal Weighting Matrix

Mean Median Variance MSE Mean Median Variance MSE
T p h Bias Bias Bias Bias
100 6 12 -0.0373 -0.0415 0.0087 0.0101 -0.0306 -0.0324 0.0072 0.0081
100 6 16 -0.0360 -0.0403 0.0087 0.0099 -0.0261 -0.0310 0.0074 0.0081
100 8 12 -0.0305 -0.0329 0.0084 0.0093 -0.0271 -0.0301 0.0082 0.0089
100 8 16 -0.0292 -0.0323 0.0084 0.0093 -0.0198 -0.0258 0.0086 0.0090
100 10 12 -0.0226 -0.0268 0.0084 0.0089 -0.0251 -0.0293 0.0081 0.0087
100 10 16 -0.0226 -0.0268 0.0084 0.0089 -0.0227 -0.0286 0.0083 0.0088
100 12 12 -0.0252 -0.0284 0.0082 0.0089 -0.0180 -0.0249 0.0078 0.0081
100 12 16 -0.0253 -0.0286 0.0083 0.0090 -0.0090 -0.0203 0.0080 0.0081
232 6 12 -0.0286 -0.0362 0.0086 0.0094 -0.0415 -0.0352 0.0063 0.0080
232 6 16 -0.0287 -0.0366 0.0086 0.0094 -0.0410 -0.0351 0.0063 0.0079
232 8 12 -0.0377 -0.0326 0.0067 0.0081 -0.0373 -0.0315 0.0065 0.0079
232 8 16 -0.0373 -0.0344 0.0070 0.0084 -0.0347 -0.0316 0.0072 0.0084
232 10 12 -0.0368 -0.0350 0.0087 0.0100 -0.0328 -0.0326 0.0069 0.0080
232 10 16 -0.0365 -0.0347 0.0087 0.0100 -0.0315 -0.0320 0.0070 0.0080
232 12 12 -0.0379 -0.0361 0.0081 0.0096 -0.0328 -0.0310 0.0068 0.0079
232 12 16 -0.0397 -0.0363 0.0082 0.0098 -0.0350 -0.0315 0.0076 0.0088

Notes: T denotes the sample size, p the VAR lag order, and h the maximum horizon of the
impulse response functions. a is the probability of a firm not adjusting its price.
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Table 2: Effective Coverage Probabilities of 95% Confidence Intervals for the Parameter a
in the Small-Scale New Keynesian Model

Baseline Implementation
Diagonal Weighting Matrix Optimal Weighting Matrix

T p h 68% 90% 68% 90%
100 6 12 67.82 87.82 57.93 68.28
100 6 16 68.00 88.00 55.00 66.60
100 8 12 66.60 86.80 71.00 84.80
100 8 16 66.20 86.60 70.00 83.20
100 10 12 66.00 85.80 66.80 89.20
100 10 16 66.40 85.80 67.40 84.00
100 12 12 64.00 84.40 64.20 87.40
100 12 16 63.80 86.20 67.60 87.80
232 6 12 68.40 91.20 19.00 42.60
232 6 16 65.20 90.80 20.00 39.80
232 8 12 72.60 93.20 74.20 87.00
232 8 16 69.80 73.40 89.00 85.40
232 10 12 66.40 90.20 74.20 91.00
232 10 16 72.60 90.60 80.60 91.40
232 12 12 70.00 90.80 68.60 70.00
232 12 16 70.80 89.60 71.20 93.00

With Finite-Order VAR Misspecification Bias Correction
Diagonal Weighting Matrix Optimal Weighting Matrix

T p h 68% 90% 68% 90%
100 6 12 69.00 87.40 67.60 85.60
100 6 16 68.20 87.40 67.60 84.20
100 8 12 69.00 86.60 64.60 83.40
100 8 16 68.00 86.20 65.00 80.60
100 10 12 68.20 85.60 63.20 82.40
100 10 16 68.20 85.60 63.00 81.60
100 12 12 69.60 87.40 63.80 83.00
100 12 16 69.80 87.00 64.60 81.00
232 6 12 72.20 87.00 71.00 90.20
232 6 16 72.20 87.00 69.80 90.20
232 8 12 74.60 89.40 67.60 90.60
232 8 16 75.00 88.40 67.60 88.80
232 10 12 67.80 87.20 68.80 87.8
232 10 16 68.40 87.20 68.00 86.80
232 12 12 69.80 88.40 68.60 88.00
232 12 16 69.00 88.60 64.60 86.20

Notes: T denotes the sample size, p the VAR lag order, and h the maximum horizon of the
impulse response functions. a is the probability of a firm not adjusting its price.
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Table 4: 95% Confidence Intervals for Medium-Scale DSGE Model Allowing for Weak
Identification

h = 16 h = 20
Price Stickiness ξp 0.460 0.726 0.579 0.796
Std. Monetary Policy Shock σε,r 0.380 0.664 0.385 0.690
Std. Neutral Tech. Shock σε,µ 0.182 0.299 0.211 0.374
Autocorr. Invest. Tech. Shock ρµ,ψ 0.330 0.764 0.437 0.792
Std. Invest. Tech. Shock σεµ,ψ 0.108 0.231 0.101 0.239
Taylor Rule: Interest Smoothing ρr 0.840 0.922 0.841 0.921
Taylor Rule: Inflation φπ 1.210 1.912 1.241 1.915
Taylor Rule: Output Gap φy 0.018 0.262 0.063 0.425
Investment Adjustment Costs S” 6.902 26.245 4.327 18.819
Consumption Habit b 0.702 0.815 0.681 0.811
Capacity Adjustment Costs σa 0.078 0.683 0.155 0.632
Price Markup λp 1.017 1.502 1.015 1.464
Inverse Labor Supply Elasticity υ 0.056 0.227 0.027 0.162

Notes: h denotes the maximum horizon of the impulse response functions.
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