
Rossen, Anja

Working Paper

On the predictive content of nonlinear transformations
of lagged autoregression residuals and time series
observations

HWWI Research Paper, No. 157

Provided in Cooperation with:
Hamburg Institute of International Economics (HWWI)

Suggested Citation: Rossen, Anja (2014) : On the predictive content of nonlinear transformations
of lagged autoregression residuals and time series observations, HWWI Research Paper, No. 157,
Hamburgisches WeltWirtschaftsInstitut (HWWI), Hamburg

This Version is available at:
https://hdl.handle.net/10419/104795

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/104795
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Paper 157

HWWI Research

On the Predictive Content of Nonlinear 
Transformations of Lagged
Autoregression Residuals and Time Series 
Observations

Anja Rossen

Hamburg Institute of International Economics (HWWI) | 2014
ISSN 1861-504X



Anja Rossen
Hamburg Institute of International Economics (HWWI)
Heimhuder Str. 71 | 20148 Hamburg | Germany
Phone: +49 (0)40 34 05 76 - 347 | Fax: +49 (0)40 34 05 76 - 776
rossen@hwwi.org 

HWWI Research Paper
Hamburg Institute of International Economics (HWWI)
Heimhuder Str. 71 | 20148 Hamburg | Germany
Phone: +49 (0)40 34 05 76 - 0 | Fax: +49 (0)40 34 05 76 - 776
info@hwwi.org | www.hwwi.org
ISSN 1861-504X

Editorial Board:
PD Dr. Christian Growitsch (Chair)
Prof. Dr. Henning Vöpel
Dr. Christina Boll

© Hamburg Institute of International Economics (HWWI)
     November 2014
All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted in any form or by any means 
(electronic, mechanical, photocopying, recording or otherwise) without 
the prior written permission of the publisher.



On the Predictive Content of Nonlinear Transformations of Lagged

Autoregression Residuals and Time Series Observations

Anja Rossen∗
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Abstract

Although many macroeconomic time series are assumed to follow nonlinear processes, nonlinear models

often do not provide better predictions than their linear counterparts. Furthermore, such models easily

become very complex and difficult to estimate. The aim of this study is to investigate whether simple

nonlinear extensions of autoregressive processes are able to provide more accurate forecasting results than

linear models. Therefore, simple autoregressive processes are extended by means of nonlinear transfor-

mations (quadratic, cubic, trigonometric, exponential functions) of lagged time series observations and

autoregression residuals. The proposed forecasting models are applied to a large set of macroeconomic and

financial time series for 10 European countries. Findings suggest that such models, including nonlinear

transformation of lagged autoregression residuals, are somewhat able to provide better forecasting results

than simple linear models. Thus, it may be possibile to improve the forecasting accuracy of linear models

by including nonlinear components.
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1 Introduction

Linear models are known to be simple, reliable and easy to estimate (e.g., Clements et al. 2004). Despite

this, nonlinear models have received much attention in recent years due to their ability to capture well-

known stylized facts of macroeconomic time series (e.g., asymmetry, chaotic behavior, clusters of outliers

and periods of high and low volatility). Numerous studies have shown that macroeconomic variables like

unemployment rates (e.g., Neftci 1984), exchange rates (e.g., Kräger & Kugler 1993), industrial production

indices (e.g., Teräsvirta & Anderson 1992) and financial variables (e.g., Zhou 2011) are more likely to follow

nonlinear processes (e.g., Yavuz & Yilanci 2012, Yoon 2010 and Franses & de Bruin 2002). Nevertheless,

several authors have claimed that nonlinear models do not necessarily provide better forecasting results for

these variables (e.g., Clements & Smith 2000 and Boero & Marrocu 2002).

Time series can exhibit different types of nonlinearity for various reasons. Neftci (1984), for example,

investigated the asymmetric behavior of quarterly unemployment rates. Accordingly, increases in unem-

ployment rates are much more dramatic than decreases. Furthermore, business cycle indicators, such as

industrial production indices and the gross domestic product show nonlinearities due to the fact that they

respond asymmetrically to output shocks, depending on the current stage of the business cycle (e.g., Brännäs

& De Gooijer 1994 and Potter 1995). Bleaney & Mizen (1996) explained the nonlinear behavior of exchange

rates by assuming uncertainty about the true equilibrium and showed that exchange rates exhibit greater

mean-reversion as the distance from the equilibrium increases. Finally, Zhou (2011) identifies the way in

which central banks conduct their monetary policies as the reason for the nonlinear behavior of interest

rates.

A vast number of nonlinear models have been introduced in the literature in order to model different

types of nonlinearities. Such models are, for example, the Threshold model by Tong (1978), the General

Autoregressive Conditional Heteroscedasticity model by Bollerslev (1986), the Markov-Swichting model by

Hamilton (1989), the Smooth Transition Autoregressive model introduced by Chan & Tong (1986) and

Teräsvirta (1994), the neural network models and the bilinear model by Granger & Andersen (1978). Unfor-

tunately, these models can easily become quite complex and difficult to estimate. Their forecasting results

are strongly dependent on a number of facotrs; the current state of the time series under consideration (e.g.,

Teräsvirta & Anderson 1992), the number of observations available to estimate the model (e.g., Teräsvirta

2005 and Tong 1990) and/or the way in which forecasts are evaluated (e.g., Clements & Smith 2001). In

their study, Diebold & Nason (1990) listed a number of reasons why nonlinear models may fail to predict

more accurately: (1) the positive results of nonlinearity tests are due to outliers and/or structural breaks

(2) the in-sample nonlinearity properties are not large enough to produce forecasting gains (3) the wrong

nonlinear model is applied. In general, a good in-sample fit does not necessarily induce a good out-of-sample

forecasting performance (Clements et al. 2004). However, several authors did find promising evidence in
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favor of nonlinear models (e.g., De Gooijer & Kumar 1992 and Maravall 1983). Nonetheless, as pointed

out by Clements et al. (2004) the overall poor forecasting performance of nonlinear models requires further

research. There is still a long way to go before simple, reliable, and easy to estimate nonlinear models are

available which produce superior forecasts.

This paper tries to fill this research gap by introducing two simple and easy to estimate nonlinear mod-

els that include nonlinear transformations (quadratic, cubic, trigonometric and exponential functions) of

lagged time series observations and autoregression residuals. The paper investigates whether such addi-

tional components contain important information which can be used in order to systematically improve the

forecasting performance of autoregressive processes. A total of 430 monthly time series are used for 10

European countries, including unemployment rates, industrial producer indices, price indices and financial

variables. The average forecasting performance of these models is appraised by means of several accuracy

measures. Additionally, these models are examined for suitability for time series that are positively tested

for nonlinearity. Findings suggest that nonlinear transformation of lagged autoregression residuals contain

information that can be useful in forecasting macroeconomic variables. This is especially true for time

series that are positively tested for nonlinearity. However, the results for the nonlinear model, including

transformations of lagged time series observations, do not look promising.

The rest of this paper is organized as follows. The next section briefly describes the data used in the

empirical application. Section 3 provides an overview of the methodology approach. Two simple nonlinear

models, the forecasting procedure and different accuracy measures are introduced at this stage. The results

are discussed in the section 4 and section 5 concludes the paper.

2 Data

The following empirical application is based on an extensive data set that includes 430 monthly time

series from 10 European countries. All series can be categorized into the following five groups of variables:

industrial production indices, consumer prices, producer prices, unemployment rates, and financial variables

(e.g., money supply and interest rates). The majority of time series span the period between January 1996

and July 2014, amounting a total of 223 monthly observations. For a detailed description of the data set,

see Table A.1 in the Appendix. To obtain stationary time series firstly log differences are taken (interest

rates and unemployment rates are not in logarithms). Outliers are not removed due to the fact that this

may also remove nonlinear properties from the time series (see Balke & Fomby 1994 and Dijk et al. 1999).

Furthermore, only seasonally unadjusted time series are used because seasonal adjustment procedures may

induce nonlinearities not otherwise present (see Ghysels et al. 1996 and Franses & Paap 1999). Hereafter,

yi,r,t refers to a stationary and seasonally unadjusted time series, where i=1,...,10 denotes the number of the
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economy, r=1,...,Ri the number of the time series and t=1,...,T is the time index. Ri is the total number of

time series of the economy i.

As outlined in the introduction, many macroeconomic variables exhibit nonlinearities that cannot be

captured by simple linear models. Hansen (2011) argued that nonlinear models should only be used if

there is convincing evidence in favor for each specific case. Similarly, Rao (1981) concludes that a nonlinear

model should only be used if a time series is found to be non-Gaussian. Therefore, in order to test whether

the proposed forecasting models are particularly suitable for nonlinear time series, all series are tested for

nonlinearity. Following the argument of Granger (1993), a battery of nonlinearity tests are applied: the

RESET test by Ramsey (1969), a modification of this RESET test by Keenan (1985), a more powerful

generalization of Keenan’s test by Tsay (1986), the simple nonlinearity test by McLeod & Li (1983) and the

BDS test for independence by Brock et al. (1995). A time series is said to be nonlinear if at least three of

these tests reject the null hypothesis of linearity. Based on this criterion, about 57 percent of all time series

in the data set are nonlinear. The share of nonlinear time series varies between 44 percent for financial

variables and up to 86 percent for industrial production indices.

3 Empirical application

3.1 Two simple nonlinear models

One way of developing a simple nonlinear model is to take a standard, well-known model and replace

some of its linear components with nonlinear factors (see Granger 2001); this is achieved in this study. Both

proposed nonlinear models extend simple autoregressive processes by including nonlinear transformations.

Therefore, lagged time series values yi,r,t−1 and lagged autoregression residuals ei,r,t−1 are transformed by

means of the following four functions: quadratic, cubic, trigonometric and exponential. Since this study

considers time series models, there is no straightforward interpretation of these nonlinear transformations.

The purpose of such components is merely to improve the approximation to normality. Moreover, the aim of

this study is to investigate whether such components contain information that can systematically improve

the forecasting performance of autoregressive processes. For this reason seldomly used transformations,

like the trigonometric function, are applied in addition to well-known transformations like the quadratic

function.

The nonlinear autoregressive model of orders j and k is given by:

yi,r,t = α+

R∑
r=1

βr · yi,r,t−p +

S∑
s=1

γs · y2
i,r,t−q + ei,r,t, t = 1, ..., T, (1)

where r and s can vary between one and twelve. y2
i,r,t−q represents any nonlinear transformation of lagged
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time series observations and T is the total number of observations.

Similarly, the nonlinear autoregressive moving average model of orders p and q is given by:

yi,r,t = α+
P∑

p=1

δp · yi,r,t−p +

Q∑
q=1

ξq · e2i,r,t−q + ei,r,t, t = 1, ..., T. (2)

Again, lag orders p and q can vary between one and twelve and e2i,r,t−q represents any nonlinear transfor-

mations of lagged autoregression residuals.

Both models most likely correspond to the bilinear model by Granger & Andersen (1978). This model

simply includes product terms of time series observations and residuals. It is a natural extension of the

linear ARMA model and has the advantage that its structural theory is analogous to that of a linear system

(e.g., Rao 1981). Furthermore, such models are able to improve the approximation to normality (see Poskitt

& Tremayne 1986) and capture atypical periods of outliers (see Maravall 1983). Both models introduced in

this study can easily be estimated via OLS methods. Thereby, unobservable residuals are approximated by

means of a long polynomial AR(p) model for the sake of simplicity (see Grillenzoni 2001). All lag orders

are chosen via the Bayesian information criterion, which selects lag orders of standard autoregressive terms

and nonlinear components separately.

The pseudo out-of-sample forecasting procedure is computed recursively. Accordingly, each forecast is only

based on information that is actually available. After each prediction step, the lag order is chosen again

and models are re-estimated. Hence, selected lag orders and estimated coefficients can vary over time. In

addition, a distinction is made between rolling estimation windows of fixed size ω and expanding estimation

windows. When using rolling estimation windows, one observation at the beginning of the time series is

dropped in each prediction step. In contrast, the number of observations that is included for the estimation

of the models increases with each prediction step when using expanding estimation window. Since the first

procedure is especially suitable for time series with structural breaks (see Peseran & Timmermann 2004)

and the expanding window approach can lead to more efficient estimates and lower estimation uncertainty

(see Herwartz 2011) both methods are applied here.

In order to have an appropriate number of observations for the estimation and a sufficient quantity of

forecast errors (see Granger 1993), the forecast horizon comprises 20 percent of each time series. Accordingly,

the in-sample period spans from January 1997 to October 2010 and merges 166 observations for the majority

of the time series. The out-of-sample period is from November 2010 up to July 2014 for a total of 45

observations.
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3.2 Forecast evaluation

Forecasts are calculated one-, six- and twelve-months ahead using iterative multi-step forecasting meth-

ods. Unobservable observations yt+h are replaced by their forecasts ŷt+h and εt+h = yt+h − ŷt+h is the

corresponding h-step ahead forecast error. Due to the risk of explosive models and in order to incorporate

the behavior of a human forecaster (see Stock & Watson 1998) this study follows the argument of Teräsvirta

(2005) and replaces unreasonable forecasts that exceed (in absolute values) any previous observations by a

no-change forecast. Such a trimming procedure is clearly preferable as a model which leads to obviously

unrealistic predictions is deemed untrustworthy (see Herwartz 2011).

For a total of 32 implementations (two estimation windows, four nonlinear components, four forecasting

horizons) both nonlinear models are compared to simple linear benchmark models. The benchmark model

for the nonlinear autoregressive model is the AR(p) model and for the nonlinear autoregressive moving

average model the ARMA(p,q) model. In the following, the benchmark model will be labeled by ∗ and the

specific nonlinear model under consideration by •. Five accuracy measures are computed in each prediction

step:

(1) Differential of relative Mean Absolute forecast Error (DMAE)

DMAE•
i,r = RMAE•

i,r −RMAE∗
i,r, (3)

where

RMAE•
i,r =

1

Ni

T2∑
t=T1+1

|yi,r,t+h − ŷi,r,t+h|
σ̂i,r,t

(4)

is the Relative Mean Absolute forecast Error and

σ̂i,r,t =

√√√√ 1

t−K

t∑
j=1

êi,r,j · êi,r,j (5)

the strategy- and transformation invariant estimator of the residual variance, where êi,r,t is computed based

on the whole set of regressors X = {1, y−1, ..., y−pmax}. 1 is a constant vector of ones and K the column

size of the regressor matrix X. Ni is the number of forecasting points.

(2) Differential of frequencies for Minimum absolute forecast errors (DMIN)

DMIN•
i,r =

1

Ni

T2∑
t=T1+1

I(|ε∗i,r,t+h| ≤ |ε•i,r,t+h|)− I(|ε•i,r,t+h| ≤ |ε∗i,r,t+h|), (6)

where εi,r,t+h = yi,r,t+h - ŷi,r,t+h is the forecast error and I(·) an indicator function.

(3) Directional Accuracy loss statistic (DA)

DAi,r =
1

Ni

T2∑
t=T1+1

I(|d̃a•i,r,t+h| > |d̃a
∗
i,r,t+h|)− I(|d̃a•i,r,t+h| < |d̃a

∗
i,r,t+h|), (7)
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with

d̃ai,r,t+h = I(yi,r,t+h · ŷi,r,t+h ≥ 0)− I(yi,r,t+h · ȳi,r,t+h ≥ 0) (8)

as the directional accuracy excess over the naive forecast ȳi,r,t+h = 1
T1

∑T1
t=1 yi,r,T1−t+1.

(4) Relative Mean Squared Forecast Error (RMSFE)

RMSFEi,r =
MSFE•

i,r

MSFE∗
i,r

(9)

with

MSFEi,r =
1

Ni

T2∑
t=T1+1

ε2i,r,t+h. (10)

(5) Theil’s U

U =

√
1
Ni

∑T2
t=T1+1(yi,r,t+h − ŷi,r,t+h)2√

1
Ni

∑T2
t=T1+1 y

2
i,r,t+h +

√
1
Ni

∑T2
t=T1+1 ŷ

2
i,r,t+h

(11)

Moreover, the Diebold-Mariano (DM) test statistic for comparing predictive accuracy (see Diebold & Nason

1990) is computed.

Positive values of DMAE and DMIN indicate that the linear benchmark model provides better forecast-

ing results than any nonlinear model under consideration. In contrast, negative values show that a nonlinear

model provides better forecasts. The opposite is true for the DA measure. A value greater than one for

the RMSFE accuracy measure indicates a better forecasting performance of the linear benchmark model.

Finally, the Theil’s U statistic is bound between 0 and 1. The lower the value of this statistic, the greater

the forecast accuracy. Although only logarithmic time series are used, the absolute forecast error εt+h may

be scale dependent. In order to avoid problems regarding the aggregation over time series and economies,

all measurements are converted into scale free statistics. The relative mean absolute error, for example, is

adjusted by the modeling-invariant in-sample standard error.

With a total of 430 time series and a maximum of 45 forecasting steps for each time series, 19.350 forecast

errors are available to be used for the evaluation of the forecasting performance. Thus, a reliable conclusion

regarding the forecasting performance of simple nonlinear models can be made, based on this huge number

of available points. In order to compare alternative forecasting models, mean group statistics are calculated

(see Herwartz 2011). The average forecasting performance ĝ•i of economy i is given by:

ĝ•i =
1

Ri

Ri∑
r=1

ĝ•i,r, (12)
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where ĝ•i,r represents any of the accuracy measures described above. The cross sectional mean group

statistic is then denoted by:

4̃•
G =

1

10

10∑
i=1

ĝ•i . (13)

For the purpose of testing the significance of the results, the null hypothesis H0:4̃•
G = 0 (or H0:4̃•

G = 1

for the RMSFE accuracy measure) is tested against the alternative hypothesis H1:4̃•
G 6= 0 (H1:4̃•

G 6= 1).

4 Results

As mentioned earlier, many macroeconomic variables are more likely to follow nonlinear processes (e.g.,

Yavuz & Yilanci 2012). However, results obtained in previous studies indicate that nonlinear models do not

necessarily provide better forecasts for these variables. Furthermore, such models easily become complex

and difficult to estimate. According to Clements & Smith (2000) and Stock & Watson (1998), linear

models are generally preferable to nonlinear ones. In this study, simple linear autoregressive models are

extended by including nonlinear transformations (quadratic, cubic, trigonometric and exponential functions)

of lagged autoregression residuals and time series observations. Their forecasting results are compared to

the predictions of simple linear benchmark models and appraised by means of several accuracy measures.

The results of this forecasting comparison using the total number of available time series is given in

Table 1. As can be seen, the nonlinear autoregressive model mostly provides inferior results than a simple

linear autoregressive process, regardless of the applied estimation window approach. Based on the DMIN

and DMAE accuracy measure the linear benchmark model is clearly preferable. Both statistics are mostly

significantly positive, irrespective of the transformation or forecasting horizon considered. An exception is

the cubic and the trigonometric function for longer forecast horizons (h = 6 and h = 12). Regarding the

DMIN accuracy measure there is no significant difference between the linear and the nonlinear model for

these two specifications. Overall, the nonlinear model does not only produce greater relative mean absolute

forecast errors but also more frequently leads to higher absolute forecast errors. Furthermore, the null

hypothesis of equal forecast accuracy (DM statistic) can not be rejected in most cases. Thus, there is

no significant difference between the linear and nonlinear autoregression model based on absolute forecasts

errors.

[Insert Table 1 here.]

Nevertheless, this nonlinear model more frequently predicts the correct sign, as indicated by mostly sig-

nificantly positive values of the directional accuracy measure. Furthermore, the RMSFE accuracy measure
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demonstrates that it is able to provide significantly better forecasts when the forecasts horizon is short

(h = 1). In the majority of cases, the RMSFE measure is significantly lower than one, inducing that the

nonlinear autoregressive model provides slightly lower mean squared forecast errors. However, this is not

the case for longer forecast horizons. Finally, the Theil’s U statistic indicates that the shorter the forecast

horizon, the better the forecasts are.

To summarise up, nonlinear transformations of lagged time series observations seem to contain no im-

portant information for forecasting macroeconomic variables. Regarding the different transformations of

lagged autoregression residuals, it seems that the quadratic and the exponential functions lead to signifi-

cantly inferior predictions. Nonlinear models based on the remaining two transformations do not provide a

significantly different forecasting accuracy than linear models.

In contrast, the nonlinear autoregressive moving average model is more likely to produce superior forecasts

than its linear benchmark model, especially when the rolling estimation window approach is applied. It can

be observed, for example, that the DMAE statistic is significantly negative for longer forecast horizons.

Thus, the nonlinear model provides lower relative mean absolute forecast errors. Although Theil’s U statistic

indicates that forecasts of the nonlinear model are generally better if the forecast horizon is short, the

nonlinear autoregressive moving average model is more likely to outperform the linear benchmark model

when the forecast horizon is long (h = 6 and h = 12). Thus, linear models are more likely to produce

worse forecasts with an increased forecast horizon. Using the expanding estimation window approach, mean

absolute forecast errors are generally lower for the nonlinear model than for the linear one. This appears to

be especially true for long-run forecasts. Nevertheless, this only applies to the trigonometric function when

forecasting six months ahead. These findings look slightly different when the rolling estimation window

is applied. Thereby, the nonlinear autoregressive moving average model only provides significantly lower

relative mean squared forecast errors if the forecast horizon is short. Otherwise, the linear benchmark model

provides significantly better forecasting results with respect to this accuracy measure.

However, when assessing directional accuracy there is no significant difference between the linear and the

nonlinear model. Furthermore, the linear benchmark model is still preferable if trigonometric or exponential

functions for one-step ahead forecasts are used. In this case, relative mean absolute forecast errors and the

frequency of lower absolute forecast errors are generally higher for the nonlinear autoregressive model. The

null hypothesis of equal forecast accuracy can usually be rejected for one-step ahead forecasts. Thus, linear

models provide lower absolute forecast errors when the forecast horizon is short. No significant difference

between the nonlinear and the linear specification can be found when predicting six or twelve months ahead.

Overall, the nonlinear model is able to produce partially better forecasts than the linear model. In most

cases, however, both models show no significant difference.

Next, in order to test whether the proposed models introduced in this study are particularly suitable for
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nonlinear time series, the forecasting exercise is repeated for those time series that are positively tested

for nonlinearity (see section 2). The corresponding forecasting results are listed in Table 2. Again, the

nonlinear autoregressive model still seems to be inferior to the linear benchmark model. Forecasts based on

this subsample, however, are generally better than for the full sample as indicated by overall lower Theil’s

U statistics. The nonlinear specification only provides lower mean squared forecast errors if the forecast

horizon is short. Overall, no significant difference between the first and the second forecasting exercise can

be recognized for this model. The results look slightly better if the nonlinear autoregressive moving average

model. In this case, the linear benchmark models less frequently provide significantly better forecasts.

Furthermore, the nonlinear model is able to produce clearly lower mean squared forecast errors when the

expanding estimation window is applied. Using the rolling estimation window approach, this is only true for

short-run forecasts. Generally, the trigonometric and the exponential function exhibit the worst forecasting

results.

[Insert Table 2 here.]

In summary, the findings in this study partly contradict the results from Stock & Watson (1998) and

Clements & Smith (2000) who claim that nonlinear models are generally not able to give better forecasts.

The results do not provide overwhelming forecasting results but suggest that the forecasting accuracy may

be improved by including nonlinear transformations of lagged autoregression residuals into simple autore-

gressive models. This is especially true for time series that are positively tested for nonlinearity. However,

similarly to the results from Boero & Marrocu (2002), these results partially depend on the applied accu-

racy measure. Nevertheless, nonlinear transformations of lagged time series observations do not contain

important information that is helpful in forecasting. Furthermore, in contrast to the findings of Diebold &

Nason (1990), this study indicates that it makes sense to test for nonlinearity. It seems that the forecasting

results are more favourable to the nonlinear model if time series are used which are positively tested for

nonlinearity.

5 Conclusion

Although many macroeconomic variables like unemployment rates, industrial production indices, financial

variables or price indices are more likely to follow nonlinear processes, prior studies have shown that nonlinear

models do not necessarily provide better forecasting results (e.g., Clements & Smith 2000). A vast number

of nonlinear models have been introduced in the literature due to the fact that they are able to produce

well-known stylized facts like asymmetry, chaotic behavior or clusters of outliers. However, because these

models easily become quite complex and difficult to estimate there is still a long way to go before simple,
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reliable, and easy to estimate nonlinear models are available, which also provide better forecasts (Clements

et al. 2004).

In this study two simple nonlinear models were introduced. These included nonlinear transformations

(quadratic, cubic, trigonometric and exponential functions) of lagged time series values and lagged autore-

gression residuals into simple autoregressive processes. On the basis of an extensive data set that includes

430 time series, a pseudo-out-of-sample forecasting procedure was conducted in order to examine whether

these models systematically provide better forecasts than their linear counterparts. Additionally, it has been

tested whether such models are particularly suitable for macroeconomic variables that are positively tested

for nonlinearity.

Results suggest that including nonlinear transformations of lagged autoregression residuals into simple

autoregressive models may improve the forecasting accuracy of simple ARMA models. This is especially

true for time series that are positively tested for nonlinearity. However, nonlinear transformations of lagged

time series observations do not contain information that is useful in forecasting macroeconomic and financial

time series. These findings are not overwhelming, but provide promising evidence and an interesting direction

for future research. Tasks for future work could therefore include a simulation study that can demonstrate

the merits and limits of these proposed forecasting models. Furthermore, this study builds a foundation for

an intensive study of the theoretical properties of the proposed models.
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A Appendix

Table A.1: Detailed data information

Description Information

Industrial Production Index
1 Industrial production index: total index 2010=100, Eurostat

2 Industrial production index: consumer goods 2010=100, Eurostat

3 Industrial production index: capital goods 2010=100, Eurostat

4 Industrial production index: durable goods 2010=100, Eurostat

5 Industrial production index: non-durable goods 2010=100, Eurostat

6 Industrial production index: intermediate goods 2010=100, Eurostat

7 Industrial production index: manufacturing 2010=100, Eurostat

8 Industrial production index: mining and quarrying 2010=100, Eurostat

Financial Market
9 Money supply M1 local currencies

10 Money supply M2 local currencies

11 Money supply M3 local currencies

12 Long term government Bond yield in in %, no log, OECD

13 Share price index 2010 = 100, OECD

14 Nominal effective exchange rate: broad 2010 = 100, BIS

15 Nominal effective exchange rate: narrow 2010 = 100, BIS

16 Real effective exchange rate: broad 2010 = 100, BIS

17 Real effective exchange rate: narrow 2010 = 100, BIS

Unemployment
18 Total unemployment rate in %, no log, Eurostat

19 Unemployment rate: persons under 25 in %, no log, Eurostat

20 Unemployment rate: persons between 25 and 74 in %, no log, Eurostat

21 Unemployment rate: women in %, no log, Eurostat

22 Unemployment rate: men in %, no log, Eurostat

Producer price index
23 Producer price index: total 2010 = 100, Eurostat

24 Producer price index: capital goods 2010 = 100, Eurostat

25 Producer price index: durable goods 2010 = 100, Eurostat

26 Producer price index: consumer goods 2010 = 100, Eurostat

27 Producer price index: intermediate goods 2010 = 100, Eurostat

28 Producer price index: non-durable goods 2010 = 100, Eurostat

29 Producer price index: manufacturing 2010 = 100, Eurostat

30 Producer price index: mining and quarrying 2010 = 100, Eurostat

Consumer price index
31 Consumer price index: all items 2005=100, Eurostat

32 Consumer price index: food and non-alcoholic beverages 2005=100, Eurostat

33 Consumer price index: alcoholic beverages, tobacco and narcotics 2005=100, Eurostat

34 Consumer price index: clothing and footwear 2005=100, Eurostat

35 Consumer price index: housing, water, electricity, gas and other fuels 2005=100, Eurostat

36 Consumer price index: furnishings, household equipment and routine household maintenance 2005=100, Eurostat

37 Consumer price index: health 2005=100, Eurostat

38 Consumer price index: transport 2005=100, Eurostat

39 Consumer price index: communications 2005=100, Eurostat

40 Consumer price index: recreation and culture 2005=100, Eurostat

41 Consumer price index: education 2005=100, Eurostat

42 Consumer price index: restaurants and hotels 2005=100, Eurostat

43 Consumer price index: miscellaneous goods and services 2005=100, Eurostat
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Table 1: Full sample results

expanding window rolling window

DMIN DMAE RMFSE DA DM U DMIN DMAE RMFSE DA DM U

Nonlinear autoregressive model

h=1 ()2 1.490 0.599 0.951 0.521 -0.592 0.537 2.411 0.845 0.947 0.157 -0.834 0.539
(0.13) (0.01) (0.00) (0.07) (0.55) (0.01) (0.00) (0.00) (0.54) (0.41)

()3 2.320 1.465 0.961 0.551 0.557 0.538 2.536 1.460 0.651 0.128 -0.842 0.539
(0.01) (0.00) (0.00) (0.02) (0.58) (0.00) (0.00) (0.00) (0.64) (0.40)

sin() 2.250 0.765 0.853 0.630 -0.418 0.540 2.086 0.863 0.856 0.262 -0.243 0.541
(0.01) (0.02) (0.00) (0.00) (0.68) (0.01) (0.01) (0.00) (0.30) (0.81)

exp() 1.424 0.302 1.026 0.176 2.207 0.539 2.273 0.448 0.718 -0.011 -0.282 0.540
(0.13) (0.20) (0.00) (0.52) (0.03) (0.01) (0.09) (0.00) (0.97) (0.78)

h=6 ()2 4.866 3.608 1.041 3.635 1.924 0.600 4.827 3.686 1.052 2.052 2.132 0.599
(0.00) (0.00) (0.36) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00) (0.03)

()3 0.970 2.484 1.054 1.440 1.156 0.604 1.737 2.344 1.081 0.900 1.533 0.602
(0.42) (0.00) (0.00) (0.00) (0.25) (0.15) (0.00) (0.00) (0.02) (0.13)

sin() 0.843 1.169 1.000 1.488 0.022 0.604 1.907 1.759 1.180 0.798 1.116 0.604
(0.48) (0.00) (0.00) (0.99) (0.98) (0.11) (0.01) (0.00) (0.02) (0.26)

exp() 5.187 2.755 1.031 3.635 1.843 0.600 5.732 3.262 1.036 2.459 2.951 0.599
(0.00) (0.00) (0.29) (0.00) (0.07) (0.00) (0.00) (0.00) (0.00) (0.00)

h=12 ()2 5.192 2.980 0.998 3.992 0.309 0.605 5.235 3.253 1.028 2.407 0.859 0.605
(0.00) (0.00) (0.83) (0.00) (0.76) (0.00) (0.00) (0.00) (0.00) (0.39)

()3 0.986 1.446 1.006 1.287 0.077 0.611 2.042 1.457 1.034 1.331 0.844 0.610
(0.48) (0.00) (0.22) (0.01) (0.94) (0.13) (0.00) (0.00) (0.00) (0.40)

sin() 1.074 1.146 1.023 1.393 1.618 0.612 2.031 1.283 1.017 1.014 1.774 0.611
(0.44) (0.00) (0.00) (0.00) (0.11) (0.14) (0.00) (0.00) (0.01) (0.08)

exp() 4.522 2.357 0.996 3.841 -0.067 0.606 5.682 2.911 1.017 2.807 2.601 0.606
(0.00) (0.00) (0.51) (0.00) (0.95) (0.00) (0.00) (0.07) (0.00) (0.01)

Nonlinear autoregressive moving average model

h=1 ()2 -0.748 0.197 0.922 0.016 1.864 0.538 -0.292 -0.008 0.913 0.011 1.603 0.538
(0.40) (0.42) (0.00) (0.37) (0.06) (0.75) (0.97) (0.00) (0.41) (0.11)

()3 -0.217 0.452 0.920 0.013 2.177 0.539 0.087 0.103 0.912 0.037 1.896 0.538
(0.81) (0.09) (0.00) (0.58) (0.03) (0.92) (0.66) (0.00) (0.05) (0.06)

sin() 4.054 0.931 0.966 0.037 3.414 0.540 4.321 0.845 0.966 0.006 3.557 0.540
(0.00) (0.00) (0.00) (0.07) (0.00) (0.00) (0.00) (0.00) (0.79) (0.00)

exp() 3.949 0.730 0.974 0.025 3.925 0.541 3.905 0.600 0.974 0.011 4.129 0.541
(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.01) (0.00) (0.59) (0.00)

h=6 ()2 0.143 0.391 1.017 -0.012 1.474 0.604 -0.184 -1.502 1.024 -0.018 0.319 0.724
(0.89) (0.27) (0.00) (0.59) (0.14) (0.82) (0.00) (0.00) (0.41) (0.75)

()3 -0.389 0.205 1.000 0.006 1.286 0.604 -0.435 -1.725 1.006 -0.030 -0.452 0.724
(0.72) (0.59) (1.00) (0.82) (0.20) (0.60) (0.00) (0.04) (0.20) (0.65)

sin() 2.616 -0.412 0.990 -0.016 1.119 0.605 -0.796 -1.929 0.984 -0.008 -1.645 0.722
(0.01) (0.32) (0.08) (0.56) (0.26) (0.34) (0.00) (0.00) (0.79) (0.10)

exp() 2.893 -0.093 0.999 -0.010 1.274 0.606 -0.809 -2.420 0.984 -0.032 -1.714 0.723
(0.00) (0.84) (0.89) (0.69) (0.20) (0.33) (0.00) (0.00) (0.21) (0.09)

h=12 ()2 2.371 0.700 0.820 -0.004 0.785 0.613 -0.578 -1.624 1.020 -0.021 -0.517 0.722
(0.05) (0.10) (0.00) (0.87) (0.43) (0.59) (0.00) (0.00) (0.41) (0.61)

()3 1.809 0.396 0.840 0.021 1.047 0.613 -0.102 -2.016 1.022 -0.042 -0.158 0.723
(0.12) (0.24) (0.00) (0.51) (0.30) (0.92) (0.00) (0.00) (0.11) (0.87)

sin() 0.863 -0.008 0.845 0.011 0.869 0.614 -0.141 -1.828 1.021 -0.016 -0.417 0.722
(0.46) (0.98) (0.00) (0.69) (0.39) (0.89) (0.00) (0.00) (0.64) (0.68)

exp() 1.613 0.026 0.818 -0.003 0.107 0.614 -0.630 -2.457 1.000 -0.020 -1.551 0.722
(0.16) (0.95) (0.00) (0.92) (0.92) (0.55) (0.00) (0.98) (0.49) (0.12)

Note: DMIN = Differential of frequencies for Minimum absolute forecast errors, DMAE = Differential of relative Mean Absolute forecast Error,

RMSFE = Relative Mean Squared Forecast Error, DM = Diebold-Mariano test based on absolute error loss, U = Theil’s U, p-values in

parenthesis.
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Table 2: Subsample results

expanding window rolling window

DMIN DMAE RMFSE DA DM U DMIN DMAE RMFSE DA DM U

Nonlinear autoregressive model

h=1 ()2 2.058 0.407 0.947 0.189 -0.448 0.480 2.210 0.656 0.941 -0.198 -0.816 0.483
(0.10) (0.20) (0.00) (0.63) (0.65) (0.06) (0.08) (0.00) (0.54) (0.41)

()3 1.989 1.470 0.953 0.140 0.368 0.482 2.616 1.474 0.554 -0.495 -0.927 0.484
(0.07) (0.00) (0.00) (0.68) (0.71) (0.01) (0.00) (0.00) (0.23) (0.35)

sin() 2.082 0.525 0.824 0.372 -0.252 0.483 2.035 0.800 0.827 -0.128 0.002 0.486
(0.04) (0.27) (0.00) (0.21) (0.80) (0.05) (0.07) (0.00) (0.73) (0.10)

exp() 1.933 -0.001 1.011 -0.140 2.122 0.482 2.168 0.266 0.616 -0.257 -0.671 0.484
(0.11) (0.99) (0.08) (0.71) (0.03) (0.06) (0.47) (0.00) (0.41) (0.50)

h=6 ()2 6.247 4.595 1.042 2.991 1.680 0.556 6.256 4.593 1.064 0.858 1.943 0.556
(0.00) (0.00) (0.59) (0.03) (0.09) (0.00) (0.00) (0.00) (0.12) (0.05)

()3 0.876 3.608 1.074 1.466 1.118 0.560 1.616 3.262 1.110 0.261 1.389 0.559
(0.54) (0.01) (0.02) (0.02) (0.25) (0.24) (0.00) (0.00) (0.47) (0.17)

sin() 0.526 1.538 0.986 1.633 -0.126 0.559 1.336 2.368 1.269 0.439 1.052 0.560
(0.71) (0.01) (0.58) (0.00) (0.90) (0.34) (0.03) (0.00) (0.18) (0.29)

exp() 5.633 3.580 1.010 2.897 1.382 0.556 6.573 4.100 1.018 1.511 2.795 0.557
(0.00) (0.00) (0.85) (0.04) (0.17) (0.00) (0.00) (0.09) (0.03) (0.01)

h=12 ()2 7.585 4.335 1.018 3.303 0.823 0.566 7.665 4.492 1.068 1.145 1.386 0.567
(0.00) (0.00) (0.16) (0.02) (0.41) (0.00) (0.00) (0.00) (0.07) (0.17)

()3 1.583 2.019 1.027 1.195 0.548 0.572 1.936 1.986 1.070 0.878 1.162 0.570
(0.36) (0.00) (0.00) (0.09) (0.58) (0.24) (0.00) (0.00) (0.03) (0.25)

sin() 1.447 1.575 1.026 1.356 1.363 0.572 1.485 1.716 1.019 0.631 1.403 0.571
(0.39) (0.00) (0.00) (0.02) (0.17) (0.36) (0.00) (0.00) (0.09) (0.16)

exp() 6.082 3.447 0.998 2.936 0.021 0.566 7.328 4.048 1.029 1.862 2.616 0.567
(0.00) (0.00) (0.88) (0.04) (0.98) (0.00) (0.00) (0.06) (0.01) (0.01)

Nonlinear autoregressive model

h=1 ()2 -1.187 0.103 0.867 0.019 0.614 0.474 -0.371 0.043 0.863 0.037 0.478 0.475
(0.27) (0.75) (0.00) (0.41) (0.54) (0.73) (0.89) (0.00) (0.05) (0.63)

()3 -0.427 0.496 0.866 0.019 0.876 0.475 0.288 0.299 0.862 0.065 0.735 0.476
(0.70) (0.16) (0.00) (0.56) (0.38) (0.79) (0.41) (0.00) (0.02) (0.42)

sin() 4.750 0.852 0.921 0.065 1.713 0.477 5.788 1.091 0.922 0.019 2.065 0.478
(0.00) (0.02) (0.00) (0.02) (0.09) (0.00) (0.00) (0.00) (0.53) (0.04)

exp() 4.926 0.748 0.930 0.046 2.373 0.477 5.529 0.748 0.924 0.019 2.334 0.478
(0.00) (0.03) (0.00) (0.10) (0.02) (0.00) (0.02) (0.00) (0.48) (0.02)

h=6 ()2 1.266 0.434 0.976 -0.010 1.020 0.558 -0.105 -2.173 1.034 -0.021 0.896 0.723
(0.33) (0.31) (0.00) (0.74) (0.31) (0.92) (0.00) (0.00) (0.48) (0.37)

()3 0.659 0.157 0.973 0.010 0.912 0.558 -0.502 -2.402 1.010 -0.031 0.179 0.723
(0.62) (0.75) (0.00) (0.76) (0.36) (0.62) (0.00) (0.01) (0.37) (0.86)

sin() 1.978 -1.078 0.956 0.021 0.286 0.558 -1.476 -2.866 0.984 0.000 -1.020 0.721
(0.12) (0.04) (0.00) (0.59) (0.78) (0.15) (0.00) (0.00) (1.00) (0.31)

exp() 2.711 -0.725 0.944 0.021 0.480 0.560 -1.088 -4.014 0.988 -0.042 -1.416 0.721
(0.03) (0.09) (0.00) (0.56) (0.63) (0.29) (0.00) (0.00) (0.29) (0.16)

h=12 ()2 2.461 0.425 0.749 -0.037 0.439 0.569 -0.631 -2.112 1.038 -0.049 0.347 0.718
(0.09) (0.35) (0.00) (0.32) (0.66) (0.62) (0.00) (0.00) (0.21) (0.73)

()3 1.818 0.425 0.766 -0.012 0.649 0.571 -0.680 -2.742 1.042 -0.074 0.508 0.719
(0.19) (0.41) (0.00) (0.78) (0.52) (0.59) (0.00) (0.00) (0.06) (0.61)

sin() 1.027 -0.813 0.768 0.037 0.104 0.569 0.532 -2.762 1.024 -0.012 -0.197 0.718
(0.47) (0.11) (0.00) (0.37) (0.92) (0.68) (0.00) (0.00) (0.74) (0.84)

exp() 1.694 -0.636 0.742 0.025 -0.372 0.570 0.173 -3.858 1.031 -0.037 -0.450 0.718
(0.22) (0.20) (0.00) (0.48) (0.71) (0.89) (0.00) (0.00) (0.32) (0.65)

Note: DMIN = Differential of frequencies for Minimum absolute forecast errors, DMAE = Differential of relative Mean Absolute forecast Error,

RMSFE = Relative Mean Squared Forecast Error, DM = Diebold-Mariano test based on absolute error loss, U = Theil’s U, p-values in

parenthesis.
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