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Abstract
This paper examines the effect of measurement error in the dependent

variable on quantile regression, because unlike OLS regression, even classi-
cal measurement error can generate bias. I examine the pattern and size of
the bias using both simulation and an empirical example. The simulations
indicate that classical error can cause bias and that non-classical measure-
ment error, particularly heteroskedastic measurement error, has the potential
to produce substantial bias. Also, the size and direction of the bias depends
on the amount of heterogeneity in the effects across quantiles and the regres-
sion error distribution. Using restricted access Health and Retirement Study
data containing matched IRS W-2 earnings records, I examine whether es-
timates of the returns to education statistically differ using a precisely mea-
sured and mismeasured earnings variable. I find that returns to education are
over-stated by roughly 1 percentage point at the median and 75th percentile
using earnings reported by survey respondents.
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Plerhoples, Quentin Brummet, Steven Dieterle, and Otavio Bartalotti for helpful comments. I
would also like to thank the Michigan Center on the Demography of Aging for their permission
and help using their restricted access HRS data.
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1 Introduction

Quantile regression, which allows a researcher to examine the effects of covari-

ates on different points of the conditional distribution of the outcome variable, is

an important tool for empirical research. For instance, such methods have been

used to examine the returns to schooling (Buchinsky (1994)), inter-generational

earnings (Eide & Showalter (1999)), birth weight (Abrevaya & Dahl (2008)), and

empirical finance (Chernozhukov & Umantsev (2001)). See Koenker & Hallock

(2001) for a review.

Despite it’s popularity as an empirical tool, a relatively small literature exists

on the effects of measurement error on quantile regression estimation, and within

this literature, most of the work has been concentrated on measurement error in

independent variables.1 Almost no research has been done on the issue of bias in

quantile regression estimation caused by measurement error in the dependent vari-

able, except for a brief discussion in a footnote in Hausman (2001) and in Chen,

Hong, & Tamer (2005), who only examine the issue in the context of censored

quantile regression at the median.

This lack of research is surprising because, unlike OLS, even classical mea-

surement error in the dependent variable can cause quantile coefficient estimates

to be biased.2 Moreover, many other realistic types of measurement error, such as

mean-reverting and heteroskedastic measurement error, complicate matters quickly.3

1See Angrist, Chernozhukov, & Fernandez-Val (2006) and Wei & Carroll (2009) for examples.
2Hausman (2001) mentions this fact and that the bias tends to be in the direction of the median

coefficient estimate.
3Bound & Krueger (1991), Bound, Brown, Duncan, & Rodgers (1994), and Pischke (1995)
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In this paper, I examine bias in the quantile regression estimator caused by

measurement error in the dependent variable using simulation and an empirical

example. In the simulations, I examine the cases of classical measurement error,

mean-reverting measurement error, and heteroskedastic measurement error. My

results confirm that the introduction of classical measurement error when the un-

derlying error term is symmetrically distributed can bias the quantile regression

estimator towards the coefficient at the median, and that the estimator at the me-

dian is largely unbiased, a finding reported in Hausman (2001).4 However, my

results further show that this finding is not generalizable to the case in which the

regression error is asymmetric. In this case, the estimator at the median can be

biased as well, and no clear pattern emerges for the bias at the other quantiles.

The simulations also show that mean reverting and heteroskedastic measurement

error can potentially cause substantial bias.

In the empirical application, I examine quantile regression estimates of the re-

turns to education using both reported earnings from the Health and Retirement

Study and matched IRS W-2 records, which I assume to be accurate. I find that

estimates of the returns to education at the median and 75th percentile are over-

stated by around 1 percentage point (a bias of around 12-15%) using reported

earnings instead of the more accurate W-2 records. These differences are statis-

tically significant at the 5% level. For context, this bias is similar in magnitude

to the upward bias caused by omitted ability in the OLS estimator that has been

have found evidence that the measurement error is mean reverting, and Hausman (2001) reports
that heteroskedastic measurement error may exacerbate bias.

4No simulation results are presented in the paper, although the issue is raised in a footnote.
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found by others.5 Also, the pattern of the estimates suggests that the returns to

education are less heterogeneous than previously thought.

2 Model and Estimator

This section will provide a brief overview of quantile regression. For more details,

one can read Koenker & Bassett (1978), Koenker (2005), or Wooldridge (2010)

among many other sources.

The goal of quantile regression is typically to examine the effects of covariates

on different points of the conditional distribution of the outcome variable. It is

common to model conditional quantiles using a model that is linear in parameters.

In which case, we can express the τ th conditional quantile of yi as

Qτ (yi|xi) = xiβ0(τ), (1)

where xi is a vector of covariates, and β0 is a vector of population parameters.

It can be shown that β0(τ) satisfies the condition that

min
β∈<K

E[(τ − 1[yi − xiβ < 0])(yi − xiβ)], (2)

where 1[·] is the indicator function. Assuming that β0(τ) uniquely satisfies Equa-

tion (2), the parameters can be consistently estimated under some weak regularity

conditions by finding values that satisfy the sample analog.

5Upward ability bias in the OLS estimator of the return to education is also around 10-15%, as
reported in Card (1999).
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In many cases, instead of observing the dependent variable yi, the researcher

observes the variable measured with error, call it Yi. As is well-known, such

measurement error causes no bias in the OLS estimator if it follows the classical

assumptions.6 Heuristically, this is the case, because the measurement error is

simply absorbed into a composite error term.

This fortunate outcome is not generally the case for the quantile regression

estimator for the following reason. Let ui = yi − xiβ be the quantile regression

error term. In the case of no measurement error, it can be shown that the first order

conditions for (2) are:

E(x′
i(1[ui < 0]− τ)) = 0. (3)

When measurement error in the dependent variable is introduced, the first order

conditions are:

E(x′
i(1[ui + ei < 0]− τ)) = 0. (4)

Because the expected value operator does not pass through the indicator func-

tion, the first order conditions are not the same, so there is no guarantee that the

parameters that solve (4) also solve (3) even under classical measurement error.7

6I define classic measurement error as measurement error that is independent of the true value
of the dependent variable and the covariates.

7Note that in the OLS case with classical measurement error, the first order conditions with and
without classical measurement error are the same. This is true since the expected value operator
does pass through linear functions.
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3 Simulation Evidence of Bias in Quantile Regres-

sion

Since no closed form solution exists for the quantile regression estimator, it is

difficult to examine bias caused by measurement error in the dependent variable

analytically. In order to study the issue further, I produce simulation evidence on

how various forms of measurement error affect the quantile coefficient estimates.

My data generating processes consist of a dependent variable with a single

explanatory variable. In order to generate different parameters at different quan-

tiles, a random coefficients model is used. My baseline data generating process is

meant to be a very simple model of returns to schooling and takes the following

form:

yi = αo + xiβ0 + γxiηi + ωi, (5)

where ηi and ωi are independent of one another and xi and have a standard normal

distribution. Note that throughout the discussion of the simulations, I will refer to

ωi as the regression error and ei, which I will define below, as the measurement

error. The regressor xi, which can be thought of as years of schooling, has a

binomial distribution with n = 16 and p = .75 producing a distribution with a

mean of 12 and standard deviation of 3.8 In my simulation, β is set to .075, α is

8These parameters were chosen to give a very basic approximation to the distribution of number
of years of schooling. I have also produced simulation results where xi has a uniform, a normal,
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set to 5, and γ is set to .04. The parameter choices are meant to roughly mimic

what is found in previous literature and in my HRS/W-2 data.9

In addition to the baseline, I also examine the performance of the estimator

under a number of alternate data generating processes, which can help inform on

which data characteristics can make biases larger or smaller and which findings

seem to be general and which are specific to a particular data generating process.

In the second data generating process examined, I make the effect of xi negative

rather than positive. In the third, I report simulation results in which the effect

at the 10th percentile is the largest. In the fourth, I examine the bias caused by

measurement error when the effect of xi is much more heterogeneous. In the fifth,

I examine the case where the distribution of ωi, in equation (5), is the Student’s t

distribution with 3 degrees of freedom instead of the standard normal distribution.

This distribution is a symmetric distribution that has a thicker tail than the standard

normal distribution. In the sixth, I examine the results when the distribution of ωi

has an asymmetric, lognormal distribution. In this case, ωi = exp(Zi), where

Zi has a standard normal distribution. For this case, the effect at the mean and

median will no longer be identical.

I examine three cases of measurement error: classical measurement error,

mean-reverting measurement error, and heteroskedastic measurement error.10 In

and a Poisson distribution. The general patterns are the same as described below.
9The choice of .075 is meant to be reflective of the estimates of the mean return to education

found previously by other authors, which typically are in the .07-.10 range. For an overview of the
mean returns to education literature, see Card (1999).

10Classical measurement error is a case in which the measurement error is independent of the
covariates. Mean-reverting measurement error is a case where there is a negative correlation be-
tween ωi and ei. As discussed in Kim & Solon (2005), one way to interpret mean-reversion found
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each case, the measurement error is additive with the form:

Yi = yi + ei. (6)

Simulations were done using Stata. 1,000 simulation repetitions were per-

formed. Each repetition contained 10,000 simulated observations. In the tables, I

report the quantile regression estimates at the .10, .25, .50, .75, and .90 quantiles.

For purposes of comparison, I also report OLS estimates.

3.1 Simulation Results Under Classical Measurement Error

For the simulations with classical measurement error, I generate ei to be inde-

pendent of yi and xi. Also, ei is normally distributed with a mean of zero. The

variance is chosen so that the reliability ratio is

V ar(yi)

V ar(yi) + V ar(ei)
= .8. (7)

This reliability ratio is approximately the value calculated by Bound & Krueger

(1991) for men’s reported income in the CPS data. In addition, I examine classical

measurement error when the reliability is .6 as a more extreme case.

In row (1) of Table 1a, I report the results for the baseline specification with

normally distributed regression error and classical measurement error with a reli-

in the measurement error in earnings records is that when workers are asked to report their earnings
for the year, the workers under report transitory earnings and shade toward their usual earnings.
Heteroskedastic measurement error is a case where the variance of the measurement error depends
on the covariates in xi.
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ability of .8. In column (2), the quantile regression estimator at the .10 quantile is

shown to be biased towards the median coefficient in this simulation. The estimate

is .056, while the true value of the parameter is .053 (a bias of roughly 6%) and the

median coefficient is .075. The estimator at the .25 quantile is also biased towards

the median, but to a lesser degree. The median estimator is unbiased. The esti-

mator at the .75 quantile is slightly biased again towards the median coefficient,

and the estimator at the .90 quantile is also biased toward the median coefficient,

by an amount nearly symmetric with estimator at the .10 quantile. This pattern is

consistent with the pattern reported in the footnote in Hausman (2001) that quan-

tile regression estimators at the tails of the distribution are biased towards the true

parameter at the median.

In row (2), I report the estimates when the reliability is .6. The estimates

follow the same pattern as those in row (1), but the results show a stronger bias

towards the true parameter at the median.

In row (3), I report results in which the coefficient on xi is negative. In row

(4), I report results in which the effect at the 10th percentile is the largest. In both

of these cases, the finding that under classical error the estimator at the tails are

biased toward the median coefficient holds.

Next, I examine the bias caused by measurement error when the effect of xi is

much more heterogeneous. In this simulation, the bias at the tails is much larger

in magnitude than the baseline simulation. As shown in Table 1b, the bias at the

10th and 90th percentiles is still towards the median, but the magnitude of the

bias is around .06 instead of .003 in the baseline simulation (a bias of around 14%
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instead of 6%). The simulations do not prove this, but they may hint that as the

effects at different quantiles become more heterogeneous, the bias becomes larger

with classical measurement error. With larger differences between the effect in

the tails and the effect at the median, there may be more room for bias towards the

median.

In rows (6) and (7), I change the distribution of the regression error. In row

(6), I report results were the distribution of ωi, in equation (5), is the Student’s t

distribution with 3 degrees of freedom instead of the standard normal distribution.

Despite this difference, the results look very similar to the orginal simulation in

row (1). The results still display bias towards the median in the case of classical

measurement error.

Finally, I examine the results when the distribution of ωi is asymmetric with a

lognormal distribution in row (7). An important thing to note is that in this case

the coefficients at the tails of the distribution are not necessarily biased towards

the median coefficient and there is no symmetric bias at either end of the condi-

tional distribution. While the estimator at the 10th percentile is biased towards

the median coefficient by around .014 (a bias of around 32%), the estimator at the

90th percentile is slightly biased away from the median by around .001. Addi-

tionally, the estimator at the median is biased in this case by around 1 percentage

point, which was not the case with the symmetric distributions. This shows that

the finding reported in Hausman (2001) are not generalizable to the case where

the regression error has an asymmetric distribution.

A few key points emerge from this set of simulation results. First, under some
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alternate simulation parameters and distributions, when the error term, ωi, is sym-

metrically distributed, the quantile regression estimator at the tails tend to be bi-

ased towards the median coefficient when there is classical measurment error in

my simulations. I conjecture that this is true generally for symmetric distributions,

but the simulations do not prove this. Second, when the effects across the condi-

tional distribution are relatively more heterogeneous using my data generating

process and normally distributed errors, the bias at the tails can be larger. Third,

when the error term, ωi, is asymmetrically distributed, bias still exists and the di-

rection is less clear when there is classical error. The estimator for the coefficient

at the median may also be biased.

3.2 Simulation Results Under Mean-Reverting Measurement

Error

In Table 2, I report estimates when mean-reverting measurement error is added to

the dependent variable. I omit the results for the case with a negative coefficient

on xi, the case where the effect at the 10th percentile is the largest, and the case

where the distribution of ωi follows the Student’s t distribution with 3 degrees of

freedom, because these results closely parallel the baseline results with normally

distributed regression error. In the cases presented below, the measurement error

has the following form:11

11As discussed in Kim & Solon (2005), one way to interpret mean reversion in the measurement
error for earnings is that when workers are asked to report their earnings for the year, the workers
under report transitory earnings and shade toward their usual earnings. In my simulation, this is
reflected with a negative correlation between ωi and ei.
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E(ei|ωi) = −.3ωi. (8)

The parameters are chosen to match what is found in Bound & Krueger (1991)

for measurement error in log earnings and matches what is found in my HRS

data discussed below. As a more extreme case, I also examine, in row (2), mean-

reverting measurement error of the form:

E(ei|ωi) = −.45ωi. (9)

In row (1) and (2), results are reported for the baseline specification with nor-

mally distributed regression error. In these cases, the estimators at the tails of the

distribution are biased away from the true parameter at the median in this simu-

lation. In row (1), the bias is -.002 at the .10 quantile (a bias of roughly 4%) and

the bias is .001 at the .90 quantile. In row (2) the bias is more pronounced, with a

bias of -.004 at the .10 quantile (a bias of roughly 7.5%) and a bias of .004 at the

.90 quantile. The OLS estimator and the estimator at the median are unbiased by

this form of mean reverting measurement error in this simulation. In row (3) the

results are reported for the simulations with a more heterogeneous effect. In this

case, the bias is towards the median, meaning that there appears to be no general

result for mean reverting error regarding bias towards or away from the median

coefficient. Also, the magnitude of the bias for the estimators at the tails of the

distribution is again much larger in the case with more heterogeneous effects than

for the baseline case in row (1) ( a bias of around 13.2% versus 4% in the case

12



of the .10 quantile). Finally in row (4), I present the results for the case in which

the regression error has an asymmetric lognormal distribution. Again, there is no

clear pattern to the bias when the regression error is asymmetric. The estimator at

the 10th percentile is biased towards the median by around .014 (a bias of 32%),

and the estimator at the 90th percentile is biased away from the median by .005 (a

bias of around 6%). Also, the estimator at the median is again biased by around 1

percentage point.

3.3 Simulation Results Under Heteroskedastic Measurement

Error

In the cases of heteroskedastic measurement error, reported in Table 3, the mea-

surement error has the following form:12

V ar(ei|xi) = .25exp(−.1xi + .01x2i ). (10)

The parameters are chosen to match what is found empirically in my HRS/W-2

earnings data.13 In row (2), I again examine a more extreme case that takes the

form:
12I again omit the case with a negative coefficient on xi, the case where the effect at the 10th per-

centile is the largest, and the case where the distribution of ωi follows the Student’s t distribution
with 3 degrees of freedom. These results look generally similar to the baseline results presented
in row (1).

13More details on the data can be found in section 4.1. More details on the approach to estimat-
ing the parameters can be found in section 4.2.
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V ar(ei|xi) = .25exp(−.1xi + .02x2i ). (11)

Heteroskedastic measurement error has the potential to produce bias at the

tails that is considerably larger than previous cases. The results in row (1) show

heteroskedasticity producing a bias of -.019 (a bias of 36% compared to 6% in

the baseline case with classical measurement error) in the case of the estimator

at the .10 quantile and a bias of .019 in the case of the .90 quantile. The esti-

mators at the .25 and .75 quantiles are also biased, but to a lesser degree. The

median estimator does not appear to be biased by heteroskedasticity in the case

with the normally distributed regression error. In row (2), which are based on

added measurement error with a more extreme form of heteroskedasticity, we see

severe bias at the tails of the distribution. The bias at the .10 quantile is -.15 (a

bias of 283%), and the bias at the .90 quantile is .186. The estimators at the .25

and .75 quantiles are also substantially biased, while the estimator at the median

is largely unbiased. In row (3) with more heterogeneous effects, the bias is actu-

ally smaller in magnitude than the bias in the baseline case in row (1) of the table

(a bias of with a magnitude of roughly 8.7% versus 36%). This could be a case

of the strong bias towards the median exhibited with classical measurement error

partially cancelling out the bias generated by the heteroskedasticity. Finally, in

row (4) with the lognormal regression error, we see a bias with a magnitude of

around 125% at the 10th percentile, a bias of around 2.3% at the median, and a

bias with a magnitude of around 68.6% at the 90th percentile.
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Overall, the simulation evidence suggests that the quantile regression estima-

tor can be biased by classical measurement error under a variety of distributions

and data generating processes. The bias can potentially be made worse when

there is non-classical measurement error, particularly in the case of heteroskedas-

tic measurement error. The size of the bias also depends on the underlying true

data generating process and the distribution of the regression error. In this next

section, I offer an empirical example showing bias.

4 Quantile Returns to Education as an Application

In my empirical example, I use reported earnings in data from the Health and

Retirment study benchmarked against what I maintain are more reliable IRS W-2

records data. Bound & Krueger (1991) find that reported earnings in Current Pop-

ulation Study data contains substantial measurement error when bench-marked

against more reliable Social Security earnings records data. Since quantile re-

gression is often applied to income data, the effect of measurement error in these

income variables on quantile coefficient estimates is important to understand. I

am following a convention in the literature, for instance Chen et al. (2005), main-

taining that the administrative earnings records are more reliable.14

14There is good reason to think that the actual dependent variable of interest is permanent in-
come, since the income in any one year may not be an accurate reflection of the return to an
additional year of education (see Haider & Solon (2006)). Constructing a measure of permanent
income and examining how estimates using this measure compare to using reported annual earn-
ings may be a topic of future research.
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Buchinsky (1994) has an excellent paper examining the returns to education

using quantile regression. I will closely follow the specification in that paper. The

regressions are based on the familiar Mincer (1974) equation.

log(yi) = β0 + Siβ1 + Eiβ2 + E2
i β3 +Biβ4 + εi (12)

where log(yi) is the log of annual earnings, Si is years of schooling, Ei is experi-

ence, and Bi is an indicator variable for being African American.

I will follow Buchinsky (1994) and estimate parameters for a reduced form

equation that does not factor in omitted ability. In addition, I will not address

the issue of measurement error in reported years of schooling. The focus of this

analysis will be on measurement error in earnings.

4.1 Data

The Health and Retirement Study is a survey of over 26,000 Americans (and their

spouses) over the age of 50. The purpose of the study was to examine the transition

of individuals from the labor force into retirement. The study collects informa-

tion on income, employment, demographics, as well as on the participants health,

retirement assets, and health care expenditures.

Participants are asked to report their total wage earnings, labor force status,

age, experience and education level.15 Importantly for my analysis, many HRS

15In order to keep things as similar as possible to Buchinsky (1994) I use potential experience,
defined as age minus years of education minus, as my measure of experience instead of years
reported working.
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respondents also consented to having their survey records matched with their W-2

earnings records, which allows me to match reported earnings with the respon-

dent’s W-2 records. Haider & Solon (2000) show that the respondents who con-

sented have observable characteristics which are similar overall to the complete

sample. The total wage earnings from the W-2 data comes from the box described

as, ’Wages, tips, and other compensation’. Income from self employment or in-

come contributed to 401(k) pensions is not included. Income above $250,000 is

top coded.

I make a number of sample restrictions in the analysis. I use only the first wave

of the study, which took place in 1992-93, since many of the workers, particularly

in later waves of the survey, are not prime working age. In the 1992-93 survey,

workers are surveyed about earnings in 1991. I exclude women from the analysis

in order to avoid sample selection issues with female participation in the labor

force. My main set of results includes all workers that have at least $2500 in self-

reported and W-2 earnings in 1991 dollars. Summary statistics of the final sample

are reported in Table 4.

4.2 Characteristics of Measurement Error in Log Earnings

I define the measurement error as the difference between log reported earnings

and the more accurately measured log W-2 earnings.16 In this section, I provide an

16To be more clear, the measurement error for observation i, ei is constructed as:

ei = log(sv earni)− log(irs earni),
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overview of measurment error in my self reported earnings data.17 Given that non-

classical measurement error, and in particular heteroskedastic measurement error,

has the potential to exacerbate bias caused by measurement error in the dependent

variable, I also examine the relationship between the measurement error and the

true earnings variable and covariates.

The raw summary statistics of the measurement error are reported in Table 5.

The mean, standard deviation, and 10th, 25th, 50th, 75th, and 90th percentiles of

the measurement error are included in the table. A kernel estimate of the density

of the measurement error is included in Figure 1. The measurement error in log

reported earnings has a mean close to zero and the standard deviation is .486. The

measurement error also shows some rightward skewness, with the mean larger

than the median.

I examine the degree of mean reversion in the measuremt error in my data by

an OLS regression of the measurement error on the log of the true W-2 earnings.

As discussed in Kim & Solon (2005), a coefficient of zero for the log of true

earnings indicates no mean reversion in the measurement error, and a negative

coefficient indicates mean reversion. Results are reported in column (1) of Table 6.

The coefficient on the log true earnings variable is -.234, which is statistically

significant at the 1% level, and is similar to the degree of mean reversion detected

where log(sv earni) is the log of survey earnings, and log(irs earni) is the log of IRS W-2
earnings.

17Bricker & Engelhardt (2008) also study measurement error in HRS earnings data using the
HRS/IRS W-2 matched earnings records. They find evidence of a negative correlation between the
measurement error and the true earnings variable. They also find a positive correlation between
the measurement error and the education level of the respondent.
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in Bound & Krueger (1991), Bound et al. (1994), and Pischke (1995).

Next, I examine the relationship between the measurement error and the co-

variates. I assume the following functional form for the conditional expectation

and variance:

E(ei|Si, Ei, Bi) = γ0 + Siγ1 + Eiγ2 + E2
i γ3 +Biγ4, (13)

V ar(ei|Si, Ei, Bi) = σ2exp(Siδ0 + S2
i δ1 + Eiδ2 + E2

i δ3 +Biδ4). (14)

I estimate the parameters in Equation (13) by an OLS regression of ei on years

of education, experience, experience squared, and the indicator for being black.

I estimate the parameters in (14), which will tell us whether the measurement

error is conditionally heteroskedastic, by non-linear least squares of the squared

residuals, wich come from the OLS regression to estimate Equation (13), on the

same covariates.18

The results for the conditional mean are reported in column (2) of Table 6. The

estimated coefficients are insignificant when experience, experience squared, and

the indicator for being black are included in column (3). Overall, the estimates

suggest a small or negligible effect of the covariates on the conditional mean of

18This produces consistent estimates of the parameters in the conditional variance, because
V ar(ei|Si, Ei, Bi) = E(v2i |Si, Ei, Bi) by definition, where vi = ei − E(ei|Si, Ei, Bi), and
because the OLS residuals converge in distribution to vi, as noted in Harvey (1976).
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the measurement error.19

The estimates of the coefficients in Equation (14) are reported in column (3).

The coefficient on education squared is statistically significant at the 5% level,

suggesting that the measurement error is conditionally heteroskedastic. The point

estimates suggest the degree of heteroskedasticity with respect to education in the

measurement error is more similar to the baseline heteroskedastic measurement

error examined in row (1) of Table 3 for the simulation rather than the more ex-

treme case examined in row (2). The other estimated coefficients, such as for

experience, are not statistically significant. If the degree of heteroskedasticity is

different with respect to say experience than it is for education, then we may see

diffferences in the degree of bias produced by the measurement error.

Overall, the measurement error displays mean-reversion and heteroskedastic-

ity. The heteroskedasticity is particularly a cause for concern, because it had such

a strong effect in the simulations. In the next section, I report estimates of the

returns to education and experience using both the log of reported earnings as the

dependent variable and the log of true earnings using W-2 earnings records and

test for differences.

4.3 Estimates of the Returns to Education and Experience

In order to test whether estimates based on IRS W-2 records statistically differ

from estimates based on the reported earnings, I perform the following procedure:

19These results are consistent with Bound & Krueger (1991), who do a similar analysis in Table
3 of their paper.
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1. Estimate the Mincer equation in (12) using reported earnings and again us-

ing the (true) W-2 records at the .1, .25, .50, .75, and .9 quantiles.

2. Form the difference between the estimates using the W-2 records and the

estimate using reported earnings for each quantile.

3. Repeat the procedure 1000 times sampling with replacement to produce

bootstrapped standard errors for the differences between the estimates using

reported earnings and (true) W-2 earnings records.

In Table 7, I show estimates of the returns to education and experience using

true W-2 earnings in row (1) and estimates using the reported earnings records in

row (2).20 Stars in row (2) signifiy that the difference between the estimates using

W-2 earnings and reported earnings are statistically different from zero. For com-

parison, the first column shows estimates for the mean from an OLS regression

of log annual earnings on years of education, experience, experience squared, and

an indicator for whether the respondent is black. Columns (2) through (6) show

estimates of the quantile coefficients for the .10, .25, .50, .75, and .90 quantiles.

The return to a year of education at the 10th conditional percentile is estimated

to be .046 using log reported earnings and .056 using log W-2 earnings. The

return at the 25th percentile is .078 using log reported earnings and .079 for true

earnings. However, neither of these differences are statistically significant. At

the 50th percentile, the estimated return is .086 for reported earnings and .075 for

20I also have examined the returns using only workers with more than 7 years of education and
also only workers who report working full time. The patterns are very similar to those reported
below.
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true earnings. This difference of .0113 is statistically significant at the 5% level.

Interestingly, this difference is very similar to the difference found by Chen et al.

(2005), who find that using the mismeasured earnings variable biases the censored

quantile regression estimate of the return to education at the median by around

.014.21 The estimate at the 75th percentile is .083 and .074 for true earnings, and

this difference is also statistically significant at the 5% level. The estimates at the

90th percentile are .090 for reported and .083 for true earnings, but this difference

is not statistically significant.

In the lower two panels, I show returns to experience. Since the Mincer equa-

tion in (12) includes a quadratic in experience, the return depends on the level of

experience of the individual. I report the returns at 10 years of experience in the

middle panel and 25 years of experience in the lower panel of Table 7. Overall,

the estimates of the return to experience tend to be low compared to estimates

found in the literature. This may be because the Health and Retirement study par-

ticipants are older, with an average age around 55. At this age, experience may

have only a small return. The mean return to experience estimated using OLS

and reported earnings is statistically different from the return estimated using true

earnings at the 5% level. However, none of the quantile regression estimates sta-

tistically differ using the different earnings measures.

21The authors use the 1978 CPS-SSR match file, which combines reported earnings with social
security earnings records. The authors do not report estimates at quantiles other than the median.
They also do not report uncensored quantile regression results because of severe top coding in the
social security earnings records.
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4.4 Discussion

To summarize, I find strong evidence that the estimators of the return to educa-

tion at the median and 75th percentiles are biased by measurement error in the

dependent variable. The point estimates suggest the estimator at the median is

overstated by 1.13 percentage points and that the estimator of the effect at the

75th percentile is overstated by .91 percentage points. To put this into context, the

roughly 12-15% bias produced is similar in magnitude to the upward bias caused

by omitted ability in the OLS estimator of the return to education.22 The fact that

I find the estimator at the median to be biased may suggest that the conditional

distribution of true log earnings or the measurement error is asymmetric, given

my simulation results. While the differences are not statistically significant at

the other quantiles, the point estimates of the bias are also important in magni-

tude. The point estimate at the 90th percentile suggest a bias with a magnitude

of around 8.4%, and the point estimate at the 10th percentile suggest a bias with

a magnitude of around 14.8%. Finally, when looking at the point estimates, the

returns to education appear less heterogeneous using the true earnings variable

compared to using the mismeasured earnings.23

22Upward ability bias in the OLS estimator of the return to education is reported to be around
10-15% by Card (1999).

23This may have implications for explanations of the increase in income inequality over the past
few decades. Machado & Mata (2005) cite heterogeneity in returns to education combined with
a trend of higher educational attainment as an important factor explaining increases in income
inequality. The argument is as follows. Previous research, for instance Buchinsky (1994) and
Machado & Mata (2005), has found that there is a higher return to education at the 90th percentile
than the 10th percentile. This implies that the distribution of earnings has a higher dispersion
at higher levels of education, because the right tail increases faster than the left tail as education
increases. Now because education levels have generally increases over time, Machado & Mata
(2005) cite this as one reason why income inequality has increased.
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The estimates of the effects of experience do not statistically differ. One po-

tential explanation for not detecting bias for experience is that the quantile effects

of experience are estimated imprecisely. This is true because there is not much

variation in experience in my sample. The lack of precision in the estimates may

explain the lack of statistically significant differences. Another possibility is that

the measurement error is less heteroskedastic with respect to experience than years

of education, something that is hinted at in section 4.2. The smaller degree of het-

eroskedasticity with respect to experience may result in less bias.

5 Conclusions

This paper makes several important contributions. I add to a small literature on

how quantile regression estimates are affected by measurement error in the de-

pendent variable. I show in my simulations that even under classical measure-

ment error the quantile regression estimator may be biased by measurement error

in the dependent variable. If one assumes classical measurement error and that

the conditional distribution of the true dependent variable is symmetrically dis-

tributed, then the simulation evidence suggests that the estimator at the tails of

the distribution may be biased towards the median coefficient, although a rigorous

proof of this could be a useful topic of future research. However, this result does

not hold for the case where the regression error is asymmetric. In this case, the

median is also biased and the bias at the other quantiles is not always towards the

median coefficient. Also, the size of the bias depends on the amount of hetero-
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geneity in the effects across the distribution and the amount of mean reversion and

heteroskedasticity in the measurement error.

Empirically, I show that quantile regression estimator of the returns to educa-

tion may be biased by measurement error in log reported earnings when compared

to the more accurate W-2 earnings records. I find evidence that returns to educa-

tion estimated at the median and 75th percentile are moderately over stated using

reported earnings.

This paper can serve as a cautionary note to researchers using quantile regres-

sion techniques with possible mismeasured dependent variables. A bright side is

that even though the estimates appear biased, the bias is not overwhelmingly large

in the context of the returns to education. The largest bias seen is around 1.13

percentage points. In other contexts, however, the bias could be larger. Future

research in other contexts could be useful. Also, finding a solution to the problem

may be another important topic for future research.
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Table 1a: Simulation Results for OLS/Quantile Regression Estimates with
Classical Measurement Error in Dependent Variable.

OLS .10 .25 .50 .75 .90

Baseline Spec: Normally Distributed Regression Error

True Parameter .075 .053 .063 .075 .087 .097

(1) Estimator w/ .075 .056 .065 .075 .085 .095
Rel .8 (.00023) (.00037) (.00031) (.00028) (.00032) (.00039)

(2) Estimator w/ .075 .058 .066 .075 .084 .092
Rel .6 (.00027) (.00044) (.00035) (.00033) (.00037) (.00046)

Negative Effect: Normal Regression Error

True Parameter -.075 -.097 -.087 -.075 -.064 -.053

(3) Estimator w/ -.075 -.094 -.085 -.075 -.065 -.055
Rel .8 (.00023) (.00037) (.00031) (.00028) (.00032) (.00039)

Largest Effect at .10 Quantile: Normal Regression Error

True Parameter .075 .088 .082 .075 .068 .061

(4) Estimator w/ .075 .087 .082 .075 .069 .063
Rel .8 (.00022) (.00036) (.0003) (.00027) (.0003) (.00037)

The first row of each panel reports the true value of the parameter. The second row reports the
estimated coefficient. Rel .8 refers classical measurement error with a reliability ratio of .8. Rel .6
refers classical measurement error with a reliability ratio of .6. The lognormal distribution in row (7)
is such that log(ωi) has standard normal distribution. Standard errors for the mean across the 1000
reps in parenthesis.
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Table 1b: Simulation Results for OLS/Quantile Regression Estimates with
Classical Measurement Error in Dependent Variable.

OLS .10 .25 .50 .75 .90

More Heterogeneous Effects: Normal Regression Error

True Parameter .077 -.424 -.187 .077 .341 .576

(5) Estimator w/ .076 -.366 -.156 .077 .31 .516
Rel .8 (.001) (.00164) (.00132) (.00125) (.00136) (.00169)

Baseline Spec: Student’s t w/ 3 d.f. Regression Error

True Parameter .075 .055 .062 .075 .088 .094

(6) Estimator w/ .074 .06 .066 .075 .084 .09
Rel .8 (.00037) (.00059) (.00041) (.00035) (.00042) (.0006)

Baseline Spec: Lognormal Regression Error

True Parameter .075 .044 .067 .087 .091 .086

(7) Estimator w/ .075 .058 .068 .078 .086 .087
Rel .8 (.00045) (.00043) (.00035) (.00038) (.00053) (.00106)

The first row of each panel reports the true value of the parameter. The second row reports the
estimated coefficient. Rel .8 refers classical measurement error with a reliability ratio of .8. Rel .6
refers classical measurement error with a reliability ratio of .6. The lognormal distribution in row (7)
is such that log(ωi) has standard normal distribution. Standard errors for the mean across the 1000
reps in parenthesis.
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Table 2: Simulation Results for OLS/Quantile Regression Estimates with
Mean-Reverting Measurement Error in Dependent Variable.

OLS .10 .25 .50 .75 .90

Baseline Spec: Normally Distributed Regression Error

True Parameter .075 .053 .063 .075 .087 .097

(1) Estimator w/ .075 .051 .062 .075 .087 .098
Mean Reverting (.00018) (.00031) (.00025) (.00022) (.00026) (.00031)

(2) Estimator w/ Larger .075 .049 .061 .075 .089 .101
Mean Reverting (.00016) (.00028) (.00022) (.0002) (.00023) (.00029)

More Heterogeneous Effects: Normal Regression Error

True Parameter .077 -.424 -.187 .077 .341 .576

(3) Estimator w/ .077 -.368 -.159 .078 .312 .521
Mean Reverting (.00098) (.00162) (.00126) (.00119) (.00133) (.0016)

Baseline Spec: Lognormal Regression Error

True Parameter .075 .044 .067 .087 .091 .086

(4) Estimator w/ .075 .058 .067 .077 .086 .091
Mean Reverting (.00034) (.00042) (.00034) (.00034) (.00042) (.00072)

The first row of each panel reports the true value of the parameter. The second row reports the es-
timated coefficient. Mean-Reverting refers to mean-reverting measurement error with the following
form: E(ei|ωi) = −.3ωi. Larger Mean-Reverting refers to measurement error with the following
form: E(ei|ωi) = −.45ωi. The lognormal distribution in row (4) is such that log(ωi) has standard
normal distribution. Standard errors for the mean across the 1000 reps in parenthesis.

32



Table 3: Simulation Results for OLS/Quantile Regression Estimates with
Heteroskedastic Measurement Error in Dependent Variable.

OLS .10 .25 .50 .75 .90

Baseline Spec: Normally Distributed Regression Error

True Parameter .075 .053 .063 .075 .087 .097

(1) Estimator w/ .075 .034 .053 .075 .097 .116
Heteroskedastic (.00023) (.00038) (.00031) (.00028) (.00033) (.0004)

(2) Estimator w/ Larger .075 -.133 -.035 .075 .184 .282
Heteroskedastic (.00034) (.00049) (.00041) (.00039) (.00042) (.00052)

More Heterogeneous Effects: Normal Regression Error

True Parameter .077 -.424 -.187 .077 .341 .576

(3) Estimator w/ .077 -.461 -.205 .078 .36 .614
Heteroskedastic (.001) (.00159) (.00125) (.00119) (.00128) (.00162)

Baseline Spec: Lognormal Regression Error

True Parameter .075 .044 .067 .087 .091 .086

(4) Estimator w/ .075 -.011 .037 .089 .134 .145
Heteroskedastic (.00045) (.00044) (.00038) (.00039) (.00053) (.00106)

The first row of each panel reports the true value of the parameter. The second row reports the es-
timated coefficient. Heteroskedastic refers to heteroskedastic measurement error with the following
form: V ar(ei|xi) = .25exp(−.1xi + .01x2

i ). Larger Heteroskedastic refers to measurement error
with the following form: V ar(ei|xi) = .25exp(−.1xi + .02x2

i ). The lognormal distribution in row
(4) is such that log(ωi) has standard normal distribution. Standard errors for the mean across the
1000 reps in parenthesis.
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Table 4: Summary Statistics, Wave 1 (1992) Male Workers with Positive
Earnings

Variable Mean Std. Dev. Min. Max.
Total Reported Annual Earnings 36052.17 28173.51 2800 410000
Total Annual Earnings W-2 33157.61 25492.41 2600 245000
Hours Worked/Week Main Job 43.69 10.52 1 95
Weeks Worked/Year Main Job 50.43 5.47 1 52
Hourly Wage Rate 27.74 486.15 0.96 24000
Years of Tenure Current Job 15.46 11.78 0 55.8
Total Years Worked 37.46 5.92 3 65
Total Years of Education 12.7 3.29 0 17
Age 55.87 4.61 23 77
Black 0.129 0.335 0 1
Hispanic .091 0.288 0 1

Number of Observations 2975
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Figure 1: Kernel Estimate of the Density of Measurement Error in Log Earn-
ings

Measurement error defined as difference between log reported earnings and log W-2 earnings.

Table 5: Measurement Error Descriptive Statistics
Quantiles

Variable Mean Std. Dev. .10 .25 .50 .75 .90

Measurement Error .060 .486 -.268 -.051 .032 .166 .443

Number of Observations 2975
Measurement error defined as difference between log reported earnings and log W-2 earnings.

35



Table 6: Estimates of Conditional Distribution of Measurement Error

Mean Variance

VARIABLES (1) (2) (3)

Log W-2 Earnings -.234***
(.018)

Education .001 -.103
(.004) (.078)

Education Squared .008**
(.004)

Experience -.019 -.079
(.014) (.076)

Experience Squared .0002 .001
(.0002) (.001)

Black -.019 .069
(.026) (.190)

Observations 2,975 2,975 2,975
Estimates in column (1) come from OLS regression of measurement
error on log true earnings. Estimates in column (2) come from an OLS
regression of the measurement error on the covariates. Estimates in
column (3) come from an NLS regression of the squared residuals from
the OLS regression in column (3) on the covariates. Robust standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Estimates of Mincer Equation: Male Workers with Positive Earn-
ings

OLS .10 .25 .50 .75 .90

Returns to Education

Using (True) W-2 Earnings .073 .054 .079 .075 .074 .083
(.005) (.014) (.007) (.005) (.005) (.006)

Using Reported Earnings .075 .046 .078 .086** .083** .090
(.005) (.014) (.006) (.006) (.005) (.007)

Returns to Experience at 10 Years

Using (True) W-2 Earnings .016 .065 .016 .002 .003 .001
(.011) (.041) (.016) (.013) (.012) (.019)

Using Reported Earnings .002* .032 .012 -.003 -.007 .001
(.011) (.023) (.021) (.013) (.010) (.026)

Returns to Experience at 25 Years

Using (True) W-2 Earnings .004 .020 .002 -.002 -.000 .002
(.005) (.022) (.008) (.006) (.001) (.001)

Using Reported Earnings -.005** -.000 -.002 -.005 -.004 .001
(.006) (.011 ) (.010) (.006) (.005) (.012)

Number of Observations 2975

All regressions include years of education, experience, experience squared, and an indicator for whether
black. All workers have at least $2500 in reported and W-2 earnings in 1991 dollars. Bootstrapped standard
errors in parenthesis. 1000 bootstrap replications performed. *** Difference between estimates using W-2
and reported earnings statistically significant at 1% level. ** Difference statistically significant at 5% level.
* Difference statistically significant at 10% level
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