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Ranking Teachers when Teacher Value-Added
is Heterogeneous Across Students

Brian Stacy

December 8, 2014

Abstract

The typical measure used by researchers and school administrators to
evaluate teachers is based on how the students’ achievement increases after
being exposed to the teacher, or based on the teacher’s “value-added”. When
teacher value-added is heterogeneous across her students, the typically used
measure reflects differences in the average value-added the teacher provides.
However, researchers, administrators, and parents may care not just about
the average value-added, but also its dispersion. In this paper, I examine the
robustness of typical teacher quality measures to alternate ranking systems
factoring in the variance of value-added. Encouragingly, ranking systems
factoring in the variance produce similar rankings as the ranking system
based only on the mean. I also examine whether classroom characteristics
and teacher experience affect a teacher’s value-added variance and find that
they explain little of the variation in value-added variances.

The research reported here was supported by the Institute of Education Sciences, U.S. Depart-
ment of Education, through Grants R305D100028 and R305B090011 to Michigan State Univer-
sity. The opinions expressed are those of the author and do not represent the views of the Institute
or the U.S. Department of Education.
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1 Introduction

Teacher quality measures based on student achievement data are increasingly be-

ing utilized by researchers in topics ranging from the impact of teacher quality

on later life outcomes, to the impact of teacher quality on housing prices, to the

quality of teachers who transfer or leave the teacher labor force (see, e.g., Chetty,

Friedman, & Rockoff (2014b), Imberman & Lovenheim (2013), or Boyd, Gross-

man, Lankford, Loeb, & Wyckoff (2008) for examples of each). Additionally,

federal education policies, such as the Teacher Incentive Fund and the Race to the

Top, have sparked substantial demand for rigorous measures of teacher quality

by administrators who wish to identify the most and least effective teachers. The

most commonly used measures of teacher quality are value-added measures that

attempt to isolate a teacher’s contribution to student learning in a year.

Some studies make the simplifying assumption that teacher value-added is

identical for all students.1 With this assumption, a “teacher effect” can be es-

timated for each teacher, which reflect differences in the value-added provided.

Other studies explicitly explore heterogeneity in teacher value-added and find

evidence that teacher value-added is different for different students.2 With het-
1The assumption of a constant value-added is explicitly stated in Chetty, Friedman, & Rockoff

(2011) for instance, but implicitly assumed in many structural models of achievement used in
value-added estimation.

2For instance, Dee (2004) examines whether assigning a student to a teacher of the same race
improves student achievement using experimental project STAR data, and finds an increase for
both black and white students. One year with same race teacher increases achievement 2 to 4
percentile points. Aaronson, Barrow, & Sander (2007) computes teacher value-added separately
for students with high and low prior year test scores and finds that the correlation between the two
is .39. A similar exercise is done by Condie, Lefgren, & Sims (2014). Loeb, Soland, & Fox (2014)
examines whether teachers quality depends on whether a student is an English learner. Lockwood
& McCaffrey (2009) examine heterogeneity in teacher value-added by interacting value-added
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erogeneity, the “teacher effects” that are typically estimated reflect differences in

the mean value-added provided. From here on I will refer to these measures as

“value-added means”.

Despite the recognition that teacher value-added can be heterogeneous, little

work has been done examining teacher quality beyond the value-added means.3

Teachers may differ in the variance of the value-added they provide, and this in-

formation may be important for the researchers and administrators using teacher

quality ratings. For example, an individual may view a teacher that produces

large learning gains for a few students and small gains for the rest differently from

a teacher that produces moderate gains for all students. Examining the variance

of value-added in addition to the mean can distinguish between these two cases.

In this paper, I examine the sensitivity of teacher rankings to alternate rankings

that factor in the variance of teacher value-added. I estimate “value-added vari-

ances”, which reflect differences across teachers in the variance of the value-added

a teacher provides. These can be identified using the same assumptions made to

identify value-added means. I then use this additional information to create al-

ternate rankings, which I compare to the rankings based solely on value-added

means. I also examine whether classroom characteristics, teacher experience, and

student dissimilarity within classrooms have an effect on the value-added variance

for a teacher. These effects are identified using within teacher variation in these

characteristics.

with predicted achievement and find modest interaction effects with the interactions explaining
around 10% of the total variation in teacher effects across teachers.

3Some exceptions include the papers listed in the footnote above.
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Using administrative data linking students to teachers from a large, diverse,

anonymous state, I find little evidence of a systematic mean-variance trade-off in

teacher value-added. The value-added means and variances are in fact negatively

correlated (math: -.328, p<.001, reading: -.206, p<.001). I find that there are

larger differences across teachers in terms of the mean than the variance. As a

result, teacher rankings systems incorporating both value-added means and value-

added standard deviations are highly correlated (above .9 in most cases) with a

system only comprised of value-added means. I also find that classroom charac-

teristics, teacher experience, and student dissimilarity explain little of the variation

in value-added variances across teachers.

2 Framework for Evaluating Teacher Quality

A convenient framework for analyzing teacher quality is the potential outcomes

framework.4 For our purposes, the potential outcomes are the potential achieve-

ment outcomes if a student is assigned to any of the possible teachers. Let Ai( j)

be the achievement level of student i if they are assigned to a particular teacher j.

Administrators and researchers are typically interested in identifying how stu-

dents would perform if they were assigned to one teacher compared to another.

The primary difficulty in making this type of causal inference is that it is possible

to observe only one of the potential outcomes, the outcome for the teacher that the

student is actually assigned to.

4See Rosenbaum & Rubin (1983), Rubin (1974), Rubin, Stuart, & Zanutto (2004), or Imbens
& Wooldridge (2008) for further background.
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The key assumption used to make causal inferences about teachers is that as-

signment of teachers to student is random conditional on Xi, which is a set of

observable characteristics of students. With this assumption, even though we do

not observe each of the potential outcomes, Ai( j), for a student, we can use the

observed outcome, Ai, to estimate teacher effects. This assumption of selection

only on observables is sometimes referred to as ignorability (or unconfounded-

ness) conditional on Xi.5 This assumption implies that principals base assignment

on observable characteristics of students, such as prior year test scores, but do not

assign on unobservable factors that affect achievement.

The ignorability assumption has been hotly debated in the value-added liter-

ature.6 Important for my purposes, this assumption is necessary for estimating

value-added means. And without further identifying assumptions, we can esti-

mate value-added variances.

A typical way of estimating teacher effects is to estimate the parameters in the

5See Imbens (2000) for further discussion.
6The assumption is not directly testable. However, Rothstein (2010) develops an indirect falsi-

fication test based on the idea that future teachers cannot impact contemporaneous test scores, so
evidence of a relationship is evidence of a violation of the assumptions. Rothstein finds that the
falsification test rejects, suggesting estimates of teacher effects may be biased. However, Gold-
haber & Chaplin (2012) and Guarino, Reckase, Stacy, & Wooldridge (forthcoming) both find that
such falsification tests may over reject. Also, Guarino, Reckase, & Wooldridge (2015) produce
simulation evidence that estimators flexibly controlling for prior year test scores and teacher fixed
effects are fairly robust across a variety of nonrandom assignment scenarios. Chetty, Friedman,
& Rockoff (2014a) find that value-added measures controlling for prior year achievement are un-
biased using a test that examines bias by including previously unobserved parental characteristics
and another test based on examining predicted changes in achievement as teachers switch schools.
Also, Chetty et al. (2014b) find that value-added measures predict long term outcomes such as
earnings and college attendance. Finally, Kane, McCaffrey, Miller, & Staiger (2013) examine
whether value-added estimates are biased using a large randomized experiment in which students
were randomly assigned to teachers within schools. The authors find no evidence of bias in esti-
mators that control for a student’s prior achievement scores and demographics.
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following equation for the conditional mean of achievement:7

E(Ai|Xi,Ti) = (Xi−µX)β +Ti1γ1 + · · ·+TiJγJ. (1)

The vector Xi is a set of control variables. The variable Ti1 is an indicator variable

equal to 1 if assigned to teacher 1 and 0 otherwise, Ti2 is an assignment indicator

for teacher 2, and so on, and γ j is the teacher effect for teacher j.8 Under the

ignorability assumption, the estimates of γ j are consistent estimates of the value-

added means.

In the case where a teacher’s value-added varies across students, γ j does not

fully characterize the impact of assigning students to a teacher. There are numer-

ous reasons why teacher value-added may vary. For instance, a teacher’s pedagog-

ical style may work well with some students and not others. Also, some teachers

may relate better with some students than others, for instance if they are of the

same race or gender, which could lead to differences in the value-added provided.

Teachers may also deploy more resources at some students than others.9 Some

others may be less able to cater their instruction to the needs of all students in a

classroom.

Define σ2
j as the value-added variance for teacher j. With γ j and σ2

j we can

7For instance see Rothstein (2009) or Harris, Sass, & Semykina (2010). This achievement
model is sometimes motivated using the education production function framework. For more
details, see Hanushek (1979) or Todd & Wolpin (2003).

8In my parameterization, Xi is centered around its mean, µx. With this parameterization, γ j can
be interpreted as teacher j’s mean level of achievement produced for the average student. A value
of zero for γ j indicates that a teacher produces a mean achievement level of zero for the average
student. With this parameterization, no intercept is included.

9Neal & Schanzenbach (2010) find evidence that teachers may target resources at students in
the middle of the achievement distribution because of proficiency requirements.
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get a more complete measure of teacher quality than looking at the mean alone.

In order to estimate σ2
j , assume that the conditional variance of achievement has

the following function form:

Var(Ai|Xi,Ti) = exp((Xi−µX)δ +Ti1ψ1 + · · ·+TiJψJ). (2)

Again, Xi is centered around its mean, µX , so the estimates of the value-added

means and variances, γ j and σ2
j = exp(ψ j), can be interpretted as estimates of

teacher j’s mean and variance of achievement produced for the average student.10

In order to estimate γ j and σ2
j , I use the following procedure. I first estimate

the parameters in Equation (1) by regressing the student achievement scores on

Xi− X̄ and Ti. Then I form residuals from this initial regression and estimate the

parameters in Equation (2) by regressing these squared residuals on Xi− X̄ and Ti

using non-linear least squares.11

10For clarity, a value of zero for γ j indicates that a teacher produces a mean achievement level of
zero for the average student, and a value of zero for σ2

j indicates that a teacher produces a variance
of achievement of zero for the average student.

The exponential function is chosen to model the conditional variance instead of a linear function,
because a linear function would not guarantee that the predicted conditional variance is positive.
Using the exponential function to model a conditional variance dates back in the econometrics
literature to Harvey (1976).

11To see why the non-linear least squares regression using the squared residuals can consis-
tently estimate the parameters in the conditional variance, note that Var(Ai|Xi,Ti) = E(ε2

i |Xi,Ti)
by definition, where εi = Ai−E(Ai|Xi,Ti). Because the OLS residuals converge in distribution to
εi, as noted in Harvey (1976), using the squared residuals in place of ε2

i in the NLS regression still
produces consistent estimates of the parameters in E(ε2

i |Xi,Ti).
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3 Data

The data come from an administrative data set in a large and diverse anonymous

state. Basic student information such as demographic, socio-economic, and spe-

cial education status are available. The data contain 3,341,109 student year obser-

vations in grades 3-6 from years 2001-2007. The data include achievement scores

in reading and math on a state criterion referenced test. Students and teachers can

be linked in the data. The test scores are vertically scaled. The benefit of the ver-

tical scale is that if, for instance, a student scores a 500 in 4th grade and a 550 in

5th grade, then this indicates that the student made a 50 point learning gain from

4th to 5th grade.

The analysis focuses on mathematics and reading student achievement in grade

6. Grade 6 is chosen for two reasons. First, conditioning on a larger number of

previous test scores increases the plausibility that assignment of students to teach-

ers is unrelated to student unobservables. Second, teachers in grade 6 often teach

multiple sections in a given year, which increases the number of student observa-

tions. The larger number of student observations is important for the precision of

the estimates. Although I focus on grade 6 as an ideal case, I also present results

for grade 5 in the sensitivity checks section.

I impose some restrictions on the data. Students that cannot be linked with a

teacher are dropped, as are students linked to more than one teacher in a school

year in the same subject. The analysis focuses on traditional public school stu-

dents, so students in charter schools are dropped. I also drop teachers with less
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than 12 student observations because accurately estimating value-added means

and variances requires a large number of student observations. In an analysis be-

low, I directly assess how accuracy improves when more students are available.

In all around one third of the student observations are not used in the analysis.

Student level characteristics of the final data set are reported in the Table 1. The

students in the final sample tend to be somewhat higher achieving, more white,

and less likely to be free-and-reduced price lunch or limited English proficient

than the students in the original sample.

Table 2 reports summary statistics aggregated to the teacher level. There are

5,987 math and 6,606 reading teachers in the sample. There are on average 114.6

and 105.0 student observation per teacher for math and reading teachers respec-

tively. Student characteristics aggregated to the teacher level are also reported.

4 Results

The controls included are similar to other papers in the literature (e.g. Chetty et al.

(2014a)). The set of covariates, Xi, includes cubic functions of lagged and twice

lagged math and reading scores, indicators for whether the student is a minority,

the student’s free-and-reduced price lunch status, the student’s limited English

proficiency status, and gender.

In order to increase the precision of the estimates, I pool student observations

across all available years and include year dummies as additional controls. Esti-

mation is done separately for math and reading teachers.

9



Similar to Rothstein (2009), I standardize test scores so that grade 6 test scores

have a population mean of zero and a standard deviation of one. Using the same

standardization in each grade keeps the vertical scale intact.12 Therefore, one test

score unit translates into an increase of one standard deviation in achievement for

sixth graders.

Based on this, I estimate the measures for the value-added means (γ j) and the

value-added variances (σ2
j ) for the 6,249 mathematics teachers and 6,836 reading

teachers. As reported in Table (3), the standard deviation of the estimates of γ j

across teachers is .207 in mathematics and .155 in reading.13 Additionally, going

from the teacher at the 50th percentile in the estimated distribution of γ j to a

teacher at the 75th percentile in mathematics increases mean value-added by .13

test score standard deviations. Going from the 50th to 75th percentile in reading

increase mean value-added by .092 standard deviations.

The differences across teachers in σ2
j are more modest. The standard deviation

of σ2
j across teachers is .086 in mathematics and .106 in reading. Going from a

teacher at the 50th percentile in the estimated distribution of σ2
j to a teacher at the

75th percentile increases the variance of value-added by .043 test score standard

deviation units. This is 4.3% of the variance of overall achievement. Going from

12With this standardization, grade 5 math test scores have a mean of -.152 and standard deviation
of .928. Grade 4 math test scores have a mean of -.763 and standard deviation of .979. Grade 5
reading test scores have a mean of -.209 and standard deviation of .981. Grade 4 reading test
scores have a mean of -.413 and standard deviation of .960.

13These estimates are in line with what other researchers have found for the standard deviation
across teachers for the mean. Kane & Staiger (2010) find a standard deviation adjusted for sam-
pling variation of .143 for mathematics teachers. Aaronson et al. (2007) find an adjusted standard
deviation of .193 for mathematics teachers and .113 for reading teachers. Rothstein (2009) finds
an adjusted standard deviation of .107 for reading teachers.
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the 50th percentile to the 75th percentile in reading means increasing variance of

value-added by .054.

In order to provide some information about the precision of the estimates, I

report estimates of γ j and σ2
j along with their standard errors for select teachers in

Table 4.14 Estimates and standard errors for teachers at the 10th, 25th, 50th, 75th,

and 90th percentiles of γ j (top panel) and σ2
j (bottom panel) are reported. Addi-

tionally, Figures 1 and 2 show the 95% confidence intervals and standard errors

plotted on the number of student observations for a randomly selected subsample

of teachers for math and reading.15 The OLS estimates of γ j are in the top left.

The NLS estimates of σ2
j are in the top right.16 An average standard error at each

number of student observations for the OLS estimates of γ j is displayed in the

bottom left, and the standard errors for the NLS estimates of σ2
j are in the bottom

14I use a bootstrapping technique to produce standard errors for the estimates of γ j and σ2
j . In

order to keep the number of student observations per teacher fixed for every bootstrap replication,
I do sampling with replacement within teachers. To be clear, if there are N observations and N j
observations corresponding to teacher j in the original data set, to produce N observations for each
bootstrap sample, draw N j observations for teacher j, where the N j observations are randomly
drawn with replacement from the set of students assigned to the teacher, and repeat this procedure
for all teachers. 100 bootstrap replications were performed. Since estimation of σ2

j involves two
steps (first forming residuals after an OLS regression of current achievement on the covariates and
teacher indicators then NLS of the squared residuals on the covariates and teacher indicators) each
bootstrap iteration involves estimation of both steps. The sampling with replacement of teachers
done in this paper is similar to bootstrapping approach done in Winters, Dixon, & Greene (2012).

15The randomly selected subsamples of 584 mathematics teachers and 743 reading teachers
were used instead of the entire sample, because the bootstrapping procedure was very time inten-
sive.

16I also try a procedure based on Normal quasi-MLE to estimate γ j and σ2
j . I parameterize the

mean and variance of the normal distribution so that

D(Ai|Xi,Ti) = Normal((Xi−µX )β +Tiγ,exp(Tiψ +(Xi−µX )δ )) (3)

The estimates were similar in the two approaches, although the QMLE results were slightly more
efficient. Since the QMLE is more complex and more computationally difficult to implement, I
chose to present the results for the simpler two-step estimator.
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right.17

As expected, the estimates become more precise as more student observations

are available for each teacher. This is evident in Figures 1 and 2 by noticing that

both the confidence intervals and standard errors shrink as the number of student

observations increase. Also, the magnitudes of the standard errors do not differ

much for γ j and σ2
j .

In the bottom panels of Figures 1 and 2, I also include cutoffs for whether the

measures are accurate enough to distinguish top and bottom performing teachers,

which is often a goal of forming teacher quality measures. The upper blue line

represents the standard error necessary to say with 95% accuracy that a teacher

ranked in the bottom 10% is not in the top 10%. The lower blue line represents

the standard error necessary to say that a teacher ranked in the bottom 25% is not

in the top 75%.18 The average standard errors should be below the cutoffs. 12

student observations are enough typically to distinguish teachers at the top 10%

and the bottom 10% for both γ j and σ2
j in mathematics and reading. This can be

seen by noting that the average standard error is below this cutoff in all cases at

12 students. When going to the tougher requirement of distinguishing teachers

at the 75th and 25th percentiles, 12 student observations is only enough in the

17The average standard error at each number of student observations was formed using a poly-
nomial smoother.

18I form the blue lines by calculating the difference in γ j and σ2
j at the 90th and 10th percentiles

and the 75th and 25th percentiles. For math and γ j, the 90-10 difference is .48 and the 75-25
difference is .254. In reading and γ j, the 90-10 difference is .374 and the 75-25 difference is .183.
In math and σ2

j , the 90-10 difference is .176 and the 75-25 difference is .079. In reading and
σ2

j , the 90-10 difference is .223 and the 75-25 difference is .147. I then form the standard error
necessary at each of the gaps, by dividing the gap by 1.96.
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case of mathematics for γ j. Approximately 40 student observations is enough

in reading at the 75-25 difference for γ j, and approximately 66 observations is

enough in reading for σ2
j . Around 316 are necessary in mathematics to distinguish

between the 75th and 25th percentiles in σ2
j . This is partially due to the smaller

difference in the value-added variances for mathematics teachers at the 75th and

25th percentiles compared to for instance the value-added variances for reading

teachers (a gap of .079 versus .147 in reading). Overall, 12 student observations

are enough to distinguish top and bottom performing teachers for both γ j and σ2
j ,

but in some cases it may be difficult to distinguish teachers toward the center of

the distribution without large numbers of student observations.

4.1 Correlation between γ j and σ2
j

A worry in using only estimates of γ j in rankings is that teachers that produce high

value-added means may be leaving some students behind, producing small gains

for these students. In order to examine whether this is the case, in Table (3) I report

the correlation between γ̂ j and σ̂2
j , which is -.328 for mathematics and -.206 for

reading. Scatterplots for the estimates of γ j and σ2
j are also shown in Figures (3)

and (4). In both cases the correlation is statistically different from 0 at the 1%

level.19 This indicates that teachers with higher levels of mean value-added tend

also to have a lower variance in value-added. Therefore, if having a low variance

is a good thing, teachers rated favorably along one dimension are more likely to

19The standard errors for the significance test for the correlations are calculated by bootstrap-
ping.
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be rated favorably along the other. Moreover, because there are fewer differences

across teachers in σ2
j than in γ j, then rankings that incorporate information on the

teacher’s effect on the variance may not differ much from a ranking based solely

on the mean effect.

4.2 Do Teacher Rankings Change When We Add Information

on Value-Added Variances under Plausible Teacher Rank-

ing Functions?

Principals or administrators may be interested in ranking teachers at least in part

on the variance of value-added. A teacher that produces a given mean level of

value-added, but with a high variance, may generate more complaints from parents

than a teacher that produces a similar mean level and a lower variance. Admin-

istrators may also have asymmetric payoffs, for instance if they are penalized for

having a certain number of students fall below basic proficiency levels, that may

make them rate the slightly lower mean, lower variance teacher more highly.20

In the following section I produce teacher rankings under a variety of ranking

schemes. I use value-added standard deviations in the ranking function rather

than variances, because standard deviations are expressed in the same units as the

mean, whereas the variance is expressed in squared units.21 I use the following

20There may be cases where individuals would prefer a higher variance. For instance, if a
school’s sole focus was to produce a few super star students, they would want teachers to have a
large variance.

21The value-added standard deviations are estimated by taking the square root of the estimated
value-added variances.
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simple ranking function:22

r j = qγ̂ j− (1−q)σ̂ j.

where r j is teacher j’s ranking and q is a weight put on the value-added mean and

value-added standard deviation. I will compare three alternate ranking systems to

the rankings based only on γ j:

Baseline Ranking: Teacher rankings are based solely on the estimate of γ j

25% on σ j: Teacher rankings based 75% on estimate of γ j and 25% on

estimate of σ j

33% on σ j: Teacher rankings based 67% on estimate of γ j and 33% on

estimate of σ j

50% on σ j: Teacher rankings based equally on estimate of γ j and σ j

I produce Spearman rank correlations between the baseline ranking system

and the three alternate rankings systems in in Table (5). The rank correlations are

above .94 in mathematics, and above .88 in reading. All rankings are above .96

when less than 1/3 of the weight is placed on the value-added standard deviation

22There are many other potential objective functions, which may not translate exactly into a
mean-variance trade off. For instance, a principal may want to maximize the number of students
that pass a proficiency level, and suppose that principal wants to assign a teacher to a classroom
of students that is initially far below the proficiency level. The principal in this case may want a
teacher that produces a large variance in value-added to get more students up to that proficiency
level. However, I chose the ranking function in this paper for its simplicity.
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and above .98 when less than 25% of the weight is placed on σ j. Thus, incorpo-

rating σ j into teacher rankings isn’t likely to dramatically alter the rankings for

most teachers under a variety of alternative ranking systems compared to ranking

teachers solely on their value-added mean. This result is likely driven by the neg-

ative correlation between the value-added mean and standard deviation and the

more modest variation in σ j compared to γ j.

To add some comparison to the numbers, Goldhaber, Walch, & Gabele (2013)

compare teacher rankings, based on value-added means, under alternate sets of

control variables. The authors find that the correlation between estimates that

control for student test scores and demographics and estimates that control for ad-

ditional peer characteristics is around .99. The correlation between estimates that

control for school fixed effects and estimates that do not is only .65. This suggests

that the decision to include information on the value-added standard deviation is

slightly more consequential than the decision to include peer variables, and much

less important than the decision to include school fixed effects.

One caveat is that, even though the correlations are strong, for particular teach-

ers changing the ranking system can have a large impact. In order to provide a

rough sense of how far a teacher may be moving using the different rankings, in

the bottom panel of Table (5), I report the fraction of teachers that move in the

rankings± 10% of teachers. This corresponds to a move of 625 spots in the rank-

ings for math teachers and 684 spots for reading teachers. Particular teachers can

move quite a bit in the rankings in some of the alternate ranking schemes. 22%

of teachers move in the rankings ± the equivalent of 10% of teachers in the case
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where 50% of the weight is put on the standard deviation in math. However, in

the case where 25% of the weight is put on the standard deviation, only 2% of

teachers move the equivalent of ± 10% of teachers.

4.2.1 Sensitivity Analyses

I perform a number of sensitivity checks for the analysis, which are reported in

Table (6) for mathematics and Table (7) for reading. I discuss the results for

mathematics in detail below, but the results for reading are similar. Overall, the

results for the sensitivity checks are similar to the baseline results.

In the first sensitivity check, I examine the results using fifth grade teachers

rather than sixth grade teachers.23 A large number of school districts use value-

added models to evaluate elementary school teachers, so understanding how rank-

ings change when information on the value-added standard deviations is added

is important as well. In row 2 of the tables, I report the correlation between the

estimates of γ j and σ2
j , the Spearman rank correlations between a system were

teachers are ranked only on the mean and a system where 50% of the weight is

put on the estimate of σ j, and the percentage of teachers that move ± 10% of

teachers in the rankings under the alternate ranking system. The correlation be-

tween the estimates of γ j and σ2
j is somewhat weaker in fifth grade than sixth

grade, with a correlation of -.146 rather than -.328, and the rank correlation when

23I have also examined results for fourth grade teachers. In this case, only one prior year score
is available as a controls, because testing started in grade three. However, the results are similar to
fifth grade.
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50% of the weight is put on the estimate of σ j is .884 rather than .947.24 The

fraction moving more the 10% also increases to 39% in fifth grade compared to

teachers in sixth grade. It appears that adding information on the value-added

variances is more important in fifth grade than sixth grade, but this could also be

explained by the greater imprecision in the measures of value-added means and

variances in fifth grade.25 With greater imprecision, the correlation between any

two measures will tend to be lower than than two more precise measures, all else

the same.

As discussed in Goldhaber et al. (2013), there is considerable disagreement

about the conditioning variables that are needed for ignorability. It is common

to include classroom level peer characteristics or school indicator variables in the

regressions. In row 3 of Table (6), results for the estimates of γ j and σ2
j when

classroom level peer variables are included.26 The correlation between the esti-

mates of γ j and σ2
j when the classroom level variables are included is -.244. The

spearman rank correlation between the alternate ranking system and the ranking

based only on the mean is .906, and the percent moving more than 10% is 34%.

The correlation is slightly lower, and the percent moving 10% is slightly higher

than the baseline case. This may be due to the additional noise in the estimates

24The rank correlation when 25% of the weight is put on σ j (not reported in the table) is still a
very high .982 in fifth grade compared .993 in sixth grade.

25Fifth grade teachers tend to have fewer student observations than sixth grade teachers, which
affects the precision of the estimates. In my data, fifth grade teachers have on average 42.8 student
observations, while sixth grade teachers have 109.7 student observations.

26The peer variables I include are: average prior year math and reading scores, proportion
free and reduced-price lunch, and proportion limited English proficient. These coefficients are
identified using within teacher variation in classroom composition.
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created by trying to identify the coefficients on the classroom peer variables.

In row 4, I show results from when I estimate value-added variances using a

linear functional form rather than an exponential functional form and while keep-

ing the covariate set identical to the baseline specification.27 I estimate σ2
j in an

OLS regression of squared residuals from the regression to estimate (1) on Xi− X̄

and teacher indicator variables. The correlation between the estimate of σ2
j and

the estimate of γ j is -.348. The rank correlation is .919, which is similar to the

rank correlation from the baseline specification of .947.

In the final row, I report results from a specification with school dummy vari-

ables. Due to computation issues related to finding convergence in the non-linear

least squares algorithm when school and teacher indicator variables were both in-

cluded, I again change the functional form for the variance from an exponential

function of the parameters to a linear function. I estimate σ2
j in an OLS regression

of squared residuals from the regression to estimate (1), which also had school

indicator variables included, on Xi− X̄ , school indicator variables, and teacher in-

dicator variables.28 In this case, the correlation between the estimates of γ j and

σ2
j is -.310, and the Spearman correlation drops slightly to .860 compared to .947

in the baseline specification. The percent that move± 10% also increases to 35%.

27Note that the estimates of σ2
j are not guaranteed to be positive using this approach. However,

in practice there are only a few instances where σ2
j is estimated to be negative for a teacher. In the

case with the linear variance but no school fixed effects, only .2% teachers have negative estimates.
In the specification, reported below, with school dummy variables and linear variance only .1%
teachers have negative estimates.

28I used the user written felsdvreg package in Stata to estimate the coefficients on the teacher
and school indicator variables. The coefficients are identified by teachers switching schools.
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4.3 Do Classroom and Teacher Characteristics Explain Value-

Added Variances? Exploiting Within Teacher Variation in

Characteristics

Researchers, parents, and administrators may be interested in identifying attributes

of classrooms and teachers that result in lower value-added variances.29 In this

section, I use within teacher variation in classroom and teacher characteristics to

identify the impact of these characteristics on the value-added variances. Specifi-

cally, I examine the effects of classroom composition, teacher experience, and the

dissimilarity of students in the classroom, all of which could conceivably affect

the value-added variance produced by a teacher. Classroom composition could

affect a teachers value-added variance, if for instance, it were easier to produce

more equal learning gains for initially higher performing students than for initially

lower performing students. The variances could also depend on the experience

level of a teacher, for instance if teachers are able to learn how to better meet the

needs of all students in a classroom. Finally, having a classroom of initially more

dissimilar students could conceivably result in a large value-added variance, for

instance if teachers are less able to cater to the needs of all students in a classroom

in these conditions.
29Multiple studies have examined the attributes of classrooms and teachers that result in high

value-added means. For instance, see Wiswall (2013), Harris & Sass (2011), and Goldhaber &
Hansen (2013). Wiswall (2013) finds that teacher experience increases value-added means in
mathematics, but finds little evidence that is does so for reading. Harris & Sass (2011) also find
that value-added means increase with experience, and find little evidence that professional devel-
opment training, undergraduate training, or college entrance exam scores raise value-added means.
Goldhaber & Hansen (2013) find that only a small portion of the variation in value-added means
can be explained by observable factors of teachers and classrooms.
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In order to identify the effects of these variables, I use an approach similar

to Wiswall (2013) and Goldhaber & Hansen (2013), who examine the effects of

teacher observables on a teacher’s value-added mean. I exploit naturally occuring

variation in student composition and teacher experience for a teacher over time

to identify the effects of the average incoming achievement levels of students,

the fraction of classroom that is white, teacher experience, and the standard de-

viation of incoming achievement levels among students in a classroom, which I

use as a measure of dissimilarity between students within a teacher’s classroom.

Specifically, I first form yearly value-added variances for teachers, then I per-

form a within teacher (teacher fixed effects) regression of these yearly value-added

variances on yearly classroom characteristics, teacher experience, and year dum-

mies.30 Under the assumption that the naturally occuring variation in these char-

acteristics is unrelated to unobserved differences in value-added variances over

time, the estimates consistently estimate the effects of these variables.

Estimates are reported for mathematics and reading in Table 8. Standard er-

30The procedure to estimate the yearly value-added variances is nearly identical to the proce-
dure to estimate value-added variances described in section 2, except instead of teacher indicator
variables, I include teacher-year indicator variables. Specifically, in a first step I regress student
test scores on Xi− X̄ and teacher-year indicator variables. Then I form residuals from this initial
regression and estimate yearly value-added variances for teachers using non-linear least squares
of the squared residuals on Xi− X̄ and teacher-year indicators. Teacher j then has a value-added
variance estimate for each year they are in the data set. To examine the effects of classroom com-
position and experience on the value-added variances, I then do a within teacher (teacher fixed
effect) regression of the value-added variance estimates on the average prior year achievement
level of the teacher’s students in a year, the proportion white, experience, experience squared, the
standard deviation of the prior year achievement level of the teacher’s students, and year dummies.
There are 12,607 teacher-year observations for math teachers and 5,475 unique teachers that are
included in the data set for multiple years. There are 13,540 teacher-year observations for reading
teachers and 6,049 unique teachers that are included in the data set for multiple years.
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rors, clustered at the teacher level, are reported in parenthesis. Overall, the vari-

ables do not explain much of the variation in the value-added variances. For math-

ematics, only the classroom dissimilarity measure, which is the standard deviation

of the prior year test scores of the students, has a statistically significant effect on

the value-added variance. The coefficient is .020, which is the expected sign, sug-

gesting that going from having a classroom at the median in terms of the standard

deviation of prior year scores (.684) to the 75th percentile (.804) increases the

value-added variance for a teacher by only .0024. This would move a teacher

with a value-added variance at the median to the 52nd percentile. For reading, ex-

perience, experience squared, and the standard deviation of the prior year scores

are statistically significant predictors. Experience has the largest impact. The es-

timates suggest that going from 5 years of experience to 15 years of experience

would actually increase the value-added variance by .024, which would move a

teacher with a value-added variance at the median to the 62nd percentile. This

suggest that more experienced reading teachers are actually worse at producing

more equal achievement gains for their students. The standard deviation of prior

year achievement has a coefficient of .035, which suggests that going from median

of the standard deviation of prior year achievement (.789) to the 75th percentile

(.919) increases the value-added variance by .0046, which would move a teacher

with a value-added variance at the median to the 52nd percentile.
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5 Summary and Conclusions

Researchers and administrators interested in teacher quality typically produce a

single measure of teacher quality. If teachers are having heterogeneous impacts

on their students, this measure reflects differences across teachers in the mean

value-added they provide, but only examining the effect for the mean may offer

an incomplete characterization of a teacher’s quality. This paper offers an em-

pirical strategy for identifying measures of value-added variances, and examines

how rankings change when this information is added and whether classroom and

teacher characteristics affect the value-added variances.

There are several important findings in this paper. I find evidence that there

are modest to moderate differences across teachers in the size of the value-added

variance, but the differences across teachers for σ2
j are smaller than differences

across teachers for γ j. Teacher rankings based on the mean and the variance are

negatively correlated, with a correlation around -.25. As a result, teacher rankings

that include value-added variances tend to be highly correlated with rankings that

only include value-added means under some plausible ranking schemes. Typically

the correlation is above .9. A positive conclusion from this paper is that rank-

ings using measures of value-added means are fairly robust to adding information

on the value-added variance. I additionally find that observable characteristics

of teachers and their classrooms explain only a small amount of the variation in

value-added variances.

This paper also shows that value-added variances can be calculated at fairly
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low cost. Researchers already computing value-added means by regressing test

scores on covariates and teacher indicator variables can estimate value-added vari-

ances using the two step approach used in the paper. These estimates could be

useful for researchers who wish to study the factors that affect the variance in

teacher value-added for instance. More research could be done on this topic. The

methods and findings in this paper can serve as a starting point.
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Table 1: Student Level Summary Statistics

Variable Mean Std. Dev.

Original Sample

Number of Student Obs 923,247

Math Standardized Scale Score 0 1
Reading Standardized Scale Score 0 1
White 0.492 .5
Free and Reduced Price Lunch 0.486 0.5
Limited English Proficiency 0.18 0.384
Female 0.508 0.5

Sample After Restrictions

Number of Student Obs 685967

Math Standardized Scale Score 0.074 0.962
Reading Standardized Scale Score .09 0.956
White 0.497 0.5
Free and Reduced Price Lunch 0.479 0.5
Limited English Proficiency 0.177 0.382
Female 0.512 0.5
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Table 2: Teacher Level Summary Statistics

Variable Mean Std. Dev.

Math Teachers

Number of Mathematics Teachers 5987
Student Obs for Math Teachers 114.58 126.303

Student and Teacher Characteristics Aggregated to Teacher level

Average Prior Year Math Score -.203 .547
Fraction Free Reduced Price Lunch 0.527 0.257
Fraction Limited English Proficient 0.186 0.215
Fraction White 0.462 0.299
Teacher Experience 7.826 8.85

Reading Teachers

Number of Reading Teachers 6606
Student Obs for Reading Teachers 105.013 119.82

Student and Teacher Characteristics Aggregated to Teacher level

Average Prior Year Reading Score -0.337 0.611
Fraction Free Reduced Price Lunch 0.521 0.256
Fraction Limited English Proficient 0.181 0.22
Fraction White 0.471 0.299
Teacher Experience 7.711 8.832
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Table 3: Standard Deviation and Correlations for γ j and σ2
j

Statistic Mathematics Reading

Std Dev γ̂ j 0.207 .155

Std Dev σ̂2
j 0.086 .106

Correlation γ̂ j and σ̂2
j -.328 -.206

Number of Teachers 6249 6836

Controls included in estimation of γ j and σ2
j include a year dummy, cubic func-

tions of lagged and twice lagged math and reading scores, indicators for mi-
nority status, free-and-reduced price lunch status, limited English proficiency
status, gender, and teacher indicator variables.
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Table 4: Estimates and Standard Errors of γ j and σ2
j for Select Teach-

ers

γ j

Select Teachers Mathematics Reading

10th Pctl -.165 (.106) -.084 (.094)
25th Pctl -.061 (.081) .006 (.061)
50th Pctl .066 (.056) .092 (.091)
75th Pctl .194 (.066) .187 (.066)
90th Pctl .314 (.086) .272 (.109)

σ2
j

Select Teachers Mathematics Reading

10th Pctl .096 (.035) .171 (.049)
25th Pctl .133 (.049) .220 (.059)
50th Pctl .181 (.043) .270 (.073)
75th Pctl .238 (.059) .329 (.079)
90th Pctl .301 (.072) .405 (.122)

Observations 584 743

10th Pctl refers to a teacher at the 10th percentile. 25th Pctl
refers to a teacher at the 25th percentile and so on. Controls in-
cluded in estimation of γ j and σ2

j include a year dummy, cubic
functions of lagged and twice lagged math and reading scores,
indicators for minority status, free-and-reduced price lunch sta-
tus, limited English proficiency status, gender, and teacher indi-
cator variables.
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Figure 1: Plots of 95% CI and Standard Errors on the Number of Student Obser-
vations for Math Teachers

The OLS estimates of γ j are in the top left. The NLS estimates of σ2
j are in the top right. Average

standard errors at each number of student observations, formed using a polynomial smoother, for
the OLS estimates of γ j are in the bottom left, and the average standard errors for the NLS estimates
of σ2

j are in the bottom right. The blue lines represent the standard error necessary to statistically
reject at the 5% level that a teacher at the 25th percentile is not above the 75th percentile, and that
a teacher in the 10th percentile is not above the 90th.
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Figure 2: Plots of 95% CI and Standard Errors on the Number of Student Obser-
vations for Reading Teachers

The OLS estimates of γ j are in the top left. The NLS estimates of σ2
j are in the top right. Average

standard errors at each number of student observations, formed using a polynomial smoother, for
the OLS estimates of γ j are in the bottom left, and the average standard errors for the NLS estimates
of σ2

j are in the bottom right. The blue lines represent the standard error necessary to statistically
reject at the 5% level that a teacher at the 25th percentile is not above the 75th percentile, and that
a teacher in the 10th percentile is not above the 90th.
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Figure 3: Scatterplot of Estimates of γ j and σ2
j for Mathematics

Figure 4: Scatterplot of Estimates of γ j and σ2
j for Reading
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Table 5: Comparison of Ranking System Composed of γ̂ j and Alter-
native Ranking Systems Including σ j

Subject 25% on σ j 33% on σ j 50% on σ j

Spearman Rank Correlation with γ̂ j

Mathematics .993 .985 .947

Reading .982 .964 .881

Percentage Moving in Rankings 10% of Teachers

Mathematics 2% 6% 22%

Reading 8% 16% 37%

Math Observations 6249
Reading Observations 6836
Controls included in estimation of γ j and σ2

j include a year dummy,
cubic functions of lagged and twice lagged math and reading scores,
indicators for minority status, free-and-reduced price lunch status,
limited English proficiency status, gender, and teacher indicator
variables.
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Table 6: Sensitivity Checks for Mathematics Teachers

Specification Corr γ̂ j and σ̂2
j Spearman 50% on σ̂ j Moving ± 10%

Baseline -.328 .947 22%
N=6249

Grade 5 Teachers -.146 .884 39%
N=16726

Classroom Level Variables -.244 .906 34%
N=6249

Linear Variance -.348 .919 28%
N=6249

School Dummy Variables -.310 .860 35%
with Linear Variance N=5987

Controls included in baseline estimation of γ j and σ2
j include a year dummy, cubic functions of

lagged and twice lagged math and reading scores, indicators for minority status, free-and-reduced
price lunch status, limited English proficiency status, gender, and teacher indicator variables.

37



Table 7: Sensitivity Checks for Reading Teachers

Specification Corr γ̂ j and σ̂2
j Spearman 50% on σ̂ j Moving ± 10%

Baseline -.206 .881 37%
N=6836

Grade 5 Teachers -.128 .812 50%
N=16827

Classroom Level Variables -.172 .858 40%
N=6836

Linear Variance -.221 .844 42%
N=6836

School Dummy Variables -.166 .823 39%
with Linear Variance N=6608

Controls included in baseline estimation of γ j and σ2
j include a year dummy, cubic functions of

lagged and twice lagged math and reading scores, indicators for minority status, free-and-reduced
price lunch status, limited English proficiency status, gender, and teacher indicator variables.
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Table 8: Effects of Changes in Student Characteristics and Experience
on Value-Added Variances

VARIABLES Mathematics Reading

Average Prior Year Scores 0.008 -0.001
(0.005) (0.006)

Proportion White -0.006 0.017
(0.018) (0.021)

Experience 0.002 0.004**
(0.001) (0.002)

Experience Squared -2.64e-05 -7.98e-05*
(3.70e-05) (4.41e-05)

Std Dev Prior Year Scores 0.020** 0.035***
(0.009) (0.011)

Observations 12,607 13,540
Number of Teachers 5,475 6,049
R-squared 0.059 0.015
Estimates based on within teacher (teacher fixed effects) regression
of yearly value-added variances on the yearly average prior year
achievement level, proportion of students white, experience, experience
squared, the yearly standard deviation of the student’s prior year scores
and year fixed effects. Robust standard errors in parentheses clustered
at teacher level.

*** p<0.01, ** p<0.05, * p<0.1
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