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Technical Efficiency and CO2 Reduction Potentials

- An analysis of the German Electricity Generating Sector

Stefan Seifert1 , Astrid Cullmann, Christian von Hirschhausen

DIW Berlin – German Institute for Economic Research, Mohrenstrasse 58, D-10117 Berlin,
Germany, sseifert@diw.de

Abstract

In this paper, we analyze the technical efficiency of CO2 reduction potentials of
German power and heat plants, using a non-parametric sequential Data Envelopment
Analysis. We apply a metafrontier framework to evaluate plant-level efficiencies in
the transformation of inputs into desirable (energy) and undesirable (CO2 emissions)
outputs, taking into account different fossil fuel generation technologies. We dispose
of a unique data set for coal-, lignite-, gas- and biomass-fired power plants from
2003 through 2010 that provides an unbalanced panel of 1459 observations. We find
intra-group differences within energy generation technology, but natural gas fired
power plants clearly have the highest efficiency. Furthermore, the analysis points to
significant savings potentials for CO2 and fuel-input.

Keywords: Electricity Generation, Non-parametric Efficiency Analysis, Germany,
Panel 2003-1010
JEL: L94, Q50, C14

1. Introduction

1.1. Motivation

The electricity and heat generating sector is not only a major backbone of the
economic system but also a major producer of greenhouse gases (GHG), thus con-
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tributing to global climate change. Electricity and heat production accounts for
nearly 30 percent of all GHG emissions in Europe with carbon dioxide emissions
(CO2) as the main pollutant. The reduction of CO2 emissions in the electricity and
heat production sector is therefore crucial in many countries in order to reach the
CO2 reduction targets agreed to under the Kyoto Protocol. Legislation of the last
decade forced existing and newly constructed power plants across Europe to signif-
icant operational and managerial changes. The EU Directive for Large Combustion
Plants (2001/80/EG) and its successors, including the Industrial Emissions Direc-
tive (2010/75/EU), set strict thresholds for the emission of several pollutants, such
as NOx, SOx and dust. As CO2 emissions were not included in this legislation, in-
centives to reduce them were only introduced with the start of the European CO2

emission trading scheme (ETS) in 2005. However, incentives for CO2 reduction were
low, as prices for emission rights dropped rapidly due to an overallocation of emis-
sions rights. Therefore, despite ambitious climate policy goals in Europe, European
CO2 emissions from electricity and heat generation remained rather stable over the
2000s with only a seven percent reduction in absolute terms.
Understanding the drivers of CO2 emissions at plant level in the electricity and heat
generation sector helps to identify successful climate policies. The drivers are three-
fold:

• Firstly, a reduction of CO2 emissions can be achieved by increasing use of
renewable carbon-free energy sources. The promotion of renewable technologies
has led to installations of capacities achieving a share of about 30 percent in
Europe. However, as there is no large-scale storage capacity for renewables
currently available, conventional energy sources are and will be used in the near
future as backup, which demands new efficient technologies with short start up
times and ramping to react quickly to possible shortages of intermittent energy
sources;

• secondly, thermal efficiency improvements are crucial for a decrease of CO2

emissions. This comprises of, in general, the production of energy in the most
efficient possible way regarding the plant operation with the use of fewer input
factors to generate the same output (e.g. by replacing old, inefficient power
plants with new stations based on more efficient combined cycle technologies);

• thirdly, changes in the fuel mix in the generation of electricity and heat (e.g.
the switch from coal and lignite to natural gas) can contribute to a reduction
of CO2 emissions in the long run.
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This paper concentrates on the last two dimensions and intends to identify tech-
nical efficiency improvements and potential long term changes in the fuel mix to re-
duce CO2 emissions. We focus on the technical efficiency of conventional fossil fueled
(non-renewable and non-nuclear) power generating companies in Germany. We use a
simple production model that distinguishes desirable (energy) and undesirable (CO2

emissions) outputs, but we consider neither costs nor prices (for problems comparing
generation costs of conventional energy sources see e.g. Borenstein, 2012). While
the empirical literature mainly focuses on single technologies (see e.g. Zhou et al.,
2008, or Song et al., 2013, for overviews), this analysis concentrates on efficiency
comparisons of different fossil fuel generation technologies, including coal-, lignite-,
natural gas- and biomass-fired power plants, that currently play an important role
in the transition toward carbon-free energy sources in the long run. In this paper
we account for production technology heterogeneity using a metafrontier framework
based on the non-parametric Data Envelopment Analysis (DEA). This allows us to
disentangle of existing gaps between different generation technologies and provides
a better distinction of efficiency variations across generation technologies.

1.2. The German Context

This paper is the first considering the German power plant fleet, which is the
largest electricity generating sector in Europe and the sixth largest in the world.
Further, with the largest share of GHG emissions in Europe coming from the Ger-
man electricity and heat generating sector, the German performance situation plays
an important role in European efforts to meet Kyoto Protocol targets. As Germany is
the EU-member with the highest absolute emission reduction targets, the evaluation
of performance improvements and the detection of CO2 emission reduction poten-
tials in Germany’s electricity generating sector are crucial for scientific and political
discussion. We create the first representative data set for German coal-, lignite-,
gas- and biomass-fired power plants collected by the Research Data Centres (FDZ)
of the German Federal Statistical Office and the Statistical Offices of the German
Länder. It comprises of unique and comprehensive firm level data on commercial
and industrial plants to analyze the efficiency and CO2 reduction potentials of plant
operation.
In Germany electricity is generated using multiple technologies. In 2012, the most
important sources in terms of total electricity generation were lignite (26 percent),
coal (19 percent), nuclear (16 percent), natural gas (12 percent), wind (8 percent),
biomass (6 percent), hydro (4 percent), and solar (4 percent) (BMWi, 2012). With
the government’s decision to phase out nuclear by 2022, the fuel mix will change
considerably. At the same time, the Act on the Sale of Electricity to the Grid
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(Stromeinspeisungsgesetz ) of 1990 and its successors implemented incentives to pro-
mote the installation of renewables. Today renewable energy sources account for
about 20 percent of gross electricity consumption: even though their marginal costs
are negligible, fluctuating feed-in and missing storage capacities imply that conven-
tional - non-renewable - electricity generation capacity will still be needed to ensure
security of supply by backing-up existing capacities. Therefore, capacities of about
7 GW of different conventional sources, mainly gas and coal, have been installed
and gone online between 2012-2014, which underlines the importance of efficiency
improvements and CO2 emission reduction potentials.
The remainder of this paper proceeds as follows. Section 2 discusses the literature.
Section 3 shows the methodology. The data and the empirical model are outlined in
section 4. Section 5 shows the results and the last section concludes.

2. Literature review

In the energy sector, non-parametric and parametric efficiency analysis, such as
Data Envelopment Analysis following Farrell (1957) and Stochastic Frontier Analy-
sis following Meeusen and Broeck (1977), have a long tradition. However, the major
focus is on electricity and gas networks (see e.g. Jamasb and Pollitt, 2001, and
Jamasb and Pollitt, 2003). Efficiency analysis methods are now widely accepted
and used by regulators in a large number of countries to identify inefficiencies and
to set benchmarks in regulatory models (compare Haney and Pollitt, 2009, for an
overview). Furthermore, methodological research is finding new insights concerning
efficiency measurement methods and models, for example, dealing with the inclusion
of undesirable outputs, the formulation of disposability, and the inclusion of envi-
ronmental factors (Song et al., 2013; Zhou et al., 2008). Less attention is devoted to
electricity generating units, but efficiency analysis of the power and heat supplying
sector is gaining interest. The empirical literature is especially concerned with envi-
ronmental efficiency analysis and energy policy analysis. It can be mainly grouped
into cross-country comparisons using aggregate data and analyses on regional, firm or
plant level. An example for the former is the work by Jaraite and Maria (2012) that
investigates the environmental efficiency and productivity enhancing performance of
the European Union’s CO2 Emissions Trading Scheme (EU ETS) in public power
generation.
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But there are also numerous country studies on technical and cost efficiency of
fossil fueled power plants as well as it determinants for the U.S.2 Olatubi and Dis-
mukes (2000) analyze coal-fired steam plants’ allocative efficiency while Kleit and
Terrell (2001) analyze potential efficiency gains of deregulation using a Bayesian cost
function approach for gas-fired power plants, and Knittel (2002) compares the effect
of different regulatory methods on coal and gas power plants. Using a parametric
approach Hiebert (2002) analyzes the cost efficiency of different fuel types and finds
evidence for a positive impact of regulatory restructuring on efficiency. Craig and
Savage (2013) analyze the effects of market restructuring with an increased compe-
tition on the thermal efficiency of electricity generation plants from 1996 to 2006.
Their empirical findings show that access to wholesale electricity markets, together
with retail choice, led to efficiency gains of investor-owned plants and that benefits
from competition spilled over to public electricity generation.

In a series of papers Sueyoshi and Goto (and Ueno) use a sample of thermal power
plants in the U.S. to answer different research questions: a positive effect of the U.S.
Clean Air Act (CAA) on environmental efficiency and a positive effect of regulation
on operational and overall efficiency is shown by means of non-parametric efficiency
measures (Sueyoshi et al., 2010). Sueyoshi and Goto (2012) compare different radial
and non-radial DEA formulations for environmental assessment and find different
results depending on the DEA formulation, indicating the need for multiple analysis
when DEA is used for policy purposes. Finally, Sueyoshi and Goto (2013) analyze
returns to scale and damages to scale (DTS) of North American power plants and
the impact of the CAA on power plant efficiency. Their findings indicate increasing
DTS for three different bad outputs, indicating the need for managerial improve-
ments and/or engineering innovation.
Although most research focuses on U.S. generation capacity, other countries are
investigated as well, with China and Korea being of special interest. Technical effi-
ciency of Chinese thermal power plants on a regional level is analyzed by Lam and
Shiu (2001) using DEA showing considerable inefficiencies in electricity generation.
Similarly, Lin and Du (2013) find considerable intra-group inefficiencies on a regional

2For the U.S. there is also a stream of literature analyzing nuclear power plants. Regarding the
former, Zhang (2007) examines a sample of 73 investor-owned nuclear power plants between 1992
and 1998 and considers efficiency changes due to electricity restructuring. Fabrizio et al. (2012)
study the impacts of deregulation and consolidation on operating performance They find a 10
percent performance increase due to a reduction of reactor outage duration. Fabrizio et al. (2007)
examine the performance during the transition of cost-of-service regulation to market oriented
environments with respect to ownership. They show that publicly owned plants had the lowest
efficiency gains while investor-owned plants had the highest efficiency gains.
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level, but by means of a parametric metafrontier analysis. Yang and Pollitt (2009)
and Yang and Pollitt (2010) compared different DEA formulations to analyze tech-
nical and environmental efficiency of Chinese thermal power plants. Zhao and Ma
(2013) study the impact of deregulation reform in 2003 on the operational efficiency
of China’s large coal-fired power plants between 1997 and 2010. They find that the
plants have converged to the technological frontier and that the unbundling reform
increased productivity. Finally, the Korean energy generation sector is analyzed in
several studies.Heshmati et al. (2014) use a semiparametric model to assess the ef-
fect of a power plants’ characteristics on its productivity based on a panel approach.
Beside technical regress in the sector, results indicate a considerable heterogeneity in
the plants’ output response to changes in the production factors. Furthermore, the
Korean electricity generating sector has been analyzed by means of parametric meth-
ods by Heshmati et al. (2012) and non-parametrically by Zhang et al. (2013). Both
papers use a metafrontier approach to compare different combustion technologies, as
e.g. by fuel type (coal vs. oil) or by combustion process (combined cycle vs. steam
generation), with both papers finding considerable technology gaps. Finally, the Ko-
rean electricity generation is compared to Chinese generating utilities by Zhang and
Choi (2013), which is, to the authors’ knowledge, the only cross-country comparison
of electricity generating utilities.
Other single country studies exist for Indian coal and oil-fired plants (Thakur et al.,
2006) as well as Spanish coal-fired plants (Arocena and Waddams Price, 2002), while
Barros (2008) analyzes hydroelectric power plants in Portugal. However, never have
the German power plants, the largest industrial sector in Europe, been empirically
analyzed with respect to their efficiency. By comparing four different combustion
technologies in a metafrontier framework, which has not, to our knowledge, been
conducted in the previous literature, the drivers of CO2 emission reduction with re-
spect to efficiency improvements as well as technology switches in the long run can
be determined.

3. Methodology

3.1. The Metafrontier Framework
To measure power plant efficiency, non-parametric efficiency analysis, in the spirit

of Farrell (1957) and Debreu (1951), is used in this paper. Contrary to parametric
approaches, such as Stochastic Frontier Analysis (SFA, e.g. Meeusen and Broeck,
1977), this allows for the flexible estimation of a production function without any a
priori specification of a functional relationship of inputs and outputs. Furthermore,
the non-parametric approach can incorporate multiple dimensions on both the in-
put and the output side, including undesirable outputs. To account for differences
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in production processes, we follow the approach by Hayami and Ruttan (1970) and
O’Donnell et al. (2008) and model a set of group technologies that are enveloped by
a common metatechnology.
Assume we observe Kt, kt = 1, ..., Kt firms - in our case power plants - with subscript
t indicating our observation period, t ∈ [1, T ]. In period t each firm is transforming
M (m = 1, ...,M) inputs xtm into N (n = 1, ..., N) desirable outputs ydtn. As a
byproduct of the transformation process, J undesirable outputs (j = 1, ..., J) yutj are
produced. In the following, xtk, y

d
tk and yutk denote the vectors of input, desirable

output and undesirable output of firm k in period t. With respect to intertempo-
ral aspects, we assume that input-output combinations observed in one period are
available in all the subsequent periods (“firms do not forget”). In the model, bad
outputs are treated as inputs under the assumption that the firm is willing to reduce
both, inputs and undesirable outputs. Thereby, undesirable output can be reduced
without a reduction in desirable outputs, which induces strong disposability. Thus, a
technology set Tt including all feasible input-output combinations in t and satisfying
free disposability of inputs and outputs can be written as

Tt =

{
(x, yd, yu)|x ≥

t∑
t=1

Kt∑
k=1

λtkxtk, y
u ≥

t∑
t=1

Kt∑
k=1

λtky
u
tk, y

u ≤
t∑
t=1

Kt∑
k=1

λtky
d
tk, λ

c ∈ Λ

}
(1)

This technology set includes all feasible input output combinations available in t
based on the assumptions above. This also implies that the set of feasible production
plans in t+1 is at least as large as the set in t. The parameter Λ can be used to impose
further restrictions on the technology as e.g. convexity or certain scaling assumptions
(Bogetoft and Otto, 2011). Given this technology set, observation kt can only be
treated as efficient if there is no vector (x̃, ỹu, ỹd) ∈ Tt with x̃ ≤ xtk, ỹ

u ≤ yutk, ỹ
d ≥ ydtk

and at least one inequality being fulfilled strictly.
In the production of electricity and heat, power plants can be further grouped e.g. by
the combustion technology or the fuel they use. As similar inputs are used to produce
similar outputs, the different combustion technologies can be seen as subtechnologies
of the underlying metatechnology set T . For such a subtechnology c (c = 1, ..., C) a
group technology set T c can be defined using the Kc

t observations in this group in
this period and can be written as

T ct =

{
(x, yd, yu)|x ≥

t∑
t=1

Kc
t∑

k=1

λtkxtk, y
u ≥

t∑
t=1

Kc
t∑

k=1

λtky
u
tk, y

u ≤
t∑
t=1

Kc
t∑

k=1

λtky
d
tk, λ ∈ Λ

}
(2)
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with the same properties as the metatechnology set. However, in this case the set
includes only input output combinations available for the group c. Similar to T , T ct
increases with t, however, T ct ⊆ Tt for each t and for each c.

3.2. Group Frontier and Metafrontier Estimation
To estimate efficiency Data Envelopment Analysis (DEA), as proposed by Charnes

et al. (1978) and Banker et al. (1984), is used. DEA is a linear programming tech-
nique that envelopes all input - output combinations with a piecewise linear frontier
that sets the benchmark against which firms are evaluated. It aims at finding an
efficiency score θtk that radially contracts inputs xtk and undesirable outputs ydtk
while remaining within the technology set specified by the data and the assumptions
about the technology. Throughout this paper, input orientation is assumed, because
this includes the key variable of interest, CO2 emissions. We impose variable returns

to scale (VRS, ΛV RS =
{
λk ≥ 0,

∑Kt

k=1 λk = 1
}

) to account for firm heterogeneity in

terms of size. Furthermore, constants returns to scale (CRS, ΛCRS = {λk ≥ 0}) are
imposed to measure efficiency potentials due to scale change. To use information
from the panel structure of the data, a sequential DEA approach is implemented
(Tulkens and Vanden Eeckaut, 1995). In this set-up an observation in period t is
not only benchmarked against observations from the same period but against all
observed input output combinations in the panel until t.
In each subtechnology c efficiency measures θV RStk and θCRStk for each observation k
using combustion technology c in period t can be derived by solving the following
linear programming problem with the relevant constraints on Λ:

min
θ,λt1,...,λtKc

t

θtk

s.t. θtkxtk ≥
t∑
t=1

Kc
t∑

k=1

λtkxtk

θtky
u
tk ≥

t∑
t=1

Kc
t∑

k=1

λtky
u
tk

ydk ≤
t∑
t=1

Kc
t∑

k=1

λtky
d
tk

λεΛ

(3)
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The solution to this problem refers only to the subset of observations that use tech-
nology c and delivers an efficiency score θtk as a scalar with 0 < θtk ≤ 1; θ = 1
indicates full efficiency and (1− θk) is the input savings potential. Furthermore, the
LP delivers weights λtk that determine the point on the frontier against which effi-
ciency for firm k is evaluated. The weights, therefore, construct a group technology
in which efficiency is only measured relative to other firms using technology c. The
shape of the frontier depends on the scale assumption, with VRS and CRS imposed
by the restrictions on λ outlined above. The size of the reference set - the right hand
side of the constraints - increases with t as we sequentially add observations period
by period. As the efficiency estimate for an observation can only decrease when
adding additional observations to the reference set, efficiency estimates obtained in
this LP will be smaller or equal to estimates resulting from separate annual frontier
estimates.
Similar to (3), we can construct the efficiency measure for each observation relative
to the metatechnology set T . It can be constructed by solving the following linear
programming problem for all Kt observations:

min
θmeta,λt1,...,λtKt

θmetatk

s.t. θmetatk xtk ≥
t∑
t=1

Kt∑
k=1

λtkxtk

θmetatk yutk ≥
t∑
t=1

Kt∑
k=1

λtky
u
tk

ydk ≤
t∑
t=1

Kt∑
k=1

λtky
d
tk

λεΛ

(4)

Similar to the first LP, we obtain efficiency scores θmetatk (0 < θmetatk ≤ 1) indicating
input savings potentials and weights λtk that determine the reference points on the
frontier. However, in this program unit k is compared to all units in the data set
thus including all C subtechnologies. Again, the shape of the frontier depends on
the definition of Λ and we impose again CRS and VRS.
One important aspect of the metafrontier is that it envelopes all group frontiers,as
we assume the same returns to scale. Thus, under the same scale assumption the
efficiency score obtained in the metafrontier framework, the metafrontier technical
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efficiency (MTE) will always be smaller than or equal to the efficiency score measured
against the group technology. This difference can be used to decompose inefficiency
into two components: first, group technical efficiency (GTE) estimated relative to
the group frontier (obtained from (3)) and a component that measures the distance
between the group frontier and the metafrontier, the metatechnology ratio (MTR).

For technology-c firm k in t this MTR is defined as MTRtk =
θmeta
tk

θtk
and indicates for a

given amount of output the share of inputs necessary when using the metatechnology
relative to the inputs necessary using the group technology (O’Donnell et al., 2008).
As by definition θmeta ≤ θ it follows that 0 < MTRtk ≤ 1 with MTRtk = 1 if an
observation reaches full efficiency against both the group technological frontier and
the metatechnology. On the contrary, MTRtk < 1 indicates the need for a technology
switch to reach the metafrontier, as the frontier for this observations is spanned by
observations from another group.

Input x

O
ut

pu
t y

Frontier C1

Frontier C2

Metafrontier

θmeta

θ

θmeta

θ

Frontier C1

Frontier C2

Metafrontier

Figure 1: Exemplary Illustration of the Metafrontier Framework (Own Illustration)

Figure 1 depicts the metafrontier framework exemplary for the case of one input
and one undesirable output under VRS. A number of observations from different
technologies span the metafrontier in the piece-wise linear DEA-style and envelopes
the two group frontiers for the subtechnologies, C1 and C2, that are spanned only by
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observations using this technology. Now, an observation in each group depicted as
rhombus (C1) and triangle (C2) is benchmarked against both - the group frontier (θ)
and the metafrontier (θmeta) - using the maximal reduction of inputs while staying in
the technology set. Obviously, the potential input reduction against the metafrontier
is at least as large as the reduction against the group frontier leading to θmeta ≤ θ.
Now the MTR can be calculated as the ratio of both, θmeta/θ and is one only if the
group technology is identical to the metafrontier, which is the case for C1. On the
contrary, we see that C2 generally shows inefficiency against the metafrontier and
MTR < 1 will hold although an observation is efficient against the group frontier.
Thus, the benchmarking against the metatechnology not only helps us identify the
efficiency of observations in the group, but also to locate the group frontier relative
to the metafrontier.

3.3. Scale Efficiency and Returns to Scale

Using the weights obtained in the LP, one can identify whether an observation
is above or below the optimal firm size, which is determined by the efficient firm
under CRS in every dimension. For firm k, firm size is below the optimal scale size
(operation under increasing returns to scale) if

∑Kt

k=1 λtk < 1 and above the optimal

scale size (operating under decreasing returns to scale) if
∑Kt

k=1 λtk > 1. The losses
of not having optimal scale size can be measured as scale efficiency SE, which is
calculated as the ratio of the efficiency score under VRS and CRS and bounded
above by one:

SE =
θCRStk

θV RStk

≤ 1 (5)

3.4. EPRI and CPRI

Overall measures of environmental and energy efficiency are of special interest to
directly determine savings potentials in terms of energy input and emission output.
Although a single efficiency score is obtained for each observation, not all improve-
ment potentials are uncovered. While the LP solution delivers a reference point with
maximum radial contraction of xtk and yutk, there might be still further improvement
potential if the constraints of the LP are not binding (Bogetoft and Otto, 2011). We
incorporate those slacks in an overall measure of efficiency using an energy poten-
tial reduction index (EPRI) and a CO2 emission potential reduction index (CPRI)
relative to the group frontiers. The EPRI is defined as
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EPRIt =

Kt∑
k=1

(1− θtk) ∗ xtkm + Stkm

Kt∑
k=1

xtkm

(6)

with Stkm being the slack for the energy input of observation k in period t. Likewise,
the CO2 emission potential reduction index is defined as

CPRIt =

Kt∑
k=1

(1− θtk) ∗ yutkj + Stkm

Kt∑
k=1

yutkj

(7)

with Stkj as slack of the emission (bad) output of observation k in period t. EPRI
and CPRI measure the total energy and emission savings potential of the indus-
try by summing up potential radial contraction and slacks. Contrary to a mean
efficiency score, the measures weight observations relative to their share of total
emission/energy use and thus measure actual energy input and CO2 emission sav-
ings potentials. Furthermore, if the EPRI exceeds the CPRI, additional emission
savings potentials are possible due to the relationship of energy input and emission
output.

3.5. Outliers and Innovators

As DEA is purely deterministic, results are prone to measurement and data er-
rors. In sequential DEA, an outlier not only influences the results in the period it
is observed, it also impacts results in all subsequent periods. Therefore, a careful
analysis of potential outliers is necessary. In this paper, the iterative superefficiency
analysis, as proposed by Banker and Gifford (1988), is used. The underlying idea
is the efficiency measurement for every observation relative to a frontier spanned by
all observations but the firm of interest. Superefficient units achieve efficiency scores
greater than one and are eliminated if their efficiency score exceeds a pre-determined
threshold. In this analysis superefficiency is measured in the sequential DEA formu-
lation, thus including all observation until t that have not been excluded so far, and
are excluded if they obtain a superefficiency score greater than two. That ensures
that observations with likely data errors are identified, but also allows for a suffi-
ciently large data set to remain including observations with considerable technical
progress.
Furthermore, we use the idea of the superefficiency analysis method to identify in-
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novators. We define an innovator in period t as a unit observed in t that could have
shifted the frontier from t− 1 - in that sense it is superefficient against the frontier
from the past period. This can be realized by solving equations 3 and 4 with changes
in the reference set. Instead of measuring efficiency against all observation including
t the reference set includes only observations until t − 1 and the summation of the
right hand side variables has an upper bound of t − 1. It should be noted that the
number of innovators can be larger than the number of efficient units as an innovator
may be ”masked” by another efficient observation from the same period. However, it
can also be smaller if no efficiency score can be determined, e.g. if a new observation
has a higher output than the largest unit in the period before and no frontier to
benchmark against can be found.

4. Data and Empirical Model

4.1. Data Sources

In this paper a unique data set from the Research Data Centres (FDZ) of the
German Federal Statistical Office and the Statistical Offices of the Länder is used.
Annual data from 2003 through 2010 is obtained from the monthly surveys (EVAS
43311) on electricity generating facilities with more than 1 MW capacity. These
power plants can be both, large scale electricity and heat suppliers or small scale
power plants for industrial use. Private, public and mixed ownership facilities are
included. The final data set includes a total 1459 observations over eight years
covered and is a representative sample of the approximate 1000 electricity generating
units in Germany that exceed 1 MW in capacity.3

4.2. Input and Output Specification

To model the production technology of power plants, it is assumed that labor (L),
capital (C) and energy (F) are used to produce output in form of delivered energy
(E). As a byproduct of this transformation process CO2 emissions (EM) emerge.
This extends the standard approach, as found for example in Lam and Shiu (2001)
or Olatubi and Dismukes (2000), by including an undesirable output in the technical
efficiency formulation. It thereby accounts for the managerial capabilities to reduce
emissions. In the measurement of inputs and outputs we also follow the literature
(e.g. Zhang et al., 2013). Labor input is measured as average monthly hours worked.
Capital input is approximated by the mean available gross capacity in MW including

3For data privacy reasons, we are obliged to use remote data processing and can neither see nor
report detailed information - such as minima and maxima - about the data set.
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Coal Lignite Gas Biomass

Coal, coal coke,
Coal briquette,
coal derivatives
and other coals

Lignite, black lig-
nite, lignite bri-
quette, lignite
coke, fluidized
bed lignite, lig-
nite dust, other
lignites

Natural gas,
marsh gas, coke
oven gas, furnace
gas, other syn-
thetic gases

Wood, straw,
liquid biomass,
biogas, land-
fill gas, sewage
gas, biosolid and
sewage sludge

Table 1: Subsets by Fuels

capacity for cogeneration. The mean value is chosen over the nameplate capacity to
account for the owner’s choice not to maintain a certain part of the capacity and
to control for potential capacity extensions. Energy input is measured as the total
annual fuel input in GJ. On the output side, we assume that plants are delivering
energy (E) in form of heat and electricity, measured as the sum of both in GWh.
As consumption by the plants reduces the actual supply of electricity and heat, net
values are taken. Furthermore, CO2 emissions are included as a byproduct of the
production of energy as undesirable output. They are calculated using emission
factors for the net calorific value obtained from the German Federal Environmental
Agency and measured in tons of CO2. That allows not only fuel- but also location (or
fuel-source) specific estimation of CO2 emissions. However, although power plants
may use a secondary fuel, due to data limitations we are only able to assess emissions
stemming from primary fuel inputs.

Technical efficiency is measured as metafrontier technical efficiency (MTE) and
as group technical efficiency (GTE). For the metafrontier the sample size by year
varies between 145 observations in 2003 and 199 observations in 2008 and 2009.
To construct group technological frontiers, we define four technology subsets based
on the major fuel input as listed in Table 1. Coal-fired power plants (214 observa-
tions), lignite-fired power plants (81), conventional gas-fired power plants (1091), and
biomass plants (73) are considered. Although further refinements would be possible,
this rough classification ensures sufficiently large subsets necessary for DEA. The
variation of the sample sizes of the different subsets depends on the fuel and sample
sizes are fairly stable for coal and lignite, but vary considerably for natural gas (114
in 2003, 147 in 2008) and biomass (3 in 2003, 17 in 2010). From this sample, in to-
tal 18 observations are eliminated in the superefficiency analysis, most are gas-fired
(12). This leads to a final sample size of 1441 observations over 8 years. Descriptive
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Coal Lignite Gas Biomass

Capital 382.45 919.79 51.97 9.20
Fuel 19,358 71,422 1,595 868
Labor 736,286 524,701 225,679 51,799
CO2 1,800 8,021 126 82
Output 2,582 7,230 291 95

Notes: Energy input F in thousand GJ, CO2 in thousand
tons, and Output in GWh

Table 2: Input and Output Means by Fuel for Aggregate Sample 2003 - 2010

statistics for the inputs and outputs of the different subsamples averaged over the
whole observation period are presented in Table 2; mean input and output values by
year can be found in Figure 2. Extensive descriptive statistics of annual input and
ouput values can be found in the appendix. In total, the sample covers between 21.4
and 38.1 GW of installed capacity, representing between 29 and 48 percent of total
installed capacity using these fuels. The descriptives show that coal- and lignite-fired
power plants are, on average, much larger than the natural gas and biomass plants in
the sample and cover more than two-thirds of the installed capacity under analysis.
However, the largest spread between small and large plants can be observed among
the gas-fired power plants, which reflects the fact that this subset contains plants for
electricity supply but also small-scale industrial plants. The large number of small
gas-fired plants is underlined by the descriptives as the 75 percent quartile is below
the mean for most of the input/output variables.

5. Results

Four different conventional combustion technologies are compared in a metafron-
tier framework. This section presents the results, first with respect to the metafron-
tier, then with respect to group-specific frontier estimates. All calculations are done
using remote data processing based on R. For data privacy reasons no detailed
(observation-specific) results can be presented.

5.1. Metafrontier Results

In the metafrontier framework, efficiency is estimated against a frontier enveloping
all observations irrespective of their subtechnology. Table 3 shows the sequential
DEA technical efficiency scores per year for all observations against this frontier.
It indicates that the mean as well as the median slightly decreases over the sample
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Figure 2: Annual Average of Inputs, Desirable and Undesirable Output by Fuel Type
in logs
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Year Min. 1st Qu. Median Mean 3rd Qu. Max. θ = 1 N

2003 0.168 0.444 0.638 0.643 0.840 1 23 145
2004 0.158 0.468 0.624 0.651 0.839 1 24 176
2005 0.149 0.475 0.625 0.651 0.841 1 17 153
2006 0.160 0.390 0.547 0.571 0.758 1 6 183
2007 0.138 0.390 0.531 0.560 0.718 1 10 188
2008 0.180 0.395 0.531 0.561 0.730 1 11 199
2009 0.184 0.369 0.511 0.544 0.697 1 1 199
2010 0.107 0.374 0.517 0.553 0.717 1 9 198

Mean 0.155 0.413 0.565 0.592 0.767 1 1441

Table 3: Sequential DEA Results for Aggregate Sample

period from 64 to 55 percent (from 64 to 51 percent, respectively). The maximum of
100 percent is attained in each year, but the number of fully efficient units decreases
over time.

Table 4 shows the metafrontier technical efficiency (MTE) for the power plants
by fuel type. Efficiency estimates are determined against the frontier spanned by all
technologies covered in the sample - the metatechnology - under the VRS assump-
tion. Fully efficient units are identified within each technology for different years,
indicating that production at an efficient point on the metafrontier is possible using
each technology. Natural gas-fired power plants are the only ones obtaining full effi-
ciency in each year of the observation period.
Mean MTE over the whole observation period is highest for lignite-fired power plants
(68 percent), followed by gas- (57 percent) and lignite-fired plants (55 percent).
Biomass-fired plants show considerable inefficiency, achieving a mean MTE of only
33 percent. For coal, lignite- and gas-fired plants, mean efficiency over the sample
period decreases through 2009, but increases in 2010. This can be partly attributed
to the increase in sample size due to the sequential structure of the DEA. As new
observations are added year by year, efficient observations from the past period as
well as observations from the period of analysis must be outperformed to be efficient.
This structure makes it more and more difficult to reach full relative efficiency.

Although the analysis of the MTE shows inefficiencies in every technological
group and comparably high mean efficiencies for the large-scale coal- and lignite-
fired plants, the MTR scores listed in Table 5 - indicating the difference between
the group technology frontiers and the metafrontier (see Figure 1) - draw a different
picture. While mean MTR under VRS is 82 percent for coal-, 76 percent for lignite-,
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Year Min. 1st Qu. Median Mean 3rd Qu. Max. θ = 1 N

Coal

2003 0.370 0.474 0.546 0.655 0.943 1.000 5 22
2004 0.372 0.445 0.535 0.644 0.841 1.000 5 26
2005 0.391 0.482 0.590 0.644 0.761 1.000 2 27
2006 0.341 0.473 0.618 0.635 0.762 0.974 0 27
2007 0.325 0.481 0.557 0.623 0.742 1.000 2 28
2008 0.304 0.481 0.532 0.612 0.752 0.994 0 27
2009 0.290 0.472 0.519 0.589 0.749 0.993 0 26
2010 0.329 0.475 0.560 0.626 0.770 1.000 2 26

Lignite

2003 0.378 0.552 0.847 0.763 1.000 1.000 3 6
2004 0.348 0.419 0.583 0.627 0.783 1.000 1 8
2005 0.421 0.688 0.906 0.803 1.000 1.000 2 5
2006 0.334 0.414 0.624 0.629 0.894 1.000 1 9
2007 0.341 0.449 0.614 0.681 0.881 1.000 2 13
2008 0.334 0.482 0.599 0.675 0.888 1.000 1 15
2009 0.337 0.428 0.615 0.651 0.870 0.988 0 14
2010 0.386 0.541 0.658 0.723 0.918 1.000 1 11

Gas

2003 0.194 0.440 0.646 0.641 0.834 1.000 15 114
2004 0.223 0.507 0.651 0.663 0.841 1.000 17 136
2005 0.199 0.475 0.622 0.648 0.839 1.000 12 118
2006 0.160 0.373 0.547 0.562 0.753 1.000 4 141
2007 0.170 0.368 0.530 0.547 0.694 1.000 5 137
2008 0.180 0.392 0.531 0.552 0.710 1.000 9 145
2009 0.184 0.366 0.516 0.539 0.689 1.000 1 144
2010 0.170 0.366 0.503 0.546 0.701 1.000 6 144

Biomass

2003 0.168 0.204 0.240 0.410 0.531 0.821 0 3
2004 0.158 0.239 0.338 0.420 0.444 1.000 1 6
2005 0.149 0.324 0.499 0.549 0.750 1.000 1 3
2006 0.171 0.257 0.306 0.392 0.324 1.000 1 6
2007 0.138 0.302 0.315 0.415 0.496 1.000 1 10
2008 0.193 0.305 0.351 0.410 0.445 1.000 1 12
2009 0.224 0.290 0.319 0.413 0.468 0.965 0 15
2010 0.107 0.250 0.306 0.389 0.488 0.953 0 17

Table 4: Metafrontier Analysis Results: Metafrontier Technical Efficiency
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Year Coal Lignite Gas Biomass

2003 0.844 0.834 0.999 0.4095
2004 0.843 0.690 0.999 0.4254
2005 0.823 0.834 0.999 0.584
2006 0.830 0.716 0.999 0.4207
2007 0.828 0.759 1.000 0.4449
2008 0.823 0.765 1.000 0.4825
2009 0.815 0.731 1.000 0.4988
2010 0.822 0.787 1.000 0.5166

Mean 0.828 0.764 0.999 0.472

Table 5: Metafrontier Analysis Results: Metafrontier Technology Ratio

and only 47 percent for biomass-fired plants, all natural gas-fired plants obtain an
MTR score between 99 and 100 percent. This underlines that gas-fired plants shape
the metafrontier and are benchmarked against their own group technological frontier.

A closer inspection of the peer units in the DEA program shows that efficiency
scores of all technologies are affected by the universe of combustion technologies and
all four technologies serve as peers for each other. However, gas-fired plants show an
outstanding role serving as benchmark for the majority of observations. This means
that those plants span a considerable part of the frontier making them the compari-
son unit for coal, lignite- and biomass-fired plants. However, this also indicates that
in the long run considerable input savings potentials indicated by the metafrontier
efficiency scores are only achievable by technology switches to natural gas. The anal-
ysis of the peers furthermore indicates that a considerable number of units from the
starting point of the panel serve as peers seven years later. This indicates that there
was no shift in certain regions of the best practice frontier, meaning no or only little
technological progress over time. However, an analysis of the dynamics of the frontier
is out of scope of this paper. In total, the metafrontier results indicate substantial
savings potentials from efficiency gains and savings potentials from switching to the
best available technology in the long run. Although reaching the metafrontier is
possible using coal-, lignite-, gas- or biomass-based combustion, our results indicate
that natural gas-fired plants dominate. They determine the best practice and serve
as benchmark for the other technologies.
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5.2. Group Frontier Results

5.2.1. Group Technical Efficiency

In the metafrontier framework, efficiency is not only measured against a metafron-
tier technology common for all observations, but also against specific group frontiers.
In this case, for an observation using technology c efficiency is measured against a
frontier spanned only by observations using the same technology. As we measure
efficiency for four different subtechnologies over eight years, 32 separate frontiers are
used to estimate efficiency, 32 further CRS frontiers are estimated to analyze scale
properties of the technologies. The descriptive statistics of the input-oriented anal-
ysis of technical efficiency relative to the VRS frontiers are shown in Table 6. The
evolution of 25, 50 and 75 percent quantiles of the efficiency are also shown in Figure
3.

For coal-fired power plants mean efficiencies between 75 and 77 percent are found
indicating average input savings potentials of 23 to 25 percent, respectively. Minima
between 31 and 45 percent indicate also considerable differences among the plants
and substantial savings potentials for the most inefficient observations. Generally,
efficiency scores for coal fired plants are found to be stable, and a noticeable number
of observations achieve efficiency scores of one in every year.

For lignite-fired plants, which beside coal-fired stations, is the second baseload
technology in our sample, mean efficiency is also rather stable between 85 and 94
percent. For these plants minimum efficiency is also fairly high, ranging between
55 and 73 percent. Similar to the coal-fired plants, at least one unit is found to be
efficient in each year, but with a decreasing number over time. As one may explain
the high minima and mean efficiencies with the fairly low sample sizes, one has to
consider that the sample nearly covers the population in most years. Furthermore,
e.g. for the 2009 sample, the reference set includes already 70 observation points.
In general, coal and lignite show up to be fairly stable in terms of efficiency, which
is rather not surprising given their constantly high degrees of utilization as base- or
mid-load plants.

Contrary to the baseload plants, gas-fired power plants are typically used to serve
demand peaks and show, therefore, a lower degree of utilization. For those plants,
results indicate considerable variation in terms of efficiency and we find minima indi-
cating more than 80 percent input savings potentials. Furthermore, results indicate
a rather downward trend in mean efficiency ranging from 64 percent in 2004 to 54
percent in 2010. Additionally, the number of efficient units decreases over time, in-
dicating that only few observations are able to push the frontier outwards. In total,
in combination with the metafrontier results, this finding shows that the technology
with a dominant position in the metafrontier is only used efficiently by a small num-
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Figure 3: Group Frontier Analysis Results: Group Technical Efficiency
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ber of observations, while a large share of the plants fail to exploit their potential.
For the biomass-fired plants, we find mean efficiency ranging between 100 percent

in 2003 and 79 percent in 2010. For this small sample, reaching relatively high
efficiency scores is fairly easy in the beginning of the sample period, as the set of
reference units is small. As the size of the comparison group increases mean and
minimum efficiency decrease. This also explains why a considerable share of units in
each year reaches full efficiency. Nevertheless, the results also indicate considerable
variation in terms of efficiency in this small sample underlining input and emission
output savings potentials also for these small scale plants.

In general, for the different technologies, inefficiencies are found with considerable
variation in magnitude. Furthermore, efficiency decreases for all technologies over
the time span underlining the importance of the size of the reference set in such an
analysis. However, for coal-, lignite- and gas- fired plant, an increase in efficiency is
found in the last year of the sample period. When comparing mean efficiency over
the years, biomass is found to be the most efficient technology in the intra-group
comparison, however, clearly facing also problems in sample size. The two base-load
fuels coal and lignite are ranked behind, while gas-fired stations are found to be -
on average - the group with the highest intra-group inefficiency. Moreover, results
indicate that for each technology group frontiers are pushed outwards indicating
technical change in the observation period. However, a deeper analysis of this point
is out of the scope of this paper and demands future research.

5.2.2. Scale Efficiency and Returns to Scale

In the production of electricity, inputs are not just transformed into desirable
outputs, but also undesirable outputs, in form of emissions, that are produced as
byproducts. As Sueyoshi and Goto (2013) note, scale inefficiency does not just lead to
an overuse of inputs but also results in an overproduction of the undesirable outputs
(damages to scale). As our subsamples spread strongly with size, we calculate scale
efficiency and the underlying returns to scale. Table 7 summarizes the results.
For coal- and lignite-fired plants - the plants with the highest capacity in the sample -
results show that the majority of the plants are above optimal scale size and operate
under decreasing returns to scale. However, for both technologies scale inefficiency
is generally very high indicating that only small shares of the inefficiency shown
in Table 6 can be attributed to not being optimally sized. As coal-fired plants -
contrary to lignite-fired plants - are not restricted by local fuel supply, adjustment to
optimal scale size is possible. Contrary to the baseload plants, the results for gas- and
biomass-fired stations indicate that most plants are operating below optimal scale
size and an increase in output would be beneficial. For the biomass-fired plants,
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Year Min. Mean Max. θ = 1 N Min. Mean Max. θ = 1 N

Coal Lignite

2003 0.413 0.768 1 6 22 0.5721 0.8917 1 4 6
2004 0.398 0.758 1 6 26 0.695 0.881 1 4 8
2005 0.446 0.777 1 4 27 0.732 0.946 1 4 5
2006 0.396 0.759 1 1 27 0.593 0.849 1 3 9
2007 0.359 0.747 1 3 28 0.617 0.878 1 4 13
2008 0.311 0.745 1 2 27 0.559 0.867 1 3 15
2009 0.341 0.722 1 1 26 0.592 0.870 1 1 14
2010 0.433 0.758 1 4 26 0.669 0.909 1 2 11

Gas Biomass

2003 0.194 0.642 1 17 114 1.000 1.000 1 3 3
2004 0.223 0.664 1 18 136 0.827 0.971 1 5 6
2005 0.199 0.650 1 12 118 0.587 0.863 1 2 3
2006 0.160 0.563 1 4 141 0.572 0.903 1 4 6
2007 0.170 0.547 1 5 137 0.471 0.909 1 5 10
2008 0.180 0.552 1 9 145 0.622 0.848 1 4 12
2009 0.184 0.539 1 1 144 0.520 0.820 1 5 15
2010 0.170 0.546 1 6 144 0.288 0.739 1 3 17

Table 6: Group Frontier Analysis Results: Group Technical Efficiency (GTE)

23



scale efficiency indicates that a large share of the inefficiency found under CRS is
attributable to not having optimal scale size. On the contrary, for the natural gas-
fired plants, results indicate that, on average, only small gains by adjusting scale size
are possible, but much improvement potential exists by using best practice and being
technically efficient. However, for gas-fired and biomass plants, efficiency gains by
scale change are not feasible in every case as biomass and industrial gas-fired plants
face restricted fuel supply.
In total, scale efficiency estimates indicate that a share of the intra-group inefficiency
can be explained by not having an optimal size. However, these savings potentials
are more pronounced among the technologies of smaller scale, biomass and natural
gas. Furthermore, results indicate that among the groups with high average capacity
(lignite and coal) a considerable share of plants tends to be larger than the optimal
scale size, as derived from the DEA, indicating damages to scale with respect to CO2

emissions. On the contrary, for the smaller biomass- and natural gas-fired plants we
find damages to scale for plants operating at increasing returns to scale.

RTS Coal Lignite Gas Biomass

RTS
Increasing 0.139 0.160 0.802 0.750
Constant 0.024 0.173 0.030 0.181

Decreasing 0.837 0.667 0.169 0.069

SE

2003 0.914 0.936 0.863 0.705
2004 0.915 0.927 0.894 0.632
2005 0.914 0.937 0.902 0.698
2006 0.926 0.947 0.862 0.774
2007 0.931 0.912 0.868 0.728
2008 0.941 0.893 0.875 0.739
2009 0.942 0.882 0.877 0.694
2010 0.922 0.849 0.875 0.706

Table 7: Group Frontier Analysis Results: Shares of Underlying Returns to Scale
(RTS) & Mean Scale Efficiency (SE)

5.3. EPRI and CPRI

As mean efficiency evaluations deliver no clear picture about the underlying total
input savings potentials, two additional indicators are constructed - the emission
potential reduction index (EPRI) and the CO2 emission potential reduction index
(CPRI). They deliver the total share of fuel input and emission output that could
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have been saved given relative efficiency of all observations including adoption of
best practice without switching the input fuel. The EPRI and CPRI for the different
technologies are shown in Table 8.

CPRI EPRI

Year Coal Lignite Gas Biomass Coal Lignite Gas Biomass

2003 0.022 0.000 0.566 0.287 0.023 0.000 0.278 0.287
2004 0.048 0.025 0.524 0.212 0.048 0.025 0.231 0.212
2005 0.018 0.191 0.496 0.210 0.017 0.191 0.236 0.210
2006 0.047 0.082 0.485 0.223 0.056 0.082 0.266 0.223
2007 0.097 0.086 0.516 0.251 0.100 0.086 0.287 0.251
2008 0.097 0.199 0.472 0.232 0.102 0.199 0.291 0.232
2009 0.102 0.187 0.438 0.259 0.108 0.187 0.311 0.259
2010 0.077 0.311 0.487 0.240 0.084 0.311 0.286 0.240

Mean 0.063 0.135 0.498 0.239 0.067 0.135 0.273 0.239

Table 8: Group Frontier Analysis Results: EPRI and CPRI

Both indicators suggest substantial savings potentials for all technologies. CPRI
for biomass and gas-fired plants exceeds mean inefficiency considerably, indicating
extensive CO2 savings potentials. This result is driven by two factors: on the one
hand, especially the largest plants show inefficiencies; on the other hand, a noticeable
share of these savings potentials can be attributed to slacks in the LP. This is not
the case for coal- and lignite-fired plants, for which results show savings potentials
less than average inefficiency indicating savings especially for the smaller plants.
However, the CPRI for the gas-fired plants shows an interesting pattern: while mean
efficiency decreased over the sample period, CO2 savings potentials decreased as well.
This underlines the effect of decreased slacks with a larger number of plants in the
reference set due to sequentially added observations in the DEA.

The results for the EPRI that explains fuel input reduction potentials show a
similar pattern as the CPRI for biomass and coal, and only slightly higher EPRI
values for lignite. For natural gas, potential CO2 savings exceed potential fuel input
savings strongly and can be partly explained by the considerable lower share of slacks
in the EPRI measure. Furthermore, the results underline the difference between
different types of gas and their CO2 content. Thus, these savings potentials were
not found if this variable was excluded from the analysis. Whilst for the coal and
lignite-fired plants EPRI and CPRI tend to increase over the sample period, these
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measures are fairly constant for the biomass plants. Furthermore, for biomass-fired
plants the measures stresses the importance of slacks: while we find no technical
inefficiency in the first year of the sample for this technology, nevertheless the EPRI
and CPRI measures indicate savings potentials for these plants.

To summarize, significant savings potentials with respect to CO2 emissions and
fuel input are found, most often exceeding the radial contraction of all inputs. The
differences to the mean efficiency scores underline two important aspects: on the one
hand, a simple efficiency measure does not indicate all savings potentials as slacks are
not included in here. On the other hand, the results underline the considerable effi-
ciency differences among the plants. Furthermore, as EPRI and CPRI are weighted
with the plant size (contrary to simple average efficiency scores), these measures
again highlight the losses due to suboptimal scale size.

6. Conclusion

This paper assesses the technical efficiency of fossil fueled power plants to es-
timate energy savings and CO2 reduction potentials in the German electricity and
heat generation sector. We contribute to the existing literature looking at the largest
EU country in terms of CO2 emissions and the largest European energy generating
sector. We use a unique panel data set, with 1459 observations over the 2003-2010
period, during which Germany experienced considerable changes in electricity gener-
ation. Using a metafrontier framework, efficiency estimation accounts for technology
heterogeneity and can, therefore, handle and compare generating companies with
different technologies. This paper is the first empirical analysis comparing plants
with four different combustion technologies.
The metafrontier results indicate substantial savings potentials in terms of both
inputs and undesirable CO2 emission outputs. Average metafrontier technical ef-
ficiency is found to be highest for the large-scale baseload plants using coal and
lignite. However, results also show considerable inefficiencies of gas-fired stations,
even as they obtain an MTR score of unity. This means that they shape the tech-
nology and serve as benchmark also for plants using other fuels. Thus, considerable
efficiency increases are achievable only in the long run with technology switches to
gas.
The group technical efficiency results suggest substantial savings potentials with re-
spect to inputs and the undesirable output for every technology. Empirical findings
show that intra-group differences are more pronounced among the gas-fired plants
for which significantly lower minimum efficiencies are found. This implies that con-
siderable emission reductions are feasible without switching technology but by using
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best-practice, which makes those potential gains available already in the short run.
Results furthermore indicate scale inefficiencies for each technology, but are espe-
cially pronounced for biomass-fired plants. An analysis of the underlying returns to
scale of the plants suggest that baseload plants (coal and lignite) are, on average,
larger than optimal, while the opposite is found for gas and biomass plants. This
means that, especially among the groups with high average capacity, notable CO2

emission and fuel input savings are possible by downward adjusting size of generating
facilities.
Finally, our results stress two further aspects: on the one hand, using a panel data
set allows more accurate efficiency estimations. The use of a sequential DEA pro-
gram allows for efficiency to be measured against a much larger number of reference
units, thus reducing the amount of slacks in the LP and better approaching the true
underlying technology. However, persistence of peer units from early sample periods
also suggests the need for an analysis of technical change in this sector which was
out of scope of this study and needs further research.
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Appendix .1. Descriptive Statistics

This section presents the descriptive statistics of the sample used for the analysis.
Obs gives the number of observations in this the year. Capital is annual mean
available capacity measured in MW. Fuel is fuel input of the plant measured in 1000
GJ. Labor input is sum of working hours. CO2 are CO2 emissions in tons. Output
is the sum of heat and electricity output in GWh. Empty entries are not reported
due to data privacy regulations of the German statistical offices.
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2003 2004 2005 2006 2007 2008 2009 2010

Obs 22 26 27 27 28 27 26 26

Q25 85.80 87.57 103.76 108.83 91.18 99.33 123.44 100.81
Capital Med 301.08 295.75 301.33 273.42 339.50 306.00 385.13 358.00

Mean 373.51 360.29 363.40 358.23 381.00 395.11 417.22 410.73
Q75 615.98 526.42 624.37 554.92 577.75 577.60 674.85 687.94

Q25 8,302,972 6,572,368 7,939,636 7,592,732 6,909,764 5,473,505 4,597,282 3,635,072
Fuel Med 18,150,738 15,850,913 16,450,917 15,955,949 15,127,849 14,650,731 14,286,531 12,716,727

Mean 22,687,637 18,822,660 20,525,256 19,790,614 19,828,787 18,865,968 17,841,286 16,939,149
Q75 30,560,683 26,166,114 29,756,529 27,563,373 28,781,382 28,069,147 25,264,032 25,251,323

Q25 219,763 200,547 191,500 197,172 202,534 195,220 189,590 182,004
Labour Med 321,298 275,365 242,265 246,231 262,104 278,909 299,986 297,285

Mean 614,582 662,093 683,032 779,873 796,615 818,125 761,259 748,566
Q75 709,613 693,783 627,591 610,048 602,503 633,611 675,447 685,101

Q25 772,176 611,230 738,386 706,124 642,608 509,036 427,547 338,062
CO2 Med 1,688,019 1,474,135 1,529,935 1,483,903 1,406,890 1,362,518 1,328,647 1,182,656

Mean 2,109,950 1,750,507 1,908,849 1,840,527 1,844,077 1,754,535 1,659,240 1,575,341
Q75 2,842,143 2,433,449 2,767,357 2,563,394 2,676,669 2,610,431 2,349,555 2,348,373

Q25 1,023,292 785,209 1,079,197 1,105,928 899,790 787,376 910,117 749,706
Output Med 2,569,384 2,508,765 2,673,425 2,180,437 2,406,535 2,367,010 2,177,444 1,908,481

Mean 2,848,504 2,575,559 2,746,387 2,640,324 2,612,668 2,539,724 2,372,948 2,350,606
Q75 3,677,321 3,273,208 3,563,529 3,249,413 3,407,506 3,439,597 2,961,028 3,225,119

Table .9: Descriptive Statistics Coal

2003 2004 2005 2006 2007 2008 2009 2010

Obs 6 8 5 9 13 15 14 11

Q25 75.00 74.00 73.33
Capital Med 241.50 74.17 387.00 75.00 355.22 843.33 638.75 920.00

Mean 837.18 540.51 914.38 622.94 996.50 1031.42 933.90 1225.19
Q75 1902.25 1795.46 1606.88

Q25 8,496,479.00 8,232,743.00 7,819,584.50
Fuel Med 16,222,824.00 8,483,013.50 23,644,575.00 8,105,210.00 28,963,825.58 49,248,295.00 39,191,497.00 62,275,405.74

Mean 60,440,524.67 40,737,250.88 72,696,696.20 47,034,143.35 82,861,512.74 79,371,963.67 73,459,216.14 92,152,325.52
Q75 171,967,717.00 148,580,785.50 133,057,013.25

Q25 91,604.00 106,750.50 96,842.75
Labor Med 159,119.00 107,846.50 217,257.00 122,592.00 231,157.00 284,020.00 287,062.00 487,666.00

Mean 463,134.67 321,747.38 488,670.00 317,579.78 562,537.85 592,535.53 562,041.36 706,981.55
Q75 997,806.00 1,034,816.00 906,604.00

Q25 883,633.82 875,926.43 813,236.79
CO2 Med 1,761,170.09 882,233.40 2,624,547.83 842,941.84 3,214,984.64 5,121,822.68 4,151,410.01 6,476,642.20

Mean 6,792,669.93 4,504,110.67 8,188,450.53 5,226,549.36 9,352,925.73 8,925,842.90 8,245,595.36 10,366,907.93
Q75 19,604,319.74 16,870,220.17 15,144,927.79

Q25 727,923.00 717,265.50 663,440.25
Output Med 1,786,324.50 789,784.50 2,338,149.00 689,357.00 2,618,058.81 5,742,401.00 4,313,027.00 7,338,541.78

Mean 6,300,040.00 4,091,255.13 7,658,764.00 4,993,616.94 8,087,684.37 7,994,358.13 7,381,801.21 9,409,286.22
Q75 14,956,727.00 14,161,927.50 12,410,947.00

Table .10: Descriptive Statistics Lignite
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2003 2004 2005 2006 2007 2008 2009 2010

Obs 114 136 118 141 137 145 144 144

Q25 1.68 1.42 1.19 1.43 1.49 1.86 2.00 1.92
Capital Med 3.69 3.88 2.93 4.48 4.52 4.61 4.64 4.52

Mean 68.03 45.93 48.99 47.72 53.56 52.76 47.60 53.60
Q75 31.08 16.84 19.23 19.90 13.40 20.00 18.17 19.63

Q25 46,398 67,917 63,074 80,421 76,717 86,035 91,796 88,571
Fuel Med 130,509 228,202 155,003 213,058 215,881 232,821 249,218 247,612

Mean 1,605,909 1,411,957 1,620,838 1,594,739 1,612,984 1,786,560 1,556,512 1,564,499
Q75 828,081 862,063 922,532 911,521 664,448 1,081,774 938,355 891,102
Q25 54,489 65,009 54,739 66,074 66,155 61,265 55,781 53,065

Labor Med 108,462 112,214 109,011 113,229 112,688 109,258 108,472 110,324
Mean 192,560 204,466 275,481 244,013 234,089 224,012 217,451 215,076
Q75 207,813 203,365 216,035 201,263 200,843 201,218 183,861 188,800

Q25 2,598 3,803 3,532 4,504 4,296 4,818 5,141 4,960
CO2 Med 7,309 12,779 8,680 11,931 12,089 13,038 13,956 13,866

Mean 146,599 125,388 132,583 123,480 129,793 133,310 105,467 120,000
Q75 46,373 48,276 51,662 51,045 37,209 60,579 52,548 49,902

Q25 9,637 12,089 12,223 16,423 17,175 19,274 18,550 20,084
Output Med 26,164 44,399 32,832 46,587 43,448 44,489 52,669 48,506

Mean 282,162 264,353 304,193 295,534 288,211 318,026 280,628 291,865
Q75 184,530 193,641 209,134 202,267 127,612 224,241 206,343 194,931

Table .11: Descriptive Statistics Natural Gas

2003 2004 2005 2006 2007 2008 2009 2010

Obs 3 6 3 6 10 12 15 17

Q25 4.38 4.72 5.40
Capital Med 20.00 3.60 5.00 6.81 5.05 5.57 7.15 7.50

Mean 17.67 4.01 4.83 7.63 7.87 9.50 10.24 10.51
Q75 15.18 17.08 15.29

Q25 464,489 505,825 640,721
Fuel Med 653,153 569,579 741,618 734,533 594,993 676,049 661,495 729,525

Mean 657,421 550,420 605,401 746,371 957,595 945,695 856,684 1,010,073
Q75 910,828 971,945 1,375,426

Q25 26,595 19,316 21,656
Labor Med 56,728 52,109 52,795 29,482 33,780 36,666 32,626 33,690

Mean 57,409 52,482 55,726 39,947 55,645 63,803 46,930 47,618
Q75 92,164 44,448 46,631

Q25 44,126 48,053 60,868
CO2 Med 62,050 54,110 70,454 69,781 56,524 64,225 62,842 69,305

Mean 62,455 52,290 57,513 70,905 90,972 89,841 81,385 95,957
Q75 86,529 92,335 130,665

Q25 42,442 44,264 59,113
Output Med 35,340 38,041 34,372 46,844 39,092 92,272 81,691 93,262

Mean 75,941 59,766 82,468 69,730 96,207 105,303 101,854 109,070
Q75 110,151 119,173 131,339

Table .12: Descriptive Statistics Biomass
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