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Non-technical summary

Research Question

In many policy institutions, nowcasts of quarterly GDP growth are regularly used

to inform decision makers about the current state of the economy. A workhorse

model for nowcasting is the bridge equation, which explains GDP growth by time-

aggregated business cycle indicators. In the recent academic literature, another

single-equation approach for nowcasting called mixed-data sampling, or MIDAS

in brief, has received a lot of attention. So far, MIDAS and bridge equation

approaches have been mostly discussed separately. Against this background, the

paper addresses the following questions: What are the differences between MIDAS

and bridge equations? Do they matter for nowcasting GDP growth in practice?

Contribution

The paper analytically discusses three features of the approaches: 1) how they

tackle multi-step ahead nowcasting (direct versus iterative), 2) how the weights

of high-frequency observations in the nowcasts differ (estimated versus time ag-

gregation weights), and 3) how current-quarter observations of the business cycle

indicator are considered in the equation. Given these results, the paper derives

intermediate models between MIDAS and bridge equations that help to isolate the

differences between them. The paper also compares the different approaches in an

empirical nowcast exercise for Euro area GDP growth.

Results

The differences between the models are: 1) MIDAS is a direct multi-step nowcast-

ing tool, whereas bridge equations are based on iterated forecasts; 2) MIDAS equa-

tions employ empirical weighting of high-frequency predictor observations with es-

timated functional lag polynomials, whereas the weights of indicator observations

in bridge equations are partly fixed stemming from time aggregation. 3) MI-

DAS equations can consider current-quarter of high-frequency indicators, whereas

bridge equations typically do not. In the empirical exercise for nowcasting Euro

area growth, there is not a single dominating approach. MIDAS or bridge equa-

tions outperform each other depending on the indicators chosen and the evaluation

sample. On the other hand, pooling of many single nowcasts yields stable results

over time.



Nichttechnische Zusammenfassung

Fragestellung

In vielen Organisationen werden Kurzfristprognosen des vierteljährlichen BIP dazu

verwendet, Entscheidungsträger über die aktuelle Lage der Volkswirtschaft zu in-

formieren. Eine Standardmethode zu diesem Zweck ist der Brückengleichungsansatz,

in dem das BIP durch zeitaggregierte Konjunkturindikatoren erklärt wird. In der

jüngeren wissenschaftlichen Literatur wird der Mixed-Data Sampling Ansatz, oder

kurz MIDAS, intensiv diskutiert. Bisher wurden beide Verfahren eher unabhänging

voneinander betrachtet. Daher geht das Papier den folgenden Fragen nach: Was

sind die Unterschiede zwischen dem MIDAS-Ansatz und Brückengleichungen? Wel-

che Rolle spielen diese Unterschiede in der laufenden Anwendung?

Beitrag

Das Papier vergleicht analytisch, wie in den Ansätzen 1) Mehrschrittprognosen

erstellt werden (direkt oder iterativ), wie 2) die Gewichte der hochfrequenten

Indikatorwerte berechnet werden (geschätzt oder mit festen Zeitaggregationsge-

wichten), und 3) ob vorlaufende Beobachtungen aus dem laufenden Quartal in der

Prognosegleichung berücksichtigt werden. Auf Grundlage dieser Ergebnisse werden

alternative Modellvarianten abgeleitet um die Rolle der Unterschiede herauszuar-

beiten. Die verschiedenen Ansätze werden ferner in einer empirischen Anwendung

für die Kurzfristprognose des BIP im Euroraum miteinander verglichen.

Ergebnisse

Es zeigen sich folgende Unterschiede: 1) MIDAS impliziert direkte Mehrschritt-

prognosen, während Prognosen mit Brückengleichungen iterativ erstellt werden.

2) Im MIDAS-Ansatz werden die hochfrequenten Indikatorbeobachtungen mit

geschätzten Lag-Polynomen gewichtet, während die Gewichtung in Brückenglei-

chungen zum Teil auf festen Gewichten aus der Zeitaggregation der Indikatoren be-

ruht. 3) MIDAS-Gleichungen können frühzeitig im Quartal verfügbare Indikatorbe-

obachtungen berücksichtigen, während dies bei Brückengleichungen üblicherweise

nicht der Fall ist. In der empirischen Anwendung zur Kurzfristprognose des BIP im

Euroraum zeigt sich, dass kein Ansatz eindeutig überlegen ist. Je nach verwende-

tem Konjunkturindikator und Evaluierungszeitraum zeigen im Prognosevergleich

mal MIDAS, mal die Brückengleichungen genauere Prognosen. Prognosekombina-

tionen über mehrere Modelle zeigen hingegen stabile Ergebnisse im Zeitablauf.
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1 Introduction

In policy institutions such as Central Banks, nowcasting GDP growth is an im-
portant task to inform decision makers about the current state of the economy.
Nowcast models typically consider specific data irregularities: Whereas GDP is
sampled at quarterly frequency and with a considerable delay only, many business
cycle indicators are available at higher frequency and more timely, for example,
monthly industrial production or high-frequency financial data. Policy analysts
want to exploit this data for nowcasting in the most efficient way without a loss
of information. Thus, methods for nowcasting should be able to tackle these data
irregularities. This paper compares two single-equation approaches for nowcasting:
1) Mixed-data sampling (MIDAS) regressions and 2) bridge equations.

In MIDAS regressions, the observations of the low-frequency variable are di-
rectly related to lagged high-frequency observations of the predictors without time
aggregation. If the differences in sampling frequencies are huge, functional lag
polynomials are employed in order to keep the number of parameters to be esti-
mated small. In this case, non-linear least squares (NLS) is used for parameter
estimation as outlined in Ghysels, Sinko, and Valkanov (2007). Whereas MIDAS
has been initially used for financial applications, for example in Ghysels, Santa-
Clara, and Valkanov (2006), it has been recently employed as a macroeconomic
forecast tool for quarterly GDP in many applications, starting with Clements and
Galvão (2008), Clements and Galvão (2009). Recent contributions are Drechsel
and Scheufele (2012a), Andreou, Ghysels, and Kourtellos (2013), Kuzin, Mar-
cellino, and Schumacher (2011), Ferrara, Marsilli, and Ortega (2014), and Foroni,
Marcellino, and Schumacher (2014), Duarte (2014), amongst others. Recent sur-
veys include Armesto, Engemann, and Owyang (2010) and Andreou, Ghysels, and
Kourtellos (2011).

Bridge equations are also dynamic, but explain the low-frequency variable by
low-frequency lags of a predictor variable. For GDP nowcasting, quarterly values of
the predictor are used on the right-hand side and are typically obtained from time
aggregation of the high-frequency observations of the predictor if available. The
bridge equations can be estimated by ordinary least squares (OLS). To make now-
casts, the predictors are themselves predicted using an additional high-frequency
model, for example an autoregressive (AR) model. The high-frequency forecasts
from this model are aggregated over time to the quarterly frequency and plugged
into the bridge equation. Due to the simple estimation method and their trans-
parency, bridge equations are widely used in policy organizations, in particular,
central banks. Applications in the literature include Ingenito and Trehan (1996),
Baffigi, Golinelli, and Parigi (2004), Golinelli and Parigi (2007), Diron (2008),
Hahn and Skudelny (2008), Rünstler, Barhoumi, Benk, Cristadoro, Den Reijer,
Jakaitiene, Jelonek, Rua, Ruth, and Van Nieuwenhuyze (2009), Bulligan, Golinelli,
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and Parigi (2010), Angelini, Camba-Mendez, Giannone, Reichlin, and Rünstler
(2011), Bulligan, Marcellino, and Venditti (2014), Camacho, Perez-Quiros, and
Poncela (2014), Foroni and Marcellino (2013), and Foroni and Marcellino (2014),
amongst others. Applications of bridge equations for nowcasting in Central Banks
are documented in ECB (2008), Bundesbank (2013), and Bell, Co, Stone, and
Wallis (2014) from the Bank of England.

In this paper, the relationship between MIDAS and bridge equations as now-
cast tools is investigated in detail. In the literature, a few comparisons of the
two approaches can be found, for example, Foroni and Marcellino (2013). This
paper expands on this literature by providing analytical results to explain the
differences between MIDAS and bridge equations. This is possible, because MI-
DAS and bridge equations do both belong to the class of distributed-lag models
extended to mixed-frequency data. Three conceptual differences between the two
model classes are established: 1) In the applications cited above, MIDAS is a direct
multi-step forecasting tool, whereas bridge equations are mostly based on iterated
multi-step forecasts from an additional high-frequency model, see Bhansali (2002)
for a discussion of direct versus iterative forecasting. 2) MIDAS employs empirical
weighting of high-frequency predictor observations often based on functional lag
polynomials, whereas bridge equations are partly based on fixed weights stemming
from statistical time aggregation rules. The different weighting schemes also im-
ply different estimation methods, namely, OLS for bridge equations and NLS for
MIDAS equations due to non-linear functional lag polynomials. 3) Finally, MI-
DAS can consider current-quarter observations of the high-frequency indicator in
the mixed-frequency equation, whereas the bridge equation typically contains only
contemporaneous or lagged observations of the indicator.

To assess the role of each of these differences, an intermediate model between
MIDAS and bridge equations, called iterative MIDAS (MIDAS-IT), is derived.
This approach differs from the bridge equation only by a different weighting
scheme of the high-frequency observations on the right-hand side, and from stan-
dard MIDAS by an iterative solution of the model for nowcasting. Further model
variants arise by different assumptions regarding leading terms of the indicators.
Highlighting the differences between the approaches might help a practitioner to
make modelling decisions in a class of regression-based models for nowcasting with
mixed-frequency data that have been discussed mostly in isolation in the recent
literature.

In an empirical exercise for nowcasting Euro area GDP, the alternative ap-
proaches are compared on recent data including the Great Recession. The pre-
dictor set comprises a large number of monthly indicators. MIDAS and bridge
equations with single indicators are evaluated with respect to their out-of-sample
nowcast accuracy. It turns out that the performance of the approaches varies over
time, in particular during and after the recent financial crisis. On the other hand,

2



pooling nowcasts from equations with different indicators provides stable results.
The pooling results are more robust than single models, but the relative perfor-
mance of MIDAS and bridge equations shows no clear winner. In the periods
investigated here, however, the pooled mixed-frequency models are clearly better
than naive benchmarks.

The paper proceeds as follows: Section 2 provides the analytical comparison of
MIDAS and bridge equations, and discusses alternative models that link the two
core approaches. In Section 3, the results of the empirical nowcast exercise are
discussed. Section 3 also contains sensitivity checks. Section 4 concludes.

2 MIDAS and bridge equations for nowcasting

The focus in this paper is on quarterly GDP growth, which is denoted as yt, where
t is the quarterly time index t = 1, 2, . . . , Ty with Ty as the final quarter for which
GDP is available. The aim is to nowcast or forecast GDP for period Ty+h, yielding
a value for yTy+h with horizon h = 1, . . . , H quarters.

In this context, nowcasting means that in a particular calendar month, GDP
for the current quarter is not observed. It can even be the case that GDP is only
available with a delay of two quarters. In April, for example, Euro area GDP is
only available for the fourth quarter of the previous year, and a nowcast for second
quarter GDP requires h = 2. Typically, the GDP figure for the first quarter is
published in mid-May. Thus, if a decision maker requests an estimate of current,
namely second, quarter GDP in April, the horizon has to be set sufficiently large
in order to provide the appropriate figures. Further information and details on
nowcasting procedures can be found in the survey by Banbura, Giannone, and
Reichlin (2011).

In this paper it is assumed for simplicity, that the information set for now-
and forecasting includes one stationary monthly indicator xmt in addition to the
available observations of GDP. The time index for monthly observations is defined
as a fraction of the low-frequency quarter according to t = 1 − 2/3, 1 − 1/3, 1, 2 −
2/3, . . . , Tx − 1/3, Tx as in Clements and Galvão (2008). Usually, Tx ≥ Ty holds,
as monthly observations for many relevant macroeconomic indicators are available
earlier than GDP observations for the current quarter, where Tx is the final month
for which the indicator is available. The now- or forecast for GDP is denoted as
the conditional expectation yTy+h|Tx , as the nowcast is conditioned on information
available in month Tx, which also includes GDP observations up to Ty.
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2.1 MIDAS regressions

The mixed-data sampling (MIDAS) approach as proposed by Ghysels et al. (2007)
(2007) and Clements and Galvão (2008) is a direct nowcast tool. The dynam-
ics of the indicator is not explicitly modelled. Instead, MIDAS directly relates
future GDP to current and lagged indicator observations, thus yielding different
forecasting models for each horizon, see Marcellino, Stock, and Watson (2006) as
well as Chevillon and Hendry (2005) for detailed discussions of this issue in the
single-frequency case.

The MIDAS equation for GDP growth yt+h in period t+h with forecast horizon
h quarters is

yt+h = β0 + λyt + β1B(L1/3; θ)xmt+w + εt+h, (1)

where w = Tx−Ty denotes the lead of the high-frequency indicator as in Andreou
et al. (2013). For nowcasting, specifying the right-hand side in terms of period-
t+w observations helps to condition the nowcast on the current-quarter indicator
information, which is early available in contrast to GDP (Clements and Galvão
(2008)). The MIDAS equation contains an autoregressive term λyt. The term
B(L1/3; θ) is a lag polynomial

B(L1/3; θ) =
K∑
k=0

b(k; θ)Lk/3, (2)

where the high-frequency (monthly) lag operator is defined as xmt−1/3 = L1/3xmt . In

the MIDAS literature, typically functional lag polynomials are chosen forB(L1/3; θ)
to avoid parameter proliferation for long high-frequency lags K. A popular func-
tional form of the polynomial is the exponential Almon lag

b(k; θ) =
exp(θ1k + θ2k

2)
K∑
j=0

exp(θ1j + θ2j2)

(3)

with parameters θ = [θ1, θ2] defined in Lütkepohl (1981). For given θ, the lag
function provides a parsimonious way to consider a large number of K monthly
lags of the indicators. The resulting functional form is typically unimodal, and
can be hump shaped, declining or flat, as discussed in Ghysels et al. (2007). The
weights b(k; θ) sum to one by construction, and β1 is a regression coefficient that
relates GDP to the weighted sum of high-frequency observations of the indicator.

The MIDAS parameters are estimated for each forecast horizon h = 1, . . . , H
by NLS, and the direct forecast is given by the conditional expectation

ŷTy+h|Tx = β̂0 + λ̂yTy + β̂1B(L1/3; θ̂)xmTx
, (4)
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where Tx = Ty + w such that the most recent observations of the indicator are
included in the conditioning set of the projection. For example, if one wants to
nowcast second quarter GDP, industrial production is available for April and GDP
for the first quarter, then the lead is w = 1/3. The specification of (1) does imply
the projection (4), where the April observation is part of the conditioning set.

In the literature, alternative lag functions have been used in MIDAS regressions.
For example, weights based on the beta distribution have been proposed in Ghysels
et al. (2007). For mixing quarterly and monthly data, Foroni et al. (2014) discuss
unrestricted lag polynomials if the lag order K is low. In this case, the polynomial
is

β1B(L1/3; θ) = b(L1/3; θ) =
K∑
k=0

b(k; θ)Lk/3 =
K∑
k=0

bkL
k/3. (5)

This variant of MIDAS with unrestricted lag polynomials will be abbreviated
by U-MIDAS from here on. Note that U-MIDAS implies the estimation of K + 1
polynomial parameters, whereas the functional lag (3) requires three parameters
to be estimated. Thus, standard MIDAS with functional lag polynomials are
more parsimonious, whereas U-MIDAS is more flexible. Other weighting functions
include non-exponential Almon as in Drechsel and Scheufele (2012a) or penalized
changes in weights, see Breitung, Elengikal, and Roling (2013). An overview is
provided in the on-line appendix of the paper Andreou et al. (2013).

2.2 Bridge equation

Following the recent papers of Foroni and Marcellino (2013) or Bulligan et al.
(2014), a bridge equation with a single indicator can be defined as

yt = β0 + λyt−1 + β(L)xqt + εt, (6)

where yt is again GDP growth in quarter t. The bridge equation contains a con-
stant and an autoregressive term. The predictor xqt on the right-hand side is a
quarterly indicator available for t = 1, 2, 3, . . . , Ty, the same periods as GDP. The
lag polynomial β(L) of order p is defined as β(L) =

∑p
i=0 βi+1L

i with Lyt = yt−1
and Lxqt = xqt−1.

The predictor xqt on the right-hand side is a quarterly indicator aggregated from
the monthly indicator xmt over time to the quarterly frequency. Following the time
aggregation literature such as Chow and Lin (1971), the mapping from the high-
frequency indicator observations to the aggregated low-frequency observations is
formalized through the aggregator function ω(L1/3) in the lag operator L1/3 by
xqt = ω(L1/3)xmt =

∑r
j=0 ωjL

j/3xmt . The form of the aggregator function ω(L1/3)
depends on the stock-flow nature of the indicator. For example, if xmt is a month-
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on-month growth rate for industrial production, the aggregated quarter-on-quarter
growth rate is then defined by an aggregator function ω(L1/3) of order r = 4
according to

xqt = ω(L1/3)xmt = xmt + 2xmt−1/3 + 3xmt−2/3 + 2xmt−1 + xmt−1−1/3, (7)

and holds for quarterly periods t only. If the variable is a stationary flow variable,
the rule is xqt = xmt + xmt−1/3 + xmt−2/3. The aggregate of a stock variable is simply

xqt = xmt . Other aggregation rules are discussed in the appendix of Stock and
Watson (2002).

Here, the lag polynomial applies to high-frequency lags of the indicator denoted
by xqt−1/3 = L1/3xmt . Note that at the end of the sample, the filter (7) can be
applied to complete quarters only. Thus, the practitioner has to wait until the
three monthly observations of the indicator corresponding to the calendar quarter
are available in order to apply the aggregator function (7) properly. Note that for
the estimation of the bridge equation only sample periods up to Ty are used, in
particular, there are no leads on the right-hand side of the bridge equation (6).

The bridge equation can be estimated by OLS, yielding parameter estimates
β̂0, λ̂, and β̂(L). The goal is to obtain a forecast yTy+h|Tx given information up to
period Tx, which is just

ŷTy+h|Tx = β̂0 + λ̂yTy+h−1|Tx + β̂(L)x̂qTy+h|Tx
. (8)

Due to the AR(1) term, the forecast equation has to be solved forward to obtain

multi-step forecasts, starting with λ̂yTy for h = 1. The key ingredient is the forecast
of the time-aggregated indicator x̂qTy+h|Tx

.
Forecasting the predictor is itself a two-step procedure including a forecast step

for the monthly predictor, and a time aggregation step to obtain the quarterly
projection. In the literature, typically very simple univariate models are chosen to
predict the high-frequency indicator. For example, a simple AR forecast equation
for xmt such as

xmt = α0 + α(L1/3)xmt−1/3 + εmt (9)

can be used for t = 1, 1/3, . . . , Tx − 1/3, Tx, where α(L1/3) =
∑q

j=1 αjL
j/3 is a q-

order polynomial in the monthly lag operator L1/3. The equation can be estimated
by OLS and be iteratively solved to obtain monthly forecasts x̂mTy+h|Tx

. Note that

(9) accounts for all monthly observations available up to period Tx, and can thus
condition on more timely information than in the bridge equation (6).

Given the monthly forecast, the user has to aggregate the indicator forecast
over time by x̂qTy+h|Tx

= ω(L1/3)x̂mTy+h|Tx
. This forecast is plugged into the equation

(8), yielding the GDP growth forecast. To illustrate the bridge nowcast, consider

6



again the example discussed above for MIDAS. The aim is to nowcast second
quarter GDP. Industrial production is available for April and GDP for the first
quarter. The estimation of the AR model (9) as well as the indicator forecast
consider the latest indicator information up to April. The iterative solution of
(9) provides values for industrial production for May and June. The indicator
projections for May and June together with the observations for April and earlier
enter the time aggregation rule, for example (7). The bridge equation can be re-
estimated on quarterly data, in this case up to the first quarter. Finally plugging
in the time-aggregated indicator projection into the equation (8) yields the GDP
nowcast. Note that recursive solutions are necessary for forecasting more than one
period ahead due to the AR term in the bridge equation.

2.3 Differences between MIDAS and bridge equations

The two approaches differ in several ways from each other. Fortunately, they can
both be regarded as extensions of distributed lag models to mixed-frequency data.
This framework allows to isolate and highlight the key differences between the
approaches.

2.3.1 Direct versus iterative multi-step forecasting

MIDAS is a direct multi-step forecast device, in the sense that the left-hand side
of the equation (1), yt+h, directly refers to the period t + h, whereas the right-
hand side predictors xmt+w refer to period t + w or earlier periods due to lags.
This specification allows for a projection for horizon h ≥ 1 in one step based on
a single equation without any iterative model solution as outlined above for the
bridge approach. To obtain projections for each forecast horizon h = 1, . . . , H, the
left-hand side variable yt+h in the MIDAS equation has to be re-specified and the
MIDAS equation to be estimated for each h.

The bridge equation, on the other hand, implies an iterative multi-step forecast
in the sense that the model (9) of the high-frequency indicator is solved forward to
produce the indicator forecasts over all horizons, which are then aggregated over
time and plugged into the bridge equation (8). The bridge equation specifies yt as
a function of xqt and lags without considering the forecast horizon as in MIDAS.
In the literature, there is a long-lasting discussion of the relative advantages of
direct and iterative multi-step forecasting. Marcellino et al. (2006) and Chevillon
and Hendry (2005) are recent contributions, and Bhansali (2002) provides an early
survey. The literature shows that there are arguments in favour of both approaches.
Generally, the direct approach is advantageous in case of mis-specification. If the
model used for iterative forecasts is specified correctly, it should outperform the
direct approach.
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2.3.2 Differences in the functional form of the polynomials

If one disregards the differences due to direct versus iterative multi-step forecasting,
it can be seen that MIDAS and bridge equations also differ with respect to the
polynomials used and how the predictor observations enter the right-hand side of
the equation. To make the polynomials comparable, assume the same order of the
polynomials in both equations. This implies the restriction K = 3p + r, where
the order of the MIDAS polynomial is K, and the order of the polynomial in the
bridge equation is 3p+ r coming from the convolution of β(L)ω(L1/3). To get the
same number of weights on the right-hand sides of both equations, one can simply
fix K, and specify p = (K − r)/3.

The functional lag polynomials (3) in MIDAS imply empirically estimated
weights β1B(L1/3; θ) for the high-frequency observations of the indicator xmt from
(1). In contrast, the predictor enters the bridge equation (6) at quarterly fre-
quency. But given the time aggregation scheme ω(L1/3) as in (7), the right-hand
side of the bridge equation can also be written as a function of the high-frequency
observations according to

β(L)xqt = β(L)ω(L1/3)xmt . (10)

Thus, the high-frequency observations are weighted by β(L)ω(L1/3) in the bridge
equation, partly based on fixed time-aggregation weights ω(L1/3) and estimated
weights β(L). Hence, the bridge weights are not fully estimated by data compared
to MIDAS. However, functional polynomials in MIDAS also impose restrictions on
the weights, and the fit of MIDAS depends on the appropriateness of the chosen
functional form. Thus, it is a-priori unclear whether bridge or MIDAS polynomials
are supported better by the data.

The two polynomials differ also with respect to the number of parameters
to be estimated: In the MIDAS example (3), we one can specify the functional
polynomial by three parameters θ1, θ2 and β1 to provide empirical weights for the
monthly lags of the indicator. In the bridge equation, p + 1 = (K − r)/3 + 1
parameters have to be estimated, which is a function of K. Thus, for higher lag
orders, the bridge equation approach might suffer from parameter proliferation
compared to the parsimonious MIDAS (1) with weights (3).

The estimation of MIDAS and bridge equations also differs due to the differ-
ent lag polynomials. Non-linear functional lag polynomials in MIDAS make NLS
estimation necessary, which works iteratively and might depend on the choice of
starting values. Coefficients in the bridge equation are simply estimated by OLS.

If the MIDAS regression is based on unrestricted lag polynomials, namely the
U-MIDAS case with weights (5), one can immediately see that U-MIDAS actu-
ally nests the bridge equation. The U-MIDAS polynomial

∑K
k=0 bkL

k/3 in (5) is
freely estimated, whereas the bridge polynomial β(L)ω(L1/3) is restricted. Thus,
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U-MIDAS is more general than the bridge equation. However, this generality of
U-MIDAS comes at the cost of having to estimate K+1 parameters in U-MIDAS,
whereas the bridge approach requires estimating (K − r)/3 + 1 parameters. Gen-
erally, much lesser parameters have to be estimated in the bridge equation since
(K − r)/3 + 1 < K + 1 holds for any K.

Note that if K, the order of the lag polynomial, is equal to the discrepancy in
sampling frequencies – in the case discussed here equal to three for quarterly and
monthly data – MIDAS also nests the bridge equation approach. This case has
been extensively discussed in Andreou, Ghysels, and Kourtellos (2010). They show
that using fixed and equal time-aggregation weights leads to an omitted variable
bias compared to MIDAS. If K = 3, the predictor is a stationary flow variable, and
AR terms are disregarded, the bridge equation is equivalent to the equal-weight
model in Andreou et al. (2010). Note that the bridge equations used in practice,
for example in Baffigi et al. (2004), typically contain more lags and differ with
respect to the time-aggregation scheme of the indicator, see Foroni and Marcellino
(2014).

2.3.3 Use of end-of-sample high-frequency data

As outlined in Clements and Galvão (2008), Clements and Galvão (2009), and
Andreou et al. (2013), MIDAS can consider leads of the high-frequency indicator
through the flexible direct approach in (1). Thus, when nowcasting in real-time, a
newly available observation of the indicator can be used to re-estimate the MIDAS
equation’s parameters and to update the projection by conditioning on current-
quarter indicator values. In the bridge equation approach, the most recent infor-
mation can be used to update the indicator forecast model (9). When forecasting
the indicator, the high-frequency model also enables the user to condition the pro-
jection on the latest indicator observation from period Tx. In this respect, both
MIDAS and bridge equations use the same full-information conditioning set with
observations up to Tx including current-quarter high-frequency observations.

However, the MIDAS and bridge equation themselves differ with respect to the
way how current-quarter information is considered on the right-hand side. MIDAS
will be re-estimated based on every incoming indicator observations. The bridge
equation (6) is a low-frequency (quarterly) equation, and thus can only be updated,
if the indicator data is fully available for the most recent low-frequency period.
In the case discussed here, this means that the bridge equation can only be re-
estimated once a quarter. But in the end, it is an empirical question, whether the
indicator leads considered in the MIDAS equation help to fit the equation better
than the specification in the bridge equation. Note again that this argument
affects only the estimation of parameters, the conditioning set in the projection is
the same in both approaches as outlined in the paragraph above.
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2.3.4 Summary of comparison

The arguments discussed above do not uniquely favour MIDAS or bridge equations.
It is not clear whether the more parsimonious form of the MIDAS polynomial
will dominate the weighting in the bridge equation or whether the direct MIDAS
approach is favourable to the iterative solution in the bridge equation approach.
In the end it is an empirical question, which approach will do better.

Nonetheless, it might be interesting to see which of the differences discussed in
this Section matter for nowcasting most. In the next Section, some of the differing
modelling elements in MIDAS and bridge equations will be switched off and on in
order to isolate the differences discussed so far.

2.4 A model in between MIDAS and bridge: Iterative MI-
DAS (MIDAS-IT)

In particular, intermediate models can be derived that contain aspects of MIDAS
and bridge equations, but in a different way as the core models that have been
discussed in the previous Sections. Consider first the discussion about direct and
iterative forecasting. We can introduce iterative forecasting to the MIDAS ap-
proach, if the MIDAS equation (1) is neglected and specified in terms of GDP
growth in period t rather than in period t + h as in the direct approach. One
obtains the equation

yt = β0 + λyt−1 + β1B(L1/3; θ)xmt+w + εt. (11)

This MIDAS equation can be estimated again with NLS. The conditional expec-
tation for GDP growth for period Ty + h given information up to Tx is

yTy+h|Tx = β̂0 + λ̂yTy+h−1|Tx + β̂1B(L1/3; θ̂)xmTy+h+w|Tx
. (12)

It requires a projection xmTy+h+w|Tx
of the indicator. To facilitate comparability

to the bridge equation approach, it is assumed that the simple AR model in (9)
provides the iterative indicator projection. Equation (11) it is only estimated
once for all horizons h = 1, . . . , H. From here on, the model consisting of (11)
and the AR model is called iterative MIDAS (MIDAS-IT) with leads.1 Taking
another perspective, it might be regarded as a bridge equation with functional
high-frequency lag polynomials for the high-frequency indicator. Compared to the
standard MIDAS approach in the literature (1), MIDAS-IT helps to assess whether

1The model with AR predictors in the case when K equals the discrepancy in sampling
frequencies (equal to three for quarterly-monthly data) and without leads, has been discussed in
Andreou et al. (2010).
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the iterative approach can improve over the direct multi-step approach used in the
standard MIDAS approach (1). The differences also stem from the use of the
AR model to obtain the indicator forecast, which can be neglected in the direct
MIDAS approach. Compared to the bridge equation, MIDAS-IT uses the same
AR model for the indicator nowcasts. Thus, there are only two differences that
can lead to different nowcast performances: 1) MIDAS-IT and bridge equations

differ due to the differences in the lag polynomials β̂1B(L1/3; θ̂) and β̂(L)ω(L1/3),
and 2) also with respect to the information used for estimating the equation for
the low-frequency variable. MIDAS-IT has xmt+w on the right-hand side including
the lead, whereas the bridge equation contains xmt on the right-hand side without
a lead.

To isolate the difference stemming from the lead of the indicator in the MIDAS
equation, one can formulate another model that contains no leads in the MIDAS
equations such that only xmt enters the right-hand side rather than xmt+w:

yt = β0 + λyt−1 + β1B(L1/3; θ)xmt + εt. (13)

This approach is called MIDAS-IT without leads. To nowcast with this approach,
again the AR model is used to predict the indicator. Comparing MIDAS-IT with
and without leads thus helps to answer the question, whether leads of the indicator
should be used for estimating the equation of the low-frequency variable. The
conditioning set for forecasting is the same in both approaches, as the AR model
helps to make projections for the indicator. As an alternative, the forecaster
can rely on U-MIDAS polynomials

∑K
k=0 bkL

k/3 in both approaches. MIDAS-IT

without leads and the bridge equation differ only by the polynomials β̂1B(L1/3; θ̂)

and β̂(L)ω(L1/3). If MIDAS-IT without leads turns out to be better, one can
conclude that the functional lag weighting is better suited for nowcasting than the
weighting implied by the bridge equation, which is partly based on a low-frequency
polynomial and the time aggregation function.

To wrap-up the discussion in this Section, the full set of models and their
features are summarized in Table 1.

3 Empirical application

3.1 Data

The dataset contains Euro area quarterly GDP growth from 1999Q1 until 2013Q4
and about 70 monthly indicators until 2013M12. The monthly indicators cover in-
dustrial production by sector, surveys on consumer sentiment and business climate
including the Purchasing Managers Index (PMI), international and trade data, and

11



Table 1: Overview of MIDAS and bridge equations used in the empirical exercise

equations for yt and indicator xmt direct or iterative lag weights leads in equation

A. MIDAS yt+h = β0 + λyt + β1B(L1/3; θ)xmt+w + εt+h direct functional or unrestricted poly yes

B. MIDAS-IT, leads yt = β0 + λyt−1 + β1B(L1/3; θ)xmt+w + εt iterative functional or unrestricted poly yes
xmt = α0 + α(L1/3)xmt−1/3 + εmt

C. MIDAS-IT, no leads yt = β0 + λyt−1 + β1B(L1/3; θ)xmt + εt iterative functional or unrestricted poly no
xmt = α0 + α(L1/3)xmt−1/3 + εmt

D. Bridge yt = β0 + λyt−1 + β(L)xqt + εt iterative unrestricted poly and time aggregation no
xmt = α0 + α(L1/3)xmt−1/3 + εmt

Note: The model abbreviations and model details are explained in Section 2 of the text.

12



financial data. Note that the beginning of the overall sample is restricted by the
financial data for the Euro area and the PMI. Due to the attention the PMI has
received recently, for example in Lahiri and Monokroussos (2013), it was decided
to include this indicator in the dataset. A complete list of the variables used can
be found in Appendix A.

The dataset is a final dataset and not a real-time dataset, so that the role of
revisions on the relative forecasting accuracy cannot be discussed here. Partly, this
is due to the fact that large monthly real-time data with sufficiently long samples
are not available yet for the Euro area. Furthermore, it is not clear that major
changes can be expected from the use of real-time vintages as in Bernanke and
Boivin (2003), Schumacher and Breitung (2008), and Clements (2014). However,
another important characteristic of multivariate data in real time is taken into ac-
count, namely the different availability of variables due to publication lags. These
differences in availability of data lead to certain patterns of missing values at the
end of every sub-sample, and recent papers find that accounting for this rather
than using artificially balanced samples has a considerable impact on forecast ac-
curacy, see Giannone, Reichlin, and Small (2008), for example. To consider the
availability of the data at the end of each subsample, the nowcast exercise in this
paper follows Giannone et al. (2008) and Foroni and Marcellino (2014), amongst
others, where the availability of data is replicated from a final vintage of data in
pseudo real-time.

3.2 Design of the empirical nowcast exercise

To evaluate the performance of the models, an empirical pseudo-real time exercise
with rolling estimation and nowcasting will be carried out. Each rolling estimation
sample contains 96 months of data. The evaluation sample is between 2008Q1 and
2013Q4, providing 6 years for comparison including the Great Recession. In the
recent nowcast literature, it has been observed that the Great Recession has led to
a strong decline in predictability in European countries, see for example Drechsel
and Scheufele (2012b) and Kuzin, Marcellino, and Schumacher (2013). Foroni
et al. (2014) and Foroni and Marcellino (2014) also report strong differences in
predictability before and during the Great Recession in the Euro area. Below, the
main interest lies in the period after the Great Recession. For this reason, the
evaluation sample will be split in two subsamples, namely, 2008 to 2009 (Great
Recession) and 2010 to 2013 (the aftermath of the Great Recession) in line with the
papers cited above. For each period in the evaluation samples, nowcasts depending
on different monthly information sets are computed. For example, for the initial
evaluation quarter 2008Q1, nowcasts are computed in March 2008, one in February,
and January. Every month, the nowcast is computed at the end of the month given
the data available at that point in time. Note that the nowcast made at the end
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of the final month of the nowcast quarter might still be informative to decision
makers, as the GDP figure for the corresponding reference quarter will be released
about six weeks later. In the Tables below, nowcast error statistics will be provided
for nowcasts made in each month of the reference quarters.

The estimation sample depends on the information available at each period in
time when computing the nowcasts. Assume again the aim is to nowcast GDP for
2008Q1 in March 2008, then the time series observations available at that period
in time have to be identified. For this purpose, the ragged-edge structure from the
end of the full sample of data is exploited, as discussed in the previous subsection.
To replicate the publication lags of GDP, one can exploit the fact that in the Euro
area GDP of the previous quarter is available in the middle of the second month
of the next quarter. All nowcast models are re-estimated on the data in each
subsample, such that the estimated coefficients are allowed to change over time.
The maximum lag order in MIDAS is equal to K = 12 months. The maximum
lag order of the indicator polynomial in the bridge equation is equal to p = 4. The
AR model for the indicator has a maximum lag order of q = 12. The lag order
used each subsample is determined by the Bayesian Information Criterion (BIC).

For each evaluation period, three nowcasts are computed. To compare the
nowcasts with the realisations of GDP growth, the mean-squared error (MSE)
is employed. Below, also relative MSEs will be reported. These will relate the
performance of MIDAS to the performance of bridge equations, but also to the
performance of an AR benchmark model. The AR model can have a lag order up
to four, which is specified using the BIC.

3.3 Performance of single MIDAS and bridge equations

In Table 2, the nowcast performance of the MIDAS and bridge equations and
their MIDAS-IT variants are compared to the AR benchmark. Given the large
number of indicators and model groups, the Table contains summary statistics for
the distribution of relative MSEs from all the models within a model class with
the different predictors as in Stock and Watson (2012) or Foroni et al. (2014).
For example, given the standard MIDAS model class, first the ratio of the MSE of
MIDAS based on a single indicator is computed and divided by the MSE of the AR
benchmark. The same is done for all MIDAS regressions with the other predictors,
yielding a distribution of relative MSEs across predictors for this model class. The
same procedure is applied to the bridge equations and the MIDAS-IT variants.
In each case, values of the relative MSE smaller than one indicate a superior
performance of MIDAS or the bridge equations compared to the benchmark. In
Table 2, the median as well as the 10th and 90th percentiles of the relative MSE
distributions are reported for each model class.

In the upper part of Table 2, the results for the evaluation period 2008 to
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Table 2: Percentiles of relative MSEs from MIDAS and bridge equations relative
to the AR benchmark

A. 2008-2009

model percentiles 3rd 2nd 1st

0.10 0.49 0.52 0.44
MIDAS 0.50 0.68 0.70 0.65

0.90 0.91 1.02 0.86

0.10 0.61 0.61 0.48
MIDAS-IT with leads 0.50 0.69 0.71 0.67

0.90 0.91 0.95 0.85

0.10 0.49 0.62 0.44
MIDAS-IT, no leads 0.50 0.67 0.69 0.66

0.90 0.91 0.95 0.98

0.10 0.28 0.40 0.29
bridge 0.50 0.68 0.76 0.69

0.90 1.07 1.06 1.29

B. 2010-2013

model percentiles 3rd 2nd 1st

0.10 0.96 0.93 1.11
MIDAS 0.50 1.25 1.16 1.75

0.90 2.52 2.36 4.86

0.10 0.82 0.86 0.86
MIDAS-IT with leads 0.50 1.06 1.19 1.03

0.90 1.83 1.96 2.10

0.10 0.80 0.93 0.87
MIDAS-IT, no leads 0.50 1.15 1.19 1.20

0.90 1.88 1.90 2.26

0.10 0.87 0.96 0.98
bridge 0.50 1.75 1.57 1.69

0.90 3.19 2.69 3.11

Note: The model abbreviations and model details are explained in Section 2 of the text.
The third, fourth and fifth columns refer to the nowcasts computed in the 3rd, 2nd and 1st
month of the respective nowcast period.
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2009 are shown for the three monthly nowcasts. In the majority of cases for
MIDAS and bridge equations, the percentiles are below one, indicating a superior
performance than the benchmark for a large part of the model distributions. The
10th percentile of the bridge equations yields the lowest relative MSE compared to
any other method, but the 90th percentile indicates a worse performance of some
bridge equations compared to the benchmark. Standard MIDAS, MIDAS-IT with
and without leads all perform similarly compared to the benchmark. In the lower
part of Table 2, the results for the evaluation period 2010 to 2013 are shown. In
all the model classes, the 90th percentiles and the medians over all horizons are
greater than one, indicating that the majority of models within each class performs
worse than the AR benchmark. However, the best 10% of the models can often
provide a better performance than the benchmarks. For example, for MIDAS-IT
with and without leads for the nowcast made in the 3rd month, the 10th percentile
is about 0.8, whereas standard MIDAS and the bridge equation approach perform
bit worse with 10th percentiles of 0.96 and 0.87, respectively.

A comparison betwen the upper and lower part of the Table 2 indicates a
deline in relative predictability between Great Recession period from 2008 to 2009
and the evaluation period 2010 to 2013. Note also that the performance of the AR
benchmark also changes over time such that the relative MSE results should not be
confused with indicators of absolute nowcast accuracy. Actually, the performance
of standard benchmarks during the Great recession was very bad as documented
in Drechsel and Scheufele (2012b) for Germany, and for other countries by Kuzin
et al. (2013). In the period after 2009, the AR model has performed much better.
As an example, the absolute MSE for the AR nowcast made in the 3rd month in the
quarter was 2.26 over the period 2008 to 2009, whereas it was 0.10 the evaluation
period 2010 to 2013. The moderate relative decline in the performance of MIDAS
and bridge equation indicate that their absolute MSEs have also declined, but to
a lesser extent as the benchmark. Thus, the decline in relative MSEs should not
be confused with an absolute decline in predictability.

To highlight the differences between MIDAS and bridge equations and their
variants discussed in Section 2.3, in Table 3 summary statistics of relative MSEs
between MIDAS and bridge equation model pairs are shown. The relative MSEs
are technically computed in the same way as for the previous Table, but below the
following model pairs are compared: 1) standard MIDAS relative to MIDAS-IT
with leads to assess the relevance of iterative versus direct multi-step nowcasting; 2)
MIDAS-IT with leads relative to MIDAS-IT without leads to assess the relevance
of leads in the equation; 3) MIDAS-IT without leads relative to the bridge to assess
the relevance of the weighting scheme in the bridge equation.

The results can be summarized as follows. For most of the model pairs, the
10th percentile is smaller than one for all horizons, whereas the 90th percentiles are
greater than one. The medians vary around one without a clear tendency across
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Table 3: Percentiles of relative MSEs from different combinations of MIDAS and
bridge equations

A. 2008-2009

model percentiles 3rd 2nd 1st

0.10 0.74 0.77 0.66
MIDAS relative to MIDAS-IT with leads 0.50 0.93 0.97 0.99

0.90 1.16 1.24 1.37

0.10 0.89 0.92 0.74
MIDAS-IT with leads relative to MIDAS-IT, no leads 0.50 1.05 1.00 1.00

0.90 1.49 1.14 1.41

0.10 0.62 0.62 0.54
MIDAS-IT, no leads, relative to bridge 0.50 1.02 0.98 1.02

0.90 2.20 1.79 2.09

B. 2010-2013

model percentiles 3rd 2nd 1st

0.10 0.75 0.67 1.04
MIDAS relative to MIDAS-IT with leads 0.50 1.09 1.01 1.69

0.90 1.95 2.10 2.95

0.10 0.70 0.84 0.64
MIDAS-IT with leads relative to MIDAS-IT, no leads 0.50 0.96 1.00 0.91

0.90 1.32 1.21 1.27

0.10 0.42 0.45 0.41
MIDAS-IT, no leads, relative to bridge 0.50 0.77 0.81 0.75

0.90 1.17 1.16 1.15

Note: The model abbreviations and model details are explained in Section 2 of the text.
The third, fourth and fifth columns refer to the nowcasts computed in the 3rd, 2nd and 1st
month of the respective nowcast period.
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horizons and model pairs under comparison. The only exception is MIDAS-IT
without leads relative to the bridge equation in the evaluation period 2010-2013
in the lower part of the Table, where the median for all horizons is smaller than
one. In that period, the MIDAS weighting scheme seems to dominate the time
aggregation scheme of the bridge approach. But in general there are no clear-cut
differences in the relative MSE distributions, and there is no superior performance
of one of the model classes compared to the others. As all the 10th percentiles of
the relative MSE pairs are smaller than one and all the 90th percentiles are greater
than one, there seem to be competitive models and indicators in each model class.
Thus, the relative accuracy of MIDAS and bridge equations might change on a
case-by-case basis depending on the indicator and sample period chosen.

To discuss this issue further, I depart from the assessment of the whole distri-
bution of relative MSEs and rather focus on the best-performing models. For this
purpose, all the models are ranked according to their MSE performance relative
to the AR benchmark. Table 4 shows the 20 best-performing of all the models for
the nowcast computed in the third month of the quarter. The results are again
presented for the two evaluation periods 2008 to 2009 and 2010 to 2013. In the Ta-
ble, each model is characterized by the model class it belongs to and the predictor
used for nowcasting in the model.

Regarding the performance of single nowcast models, one can see quite dif-
ferent rankings. For example, industrial production in manufacturing (ip manu)
nowcasts best with the bridge equation (rank 5 in 2008-2009), followed by MIDAS-
IT without leads (rank 9 in 2008-2009), and standard MIDAS (rank 20). In the
second sample period the relative ranking is the same. As another example, the
survey headline index PMI manufacturing (pmi man head) yields the best now-
cast results from MIDAS-IT without leads (rank 11 in 2008-2009), followed by
standard MIDAS (rank 12), and the bridge approach (rank 20). In the latter eval-
uation period, only MIDAS-IT with leads (rank 7 in 2010-2013) based on the PMI
manufacturing indicator makes it to the top 20 ranking. To sum up, the rankings
of the different MIDAS and bridge models are depending on the indicators chosen,
confirming the results from the previous Tables.

Taking a broader view on the results, there is again a striking difference in
nowcastability between the two sample periods with respect to the benchmark. In
the earlier period 2008 to 2009, the worst model in the ranking has a relative MSE
of 0.38, whereas the worst MSE in the period 2010 to 2013 is equal to 0.75. In the
evaluation period 2008 to 2009, there are 11 bridge equations in the list of the best
20 models. In the period until 2013, there are only 5 bridge equations among the
top 20. In both periods, MIDAS-IT without leads is also in the top 20 ranking, in
particular, six times in each evaluation period. The standard MIDAS as well as
MIDAS-IT with leads can be found less often in the rankings. The general finding
is that both rankings look very different in many respects depending on size of the
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Table 4: Rankings of MIDAS and bridge equations based on relative MSEs

A. 2008-2009 B. 2010-2013

rank model indicator relative MSE

1 bridge sur ind prod exp 0.14
2 bridge ip x constr en 0.19
3 bridge ip 0.20
4 bridge sur ind emp exp 0.20
5 bridge ip manu 0.21
6 MIDAS-IT, no leads ip x constr en 0.26
7 bridge ip x constr 0.26
8 MIDAS-IT, no leads sur cons n12m 0.26
9 MIDAS-IT, no leads ip manu 0.26
10 bridge ip mig intermediate 0.27
11 MIDAS-IT, no leads pmi man head 0.28
12 MIDAS pmi man head 0.28
13 bridge sur ind conf 0.28
14 bridge ip mig cap goods 0.29
15 bridge pmi man head 0.32
16 MIDAS-IT, no leads sur ind prod exp 0.33
17 MIDAS sur ind prod exp 0.34
18 MIDAS-IT, leads ip x constr en 0.36
19 bridge sur serv emp n3m 0.37
20 MIDAS ip manu 0.38

rank model indicator relative MSE

1 bridge ip manu bas met 0.45
2 MIDAS ip mig intermediate 0.54
3 MIDAS-IT, no leads ip mig cap goods 0.54
4 bridge ip 0.54
5 MIDAS ip manu plastic 0.58
6 bridge ip manu 0.59
7 MIDAS-IT, leads pmi man head 0.60
8 MIDAS ip 0.60
9 MIDAS-IT, no leads ip 0.63
10 MIDAS-IT, no leads ip x constr en 0.65
11 MIDAS-IT, no leads ip manu el eq 0.66
12 bridge ip mig intermediate 0.67
13 MIDAS-IT, leads ip manu plastic 0.67
14 MIDAS-IT, leads sur ind prod trends 0.68
15 MIDAS-IT, no leads ip manu 0.69
16 MIDAS-IT, no leads ip manu plastic 0.69
17 bridge ip x constr en 0.73
18 MIDAS-IT, leads ip manu el eq 0.73
19 MIDAS-IT, leads ip manu bas met 0.73
20 MIDAS ip manu chem 0.75

Note: The model abbreviations from column 2 and the model details are explained in Section 2 of the text. The indicator
abbreviations in column 3 are explained in the data appendix. The relative MSE in column 4 refers to the relative MSE of the
MIDAS or bridge equation compared to the AR benchmark, where the nowcast is computed in the 3rd month of the respective
quarter.
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relative MSEs, composition of model classes, and the indicators used. Note again
that the relative performance depends also on the AR benchmark performance.

3.4 Pooling MIDAS and bridge equations

A potential way to address nowcast instability in the single models as found in
the results above is pooling of single nowcasts. The forecast literature such as
Timmermann (2006), Hendry and Clements (2004), and Clark and McCracken
(2010) has shown that combining forecasts from alternative models can be benefi-
cial in the presence of misspecification and temporal instabilities. Related to the
model classes discussed here, Clements and Galvão (2008), Clements and Galvão
(2009) and Kuzin et al. (2013) consider combinations of MIDAS models, whereas
bridge equations have been pooled in Hahn and Skudelny (2008) and Rünstler
et al. (2009), amongst others. Below, nowcast pooling results for MIDAS and
bridge equations are compared for three weighting schemes: the mean, the me-
dian, and the weighted mean of all the models of a particular class, where com-
bination weights are obtained from the inverse MSE of the previous four-quarter
performance of a model as in Kuzin et al. (2013). In Table 5, the relative MSEs
compared to the AR benchmark of the nowcast combinations for the two subsam-
ples are shown.

According to the results, all of the combinations perform well relative to the
benchmark. This result is stable over all forecast horizons and evaluation samples.
Also the absolute size of the relative MSEs is comparable between the two sam-
ple periods. Note that many individual models in the second evaluation period
2010 to 2013 perform worse than the benchmark as shown in Table 2. Compared
to the single models, pooling nowcasts provides more stable results. Comparing
the pooling results with the rankings from Table 4, it can be observed that pool-
ing is not as good as the best-performing models, despite still performing clearly
better than the benchmark.

With respect to the model classes, the results indicate a better performance
of the combinations of bridge equation nowcasts than the variants of MIDAS in
both evaluation samples. Within MIDAS, the MIDAS-IT without leads seems to
perform slightly better than MIDAS-IT with leads.

With respect to pooling schemes, the results are similar. The performance of
equal-weights pooling is comparable to MSE-weighted pooling, whereas the median
performs slightly worse than the other weighting schemes.

3.5 Test results on the nowcast accuracy over time

To assess the nowcast performance over time further, the fluctuation test devel-
oped by Giacomini and Rossi (2010) will be applied. Their test for significant
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Table 5: Pooling of MIDAS and bridge equations

A. 2008-2009

model weighting scheme 3rd 2nd 1st

MIDAS mean 0.61 0.67 0.60
MIDAS-IT, leads mean 0.67 0.71 0.64

MIDAS-IT, no leads mean 0.60 0.68 0.63
bridge mean 0.57 0.66 0.58

MIDAS median 0.65 0.67 0.63
MIDAS-IT, leads median 0.68 0.67 0.66

MIDAS-IT, no leads median 0.62 0.66 0.64
bridge median 0.66 0.73 0.63

MIDAS MSE-weighted mean 0.59 0.63 0.57
MIDAS-IT, leads MSE-weighted mean 0.67 0.70 0.63

MIDAS-IT, no leads MSE-weighted mean 0.59 0.67 0.58
bridge MSE-weighted mean 0.52 0.64 0.51

B. 2010-2013

model weighting scheme 3rd 2nd 1st

MIDAS mean 0.72 0.72 0.86
MIDAS-IT, leads mean 0.76 0.81 0.78

MIDAS-IT, no leads mean 0.75 0.81 0.76
bridge mean 0.52 0.58 0.55

MIDAS median 0.81 0.87 0.85
MIDAS-IT, leads median 0.91 0.89 0.89

MIDAS-IT, no leads median 0.88 0.92 0.84
bridge median 0.55 0.68 0.64

MIDAS MSE-weighted mean 0.72 0.80 0.73
MIDAS-IT, leads MSE-weighted mean 0.77 0.90 0.76

MIDAS-IT, no leads MSE-weighted mean 0.77 0.89 0.64
bridge MSE-weighted mean 0.50 0.58 0.65

Note: The model abbreviations and model details are explained in Section 2 of the text.
The third, fourth and fifth columns refer to the nowcasts computed in the 3rd, 2nd and 1st
month of the respective nowcast period.
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differences in the relative nowcast performances between two models is based on a
measure of local relative nowcast loss, which is computed by the sequence of out-
of-sample loss differences over centered rolling windows. The test is implemented
by scaling the loss differences using a heteroscedasticity and autocorrelation con-
sistent (HAC) estimator of the variance of the loss differential in each evaluation
period and plotting the sample path of this statistic together with critical values
reported in Giacomini and Rossi (2010). Below, the local loss differential is equal
to the squared nowcast errors of the MIDAS or bridge equation nowcast minus
the squared nowcast errors of the AR benchmark. Thus, negative values indi-
cate a superior performance of MIDAS or bridge equations over the benchmark.
The statistics are computed over rolling and centered windows with window size
of eleven quarters, which is about one third of the overall evaluation sample size
as in Rossi and Sekhposyan (2010). If the critical values are crossed by the lo-
cal performance measure, the corresponding model significantly outperforms the
benchmark at the respective period in time. Below, the one-sided test of Giaco-
mini and Rossi (2010) is applied, where the null hypothesis states that the MIDAS
or bridge nowcasts are worse than the benchmark.

In Figure 1, MIDAS and bridge equation nowcasts based on industrial produc-
tion (panel A) and the PMI (panel B) are compared to the AR benchmark and
the in-sample mean benchmark. In Figure 2, the performance of nowcast combina-
tions across all indicators are shown. If the statistics exceed the 5 and 10% critical
values, the benchmark is significantly outperformed in the respective evaluation
period. In the Figures below, the test refers to the nowcast made at the end of
the final month in the quarter.

As in the application by Rossi and Sekhposyan (2010), the results show that
it is generally difficult to outperform the AR benchmark, as the test statistics
are not significant in most of the evaluation periods. In Figure 1, the nowcasts
based on industrial production and the PMI are not significantly better than the
benchmark in all the evaluation periods shown. PMI performs slightly better than
IP in a number of periods, which is partly even worse than the AR nowcasts
indicated by positive values of the statistic. The pooled nowcasts in Figure 2
are not significantly better than the benchmark in the early periods, but have
a significantly better performance in the years 2010 to 2012. The performance
over time of MIDAS and bridge equations is generally very similar. There are
some periods where bridge equations do better, for example, pooling in the first
part of the sample or MIDAS-IT with leads based on the PMI in the final part of
the sample. But there is generally no systematic advantage of one of the model
classes discussed. The nowcast accuracy is affected more by the indicators used or
whether nowcasts are pooled or not.
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Figure 1: Fluctuation test statistics for MIDAS and bridge equations with different
indicators

A. Industrial production

B. PMI

Note: The model abbreviations and model details are explained in Section 2 of the text.
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Figure 2: Fluctuation test statistics for pools of MIDAS and bridge equations

Note: The model abbreviations and model details are explained in Section 2 of the text.
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3.6 Further results to check robustness

In order to investigate the sensitivity of the results, additional empirical exercises
were carried out. In particular, MIDAS regressions with unrestricted linear lag
polynomials (U-MIDAS) were tried out. In addition to the rolling exercises with
constant estimation sample size, also recursive exercises were carried out with an
increasing sample size over time. Below, I report a summary of the additional
findings only to save space. The results of the robustness checks can be provided
upon request to interested readers.

The additional results can be summarized as follows. Single U-MIDAS regres-
sions turned out to perform worse in the majority of cases compared to the ex-
ponential Almon lag MIDAS regressions. The relatively short estimation samples
seemed to play a role here. Only in some cases for certain indicators, U-MIDAS
did better. When pooling the U-MIDAS nowcasts, however, the results were quite
close to the combinations of exponential Almon MIDAS regressions. The pool-
ing performance compared to the benchmarks and the comparison between the
variants of U-MIDAS and bridge equation was similar to the exponential Almon
MIDAS case. Thus, the results from the previous Sections could be confirmed
when using U-MIDAS regressions. In the recursive nowcast exercise, both MIDAS
and bridge equations performed slightly worse compared to the rolling exercise.

4 Summary and conclusions

In the recent literature and in policy institutions, MIDAS and bridge equations
have been widely used for nowcasting quarterly GDP growth based on monthly
business cycle indicators. This paper compares MIDAS and bridge equations in a
distributed-lag framework identifies three major differences: 1) MIDAS is a direct
multi-step nowcast tool, whereas bridge equations are based on iterative multi-step
nowcasts of the indicator, 2) MIDAS is based on functional or unrestricted lag poly-
nomials of the monthly indicators, whereas the bridge equations are partly based
on time aggregation, and 3) MIDAS equations consider current-quarter observa-
tions of the indicators on the right-hand side, whereas bridge equations generally
do not. Highlighting the differences between the approaches might help a prac-
titioner to make modelling decisions between MIDAS and bridge equations that
have been discussed mostly in isolation in the literature.

In an empirical exercise for nowcasting Euro area GDP growth, MIDAS and
bridge equations with single indicators are evaluated with respect to their out-of-
sample nowcast accuracy. The evaluation periods include the recent Great Reces-
sion and the years after. It turns out that the performance of both single-indicator
MIDAS and bridge equations varies over time. Compared to benchmarks, and
many models do well during the Great Recession and perform badly thereafter.

25



Rankings of the MIDAS and bridge equations differ quite a lot for different indica-
tors. Thus, if the user wants to pick a single MIDAS or bridge equations models,
it might be necessary to evaluate the nowcast models for each indicator exten-
sively to find out the best specification, as the nowcast results across models and
predictors show no clear-cut ranking. In contrast, pooling nowcasts obtained from
single MIDAS or bridge equations provides stable results over the whole evaluation
period and ensures against misspecification to a certain extent.

A Euro area dataset

This Appendix describes the time series for the Euro area economy used in the
nowcast exercise. The whole data set for Euro area contains 71 monthly indicators
over the sample period from 1999M1 until 2013M12. A complete list of variables
is provided in Tables 6 and 7 below, together with abbreviations used in the
description of results in the main text.

The sources of the time series are the databases of the Bundesbank and Data
Insight. Natural logarithms were taken for all time series except interest rates
and the surveys. Stationarity was obtained by appropriately differencing the time
series. All of the time series taken from the above sources are already seasonally
adjusted, where this was necessary.
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