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Default Risk and Equity Returns: A Comparison of the Bank-Based
German and the U.S. Financial System

We address the question whether the impact of default risk on equity returns depends
on the financial system firms operate in. We compare results from asset pricing tests
for the German and the U.S. stock markets, where Germany is the prime-example for
a bank-based financial system. We find that a higher firm default risk systematically
leads to lower returns in both capital markets. This contradicts results for the U.S. by
Vassalou/Xing (2004), but we show that their default risk factor looses its explanatory
power if one includes a default risk factor measured as a factor mimicking portfolio, as
we do.

1 Introduction

Over the past decades, most empirical asset pricing literature has had only
limited success to find systematic factors explaining stock returns. Empirical
factors vary across countries and time-periods and often lack a theoretical
justification. Only recently, attention has been paid on the question whether
default risk affects equity returns. In this paper, we contribute to this literature
by addressing the question whether the impact of default risk on equity returns
depends on the financial system firms operate in.

Although default risk primarily is a firm-specific risk factor and thus diver-
sifiable, recent evidence suggests that it also entails a systematic component.
There are at least four arguments why default risk could affect equity returns.
First, the arbitrage pricing theory, APT, (Ross (1976)) shows that multiple
factors may determine expected returns on equity in equilibrium. Since APT
does not imply what these factors are, conclusions could be based on the
evidence (empirical stylized facts). Denis and Denis (1995) find evidence that
default risk is related to macroeconomic factors, other studies indicate a direct
effect of default risk on equity returns in the U.S. 1

Second, more technically, if a firm is leveraged, equity risk (systematic risk
and volatility) and therefore expected returns depend on firms’ indebtedness,
with a non-stationary relationship between equity volatility and the volatil-
ity of firm assets (see Galai and Masulis (1976)). Since default risk is ceteris
paribus increasing in leverage, equity returns should be related to default risk.
Ferguson and Shockley (2003) show that conducting asset pricing tests on eq-
uity returns therefore leads to biased estimates of factor sensitivities, with
the bias increasing in a firm’s relative leverage and distress risk. Moreover,

1 See for example Dichev (1998), Griffin and Lemmon (2002), Vassalou and Xing (2004),
Campello and Chen (2005) or Zhang (2007).
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firm-specific variables that correlate with leverage or default risk will serve
as respective instruments, potentially explaining the statistical significance of
the size and the book-to-market factor.

Third, changes in the economic environment can lead to cross-sectionally
correlated firm and investor behavior, giving rise to non-diversifiable equity
return patterns. For example, Fama and French (1996) argue that their SMB
and HML factors proxy for financial distress, because if distress risk is cross-
sectionally correlated, workers with specialized human capital in distressed
firms will avoid to invest in other stocks subject to default risk, thus requiring
a risk premium. Also, if firms’ capital structure decisions are driven by some
joint factors, changes in firm leverage will be correlated in the cross-section,
thereby leading to non-diversifiable stock return patterns related to leverage.
There is a lot of corresponding evidence showing that firms are more likely to
issue equity in specific market stages, also discussed as the so-called ”hot issue
markets” and the ”market-timing” explanation for capital structure decisions
(see e.g. Loughran and Ritter (1995))

Finally, the modern theory of financial intermediation suggests that in im-
perfect capital markets with information asymmetries between firm owners,
managers, and outside investors, debt can be an efficient way of solving con-
flicts of interest between these parties (see e.g. Shleifer and Vishny (1997)).
Hence, characteristics of debt can directly affect firm performance, and there-
fore expected equity returns, and this effect may be influenced by the financial
system the firms operate in.

In this paper, we compare the impact of default risk on equity returns for
the U.S. and the German stock market. The comparison between the U.S.
and Germany is interesting in the context of default risk, since the German
financial system is the prime example of a bank-based financial system, where
the role of banks as an active mechanism of corporate governance (in particular
through debt financing, equity holdings, and representation in the supervisory
board) is significant even for large, exchange listed firms (Gorton and Schmid
(2000)). Hence, if the sensitivity of equity returns against a systematic default
factor were driven by the relevance and composition of corporate debt, then
one should expect that this effect is even more (price) relevant in a bank-based
financial system than in the U.S. 2

Similar to the seminal study by Vassalou and Xing (2004), we measure de-
fault risk by an implementation of Merton’s option-pricing model for the value
of equity to avoid using default risk measures based on accounting information,
which give rise to problems due to the inherently backward-looking orientation
of annual reports, accounting discretion, and the lack of timeliness of infor-

2 In addition, the German capital market has been barely studied empirically, providing
for a possibility to validate other empirical results on the impact of default risk on equity
returns.
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mation. 3 The Merton (1974) model uses the market value of equity and an
estimate of the market value of debt to calculate default risk, thus relying on
the most frequently available and forward looking information to assess the
likelihood that a firm defaults in the future. Furthermore, the Merton (1974)
model takes into account the volatility of a firm’s assets. Firms with similar
leverage can have very different default probabilities due to asset volatility,
which is typically not considered by accounting models. Since asset volatility
is a key input to the option pricing formula, this constitutes another advantage
of our methodology.

We find evidence consistent with default risk being a systematic factor sim-
ilarly priced in both capital markets. Our estimates suggest that a higher firm
default risk leads to lower returns, which contradicts some previous results for
the U.S. by Vassalou/Xing (2004). However, their default risk factor looses its
explanatory power when tested against the excess return measure suggested
in this paper, and this factor systematically helps pricing stocks in the U.S.
and Germany.

Still, we do find evidence for an impact of financial system characteristics
on the impact of default risk on equity returns. We find evidence that the
composition of corporate debt affects equity returns in Germany since firms’
default risk sensitivities are attenuated the more a firm depends on bank debt
financing.

The paper is organized as follows. In the next section, we present the
methodology used to estimate default risk of firms and to construct the default
risk factor used in the subsequent asset pricing tests. Section 3 presents the
data and descriptive statistics on the factors used to explain equity returns,
with an emphasis on the distress factor. Section 4 provides results of the asset
pricing tests on the German capital market. In Section 5, we present the test
of our default risk factor for the U.S. market and examine determinants of
firms’ default factor sensitivities. Section 6 concludes.

2 Methodology

2.1 Estimating Firms’ Probabilities of Default

Economically, default occurs if the value of a firm’s assets hits a default
barrier, which is often assumed being equal to the nominal value of debt due
at some point in time. The probability of default thus depends on unobserv-
able firm characteristics: (market-value based) leverage, asset value and asset

3 These problems might also explain the contradictory findings in previous studies based
on Altman’s Z-Score (Altman (1968)), Ohlson’s O-Score model (Ohlson (1980)), or bond
spreads.
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volatility. To use timely and forward-looking information, these characteristics
are inferred from daily equity market values, using the relationship postulated
by Merton (1974). A firm’s equity at time t is viewed as a call option on the
firm’s assets, where the book value of debt due at time t+T (T is equal to the
time to expiration of the option) is the strike price, D. Consequently, if the
value of assets is equal to or less than D at maturity, the value of equity is zero.
Merton assumes that the market value of a firm’s assets follows a Geometric
Brownian Motion and satisfies the stochastic differential equation: 4

dAt = μAAtdt + σAAtdWt (1)

where At denotes the firm’s asset value at time t with an instantaneous drift
μA, and an instantaneous volatility σA. Wt is a standard Wiener process. The
equity value Et then follows from the Black and Scholes (1973) formula:

Et = AtΦ(d1,t) − De−rf T Φ(d2,t) (2)

D describes the strike price of the call, Φ(s) denotes the value of the standard
normal distribution at s and rf is the risk-free rate. d1,t and d2,t are given by:

d1,t =
ln(At

D
) + [rf + 1

2
σ2

A]T

σA

√
T

(3)

d2,t = d1,t − σA

√
T (4)

In the empirical implementation, the unobservable variables σA and At can
be iteratively estimated for each day in the observation period of our stocks. 5

For each point in time t, the preceding 250 trading days are used to estimate
σE as an initial guess for the asset volatility, σA. Applying the Black/Scholes
formula, we get a series of asset values, At. These are in turn used to get an
updated estimate of σA. This estimate is used for the next iteration, and the
procedure is continued until the σA estimate converges with a tolerance level
of 10e−6. The final volatility estimate is then used to calculate the asset value
estimate, using again equation (2).

The firm’s probability of default at day t, PDt, follows from the probability
that the asset price At+T is equal to or less than the strike price (default
barrier) D given asset price At:

PDt = Prob(At+T ≤ D|At) = Prob(ln(At+T ) ≤ ln(D)|At) (5)

4 See Vassalou and Xing (2004).
5 This approach is similar to the one used by Vassalou and Xing (2004) and KMV (see
Crosbie and Bohn (2003)).
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Using the Geometric Brownian Motion assumption for the asset value process,
the probability of default is equal to

PDt = Φ

(
− ln(At

D
) + (μA − 1

2
σ2

A)T

σA

√
T

)
(6)

Alternatively, one can calculate the so-called distance-to-default (DD) as

DDt =
ln(At

D
) + (μA − 1

2
σ2

A)T

σA

√
T

(7)

Note that Φ denotes a standard normal distribution but empirical analyses
find better results using a Student’s t-distribution function. 6

The PD measures a firms probability of default at t + T under the real
measure, that is, we use μA rather than the risk free rate as the drift term. 7

The distance-to-default (DD) measures how many standard deviations the
asset value needs to drop to meet the debt value, which triggers default. Hence,
a lower DD translates into a higher probability of default, and vice versa. In
the following, we use the distance-to-default to sort firms on their default
risk. This particularly solves the problem, that very frequently observed high
values of DD correspond to very low probability of defaults, which might raise
numerical issues in calculations.

2.2 Factor Construction and Test Assets

The empirical modeling of our study uses the market model, the Fama/French
three factor model, and two alternative specifications that augment the Fama/French
factors by one particular variant of a default risk factor.

We construct the default risk factors using two simple approaches. The first
approach follows the standard Fama and French (1993) methodology. More
precisely, we create a SIZE list sorted on firms market capitalization, a BM
list sorted on the book-to-market equity ratio, and a firm list sorted by the
distance-to-default (DD) of individual companies. In addition, we divide the
three lists into big (B) and small (S) companies 8 , then companies with low
(L) and high (H) BM and finally firms with low (l), medium (m) and high (h)
distance-to-default. Thus, each firm receives three attributes SIZE/BM/DD.
For example, a firm can be small with low BM and low distance-to-default
which makes it a member of the company portfolio with the attributes S/L/l.
The intersections of the three decomposed lists constitute 12 (2 x 2 x 3) possi-

6 See Furfine and Rosen (2009).
7 μA is estimated from the time series of asset values and meets the condition μA =
max[rf , μ̂A], to avoid expected returns lower than the risk free rate.
8 Big companies are companies with market values greater than the median over firms at
some point in time.
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ble portfolios of firms with uniform attributes within each portfolio. Therefore
we define:

DEFt =[RS/L/h,t + ... + RB/H/h,t]/4−
[RS/L/l,t + ... + RB/H/l,t]/4

(8)

The second default factor is constructed as proposed by Vassalou and Xing
(2004).

Δ(SVt) = Ei[1 − PDi,t] − Ei[1 − PDi,t−1] i = 1...NC,t (9)

where Δ(SVt) denotes the change of the aggregate survival rate. Ei(.) is the
simple average over all companies, NC,t, included at time t.

Note the crucial difference between the two variants of default risk factors:
While the DEF factor is a factor-mimicking, self-financing portfolio return
analogous to HML and SMB, the variant used by Vassalou and Xing (2004)
is no return, but rather a measure of the change in aggregate default risk.
Most importantly, Δ(SVt) is no market price of risk, which renders the use
of the traditional time series based asset pricing test (where excess returns of
test assets are regressed on the factors) infeasible, since there is no reason to
expect an intercept of zero. Recall that the intercept of such an excess return
regression is the measure of systematic returns not explained by the empirical
asset pricing model.

The construction of the remaining three factors, the Fama/French factors,
namely RMRF (market factor), SMB (small minus big) and HML (high minus
low) follows the traditional way. RMRF is expressed by the return of a proxy
for the market portfolio that is in Germany the Composite DAX (CDAX) mi-
nus the risk free rate, though we cross check all results with a self-constructed
value-weighted market factor. The SMB and HML factor are created using
the methodology discussed in detail in Fama and French (1993).

Finally, the test assets used in the asset pricing test are constructed simi-
lar to the 12 portfolios described earlier. As proposed by Vassalou and Xing
(2004), to capture the three effects with assets providing maximum dispersion
regarding the factors, we would like to use a 3 x 3 x 3 form of independent
sorts. Due to the limited number of firms on the German stock market, we
again use a set of test assets resulting from a 2 x 2 x 3 sort. Hence, the SIZE
list is divided into two parts, Small(S) and Big(B), the BM list is also di-
vided into two parts, Low(L) and High(H) and finally the DD list is divided
into three parts, low DD(l), medium DD(m) and high DD(h). Corresponding
portfolio returns are again computed according to Fama and French (1993).
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2.3 Econometric Methodology

One objective of the paper is to test whether default risk is systematically
priced in the German and American capital market. We use the Generalized
Method of Moments (GMM) methodology by Hansen (1982) and employ the
asymptotically optimal weighting matrix throughout. To allow for comparisons
of our results with previous studies, we conduct both a simultaneous time-
series and cross-sectional test, and a stochastic-discount-factor test as outlined
by Cochrane (2005).

The simultaneous time-series and cross-section test basically estimates port-
folio factor sensitivities using time-series regressions and then conducts cross-
sectional regressions of portfolio returns on (estimated) factor sensitivities to
estimate factor risk premia. Doing this simultaneously in the GMM frame-
work allows to correct inference for the error-in-variables bias inherent in the
cross-sectional regressions.

The stochastic discount factor framework estimates a linear function of the
factors, i.e. the pricing kernel, trying to explain which factors help pricing
future cashflows of assets. The pricing kernel is the stochastic discount factor
that translates future uncertain cashflows (or returns) into today’s observed
prices. Average prices should be a linear function of covariances between re-
turns and factors. The GMM estimate therefore corresponds to a linear cross-
sectional regression of sample average returns on covariances of asset returns
with factors across assets. In the appendix, both methods are described in
detail.

3 Data and Summary Statistics

Our sample of German listed firms consists of 1055 firms over the period July
1990 to June 2006 (1990:7 to 2006:6). Daily price data are from Datastream,
whereas data on annual reports are taken from Worldscope. The German
Central Bank (Deutsche Bundesbank) provides the daily time series of the
risk free rate, the one-month FIBOR/EURIBOR. All returns are adjusted for
capital measures and dividends. 9

We examine only stocks with ordinary common equity and exclude financial
firms, similar to Fama and French (1993). 10 Companies are included into our
yearly portfolio constructions if they have a return for June τ , information on

9 We have spend considerable effort to cross-check and correct the Datastream data for
the typical problems of this database, like mistyped values, repeated values for holidays,
entered values for already delisted firms etc. For an overview on typical problems associated
with Datastream, see Ince and Porter (2006).
10 ADRs and REITs are not available on the German stock market for our observation
period.
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Table 1
Number of Companies per Year

The table reports the number of German companies contained in the sample. A company
is only reported if and only if it has at least one non-empty return for June of the
correspondent year τ in Datastream and a book-to-market equity value in December
τ − 1. The book-to-market equity value in December τ − 1 is calculated using the fiscal
year end book equity of year τ − 1 divided by firm’s market value of December τ − 1.
Book equity is Worldscope’s total assets, minus liabilities, plus balance sheet deferred
taxes, minus preferred stock (if available).

year # of companies year # of companies

1990 203 1998 380
1991 231 1999 414
1992 226 2000 531
1993 231 2001 640
1994 281 2002 618
1995 279 2003 529
1996 311 2004 503
1997 338 2005 534

total debt, total common equity, preferred stock and deferred taxes in year
τ − 1, and market capitalization available in December τ − 1 . The resulting
number of firms over time is reported in Table 1. Note that the numbers of
companies within this table are used to compute the Fama/French factors.
However, for the calculation of the default risk factors, the sample reduces to
a total of 868 companies as the necessary information to estimate distance-to-
defaults eliminates more observations.

3.1 Portfolio Returns and Default Risk Characteristics

For descriptive purposes, Table 2 summarizes the characteristics of the 12
test portfolios over the period 1990:7 to 2006:6. The table shows for each
portfolio averages of monthly total market capitalization in percent, book-to-
market, number of firms, and distance-to-default.

Panel A shows the average number of Firms within the portfolios. There
is some tendency for companies with low DD to concentrate within small
firms’ portfolios. For example, the number of companies of the Small/Low DD
group is on average (44.501), 11 and about 7.5 times larger than the number
of companies within the Big/Low DD, which is on average 6.063. An inverse
pattern can be found for high DD firms that concentrate within Big portfolios
(41.407 vs. 9.032). Panel A also shows the average distance-to-default of the
12 portfolios, where a high DD corresponds to low default risk, and vice versa.

11 The average of the number of companies of the Small/Low DD group is calculated as
follows: (31.688 + 57.313)/2 = 44.501.
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Table 2
Characteristics of 12 Portfolios formed on SIZE, BM and DD

At the end of each June from 1990 to 2005, we form 12 portfolios as the intersections
of independent sorts into two SIZE groups, two BM groups and three DD groups (2 x 2
x 3 attribute structure). For each portfolio, the table shows average across the months
of 1990:7 to 2006:6 of ”Number of firms” and ”Average DD” in Panel A, ”Percent of
Total Market Cap” and ”Average BM” in Panel B. The labels of the tables denote the
portfolio attributes ”SIZE & BM” on the left and ”DD” on the upper side.
Panel A: Average Number of Firms and DD within the 12 Portfolios sorted on SIZE, BM and DD

Average Number of Firms Average DD

LowDD MedDD HighDD Sum LowDD MedDD HighDD

Small & LowBM 31.688 18.688 10.000 60.375 2.559 6.154 13.725

Small & HighBM 57.313 25.625 8.063 91.000 2.665 6.072 12.857

Big & LowBM 5.875 28.813 56.313 91.000 3.248 6.682 15.682

Big & HighBM 6.250 28.563 26.500 61.313 3.341 6.589 14.061

Sum 101.125 101.688 100.875 303.688

Panel B: Size and BM within the 12 Portfolios sorted on SIZE, BM and DD

Percent of Total Market Cap Average BM

LowDD MedDD HighDD Sum LowDD MedDD HighDD

Small & LowBM 0.442 0.425 0.456 1.323 0.134 0.342 0.307

Small & HighBM 0.832 0.596 0.244 1.672 1.328 1.241 1.037

Big & LowBM 1.699 18.461 42.488 62.648 0.233 0.332 0.302

Big & HighBM 1.915 14.510 17.932 34.357 1.050 0.998 0.880

Sum 4.889 33.992 61.120 100.000

Table 3 shows average returns of two types of test assets. First, to allow
comparisons with previous studies 12 , Panel A provides average returns of 16
portfolios sorted on SIZE and BM (using a 4 x 4 sort). As becomes evident,
there is no clear pattern related to the size effect in these descriptive statistics
as there is only one significant Small-Big difference. In contrast, the differences
regarding the book-to-market ratio are more pronounced. There is a tendency
of increasing returns from portfolios with low BM to portfolios with high BM
as there are two significant return differences High-Low.

Panel B of Table 3 shows the average returns of portfolios sorted on distance-
to-default, firm size and book-to-market, where we use a 2 x 2 x 3 sort. The
resulting 12 portfolios constitute the test assets for the asset pricing tests
in the next section. There is a strong evidence of increasing returns over all
default risk-classes from low DD to high DD. The difference t-test indicates
this relationship in all cases to be statically significant.

3.2 Factor Characteristics

The descriptive statistics in the preceding section provide an indication that
a default risk effect might exist on the German stock market. The univariate
tests do not clearly suggest a firm size and BM effect. Firms’ default risk

12 See e.g. Schrimpf, Schroeder, and Stehle (2007).
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Table 3
Returns of SIZE, BM and DD portfolios

The table shows average returns of different portfolio structures over the period 1990:7 to
2006:6. Panel A shows monthly returns in percent of the 16 value-weighted Fama/French
portfolios. Portfolio differences, that is High minus Low and Small minus Big and its t-
values are also displayed; t-values are calculated through a Dummy OLS-Regression with
Newey-West standard errors. The dummy is created for two portfolio classes (e.g. big=1
and small=0). The truncation factor l used within the regression is computed through
a rule of thumb l = ceil(3/4 · T 1/3). Panel B reports the monthly returns of the 2 x 2 x
3 test asset system with two SIZE, two BM and three DD classifications. *,** and ***
denotes significance at the 10%-, 5%- and 1%-level, respectively.

Panel A: Returns of the 16 portfolios sorted on SIZE and BM

LowBM 2 3 HighBM HighBM-LowBM t-stat

Small 1.594 0.096 0.596 0.637 -0.957 (-1.577)

2 0.085 -0.127 0.045 0.443 0.358 (0.780)

3 -0.134 0.189 0.558 0.750 0.884 (1.961**)

Big 0.463 0.543 1.235 1.169 0.707 (1.722*)

Small-Big 1.132 -0.447 -0.639 -0.532

t-stat (1.940*) (-1.036) (-1.471) (-1.361)

Panel B: Returns of the 12 portfolios sorted on SIZE, BM and DD

LowDD MedDD HighDD HighDD-LowDD t-stat

Small & LowBM -0.030 0.392 0.688 0.718 (1.662*)

Small & HighBM -0.315 0.827 0.734 1.048 (1.871*)

Big & LowBM 0.432 -0.662 1.374 0.942 (1.856*)

Big & HighBM -0.016 0.715 1.156 1.172 (3.078***)

appears only weakly correlated with either BM or SIZE as supported by the
correlation coefficients between the factors RMRF, SMB, HML, Δ(SV), and
DEF, reported in Table 4. Here, RMRF denotes the return of the CDAX
(the broadest performance index for Germany comprising all firms listed at
Frankfurt stock exchange) in excess of the risk-free rate. The other factors are
constructed as explained in Section 2.2.

Table 4
Descriptive Statistics of the Factors

The table reports means and standard deviations in percent per month for the period
1990:7 to 2006:6. Included factors are the market factor RMRF, the size factor SMB, the
BM factor, the HML factor, the default factor DEF, and the default factor Δ(SV). RF
denotes the risk free rate. The table also provides correlation coefficients between these
factors.

Variable Correlations

mean std min max RMRF SMB HML DEF Δ(SV) RF

RMRF 0.293 5.876 -24.123 19.800 1.000 -0.303 -0.323 -0.042 0.455 -0.137

SMB -0.478 3.635 -10.612 10.925 1.000 -0.171 -0.295 0.191 -0.053

HML 0.335 4.152 -18.459 19.777 1.000 -0.084 -0.094 0.028

DEF 0.754 4.092 -11.546 14.591 1.000 -0.197 0.043

Δ(SV) -0.038 0.550 -2.559 1.682 1.000 -0.066

RF 0.379 0.199 0.168 0.823 1.000

Table 4 shows that the correlation between RMRF, SMB and HML is neg-
ative and significant in terms of magnitude. The default-risk factor DEF is
almost uncorrelated with the market factor, whereas the Δ(SV) factor has a
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correlation with the market of about 0.455. This already points to the fact that
these measures are actually quite different. The correlation between the mea-
sure of Vassalou and Xing (2004), Δ(SV), and our excess-return factor DEF
is only -0.197. Recall that Δ(SV) simply measures the change in aggregate
(average) default risk, while DEF constitutes a factor-mimicking portfolio.

Table 4 also provides summary statistics on the factor returns. The average
market risk premium over the observation period is only 0.293% per month.
Similar to the results of Schrimpf, Schroeder, and Stehle (2007) for the Ger-
man capital market, the average premium on the size-factor SMB is negative
with -0.478% per month. The average premium on the default risk factor DEF
is 0.754% per month. The mean value of Vassalou/Xing’s factor Δ(SV) is close
to zero, indicating that the average change in aggregate default risk is fairly
small.

Fig. 1. Factor Time-Series
This figure plots the price development of the market factors RMRF, the size factor SMB,
the BM factor HML and the default factor DEF. The charts start at time July 1990 at
100. Each time tick represents January of the corresponding year.
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The time-series development of these factors and a first indication of their
economic significance can be gained from Figure 1. The figure shows a plot
of factor-returns indices (i.e. fictitious ”price” series rebased to 100) over our
observation period. While the market factor RMRF, HML, and the default
risk factor DEF show factor-specific systematic variation and trend behavior,
the size factor shows a negative trend and comparatively little variation.
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4 German Stock Market Results

4.1 Time-Series and Cross-Sectional Test

To test whether default risk is priced in the German capital market, we
first consider the simultaneous time-series and cross-sectional GMM model
with the moment conditions of equation (10). 13 Table 5 shows the estimated
factor sensitivities for the 12 (2x2x3) test assets sorted on SIZE, BM and DD.
The cross-sectional estimates of the risk premia are presented in Table 6.

Table 5 shows coefficient estimates of time-series regressions of test asset
(excess) returns on factor returns. Notably, all portfolios with a low distance-
to-default (i.e. high default risk) load negatively on the default risk factor DEF,
while portfolios containing firms with low default risk load positively. There
is no comparable pattern visible for the Δ(SV) default risk factor proposed
by Vassalou and Xing (2004). This demonstrates again that the two factors
are very different measures, although they are intended to proxy for the same
economic effect.

Panel C of Table 5 reports the results from a Wald test for the joint sig-
nificance of the intercept terms of the two regression systems. A Test for the
Δ(SV) model is excluded as Δ(SV) is not a return. 14 Due to the high p-values,
the null hypothesis of no unexplained returns on average needs to be rejected
within all proposed models. Hence, no factor model ”fully” explains returns
on the German stock market.

Considering the estimates of the factor risk premiums in Table 6, the mar-
ket risk factor premium RMRF is not significantly different from zero. This
result is consistent with other studies on the German capital market (see for
example Elsas, El-Shaer, and Theissen (2003)). As shown in Table 4, the re-
alized market risk premium over the observation period is 0.293% per month
with a standard deviation of 5.876%. Hence, relying on the moments of the
empirical distribution over our observation period, the probability of a nor-
mally distributed random variable to be negative (i.e. rM < rf ) is about 48%
(rM denotes the market return and rf is the risk free rate). Under such con-
ditions, the power of typical asset pricing test approaches is fairly low, see
Elsas, El-Shaer, and Theissen (2003) and Pettengill, Sundaram, and Mathur
(1995).

Table 6 further shows that the estimates of the risk premia for SMB, HML
and the default risk factor DEF are significantly different from zero. The
significant premiums of SMB and HML are almost unchanged, if the default
risk factor is added, indicating that the book-to-market effect is not primarily

13 Please refer to the appendix.
14 See e.g. Cochrane (2005, p. 243f).
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Table 5
Time-series Estimates of Factor Sensitivities and the Test on the Intercepts

The table shows estimated factor sensitivities from a time-series regression of the test
asset portfolio returns on a varying set of factors. Panel A and Panel B compare two
models which contain the Fama/French factors and one particular default factor. Δ(SV)
is the change in aggregate default risk, as suggested by Vassalou and Xing (2004), while
DEF is the excess return of a portfolio of firms with low default risk over a portfolio
of firms with high default risk. The values are computed using the two-stage GMM
approach described in Section 2.3 and the appendix, simultaneously estimating time-
series and cross-sectional regressions. The estimated factor risk premia from the cross-
sectional regressions are shown in Table 6. The sample period is 1990:7 to 2006:6. For the
two different models we use the same test assets which have a 2 x 2 x 3 structure, that is,
they are independently sorted on firm size, book-to-market, and distance-to-default. t-
values are calculated with GMM using the Newey-West estimator for the spectral density
matrix. The number of maximum lags is l = 3. Panel C compares the market model, the
Fama/French three factor model and the two models containing the default factors. The
results of a Wald test are displayed in the row ”Wald” with H0: α1 = ... = αN = 0,
where αi is the intercept of portfolio i’s regression. Ei(α) is the mean of α1 . . . αN . *,**
and *** denotes significance at the 10%-, 5%- and 1%-level, respectively.

Panel A: Factor Sensitivities and T-stats of the DEF model

Portfolio βRMRF βSMB βHML βDEF

DD SIZE BM Coef. t-value Coef. t-value Coef. t-value Coef. t-value

Low Small Low 0.91 (15.04***) 1.04 (12.31***) 0.04 (0.52) -0.40 (-5.66***)

Low Small High 1.04 (27.58***) 0.98 (17.79***) 0.55 (12.09***) -0.11 (-2.46**)

Low Big Low 0.86 (7.90***) -0.16 (-0.82) -0.24 (-2.26**) -1.41 (-8.21***)

Low Big High 0.79 (8.47***) 0.32 (2.22**) 0.34 (2.75***) -0.94 (-6.06***)

Med Small Low 0.86 (15.93***) 0.85 (9.63***) -0.08 (-0.77) -0.16 (-2.00**)

Med Small High 0.85 (16.24***) 0.79 (10.11***) 0.47 (9.07***) -0.13 (-2.53**)

Med Big Low 1.08 (18.83***) -0.07 (-0.80) -0.21 (-2.74***) -0.15 (-1.90*)

Med Big High 0.93 (12.31***) 0.01 (0.12) 0.23 (1.78*) -0.15 (-1.39)

High Small Low 0.97 (11.64***) 1.18 (8.85***) -0.06 (-0.41) 0.47 (3.19***)

High Small High 0.88 (10.94***) 1.09 (8.32***) 0.49 (4.91***) 0.39 (2.99***)

High Big Low 0.91 (26.17***) -0.02 (-0.33) -0.06 (-1.25) 0.10 (2.02**)

High Big High 0.83 (14.81***) -0.06 (-0.87) 0.32 (3.72***) 0.18 (3.01***)

Panel B: Factor Sensitivities and T-stats of the Δ(SV) model

Portfolio βRMRF βSMB βHML βΔ(SV)

DD SIZE BM Coef. t-value Coef. t-value Coef. t-value Coef. t-value

Low Small Low 1.00 (12.85***) 1.25 (12.91***) 0.14 (1.62) -0.41 (-0.60)

Low Small High 1.01 (23.02***) 0.99 (17.53***) 0.56 (11.50***) 0.78 (1.91*)

Low Big Low 1.12 (8.09***) 0.52 (2.20**) 0.09 (0.50) -0.44 (-0.32)

Low Big High 0.89 (7.49***) 0.70 (4.08***) 0.53 (3.47***) 0.83 (0.64)

Med Small Low 0.84 (12.18***) 0.87 (8.51***) -0.06 (-0.63) 0.82 (1.71*)

Med Small High 0.94 (16.28***) 0.92 (11.93***) 0.53 (9.85***) -1.18 (-2.85***)

Med Big Low 1.06 (16.46***) -0.04 (-0.51) -0.20 (-2.66***) 0.68 (1.36)

Med Big High 0.87 (10.72***) -0.01 (-0.14) 0.23 (1.57) 1.41 (2.41**)

High Small Low 0.87 (5.91***) 0.94 (6.07***) -0.18 (-1.07) 0.41 (0.36)

High Small High 0.83 (9.98***) 0.92 (7.21***) 0.41 (5.12***) -0.25 (-0.22)

High Big Low 0.91 (23.43***) -0.04 (-0.79) -0.08 (-1.54) -0.34 (-1.12)

High Big High 0.83 (12.98***) -0.11 (-1.48) 0.29 (3.10***) -0.54 (-1.12)

Panel C: Wald Tests on the Joint Significance of Intercepts

CAPM Fama French DEF model Δ(SV) model

Wald 30.522 (0.003***) 35.138 (0.001***) 30.422 (0.004***) - -

Ei(α) -0.173 - -0.003 - 0.124 - 0.002 -
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Table 6
Cross-sectional Estimates of Factor Risk Premia

The table compares the CAPM, the Fama/French three factor model and two models
which contain the Fama/French factors and one particular variant of the default factor.
The values are computed by a two-stage GMM approach using time-series and cross-
sectional information at the same time. In this table only the cross-sectional results are
displayed, time-series results can be found in Table 5. The sample period is 1990:7 to
2006:6. For the four different models we use the same test assets, that have a 2 x 2
x 3 structure, sorted on firm size, book-to-market, and the firms’ distance-to-default. t-
values are calculated with GMM using the Newey-West estimator for the spectral density
matrix. The number of maximum lags is l = 3. *,** and *** denotes significance at the
10%-, 5%- and 1%-level, respectively.

CAPM Fama/French DEF model Δ(SV) model
variable coef(t-val) coef(t-val) coef(t-val) coef(t-val)

C
R

O
SS

-S
E

C
T

IO
N

λRMRF 0.066 0.326 0.473 0.285
(0.139) (0.737) (1.085) (0.642)

λSMB - -0.743 -0.788 -0.730
(-2.501**) (-2.656***) (-2.450**)

λHML - 0.831 1.007 0.863
(1.909*) (2.303**) (1.964**)

λDEF - - 0.713 -
(2.271**)

λΔ(SV) - - - 0.138
(0.982)

driven by correlation with default risk, contrary to the suggestion and findings
of Ferguson and Shockley (2003).

4.2 Factors Determining the Pricing Kernel

In what follows, we use the GMM discount factor model of section 2.3 with
the moment conditions of equation (14) in the appendix to infer factors de-
termining the pricing kernel. This serves as a robustness test for the results
from the times-series/cross-section analysis in the preceding section. Also, we
report estimation results for the overall period 1990:7 to 2006:6 and the sub-
periods 1990:7 to 2001:6 and 2001:7 to 2006:6, to test the robustness of our
results. The end of the first subperiod, that is June 2001 is located after the
Internet bubble 15 which takes place from early 1998 to the end of 2000 and
before the crash of 9/11. We use these two subperiods as Figure 1 implies a
potential structural break between the years 2000 and 2002 regarding the size,
the BM and perhaps the DEF effect. 16

Focusing on the overall period 1990:7 to 2006:6 first, the results in Panel A
of Table 7 show that DEF is systematically priced in the German capital mar-
ket. For this factor, both the coefficient estimate on the pricing kernel weight

15 The Internet bubble and its timing was analysed by Ofek and Richardson (2003).
16 We also tried the period limits 2000:6 and 2002:6 but the results for both subperiods do
not change qualitatively.
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Table 7
Stochastic Discount Factor Test

This table reports the results of the stochastic discount factor and cross-sectional asset
pricing test over three time horizons (1990:7 to 2006:6, 1990:7 to 2002:6 and 2002:7 to
2006:6). The stochastic discount factor estimates are computed by a two-stage GMM
model as outlined by Cochrane (2005). The factor columns (RMRF, SMB, HML, DEF
and Δ(SV)) contain the SDF coefficient estimates (”coef”), and in brackets the t-
statistics. The rows labeled ”prem” show the estimated factor risk premia. Again t-
statistics are reported in brackets. The column labeled J -test shows for each time hori-
zon the results of a J test for overidentifying restrictions. We report the test statistic
and the corresponding p-value (in parentheses). The premiums are measured in percent
whereas the SDF coefficient estimates are presented x 10,000. t-values are calculated with
GMM using the Newey-West estimator for the spectral density matrix. The number of
maximum lags is l = 3. *,** and *** denotes significance at the 10%-, 5%- and 1%-level,
respectively.

Panel A: 1990:7 to 2006:6

RMRF SMB HML DEF Δ(SV) J -test

coef 1.89(1.51) – – – – 17.64(0.09*)

prem 0.07(0.14) – – – – –

coef 1.23(0.73) -6.21(-2.36**) 3.82(1.62) – – 11.62(0.24)

prem 0.33(0.74) -0.74(-2.50**) 0.83(1.91*) – – –

coef 1.69(1.03) -4.64(-1.77*) 4.49(1.96**) 4.52(2.34**) – 8.67(0.37)

prem 0.47(1.09) -0.79(-2.66***) 1.01(2.30**) 0.71(2.27**) – –

coef 3.11(0.81) -4.18(-0.87) 4.68(1.68*) – -24.34(-0.48) 10.16(0.25)

prem 0.28(0.64) -0.73(-2.45**) 0.86(1.96**) – 0.14(0.98) –

Panel B: 1990:7 to 2001:6

RMRF SMB HML DEF Δ(SV) J -test

coef 2.29(1.39) – – – – 15.82(0.15)

prem -0.09(-0.18) – – – – –

coef -2.46(-0.94) -12.78(-3.80***) -0.82(-0.35) – – 9.92(0.36)

prem 0.33(0.67) -0.95(-2.85***) 0.19(0.37) – – –

coef -1.37(-0.50) -9.91(-2.71***) 0.72(0.33) 4.80(2.21**) – 7.16(0.52)

prem 0.47(0.98) -0.96(-2.87***) 0.34(0.66) 1.06(2.81***) – –

coef 0.05(0.01) -8.47(-1.48) -0.10(-0.04) – -55.64(-0.54) 9.49(0.30)

prem 0.53(1.09) -0.87(-2.53**) -0.05(-0.08) – -0.15(-1.47) –

Panel C: 2001:7 to 2006:6

RMRF SMB HML DEF Δ(SV) J -test

coef 1.15(0.66) – – – – 12.06(0.36)

prem 0.45(0.45) – – – – –

coef 3.37(1.66*) 1.02(0.32) 21.85(3.86***) – – 10.17(0.34)

prem 0.40(0.43) -0.41(-0.65) 1.59(1.96**) – – –

coef 3.92(1.88*) 2.74(0.78) 24.27(4.02***) 3.35(1.26) – 9.32(0.32)

prem 0.48(0.52) -0.45(-0.71) 1.73(2.21**) 0.11(0.19) – –

coef 11.91(1.77*) 5.34(0.96) 28.89(3.97***) – -80.57(-1.34) 9.13(0.33)

prem 0.47(0.49) -0.55(-0.88) 1.79(2.12**) – -0.05(-0.17) –

(coef) and the risk premium estimate from the combined time-series / cross-
sectional-regression risk premium (prem) are statistically different from zero.
In contrast, the market risk factor and the default risk factor Δ(SV) suggested
by Vassalou and Xing (2004) are insignificant in all cases according to both
tests. BM has a significant risk premium, but significantly contributes to the
pricing kernel only in two of three cases. The premium is in all models posi-
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tive, in line with Figure 1 and Table 4. Finally, the SIZE effect is statistically
significant, but the risk premium is actually negative.

A different result can be found for the two subperiods 1990:7 to 2001:6
(Panel B) and 2001:7 to 2006:6 (Panel C). The former subperiod of Panel B
shows again a significant DEF factor and an insignificant market and Δ(SV)
factor compared to the overall period. In contrast, the SIZE effect is mostly
significant with a negative risk premium and the BM effect is insignificant
over all models and tests. The latter subperiod illustrated in Panel C reveals
a highly significant BM effect with positive risk premium and an insignificant
size effect and default proxies. The market factor shows a slight positive effect
in the SDF test. Those results are in line with our earlier suggestions.

Finally, note that the estimated risk premium of DEF for the overall period
(0.71% per month) and the factor contribution to the pricing kernel (4.52)
indicate that equity returns are decreasing for firms more likely to default.
This result corresponds e.g. to Dichev (1998) and other studies in the U.S.,
but contradicts the results by Vassalou and Xing (2004).

5 Financial System Comparison, and Bank Dependence as Stock
Return Determinant

5.1 Default Risk Factors for the U.S. Market

The preceding section has shown that the Vassalou and Xing (2004) de-
fault risk factor is not priced in the German capital market, and we actu-
ally find that equity returns decrease with higher default risk of firms. As
a first step to understand these differences in results for the two countries,
we replicate the study by Vassalou and Xing (2004) for the U.S. market and
test whether the design of the factor matters for the U.S. market as well.We
use the distances-to-default provided by Vassalou and Xing (2004), and match
these data with firms’ accounting information from Compustat, and market
capitalization from CRSP, to construct the excess return DEF factor for the
U.S. market. 17

The test portfolios for the U.S. market are constructed using a 3 x 3 x 3
sort of size, book-to-market and default risk, to establish comparability with
previous results. The results of the asset pricing tests are shown in Table 8.

Panel B shows the results of the Δ(SV) model used by Vassalou and Xing
(2004) and replicates their results. The coefficient on Δ(SV) in the stochas-

17 Since the DD estimates for the U.S. are provided by Vassalou and Xing (2004), the sample
period is now January 1971 to December 1999. The Fama/French factors and the risk-free
rates are downloaded from the Kenneth R. French Homepage.
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Table 8
DEF and Δ(SV) on the U.S. Market

This table provides stochastic discount factor and cross-sectional asset pricing test for
the U.S. market over the period 1971-1999. DD estimates are from Vassalou and Xing
(2004). Panel A shows the results of the Fama/French model augmented by our micking
factor portfolio ”DEF”, Panel B shows the results of the Fama/French model augmented
by ”Δ(SV)”, and Panel C reports the results of the Fama/French model augmented by
both ”DEF” and ”Δ(SV)”. The factor columns (RMRF, SMB, HML, DEF and Δ(SV))
contain the SDF coefficient estimates (”coefficient”) with t-values in parentheses. Rows
labeled ”premium” show the estimated factor risk premia. The column labeled J -test
shows the test statistic and the corresponding p-value of a J test for overidentifying re-
strictions. Factor premia are measured in percent, whereas the SDF coefficient estimates
are presented x 10,000. t-values are calculated with GMM using the Newey-West esti-
mator for the spectral density matrix, where the number of lags is l = 3. *,** and ***
denotes significance at the 10%-, 5%- and 1%-level, respectively.

Panel A: DEF

RMRF SMB HML DEF Δ(SV) J -test

coefficient 10.358 6.791 13.098 15.709 - Statistic 30.087

t-value (6.348***) (2.532**) (5.692***) (5.337***) - p-value (0.147)

premium 0.648 -0.012 0.372 0.250 - - -

t-value (2.514**) (-0.071) (2.034**) (1.655*) - - -

Panel B: Δ(SV)

RMRF SMB HML DEF Δ(SV) J -test

coefficient 13.809 11.043 10.867 - -66.928 Statistic 30.123

t-value (6.445***) (3.497***) (4.264***) - (-4.014***) p-value (0.146)

premium 0.538 0.043 0.299 - -0.417 - -

t-value (2.078**) (0.257) (1.642) - (-3.159***) - -

Panel C: All factor model

RMRF SMB HML DEF Δ(SV) J -test

coefficient 11.183 7.995 12.875 14.737 -9.343 Statistic 29.965

t-value (5.655***) (2.531**) (5.570***) (3.871***) (-0.522) p-value (0.119)

premium 0.645 -0.009 0.369 0.246 0.028 - -

t-value (2.505**) (-0.056) (2.008**) (1.650*) (0.201) - -

tic discount factor test is statistically highly significant from zero, as is the risk
premium estimate from the joint GMM time-series / cross section-regression. 18

Panel A of Table 8 illustrates, however, that the default risk factor con-
structed as an excess portfolio return of firms with high DD over firms with
low DD also explains systematically stock returns in the U.S. Similar to our
results for the German capital market, the coefficient on DEF in the stochas-
tic discount factor test is significantly different from zero and positive. Hence,
also in the U.S., firms with higher DD have on average higher returns than
firms with low DD. Although both Δ(SV) and DEF serve to control for firms’
default risk, the two factors significantly contribute to price assets in the U.S.,
but in contradictory directions.

18 The numerical differences from the results reported by Vassalou and Xing (2004) arises
because we have not been able to fully reconstruct Vassalou/Xing’s sample. Using the
matched Compustat and CRSP database leads to roughly 10% less sample firms than in
their data.
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This raises the question, which factor better approximates a systematic de-
fault risk component. On theoretical grounds, arguably one might prefer the
DEF-factor because it is a direct measure of the market price of systematic
default risk, while Δ(SV) merely reflects the change in the overall market
average PD. Empirically, it is a priori unclear which factor construction to
prefer. To compare the two measures directly, Panel C of Table 8 shows es-
timation results from including both default risk factors simultaneously into
the regression. The result is striking - Δ(SV) looses its explanatory power,
while DEF remains highly significant in the SDF test. Note that this is not
due to multi-collinearity since the test for overidentifying restrictions (J-test)
implies the model is not misspecified, under multi-collinearity both factors
should become insignificant, and the correlation between DEF and Δ(SV) is
only -0.197.

Hence, default risk is actually priced in the U.S. market, but the effect is
contrary to what Vassalou and Xing (2004) have reported - firms with higher
default risk have on average lower returns than firms with lower default risks.
The opposite effect reported by Vassalou and Xing (2004) is not robust since
their factor looses its explanatory power when using the DEF factor to control
for non-diversifiable default risk. As a second result, the impact of default risk
on stock returns is the same for the German and the U.S. stock market, despite
the structural differences between the two financial systems.

5.2 Bank Dependence and Default Risk Sensitivity Determinants

To further examine the question, whether the impact of default risk on
equity returns depends on the financial system firms operate in, we test in
this section whether equity returns are affected by corporate financing char-
acteristics attributable to the financial system. We focus on the role of bank
debt, since the relevance of bank debt for corporate finance constitutes one
major difference between the German and the U.S. financial system, and at
least theoretically, banks might play a significant role as an active corporate
governance mechanism.

The theory of financial intermediation suggests that in particular banks are
special in acquiring and processing (private) information about firms. Informa-
tion acquisition and repeated interaction can then lead to relationship lending,
where the information privilege of the relationship lender ties the firm to the
bank and (in turn) allows an intertemporal design of loan contracts (see Boot
(2000) for an overview). If relationship lending does indeed mitigate problems
due to asymmetric information between firm stakeholders, then one should
expect that the relevance of bank debt mitigates premia inherent in stock re-
turns that are due to these factors. Hence, our hypothesis is that firms that
are more likely to have a relationship lender will be less affected by systematic
default risk, all else equal. Elsas (2005) provides evidence that relationship
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lender can empirically be best identified by the share of bank debt of a firm’s
capital structure. We use this measure to test whether a firm’s degree of bank
dependence affects the default factor sensitivity.

The variable BANKDEBT correspondingly serves as the proxy for the bank
dependence of firms, calculated as the average bank debt over each 3-year pe-
riod, divided by the average book value of total assets in that period. Default
risk sensitivities are estimated for five successive (non-overlapping) 3-year pe-
riods starting in January 1991 (labeled βDEF ). These sensitivities are then
regressed on a set of explanatory variables, including BANKDEBT. 19

To avoid omitted variables biases, the empirical model needs to take further
theoretical sensitivity determinants into account. First, one should expect that
a firm’s sensitivity to the non-diversifiable market default risk is related to
the individual default risk of the firm. Note, however that there need not be
a one-to-one correspondence, since only the systematic part of default risk is
reflected in asset prices, and this component is not necessarily proportional to
individual default risk. We use the average distance-to-default of a firm over
the 3-year period (and its squared value to allow for nonlinear effects) as the
corresponding regressor.

Second, recent theoretical work by Carlson, Fisher, and Giammarino (2004)
and Garlappi and Yan (2008) suggests that the book-to-market and size effect
are related to default risk due to the option-like characteristic of equity and the
existence of absolute-priority-deviations in firm financial distress. Although
our empirical results do not suggest that the size and in particular the strong
book-to-market effect depend on default risk, we test and control for this effect
by including the average book-to-market ratio in the regression as a potential
determinant of default factor sensitivities.

Finally, we use some standard control variables to control for general firm
heterogeneity in the cross-section of our sample. Firm size is measured by
the natural logarithm of firm market value of equity (SIZE), profitability is
measured by the ratio of EBIT over the book value of total asset (ROA), firm
leverage (i.e. the part not captured by the market value based leverage inherent
in the distance-to-default) is measured by the ratio of total liabilities over book
value of total assets (LIABILITIES). The regressions are conducted as fixed-
effect panel regressions, with firm specific and time dummy variables. The time
dummy variables control for all macro-economic factors potentially affecting
sensitivities (like the interest rate level etc.), while the firm-specific effects
control for all time-invariant firm characteristics, like the industry affiliation.

Table 9 provides some descriptive statistics on the variables of primary in-
terest used in the regression analysis. Panel A of Table 9 shows that the

19 The sensitivity estimates are taken from time-series regressions of firms’ returns on the
DEF model (including the other Fama/French factors). This leads to at most 5 observations
for each firm and constitutes a panel data set.
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Table 9
Descriptive Statistics on Bank Debt Financing and Default Risk Sensitivities

The table reports descriptive statistics on firms’ default risk factor sensitivities βDEF .
These sensitivities are calculated by 3-year time-series regressions of stock returns on the
four factors RMRF, SMB, HML, and DEF. A maximum number of five observations for
each firm using the periods 1991:1 to 1993:12, 1994:1 to 1996:12 ... 2003:1 to 2005:12
is possible. Panel A also shows summary statistics on BANKDEBT, calculated as the
average bank debt over each 3-year period, divided by the average book value of total
assets in that period. Panel B shows a cross-tabulation of default factor sensitivities and
groups of firms sorted by their distance-to-default (DD), firms’ market value of equity
(SIZE), and the book-to-market ratio (BM). t-statistics are in parentheses. *,** and ***
denotes significance at the 10%-, 5%- and 1%-level, respectively.

Panel A: βDEF and BANKDEBT

variable mean t-stat std min max
βDEF -0.1188 (-5.8408***) 0.7517 -3.0000 3.0000
BANKDEBT 0.1917 - 0.1597 0.0000 0.8013

Panel B: mean βDEF of DD, SIZE and BM portfolios

LowDD MedDD HighDD

D
D mean -0.2085 -0.1477 -0.0002

t-stat (-4.6867***) (-4.6479***) (-0.0080)
Small Big

SI
Z
E mean -0.1609 -0.0767

t-stat (-4.7090***) (-3.4882***)
LowBM HighBM

B
M mean -0.0945 -0.1430

t-stat (-3.2977***) (-4.9569***)

average and median of default factor sensitivities is negative with a mean
of about -0.12. There are frequent sensitivity estimates of larger magnitude,
with distinctively positive or negative values. 20 The table also shows the debt
structure of German listed firms to be heterogenous. Still, bank debt is quite
generally important for corporate finance with an average bank debt ratio of
about 19% and a standard deviation of about 16%. 21 The high relevance of
bank debt financing illustrates why the German financial system often serves
as the prime example for a bank-based financial system.

Panel B of Table 9 shows that small firms, value-firms and firms with a high
probability of default (corresponding to a low DD) typically load negative
on the default risk factor. Recall that this factor is constructed as the excess
return of firms with low PD over firms with high PD and has a positive
premium. The average sensitivity of -0.2085 of firms with a low DD illustrates

20 We winsorize the sensitivity estimates exceeding an absolute value of 3 to avoid estimation
problems due to outliers.
21 The information on bank debt is taken from the Hoppenstedt German firm database,
since it is not explicitly shown in Worldscope.
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Table 10
Factor Sensitivity Regressions

The table reports estimation results from two regressions of firms’ default factor sensi-
tivities on a set of potential determinants. DD denotes distance-to-default, SIZE is the
natural logarithm of a firm’s average equity market value of each time period, BM de-
notes the ratio of book value of equity over market value of equity, ROA denotes return
on assets measured as the ratio of EBIT over the book value of total assets. BANKDEBT
describes the ratio of bank debt divided by total assets, and LIABILITIES is the ratio
of total liabilities over total assets. All ratios are averaged over the time period. Both
regressions differ in the choice of dependent variables. The model labeled by “FE” uses
the default factor sensitivity as dependent variable whereas the model labeled by “FEabs”
uses the absolute default factor sensitivity. The default factor sensitivities are calculated
by non-overlapping 3-year time-series regressions of stock returns on the four factors
RMRF, SMB, HML and DEF. DD greater than 30 and absolute values of sensitivities
in excess of 3 are winsorized. The model includes firm fixed-effects and dummy variables
indicating the time period of the observation. The F-test in the last row of the table tests
the null that all year dummy coefficients equal zero. Fixed-effects are significant through-
out (not reported), t-statistics are in parentheses. *,** and *** denotes significance at
the 10%-, 5%- and 1%-level, respectively.

Fixed Effects Regressions

FE FEabs

coef. t-value coef. t-value
INTERCEPT -1.061 (-3.84***) 1.216 (6.76***)
DD 0.055 (3.27***) -0.362 (-3.30***)
DD2 -0.001 (-1.80*) 0.001 (2.50**)
LIABILITIES -0.167 (-0.05) -0.257 (-1.07)
BANKDEBT 2.001 (3.07***) -1.777 (-4.18***)
BANKDEBTxLIABILITIES -1.958 (-2.36**) 2.416 (4.49***)
ROA -0.274 (-1.35) 0.005 (0.03)
SIZE 0.063 (1.29) -0.057 (-1.79*)
BM 0.093 (2.05**) -0.064 (-2.18**)
F-Test p-val<0.01 - p-val<0.01
R2 0.059 - 0.090 -

our result from the preceding sections, that average returns are lower for firms
with higher default risk.

The regression results of default risk sensitivities on the set of explanatory
variables are shown in Table 10. We report two specifications in Columns 2
(labeled by “FE”) and 3 (labeled by “FEabs”), where we use sensitivities and
absolute sensitivities as the dependent variable, respectively. The regression
of absolute sensitivities focuses on the impact of the determinants on the
magnitude of the sensitivity.

The estimation results in Table 10 show that default factor sensitivities are
increasing and that the magnitude decreases in the distance-to-default (the
coefficients are statistically significant in column 2 and 3, respectively). The
result is in accordance with our expectations - the DEF factor is calculated as
the return differential between high DD and low DD firms. Hence, not only
do firms with low DD have lower returns than firms with high DD, but the
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effect is increasing in magnitude the higher is the default risk. There is just a
weak countervailing nonlinear effect, since the coefficients on the squared DD
are significant but close to zero.

Most interestingly, the estimation results show that the composition of debt
affects systematically the default factor sensitivity. The model comprises firms
book leverage (LIABILITIES), the share of bank financing (BANKDEBT),
and the interaction term between these two variables. The coefficient on book
leverage is insignificant, implying that this ratio does not affect sensitivities,
beyond the effect of the market value based leverage captured by the DD.

However, the coefficient on BANKDEBT is significantly different form zero
in both regressions. Hence, the composition of debt affects firms’ market de-
fault risk sensitivity. There are several effects at work, in particular since the
interaction term between bank debt and leverage is negative, and the average
default risk sensitivity is negative. Overall, having a relationship lender atten-
uates default risk sensitivity. To illustrate this attenuating effect of firms’ bank
dependence on default risk sensitivity, Figure 2 shows a plot of the predicted
absolute sensitivity of an average firm for varying degrees of BANKDEBT,
based on the coefficient estimates shown in Table 10, column 3.

Fig. 2. Default-Risk-Sensitivity and Bank Debt Financing Share
This figure shows the predicted DEF-sensitivity based on the absolute sensitivity regres-
sion results from Table 10, column 3. The bank share of firm financing is varied over
the range of possible values from [0, 1], fixing all other variables at their unconditional
sample mean.

Figure 2 illustrates that the magnitude of the default risk sensitivity for an
average firm is lowered the higher the share of bank debt financing of total
financing, all else equal. This is in turn consistent with the sensitivity being
to some extent driven by information asymmetries and the resulting agency
problems of corporate financing. The statistically negative coefficient on the
interaction term between BANKDEBT and LIABILITIES implies that there
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is a countervailing effect. All else equal, being more bank dependant reduces
the magnitude of default risk sensitivity, but the more the firm is indebted,
the less pronounced is this effect.

We interpret these results as evidence consistent with the idea that equity
returns are affected by corporate financing characteristics attributable to the
financial system firms operate in. Our results suggest that having a relation-
ship lender attenuates the impact of default risk on equity returns. However,
these implications rest on the assumption that the share of bank debt of total
firm financing is a good proxy for the existence of relationship lending. Clearly,
further research is needed to validate our results.

6 Conclusions

This study is a first attempt to examine whether the impact of default risk
on equity returns depends the financial system firms operate in. We use an
implementation of Merton’s option-pricing model for the value of equity to
estimate firms’ default risk based on timely and forward-looking information,
and construct a factor that measures the excess return of firms with low default
risk over firms with high default risk. We then compare results from asset
pricing tests for the U.S. and the German stock market. Since Germany is the
prime example of a bank-based financial system, where debt is supposedly a
major instrument of corporate governance, we expect that a systematic default
risk effect on equity returns should be more pronounced for German rather
than U.S. firms.

Using a default risk factor which is measured as a factor-mimicking portfolio,
(i.e. the excess return of a portfolio of firms with low default risk over a port-
folio of firms with high default risk) bases the asset pricing tests directly on a
market price of risk, rather than a measure of the change in aggregate default
risk, as in Vassalou and Xing (2004). Our empirical results show the impor-
tance of this difference. For both the German and the U.S. capital market,
the default risk factor measured as a factor-mimicking portfolio is systemati-
cally priced, with firms having low individual default risk earning on average a
higher return than firms with high PD (in line with e.g. Ferguson and Shockley
(2003) and Dichev (1998)). Moreover, while the Vassalou and Xing (2004) fac-
tor is insignificant for the German capital market in general, their factor looses
its explanatory power for the U.S. market when simultaneously used with our
excess return factor.

The different results depending on the factor construction are somewhat
surprising since both factors are based on the same default risk measure (the
distance-to-default estimated from equity prices). One possible explanation for
the difference might arise from the long/short position in stocks with high or
low DD of the factor-mimicking portfolio. For high DD firms, the call option of
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equity owners to receive the firm’s assets is far in the money (i.e. default risk
is low), and for low DD firms, the corresponding call option is rather at the
money. Changes in value will occur mostly linearly related to the underlying
change in asset value for high DD stocks (i.e. only the option delta matters),
while the change in value for low DD stocks contains a linear component
(the delta) and some nonlinear effects (e.g. the vega of the option right). In
the long/short portfolio, the linear effects will cancel, while the non-linear
component remains. Thus, one candidate explanation for the effect on equity
returns that is captured by the factor-mimicking portfolio and not by the
average survival rate of firms is the undiversifiable component of changes in
asset volatilities. However, this idea clearly requires further research to be
substantiated.

Finally, to further examine the influence of financial system characteristics
on the impact of default risk on equity returns, we test the hypothesis that
having a relationship lender affects firms’ default risk sensitivity. We use the
share of bank debt of firm financing as a proxy for relationship lending, and
find firms’ sensitivities to the default risk factor getting attenuated, the more
a firm depends on bank debt financing, all else equal. Hence, our evidence
suggests that the composition of corporate debt, and thus the financial system
environment, bears on the impact of default risk on equity returns.
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Appendix

In this section, the econometric methods used within this paper are described
in detail, based on Cochrane (2005). First, we use a GMM approach to estimate
simultaneously the time series and cross sectional test. The following (K+2) ·
N x 1 system can be used to compute the estimates of the coefficient vector
Θ: 22

gT (Θ) =

⎡
⎢⎣Et[(R

e
t − [α β]X t) ⊗ X t]

Et(R
e
t − βλ)

⎤
⎥⎦ =

⎡
⎢⎣0
0

⎤
⎥⎦ (10)

where K denotes the number of factors used in the model 23 and N is the
number of test assets. Et describes the mean over t. The expression [α β] =
[α β1 . . . βK] denotes a matrix consisting of α, a N x 1 vector of intercepts
and β = [β1 . . . βK] which is a N x K matrix of time-series sensitivities.
The variable λ describes a K x 1 vector of cross sectional coefficients. It is
important to note that there is no intercept term within our cross sectional
approach. Re

t identifies the N x 1 excess return vector with returns of all test
asset portfolios p = {1 . . .N} at time t ∈ {1 . . . T}. X ′

t = [1 X2,t . . .XK+1,t] is
a horizontal vector composed of 1 and the factor values depending on t. The
symbol ⊗ denotes the Kronecker product and Θ describes the ((K+1)N+K)
x 1 parameter vector containing all mentioned parameters.

Θ′ = [α′ β1
′ . . . βK

′ λ′] (11)

The system of moment conditions leads to an overidentification (w.r.t. the
market risk premia of the factors) since (K+2)N ≥ (K+1)N+K.
The GMM estimate can be computed by

Θ̂ = arg min
Θ

gT (Θ)′Ŝ1
−1

gT (Θ) (12)

where Ŝ1
−1

denotes the estimated inverse spectral density matrix using the
Newey and West (1987) approach.

Since in the cross sectional test, portfolio returns are regressed on estimated
betas, this test would suffer from an errors-in-variables problem. Estimating
the time series and cross-section parameters simultaneously explicitly accounts
for this effect of generated regressors, because the standard errors are adjusted
accordingly through the use of the optimal weighting matrix in GMM.

22 Vectors or matrices are indicated by bold letters.
23 Using only the three Fama/French factors, K would be 3.
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The moment conditions map the time-series regressions

Rei = [αi (βi)′]X + εi , i = 1 . . . N

and cross-sectional regressions

Re
t = βλ + et , t = 1 . . . T

into a GMM system. Rei denotes the T x 1 excess return vector of test asset
i whereas αi is the intercept of the portfolio i’s time-series regression. βi

describes the K factor sensitivities, X is the usual T x (K+1) factor matrix
and εi is the regression’s error term. λ denotes a K x 1 vector of cross-sectional
variables. β = [β1, ..., βN ]′ describes the N x K matrix of betas obtained from
the time series regression. et is a N x 1 error term at time t and the N x 1 vector
Re

t denotes again the excess returns of all N test assets at time t. Using this
approach for the CAPM, the Fama/French model and the two models with
additional default factors included, we are able to compare these specifications.
It is important to note that the two new models are composed of the three
Fama/French factors and just one of the two default factors Δ(SV) and DEF.
Since only the four factor model including DEF employs factors measured as
returns, this is our preferred specification.

Second, an asset pricing model can be written in its stochastic discount
factor (SDF) form,

pt = Et[mt+1 · xt+1] (13)

where pt is the price at time t for the expected payoff xt+1 at t + 1 multiplied
by the stochastic discount factor mt+1. Assigned to our models, the form can
easily be changed into a N x 1 system

0 = Et[mt+1 · Re
t+1] (14)

where

mt+1 = [ a − b′ ]X t+1 (15)

and b denotes the K x 1 parameter vector of the SDF whereas a describes the
intercept. If pt is zero, b is identified only up to a constant (0 = E(mx) =
E(2mx)). In that case Cochrane (1996) proposes to impose a arbitrarily (e.g.
a = 1). To compute and test this form, a GMM/discount factor model can be
specified with the following moment conditions:

gT (b) = Et[(R
e
t )(X2,t . . .XK+1,t)b − Re

t ] (16)
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where gT (b) is a N x 1 vector. The optimization problem is very similar to
equation (12), that is,

b̂ = arg min
b

gT (b)′Ŝ2
−1

gT (b). (17)
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