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Abstract

This paper evaluates the forecast performance of boosting, a vari-

able selection device, and compares it with the forecast combination

schemes and dynamic factor models presented in Stock and Watson

(2006). Using the same data set and comparison methodology, we

find that boosting is a serious competitor for forecasting US indus-

trial production growth in the short run and that it performs best in

the longer run.
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1 Introduction

In recent years, a large body of research has developed that utilises many

predictors for forecasting since both the availability of data and the com-

putational power to handle them have increased tremendously. The crucial

question that arises is which pieces of information are relevant for forecasting

macroeconomic aggregates. There are two ways of exploiting a large number

of time series without overfitting the forecasting model, information coden-

sation and variable selection. The most common approaches, factor models

and forecast combination schemes, perform information condensation (for a

recent overview of factor models, see Stock and Watson (2010) and of forecast

combination, see Timmermann (2006)).

This paper compares the forecast accuracy of boosting, a variable selec-

tion algorithm, with both forecast combination methods and factor models.

An alternative approach would be to evaluate all possible combinations of

variables according to some in-sample or out-of-sample criterion. However,

since the number of combinations rises exponentially with the number of pre-

dictors, this method becomes infeasible when the number of variables is large.

In this case, boosting provides an efficient solution to the variable selection

problem. We present componentwise boosting which iteratively estimates an

unknown function and in each iteration adds the variable with the largest

contribution to the fit.

Boosting has been proposed in the machine learning community as a

scheme for classification (Freund and Schapire, 1996) and further developed

for regression problems by Friedman (2001). Until now, there are only very

few applications to forecasting. Bai and Ng (2009) estimate the common

factors of a large number of predictors and then select the most relevant

factors by boosting. For the only considered forecast horizon of 12 months,

they find that some form of boosting can improve the forecast as compared to

standard factor models. However, in their empirical application to US data,

boosting of factors is only advantageous for two out of five target variables,

while for the others it is better to boost the predictors directly. Carriero

et al. (2010) forecast a large number of variables using vector autoregressive
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(VAR) models and compare the forecasting accuracy of several reduced-rank

models with factor models, Bayesian VARs and multivariate boosting. The

latter performs best when forecasting CPI inflation one month ahead.

The forecasting performance of boosting depends crucially on the number

of iterations. While a small number of iterations leads to a large bias, a large

number increases the variance since more and more predictors are added. In

order to determine the stopping criterion, Bai and Ng (2009) use an Akaike

criterion and Carriero et al. (2010) apply grid search. In this paper, we show

that cross-validation leads to better results than the AIC. Moreover, it is

computationally more efficient than grid search. Furthermore, we do not

only compare the forecast accuracy of boosting with factor models, but also

with forecast combination as another commonly used approach to incorporate

many predictors.

As a basis of comparison, we build on Stock and Watson (2006) who

examine the performance of different forecast combination schemes, factor

models, Bayesian model averaging and empirical Bayes methods over several

forecast horizons. Thereby, they are one of the few that compare the forecast

accuracy of pooling of information versus pooling of forecasts.

We go one step further and include boosting into the horse race with these

most prominent approaches to deal with large data sets. In our empirical

application to US industrial production we use the same methods for forecast

comparison and the same data set consisting of 131 economic time series from

1959 to 2003.

The remainder is organised as follows: While Section 2 outlines the boost-

ing procedure, Section 3 describes the empirical application. Finally, Section

4 concludes.

2 Boosting

Boosting is a forward stagewise modelling algorithm that iteratively esti-

mates an unknown function, which can be linear or nonlinear. We estimate

the following autoregressive distributed lag (ADL) model:
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(
yht+h|zt, δ

)
= δ′Z = µ+

p∑
i=1

αiyt+1−i+
N∑
j=1

p∑
i=1

β
(j)
i x

(j)
t+1−i =: F (zt, δ), (1)

where x = (x1, ..., xN) contains all exogenous predictors, and p and N denote

the number of lags and variables, respectively. Those variables, however,

that are not chosen, obtain a zero restriction. The main ingredients of the

boosting algorithm are the base learner and the loss function. While the base

learner f(.) is a simple fitting procedure, such as OLS, the loss function L(.)

is needed for the variable selection. The loss function that is most often used

for regression problems is squared error (L2) loss:

L(yt, F (zt, δ)) =
1

2
(yt − F (zt, δ))2. (2)

For multi-dimensional datasets, Bühlmann and Yu (2003) suggest to use

componentwise boosting where the base learner is applied to one variable at

a time. Note that with componentwise boosting, the lags of one predictor are

treated as separate variables such that the algorithm simultaneously selects

variables and lags. So from all p+N×p potential predictors zt,k, the variable

zt,k∗m minimising the loss function is selected in each iteration m.

The algorithm for componentwise L2 boosting can be summarised as fol-

lows:

1. Initialise f̂t,0(.) = ȳ for each t. Set m = 0.

2. Increase m by 1. For t = 1, ..., T , compute the negative gradient

−∂L(yt,F )
∂F

and evaluate at f̂t,m−1(zt, δ̂
[m−1]

): ut = yt− f̂t,m−1(zt, δ̂
[m−1]

).

3. For k = 1, ..., p+N × p, regress the negative gradient vector ut on zt,k

and compute SSRk =
∑T

t=1(ut − zt,kθ̂k)2.

4. Choose zt,k∗m such that SSRk∗ = arg mink∈N SSRk.

5. Let f̂t,m = zt,k∗m θ̂k∗m .

6. For t = 1, ..., T , update f̂t,m(.) = f̂t,m−1(.) + νf̂t,m(.), where 0 < ν < 1.

3



7. Iterate steps 2 to 6 until m = M

The final function estimate results as the sum of the M base learner

estimates multiplied by the shrinkage parameter ν:

F̂ (zt, δ̂
[M ]

) =
M∑

m=0

νf̂m(zt, θ̂
[m]

). (3)

In order to reduce the variance, Friedman (2001) proposed to combine

variable selection with shrinkage and introduced the step size ν into the

boosting algorithm. Overfitting is also prevented by stopping the procedure

at iteration M . The stopping criterion can be obtained by cross-validation

or a modification of the Akaike criterion. For further details on boosting, see

Bühlmann and Hothorn (2007).

3 Application to US Data

3.1 Data

The data set is the same used in Stock and Watson (2006). Covering the

period from 1959 to 2003 it contains US industrial production as target se-

ries and 130 monthly time series from three broad categories: real economy,

money and prices, and financial markets. The series were transformed to

stationarity and standardised according to Stock and Watson (2004).

3.2 Methods

Following Stock and Watson (2006), we forecast the h-month growth of indus-

trial production at an annual rate, where h = 1, 3, 6 and 12. The forecasts are

computed directly and pseudo-out-of-sample using a recursive scheme with

a forecast period from 1974:7 to 2003:12-h. When evaluating the forecast

accuracy, we use the relative mean squared forecast errors (MSFEs), where

the benchmark is an AR(AIC) model:
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E (yht+h|yt) = α +

p∑
i=1

βiyt+1−i, where (4)

yht+h = (1200/h) ln(IPt+h/IPt).

For the boosting procedure, we estimate the ADL model in Equation (1)

using a linear weak learner (OLS) and an L2-loss function. Since the boosting

algorithm is relatively insensitive to the value of the shrinkage parameter ν –

as long as it is sufficiently small – we set it to the commonly used value of 0.1

(Lutz and Bühlmann, 2006). The crucial parameter is the stopping criterion

M , which we determine both by the AIC and bootstrapped cross-validation.

3.3 Results

The results are summarised in Table 1. As the entries are MSFEs relative

to the AR benchmark, numbers less than 1 indicate an MSFE improvement

over the benchmark forecast. It can be seen that the relative forecast perfor-

mance of boosting improves with increasing forecast horizon. Moreover, the

forecast errors are always smaller when cross-validation is used to determine

the stopping criterion instead of the Akaike criterion. This is due to the fact

that cross-validation tends to result in a smaller number of iterations and

thus generates smaller models. Apart from the one-month forecast based on

the AIC, boosting is always able to beat the benchmark. Furthermore, the

boosting forecasts are competitive over all horizons and in most cases better

than the combination forecasts. While the dynamic factor models perform

best in the short and medium run, boosting based on cross-validation pro-

duces the best forecast 12 months ahead.

4 Conclusion

This paper introduces the variable selection method boosting into a horse

race between factor models and forecast combination, two prominent ap-
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proaches to deal with large numbers of predictors in forecasting. In an ap-

plication to US industrial production, we show that boosting is a serious

competitor, especially when cross-validation is used to determine the num-

ber of iterations. Based on a single data set and target variable, it is not

possible to draw any general conclusions about the forecasting performance

of boosting. However, it has been shown that boosting is a viable and com-

putationally efficient alternative to other methods using many predictors.
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Table 1: Forecasting with many predictors: Accuracy comparison

Method 1 3 6 12
Stock and Watson (2006)
Univariate benchmark

AR(AIC) 1.00 1.00 1.00 1.00
AR(4) 0.99 1.00 0.99 0.99

Multivariate Forecasts
(1) OLS 1.78 1.45 2.27 2.39
(2) Combination forecasts

Mean 0.95 0.93 0.87 0.87
SSR-weighted average 0.85 0.95 0.96 1.16

(3) DFM
PCA(3,4) 0.83 0.70 0.74 0.87
Diagonal weighted PC(3,4) 0.83 0.73 0.83 0.96
Weighted PC(3,4) 0.82 0.70 0.66 0.76

(4) BMA
X’s, g = 1/T 0.83 0.79 1.18 1.50
Principal components, g = 1 0.85 0.75 0.83 0.92
Principal components, g = 1/T 0.85 0.78 1.04 1.50

(5) Empirical Bayes
Parametric/g-prior 1.00 1.04 1.56 1.92
Parametric/mixed normal prior 0.93 0.75 0.81 0.89

(6) Boosting
Linear lerner (AIC) 1.02 0.91 0.86 0.82
Linear learner (cross-validation) 0.86 0.81 0.79 0.63

Notes: Entries are relative MSFEs, relative to the AR(AIC) benchmark. The smallest
MSFE ratio is in bold. All forecasts are recursive, and the MSFEs were computed over
the period 1974:7-(2003:12-h). For details on (1) to (5) see Stock and Watson (2006).
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