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Abstract

In this paper we assess the information content of seven widely cited early indicators for

the euro area with respect to forecasting area-wide industrial production. To this end, we

use various tests that are designed to compare competing forecast models. In addition

to the standard Diebold-Mariano test, we employ tests that account for specific problems

typically encountered in forecast exercises. Specifically, we pay attention to nested model

structures, we alleviate the problem of data snooping arising from multiple pairwise testing,

and we analyze the structural stability in the relative forecast performance of one indicator

compared to a benchmark model. Moreover, we consider loss functions that overweight

forecast errors in booms and recessions to check whether a specific indicator that appears to

be a good choice on average is also preferable in times of economic stress. We find that on

average three indicators have superior forecast ability, namely the EuroCoin indicator, the

OECD composite leading indicator, and the FAZ-Euro indicator published by the Frank-

furter Allgemeine Zeitung. If one is interested in one-month forecasts only, the business

climate indicator of the European Commission yields the smallest errors. However, the re-

sults are not completely invariant against the choice of the loss function. Moreover, rolling

local tests reveal that the indicators are particularly useful in times of unusual changes in

industrial production while the simple autoregressive benchmark is difficult to beat during

time of average production growth.

JEL-numbers: C32, C53, E32.

Keywords: weighted loss, leading indicators, euro area, forecasting.



1 Introduction

The euro area is a rather new subject in the literature on macroeconomic forecasting. How-

ever, it is all the more interesting, especially because the European Central Bank conducts

its monetary policy explicitly with a view to the euro area as a whole. The forward-looking

elements of this policy requires to generate accurate forecasts of inflation and economic ac-

tivity. In this paper, we consider the latter, concentrating on euro area industrial production

which is the most timely “hard indicator” of aggregate output that is available. Specifically,

we assess whether several popular “soft indicators” reveal early information that helps to

improve the accuracy of industrial production forecasts.

In standard empirical out-of-sample forecasting exercises the performance of leading

indicators is often measured by the (root) mean squared error which is derived from a

symmetric quadratic loss function. Furthermore, in order uncover significantly forecast-

ing differences between pairs of indicators, typically the popular Diebold-Mariano test is

employed.

In line with the recent literature, we challenge this “standard assessment approach” in

several ways. First, we allow for a flexible weighting scheme of the forecasting errors in the

relevant loss function. This can be more satisfactory in situations where some observations

are more important than others, as argued by van Dijk and Franses (2003). The flexible

weighting scheme allows to judge the predictive ability of leading indicators during booms

or recessions which might be particularly important times for monetary policy decisions

and, thus, accurate forecasts, the recent financial and economic crisis being an impressive

example. To take these issues into account, we include a weighted loss function into the

standard Diebold-Mariano type tests.

Second, we pay attention to the the aspect of nested models in forecast comparisons.

Starting with Clark and McCracken (2001) this aspect has been increasingly discussed in

the literature. The basic idea is that the comparison of, say, an indicator model with a

nested benchmark model (that does not include the indicator) has to take into account the

estimation uncertainty associated with estimating the additional parameters for the indi-

cators. Neglecting this uncertainty gives rise to a bias in favor of the benchmark model.

For example, in such a situation the Diebold-Mariano test would signal too often that the

indicator model is not able to improve upon the benchmark. Specifically, we employ the

recently proposed test by Clark and West (2007) to account for this issue.

Third, we note that our forecast comparison—like almost all work in this field—does

not literally contrast one model with a single competitor which is the setting the standard

pairwise tests such as the one proposed by Diebold and Mariano (1995) are designed for.

Instead, we aim at finding the most promising indicators from a possibly large set of can-
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didates. In such a situation, a few pairwise tests can signal dominance of one indicator

over the other simply by chance, much like repeated draws from, say, the standard normal

distribution will yield from time to time values that exceed conventional critical values and

lead to the rejection of the mean zero hypothesis. To account for this data snooping prob-

lem we apply the test for superior predictive ability (SPA) proposed by Hansen (2005) and

based on the seminal paper by White (2000).

Finally, we take a first look at the stability issue of forecast dominance. As argued by

Giacomini and Rossi (2008) the relative forecast performance of one indicator to another

may change over time, possibly due to structural instabilities, e.g., as the consequence

of booms or recessions. A practitioner would of course prefer an indicator that has at

least in past shown stable dominance over its competitors. To this end, we implement the

fluctuation test proposed by Giacomini and Rossi (2008) which is based on a series of

local Diebold-Mariano tests. To the best of our knowledge, we are the first who allow for

weighted loss differentials within this framework to assess the forecasting stability also for

booms and recessions.

The remainder of the paper is structured as follows. In Section 2, we briefly overview

the related literature. In Section 3, we discuss the weighted loss function we use to compare

to forecast models before we outline in Section 4 the various forecast accuracy tests we

employ. The setup of our out-of-sample forecast exercise is described in Section 5 and the

results are presented in Section 6. Section 7 summarizes and concludes.

2 Related Literature

As the euro area is a rather new entity, it is has become only recently a topic in the field

of macroeconomic forecasting. Accordingly, there are only few directly related papers

available. While we study point forecasts, most of the work done on the euro area focuses

on turning point prediction for industrial production, or point forecasts for gross domestic

product and inflation. Only the study by Bodo et al. (2000) uses one of the indicators we

consider, namely the European Economic Sentiment indicator. Therefore, we are among

the first who assess the point forecasting ability of leading indicators for the euro area.

Bodo et al. (2000) provide one of the first studies to forecast euro area industrial pro-

duction. Besides univariate and vector autoregressive models referring to the four largest

euro area countries, the authors employ a two-country vector autoregressive model for the

euro area and the US. They study whether the inclusion of survey-based business climate

indicator published by the European Commission helps to improve the forecasts. Employ-

ing the modified Diebold-Mariano test, they find that the benchmark ARIMA model is
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outperformed by the two-country model with the survey indicator.

Marcellino et al. (2003) forecast quarterly euro area macroeconomic time series, among

them industrial production, using a dynamic factor model framework with country-specific

data. They find, based on a number of different model specifications, that country-specific

information matters, albeit without testing for significant differences in predictive ability.

Forni et al. (2003) show in a dynamic factor framework that including financial variables

does not improve forecast accuracy for euro area industrial production. Marcellino (2008)

provides evidence that artificial neural networks perform on average better than simple

linear models without indicators.

Using different forecast targets, there are quite a few papers that apply the newly devel-

oped tests of forecast accuracy discussed above. However, they typically focus on exchange

rate and financial forecasting. As an exception, Milas and Rothman (2008) use weighted

loss differentials as proposed by van Dijk and Franses (2003) to assess macroeconomic

forecasting performance. They use smooth transition vector error-correction models in a

simulated out-of-sample forecasting experiment for the unemployment rates in the U.S.,

the U.K., Canada, and Japan. They find that the forecast performance of the models can

differ between booms and recessions. Caggiano et al. (2009) use the test proposed by

Clark and West (2007) to account for nested model structures when comparing forecast

models for the euro area and other countries. The aspect of data snooping has recently

been taken into account by Clark and McCracken (2009) who compare a very large set

of forecasting models for U.S. macroeconomic variables. The fluctuation test is used in

Fichtner et al. (2009) to assess the stability in the predictive ability of the OECD com-

posite leading indicator for industrial production in 11 OECD countries. It is also used

by Rossi and Sekhposyan (2010) to check whether the forecasting performance of various

economic models for US output growth and inflation has changed over time. They find that

during the Great Moderation many forecasting models became essentially useless.

3 Weighted Loss Functions

The standard period-t loss function used in most of the forecast evaluation literature ist the

squared forecast error

Li,t = e2
i,t , (1)

where ei,t = yt−y f
i,t is the forecast error of model i, yt is the realization of the target variable,

y f
i,t is the value predicted by model i. While theoretical results are available for quite general

loss functions, see, e.g., Diebold and Mariano (1995), the applied literature concentrates

on the quadratic loss function. Comparing the average loss difference of two competing
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models 1 and 2 then means to compute their mean squared forecast errors (MSFE)

MSFEi =
1
P

T+P

∑
t=T+1

e2
i,t , i = 1,2, (2)

over the forecast period T + 1 to T + P and choose the model with the smaller MSFE.

However, one can think of many occasions in which different loss functions can make

more sense for the applied forecaster but also for the user of a forecast such as a politician

or the CEO of a company. For example, the recent recession demonstrated that a good

forecast of a rather extreme event might be of special interest beyond that of minimizing

an average squared error: banks could have taken earlier measures to shelter against the

turmoil, governments could have started stimulus packages in time, and firms might have

circumvented their strong increase in inventories.

As argued by van Dijk and Franses (2003), a weighted squared forecast error can be

used to place more weight on unusual events when evaluating forecast models. Specifically,

they propose to use the loss function

Lw
i,t = wte2

i,t , (3)

where the weight wt is specified as

1. wleft,t = 1− F̂(yt), where F(·) is the cumulative distribution function of yt , to over-

weight the left tail of the distribution. This gives rise to a “recession” loss function.

2. wright,t = F̂(yt), to overweight the right tail of the distribution. This gives rise to a

“boom” loss function.

Obviously, the weighted loss function (3) collapses to the standard loss function (1) when

equal weights wt = 1 are imposed. This gives rise to the conventional “uniform” loss

function.

Using a weighted loss function complicates things only slightly. To evaluate a forecast

model i over a forecast period T + 1 to T + P simply requires to calculate the weighted

mean squared forecast error

MSFEi =
1
P

T+P

∑
t=T+1

wte2
i,t . (4)

In order to compare, say, model i to a benchmark model 0, one calculates the weighted loss

difference

di,t = Lw
0,t −Lw

i,t = wte2
0,t −wte2

i,t (5)

and averages over the the forecast period

di =
1
P

T+P

∑
t=T+1

di,t =
1
P

T+P

∑
t=T+1

wte2
0,t −

1
P

T+P

∑
t=T+1

wte2
i,t (6)

4



In the remainder of this paper, we will use this weighted loss and analyze the forecast

accuracy of different models (which in turn are based on different indicators) with respect

to the different weighting schemes introduced above.

Figure 1 depicts the empirical cumulative density function of the target variable in our

application, namely the growth rate of euro area industrial production. It demonstrates that

observations smaller than -0.04 and larger than 0.04 receive a particularly high weight in

the analysis of recessions and booms, respectively. The evolution of euro area industrial

production and of the weight series is displayed in Figure 2. In the upper panel, the ex-

treme fall in euro area industrial production during the winter of 2008/2009 catches the

eye. Hence, this event also dominates the recession weights (lower panel). However, the

recession in 2001/2002 receives almost the same weights. Therefore, our results are not

solely driven by a single event. On the flip side, the boom weights are particularly high

during the rapid expansion in 2000 and in the period of 2006 to 2008 (middle panel).

4 Forecast Accuracy Tests

To analyze whether empirical loss differences between two or more competing models are

statistically significant, there is a large number of tests proposed in the literature, among

which the pairwise test introduced by Diebold and Mariano (1995) seems to be the most

influential and most widely used. Therefore, we also apply it to our setting. We augment

our analysis with three further tests which are designed to account for additional important

features of the forecast evaluation problem and which have not been used very often in

applied work. First, the test proposed by Clark and West (2007) takes into account that

our benchmark model—a simple AR(1) model—is nested in all the competing models to

which early indicators are added. Second, the test suggested by Hansen (2005) circumvents

the problem of data snooping that arises when a number of pairwise tests are conducted.

Finally, the fluctuation test by Giacomini and Rossi (2008) is useful to examine whether

the relative forecast performance of one model has changed over time relative to the bench-

mark. In the following, we briefly introduce these test.

4.1 Modified Diebold-Mariano Test

The standard way to discriminate between the forecasting performances of two competing

models is to apply the forecast accuracy test proposed by Diebold and Mariano (1995).

In this paper, we apply the modified Diebold-Mariano (MDM) test proposed by Harvey

et al. (1997), which corrects for a small sample bias. It evaluates whether the average

loss differences between the two models is significantly different from zero. Hence, it
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is a pairwise test that is designed to compare two models at a time, say, model i with

benchmark model 0. Specifically, the null hypothesis of the MDM test is that of equal

forecast performance,

E [di,t ] = E
[
Lw

0,t −Lw
i,t

]
= 0. (7)

Following Harvey et al. (1997), we use the MDM test statistic

MDM =
(

P+1−2h+P−1h(h−1)
P

)1/2

V̂ (di)−1/2di, (8)

where h is the forecast horizon and V̂ (di) the estimated variance of series di,t . The MDM

test statistic is compared with a critical value from the t-distribution with P−1 degrees of

freedom.

4.2 Forecast accuracy test for nested models

In our setting presented in more detail below, then benchmark is an AR(1) model against

which competing models augmented with more lags and additional indicators are tested.

Hence, the benchmark model is nested in the competing models. When testing the null

hypothesis of equal forecast accuracy for two nested models, a complication arises as ar-

gued by, inter alia, Clark and McCracken (2001) and Clark and West (2007). Consider the

typical case in the applied forecast evaluation literature that a simple benchmark model is

compared with a rival model which is augmented by additional explanatory variables such

as further lags or indicators. Under the null, the additional variables are useless and their

coefficients are zero. Estimating these coefficients introduces noise in the derived forecasts

of the rival model. Hence, under the null, the forecast accuracy of the parsimonious bench-

mark model is higher than (and not equal to) that of the larger rival model. Neglecting this

fact leads to undersized tests with poor power, see Clark and McCracken (2001) and Clark

and West (2005). In this sense, conventional tests favor the parsimonious model too of-

ten. Therefore, Clark and West (2007) propose an adjusted test that takes the nested model

structure into account.

Specifically, for a test in the spirit of Diebold and Mariano (1995), Clark and West

(2007) define the adjustment term

āi =
1
P

P

∑
t=1

wt

(
y f

0,t − y f
i,t

)2
, (9)

where y f
0,t is the forecast of the parsimonious benchmark model and y f

i,t is the forecast of

the augmented rival model. As they consider an unweighted loss functions, they set wt = 1.
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The test statistic is defined as

CW = V̂ (di− āi)−1/2 (
di− āi

)
, (10)

where V̂ (di− āi) is the estimated variance of the adjusted loss difference di− āi. Note that

it is essential that the forecasts be computed from a rolling regression. As demonstrated

in a simulation study by Clark and West (2007), using forecasts computed from a rolling

regression scheme and applying the normal distribution leads to a fairly good but somewhat

undersized test. For example a test with 10 percent nominal size will typically have a true

size between 5 and 10 percent. For our purpose, this should be a good approximation.

4.3 Superior Predictive Ability Test

Conventional econometric techniques for forecast evaluation focus on the comparison of

two models at a time. Applying such pairwise tests sequentially to a number of models

gives rise to the problems related to multiple testing procedures, particularly invalidating

standard critical values. Effectively, comparing several different models to a benchmark

model may result in spuriously identifying a superior model just by chance. To account for

this data snooping problem we apply the test for superior predictive ability (SPA) proposed

by Hansen (2005) which is based on the seminal paper by White (2000). The idea of this

test is basically to compare a benchmark forecast model simultaneously to the whole set of

m rival forecast models with the null hypothesis being that the benchmark is not inferior to

any of the rivals. The null is formulated as the multiple hypothesis

H0 : E(di,t)≤ 0 ∀i = 1, . . . ,m. (11)

and is rejected when at least one of the rival models yields significantly more accurate

forecasts—and thus a smaller expected loss—than the benchmark model.

Of course, the expectation of di,t is unknown, but it can be consistently estimated with

the sample mean di, i = 1, ...,m. White (2000) proposes the reality check test statistic

RC = max
k

P1/2di . (12)

Note that the limiting distribution of RC is not unique under the null hypothesis. Therefore,

the stationary bootstrap method of Politis and Romano (1994) is utilized.

As a major drawback, the RC test depends heavily on the set of competing models. If

this set contains poor or irrelevant models delivering bad forecasts then the test is conser-

vative in the sense that the critical value, which the RC statistic has to exceed in order to

reject the null, increases with the number of included alternatives. Hence, adding enough
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irrelevant models could, in principle, lead to accepting the null hypothesis no matter how

good a single competing model might be. As a solution to this problem, Hansen (2005)

proposes the studentized test statistic

SPA = max
[

max
k

V̂ (di)−1/2di,0
]
, (13)

where V̂ (di) denotes the consistently estimated variance of di. Assuming that irrelevant

models deliver high forecast errors, the studentization downweights such models. Thereby,

the size of the SPA test should be stable even if irrelevant models are added. Since the

limiting distribution of the test statistic is not unique under the null hypothesis, a stationary

bootstrap is used. Moreover, the distribution theory requires the use of a rolling estimation

window in contrast to the recursive scheme used for the other tests.

4.4 Fluctuation Test

To analyze the stability of the forecasting performance over time, we implement the fluc-

tuation test proposed by Giacomini and Rossi (2008). The test is based on the idea that due

to potential structural instabilities—in our context possibly as the consequence of booms

or recessions—the relative forecast performance of two competing models may change.

Therefore, the authors propose to assess the development of a local loss difference over

time in contrast to concentrating on the average (global) loss difference as in conventional

tests. This may supply important information for a forecaster. In particular, indicator mod-

els that deliver accurate forecast only in specific situations or only at the beginning of the

historical out-of-sample experiment might be downweighted.

To implement the fluctuation test, Giacomini and Rossi (2008) calculate the centered

local loss differences of the Diebold-Mariano type,

d
local
i,t =

1
Q

t+Q/2−1

∑
τ=t−Q/2

V̂ (di)−1/2di,τ, t = T +Q/2+1, . . . ,T +P−Q/2+1, (14)

and check whether this sequence crosses the appropriate critical values which can be de-

rived from a non-standard limiting distribution and are provided by the authors. If it does,

then an instability is detected. Note that in our application below we calculate the forecasts

from a rolling regression scheme.

When interpreting the results of the fluctuation test in comparison to a conventional

Diebold-Mariano test, one should keep in mind that the null hypothesis of equal forecast

accuracy is tested against slightly different alternatives. In the conventional approach, the

alternative hypothesis is that one of the two models delivers a smaller expected loss than
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the other on average over a fixed evaluation period. Hence, the approach presupposes

structural invariance. In contrast, the fluctuation test uses the alternative hypothesis that

one of the two models delivers a smaller expected loss at some point in the evaluation

period. As this point is unknown, to prevent the test from spuriously detect instability, the

absolute critical values are larger than in the conventional approach. This result is well

known from standard structural break tests, such as the “sup” tests discussed by Andrews

(1993). Therefore, in finite samples it might well be the case that the null hypothesis of

equal forecast accuracy is rejected on average (assuming structural stability) but not locally

(dropping the assumption of structural stability).

5 Empirical Setup

5.1 Database

We consider seven different business cycle indicators that are often used for the prediction

of economic growth in the euro area. These indicators are constructed and published by

different institutions such as the European Commission, the OECD, the ZEW, the DZ-

Bank, and the CEPR. Table 1 contains a list of the indicators and their components. Our

target series is the the year-over-year (yoy) growth rate of the industrial production index

for the euro area as published by Eurostat. Although industrial production accounts only

for one third of the total GDP, it is regarded as a well-suited and quickly available business

cycle indicator as argued, inter alia, by Breitung and Jagodzinski (2001)). Our sample

spans from 1992M01 to 2009M6.

5.2 Forecast model

In our forecast exercise we consider the standard autoregressive distributed lag (ADL)

model for generating forecasts. The h-step-ahead model is given by

yt+h = α+
p

∑
i=1

φiyt+1−i +
r

∑
j=1

θ jxt+1− j + εt (15)

where yt is the year-on-year growth rate of euro area industrial production and xt denotes

one of the aforementioned leading indicators which are taken as exogenous. Hence, we

refrain from modeling feedback effects. We allow for a maximum of 12 lags both for the

endogenous and the exogenous variable. The lag length is chosen via the AIC criterion. We

employ a rolling forecasting scheme as required for the Hansen test. The initial estimation

period ranges from 1992:01 to 1999:12 (T = 96) which is moved forward through up to
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2009:05. At each point at time equation (15) is re-specified and before the forecasts are

calculated. The initial forecast date is 2000:01 and the final forecast date is 2009:06 minus

the forecast horizon. We generate short-term (h = 1), medium-term (h = 6) and long-term

forecasts (h = 12). The number of calculated forecasts ranges from P = 114 for h = 1 to

P = 102 for h = 12. We employ two benchmark models, an AR(1) model which is always

nested in (15) and an AR(p) model.

6 Results

In a first step, we report the uniform, boom and recession weighted MSFE for all indica-

tor models and the autoregressive benchmark models (Table 2). As a general result, the

average forecast errors based on the uniform weighting scheme are strongly driven by the

forecast errors made during recessions which are substantially higher than during booms.

This holds for all models and forecast horizons. It implies that improvements in terms

of indicator construction and model building should aim at better predictions of recession

periods.

Comparing the indicators, we find that their ranking in some—but by far not in all—

cases differs considerably between boom and recession periods. For the short-term fore-

casts (h = 1), we observe that the EJ indicator ranks as number 1 or 2 in all weighting

schemes. Also, the EC indicator always ranks as number 3 or 4. Hence the relative per-

formance of these indicators is unaffected by the specific economic situation. On the other

hand, the relative performance of the ESI and OECD indicators depend on whether a boom

or a recession has to be predicted. While the ESI is particularly useful in recessions, the

OECD indicator has its strengths in booms. Overall, it is reassuring that all indicator

models outperform the autoregressive benchmark models. The differences are particularly

pronounced for recession forecasts.

Forecasting six months ahead leads to a somewhat different picture. Now the OECD

indicator uniformly outperforms its competitors by a noticeable amount. The FAZ indicator

follows closely behind for boom forecasts but is much less suited for recession forecasts.

In contrast, the ZEW indicator works well for recession forecasts but ranks only as number

7 for boom forecasts. The EJ indicator which performed well for the short horizon cannot

be recommended for the 6-month horizon.

Looking at the 12-month forecasts, the AR(1) model becomes number 2 on average and

number 1 for boom forecasts. It is only outperformed by the FAZ indicator which works

particularly well for recession forecasts. All the other indicators do not seem to add useful

information to the simple autoregressive model.
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In practice, the choice of an appropriate indicator should depend on both the forecast

horizon and on the specific loss function. Forecasters who particularly dislike forecast

errors during recessions should use a slightly different set of indicators than forecasters

who are more interested in correct boom prediction. For example, at the 1-month horizon

the top three models for recessions are based on the OECD, EJ, and FAZ indicators while

the top three models for booms are based on the EJ, ESI, and EC indicators.

In a second step, the modified Diebold-Mariano test is used to check the significance

of the above finding, see Tables 4 to 6. At the horizon of one month all indicator forecasts

yield significantly smaller losses than the benchmark AR(1) model and the EJ indicator

outperforms most of its competitors no matter which weighting scheme is used while some

indicators are significantly better than other only in specific situations. For example, the

FAZ indicator is significantly dominates 5 of its competitors during booms but not during

recessions. At the horizon of six months the advantage of the OECD and FAZ indicators is

corroborated by the Diebold-Mariano test, particularly for boom forecasts. For recession

forecasts at the 6-month horizon, the EC, ZEW, FAZ, and OECD indicators are indistin-

guishable by the Diebold-Mariano test, even though the differences in MSFE between, e.g.,

the OECD and the FAZ indicator are considerable. At the horizon of 12 months no indica-

tor is able to dominate the benchmark models, not even the FAZ indicator that has smaller

MSFE albeit not significantly so. For all horizons and weighting schemes, the CFI exhibits

a poor performance. A similar result holds for the ZEW indicator that is only useful for

medium-term recession forecasts. However, we are careful with these test results because,

as argued before, there a several caveats to take into account. Therefore, we supplement

the Diebold-Mariano test and possibly qualify its results in the following.

The Clark-West test is computed to reassess the performance of the indicator models in

comparison to the AR(1) benchmark. Since the modified Diebold-Mariano test is biased

in favor of the nested AR(1) model, the results should be more in favor of the indicator

models. Thus, for h = 1 the result is replicated that all indicator models outperform the

benchmark. For h = 6, again all indicator models dominate the benchmark. This is different

to the results of the Diebold-Mariano test that characterizes only few indicator models

as significantly more accurate. At the 12-months horizon the Diebold-Mariano test does

not find a single indicator model that outperforms the benchmark, while the Clark-West

test identifies the FAZ indicator as being significantly better for the uniform and boom

weighting schemes and almost significant (p-value of 0.12) for the recession weighting

scheme. Note that during booms, also the EC, ZEW, and OECD indicators beat the AR(1)

model. Overall, it pays off to use the Clark-West test.

The SPA test of Hansen is used to take into account that we are ultimately interested in
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comparing each of the models simultaneously to all its competitors. Pairwise significance

as attested by the Diebold-Mariano test might be spurious in some cases. In Table 7, we test

for each model whether it is significantly outperformed by at least one of its competitors.

For the AR(1) and AR(p) models, this is in fact the case at forecast horizons of h = 1 and

h = 6, but not at h = 12. Also the CFI and ESI indicators are almost always dominated

by at leat one competitor and may therefore be safely disregarded in forecasting exercises.

The EJ indicator that was shown to perform excellent at the 1-month horizon is not of

much use for medium and long-term forecasts as the null of equal predictive accuracy is

rejected with p-values between 0.02 and 0.13. The ZEW indicator is a borderline case with

p-values around 0.12 for h = 1 and 0.07 for h = 6. Its main strength seems to be the long-

term forecast for which the null of equal predictive accuracy cannot be rejected at a safe

margin. The remaining three indicators (EC, FAZ, OECD) are not significantly dominated

by any competitor, irrespective of the forecast horizon or the weighting scheme.

Finally, we use the fluctuation tests to check the structural stability of the modified

Diebold-Mariano (MDM) test results. In Figure 3, the MDM based fluctuation statistics for

the horizon of h = 1 are displayed over the period from the beginning of 2005 to the middle

of 2009 (note that the statistics are centered so that the last months of the sample cannot be

considered). Each statistic refers to a pairwise test of the respective indicator model against

the AR(1) benchmark. A value above the upper critical value indicates that the indicator

is significantly more accurate than the benchmark while a value below the lower critical

value indicates the opposite case. The variance of the statistics suggest that the superiority

of the indicator models over the AR(1) benchmark ist not uniform over the whole forecast

sample. In particular, average loss (using the uniform weights) of most the indicator models

is statistically indistinguishable from that of the benchmark model during 2007 and most

of 2008. However, during 2005/06 and since the end of 2008, the relative performance

of some indicators is significantly better. These are periods of considerable changes in

industrial production. This indicates that the simple benchmark might be better suited for

rather tranquil times while the strength of the indicators is to contain early information

on changes in business cycle. This impression is, however, only weakly supported by

the medium-term and long-term fluctuation tests, where the fluctuation tests do not detect

much instability, see Figures 4 and 5. This is mainly due to the fact that to signal local

significance of the MDM test, a higher critical value has to be crossed than to signal average

significance as reported by the standard MDM test discussed above. Nevertheless, within

the interval of insignificance, we still observe that the test are more in favor of the simple

benchmark during the period of 2007 and the first half of 2008.
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7 Summary

In this paper we assessed the predictive abilities of seven widely recognized leading indi-

cators for euro area industrial production. We went beyond standard forecast evaluation

approaches in several respects, taking up recent methodological developments. We al-

lowed for departures from the uniform symmetric quadratic loss function typically used

in forecast evaluation exercises. Specifically, we overweighed forecast errors during peri-

ods of high or low growth rates to check whether how the indicators perform during boos

and recessions, i.e., in times of particularly high demand for good forecasts. It turned out

that some indicators are well-suited for booms or recessions only while others are largely

unaffected by the business cycle situation.

We also took the issue of nested models into account when comparing indicator mod-

els with a simple autoregressive benchmark. Unlike the standard Diebold-Mariano test,

the test proposed by Clark and West (2007) identified all indicators as significantly outper-

forming the benchmark at short to medium-term forecast horizons. This result confirms

the usefulness of the seven early indicators for euro area industrial production.

In order to prevent the problem of data snooping when searching for the best of the

seven indicators by performing multiple pairwise tests, we implemented the test for su-

perior predictive ability proposed by Hansen (2005). The results pointed to the existence

of a group of three top indicators (EC, FAZ, OECD) that are generally not dominated by

others. However, it is not possible to significantly discriminate between these three. For

short-term forecasts, also the Business Climate Indicator (EJ) published by the European

Commission performed excellent.

Finally, we implemented the fluctuation test introduced by Giacomini and Rossi (2008)

to assess the forecasting stability of each model both on average and during booms and

recessions. It indicated that the simple autoregressive benchmark model might be diffi-

cult to beat in rather tranquil times while the strength of the indicators is to contain early

information on booms and recessions.
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Table 1: Overview over the euro area indicators
Indicator Components Source
European Sentiment Indicator (ESI) Industry Confidence Indicator, European Commission

Services Confindence Indicator
Consumer Confidence Indicator (CFI)
Construction Confidence Indicator
Retail Trade Confidence Indicator

Consumer Confidence Indicator (CFI) Consumer surveys European Commission

Business Climate Indicator (EJ) Industry survey about: production European Commission
trends in recent months, order books
export order books, stocks and
production expectations

FAZ-Euro-Indicator (FAZ) New job vacancies, order entries, DZ-Bank
Reuter purchasing manager´s index
(PMI), building and planning
permissions, production, interest rate
spread, cosumer confidence, Morgan-
Stanley- Capital-International Index,
real money (M3)

OECD Composite Indicator (OECD) Composite by individual OECD Organisation for
indicators for EU-12: variables for Economic Co-operation
surveys by national institutes, new job and Development (OECD)
vacancies, orders inflow/demand,
spread of interest rates, production,
finished goods stocks, passenger car
registration, other national indicators

ZEW Indicator of Economic Medium-term expectations for Centre for European
Sentiment (ZEW) development of the macroeconomic Economic Research

trend, inflation rate, short-term and (ZEW)
long-term interest rates, stockmarket,
exchange rates, profit situation of
different German industries (only
financial experts)

EuroCoin (EC) Data from 11 categories: industrial Centre for Economic
production, producer prices, monetary Policy Research
aggregates, interest rates, financial (CEPR)
variables, exchange rates, surveys by
the European Commission, surveys
by national institutes, external trade,
labour market
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Table 2: Root Mean Squared Forecast Errors

Uniform Boom Recession

MSE Rank MSE Rank MSE Rank

h = 1

AR(1) 0.022 9 0.014 9 0.027 9

AR 0.020 8 0.013 8 0.025 8

ESI 0.015 4 0.012 5 0.017 2

EJ 0.013 1 0.011 2 0.015 1

CFI 0.015 5 0.012 6 0.017 5

EC 0.014 3 0.012 4 0.017 3

ZEW 0.016 7 0.013 7 0.018 6

FAZ 0.016 6 0.011 3 0.019 7

OECD 0.014 2 0.011 1 0.017 4

h = 6

AR(1) 0.053 8 0.023 5 0.072 9

AR 0.050 7 0.023 6 0.066 7

ESI 0.049 6 0.025 8 0.065 6

EJ 0.046 5 0.022 4 0.062 5

CFI 0.054 9 0.028 9 0.070 8

EC 0.041 3 0.020 3 0.054 3

ZEW 0.042 4 0.024 7 0.054 2

FAZ 0.041 2 0.018 2 0.055 4

OECD 0.034 1 0.016 1 0.045 1

h = 12

AR(1) 0.063 2 0.027 1 0.084 2

AR 0.065 5 0.032 5 0.087 5

ESI 0.071 8 0.037 7 0.093 9

EJ 0.067 7 0.038 8 0.087 6

CFI 0.072 9 0.044 9 0.092 8

EC 0.064 3 0.030 3 0.085 3

ZEW 0.065 4 0.034 6 0.086 4

FAZ 0.058 1 0.030 2 0.076 1

OECD 0.065 6 0.030 4 0.087 7

Notes: This Table reports the root MSFEs and the corresponding ranking for each forecasting hori-

zon and weighting scheme.
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Table 3: Results of the Clark-West Test

Total Boom Recession

1 6 12 1 6 12 1 6 12

AR 0.000 0.041 0.170 0.000 0.002 0.157 0.015 0.083 0.459

ESI 0.000 0.015 0.496 0.000 0.000 0.297 0.001 0.039 0.260

EJ 0.000 0.025 0.201 0.000 0.000 0.378 0.001 0.042 0.233

CFI 0.001 0.007 0.458 0.000 0.003 0.294 0.002 0.038 0.462

EC 0.000 0.022 0.130 0.000 0.000 0.016 0.000 0.034 0.316

ZEW 0.001 0.039 0.104 0.000 0.004 0.077 0.005 0.047 0.294

FAZ 0.000 0.014 0.079 0.000 0.000 0.008 0.001 0.026 0.117

OECD 0.000 0.040 0.156 0.000 0.000 0.007 0.000 0.052 0.431

Notes: Table reports p-values for the two-sided modified Clark-West test. A p-value smaller than

0.05 indicates that the row indicator has a significantly smaller MSE than the nested AR(1) bench-

mark model.
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Table 4: Modified Diebold-Mariano test for uniform weights (wt = 1)
h = 1 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) −1.66
(0.050)

−2.73
(0.004)

−2.97
(0.002)

−2.45
(0.008)

−3.16
(0.001)

−2.23
(0.014)

−2.72
(0.004)

−2.99
(0.002)

0 8

AR 1.66
(0.050)

−2.53
(0.006)

−2.85
(0.003)

−2.27
(0.013)

−3.03
(0.001)

−2.03
(0.023)

−2.66
(0.004)

−2.94
(0.002)

1 7

ESI 2.73
(0.004)

2.53
(0.006)

−1.83
(0.035)

0.74
(0.230)

−0.10
(0.460)

0.86
(0.196)

0.82
(0.206)

−0.26
(0.398)

2 1

EJ 2.97
(0.002)

2.85
(0.003)

1.83
(0.035)

2.39
(0.009)

1.11
(0.136)

1.85
(0.034)

1.66
(0.050)

0.91
(0.183)

6 0

CFI 2.45
(0.008)

2.27
(0.013)

−0.74
(0.230)

−2.39
(0.009)

−0.63
(0.265)

0.53
(0.298)

0.41
(0.343)

−0.77
(0.222)

2 1

EC 3.16
(0.001)

3.03
(0.001)

0.10
(0.460)

−1.11
(0.136)

0.63
(0.265)

0.93
(0.177)

1.25
(0.107)

−0.24
(0.407)

2 0

ZEW 2.22
(0.014)

2.03
(0.023)

−0.86
(0.196)

−1.85
(0.034)

−0.53
(0.298)

−0.93
(0.177)

−0.14
(0.445)

−0.99
(0.161)

2 1

FAZ 2.72
(0.004)

2.66
(0.004)

−0.82
(0.206)

−1.66
(0.050)

−0.41
(0.343)

−1.25
(0.107)

0.14
(0.445)

−1.12
(0.132)

2 1

OECD 2.99
(0.002)

2.94
(0.002)

0.26
(0.398)

−0.91
(0.183)

0.77
(0.222)

0.24
(0.407)

0.99
(0.161)

1.12
(0.132)

2 0

h = 6 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) −0.90
(0.186)

−0.81
(0.209)

−1.24
(0.108)

0.08
(0.467)

−1.48
(0.071)

−1.22
(0.112)

−1.57
(0.059)

−1.45
(0.075)

0 3

AR 0.90
(0.186)

−0.12
(0.454)

−1.50
(0.068)

1.61
(0.055)

−1.68
(0.048)

−1.32
(0.094)

−1.84
(0.034)

−1.53
(0.064)

1 5

ESI 0.81
(0.209)

0.12
(0.454)

−1.42
(0.079)

1.74
(0.042)

−1.88
(0.031)

−1.45
(0.075)

−2.16
(0.017)

−1.65
(0.051)

1 5

EJ 1.24
(0.108)

1.50
(0.068)

1.42
(0.079)

1.76
(0.040)

−1.63
(0.053)

−1.09
(0.139)

−1.78
(0.039)

−1.45
(0.075)

3 3

CFI −0.08
(0.467)

−1.61
(0.055)

−1.74
(0.042)

−1.76
(0.040)

−1.93
(0.028)

−1.59
(0.057)

−2.11
(0.019)

−1.75
(0.042)

0 7

EC 1.48
(0.071)

1.68
(0.048)

1.88
(0.031)

1.63
(0.053)

1.93
(0.028)

0.57
(0.285)

−0.04
(0.486)

−1.28
(0.101)

5 0

ZEW 1.22
(0.112)

1.32
(0.094)

1.45
(0.075)

1.09
(0.139)

1.59
(0.057)

−0.57
(0.285)

−0.46
(0.322)

−1.58
(0.058)

3 1

FAZ 1.57
(0.059)

1.84
(0.034)

2.16
(0.017)

1.78
(0.039)

2.11
(0.019)

0.04
(0.486)

0.46
(0.322)

−1.13
(0.131)

5 0

OECD 1.45
(0.075)

1.53
(0.064)

1.65
(0.051)

1.45
(0.075)

1.75
(0.042)

1.28
(0.101)

1.58
(0.058)

1.13
(0.131)

6 0

h = 12 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) 0.49
(0.312)

1.11
(0.136)

0.96
(0.169)

1.52
(0.066)

0.38
(0.352)

0.49
(0.312)

−0.57
(0.286)

0.56
(0.287)

1 0

AR −0.49
(0.312)

1.45
(0.075)

0.61
(0.272)

1.72
(0.044)

−0.43
(0.335)

−0.06
(0.476)

−1.05
(0.148)

0.03
(0.488)

2 0

ESI −1.11
(0.136)

−1.45
(0.075)

−0.85
(0.198)

0.50
(0.310)

−1.56
(0.061)

−1.52
(0.066)

−1.32
(0.095)

−1.13
(0.131)

0 4

EJ −0.96
(0.169)

−0.61
(0.272)

0.85
(0.198)

1.11
(0.136)

−1.43
(0.079)

−0.86
(0.196)

−1.25
(0.106)

−0.49
(0.313)

0 1

CFI −1.52
(0.066)

−1.72
(0.044)

−0.50
(0.310)

−1.11
(0.136)

−1.93
(0.028)

−1.72
(0.044)

−1.67
(0.049)

−1.33
(0.093)

0 6

EC −0.38
(0.352)

0.43
(0.335)

1.56
(0.061)

1.43
(0.079)

1.93
(0.028)

0.49
(0.311)

−0.80
(0.213)

0.42
(0.337)

3 0

ZEW −0.49
(0.312)

0.06
(0.476)

1.52
(0.066)

0.86
(0.196)

1.72
(0.044)

−0.49
(0.311)

−1.08
(0.142)

0.05
(0.479)

2 0

FAZ 0.57
(0.286)

1.05
(0.148)

1.32
(0.095)

1.25
(0.106)

1.67
(0.049)

0.80
(0.213)

1.08
(0.142)

0.82
(0.207)

2 0

OECD −0.56
(0.287)

−0.03
(0.488)

1.13
(0.131)

0.49
(0.313)

1.33
(0.093)

−0.42
(0.337)

−0.05
(0.479)

−0.82
(0.207)

1 0

Notes: For each pair of models the modified DM test statistic is reported together with the two-sided p-value in brackets below. A
negative sign indicates that the MSFE of row model is smaller than that of the column model and vice versa. The last two columns count
the number of times the row model significantly outperforms its competitors (column “+”) and are outperformed by its competitors
(column “-”).

19



Table 5: Modified Diebold-Mariano test for boom weights (wright)

h = 1 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) −2.257
(0.013)

−2.311
(0.011)

−3.496
(0.000)

−2.143
(0.017)

−2.590
(0.005)

−1.735
(0.043)

−2.990
(0.002)

−3.901
(0.000)

0 8

AR 2.257
(0.013)

−1.021
(0.155)

−2.291
(0.012)

−0.690
(0.246)

−1.280
(0.102)

−0.402
(0.344)

−1.780
(0.039)

−2.633
(0.005)

1 3

ESI 2.311
(0.011)

1.021
(0.155)

−1.401
(0.082)

0.485
(0.314)

−0.575
(0.283)

0.640
(0.262)

−1.530
(0.064)

−1.511
(0.067)

1 3

EJ 3.496
(0.000)

2.291
(0.012)

1.401
(0.082)

1.821
(0.036)

0.811
(0.209)

1.567
(0.060)

0.319
(0.375)

−0.455
(0.325)

5 0

CFI 2.143
(0.017)

0.690
(0.246)

−0.485
(0.314)

−1.821
(0.036)

−0.846
(0.200)

0.209
(0.418)

−1.362
(0.088)

−1.968
(0.026)

1 3

EC 2.590
(0.005)

1.280
(0.102)

0.575
(0.283)

−0.811
(0.209)

0.846
(0.200)

0.964
(0.169)

−0.688
(0.246)

−1.050
(0.148)

1 0

ZEW 1.735
(0.043)

0.402
(0.344)

−0.640
(0.262)

−1.567
(0.060)

−0.209
(0.418)

−0.964
(0.169)

−1.415
(0.080)

−1.828
(0.035)

1 3

FAZ 2.990
(0.002)

1.780
(0.039)

1.530
(0.064)

−0.319
(0.375)

1.362
(0.088)

0.688
(0.246)

1.415
(0.080)

−0.586
(0.279)

5 0

OECD 3.901
(0.000)

2.633
(0.005)

1.511
(0.067)

0.455
(0.325)

1.968
(0.026)

1.050
(0.148)

1.828
(0.035)

0.586
(0.279)

5 0

h = 6 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) 0.080
(0.468)

0.774
(0.220)

−0.166
(0.434)

1.301
(0.098)

−1.095
(0.138)

0.528
(0.299)

−1.608
(0.055)

−2.442
(0.008)

1 2

AR −0.080
(0.468)

1.724
(0.044)

−0.345
(0.365)

1.844
(0.034)

−1.077
(0.142)

0.565
(0.287)

−1.822
(0.036)

−2.300
(0.012)

2 2

ESI −0.774
(0.220)

−1.724
(0.044)

−1.421
(0.079)

1.509
(0.067)

−1.834
(0.035)

−0.282
(0.389)

−2.803
(0.003)

−2.712
(0.004)

1 5

EJ 0.166
(0.434)

0.345
(0.365)

1.421
(0.079)

1.790
(0.038)

−1.308
(0.097)

0.879
(0.191)

−1.887
(0.031)

−2.767
(0.003)

2 3

CFI −1.301
(0.098)

−1.844
(0.034)

−1.509
(0.067)

−1.790
(0.038)

−2.159
(0.017)

−0.936
(0.176)

−3.196
(0.001)

−2.749
(0.004)

0 7

EC 1.095
(0.138)

1.077
(0.142)

1.834
(0.035)

1.308
(0.097)

2.159
(0.017)

1.534
(0.064)

−1.186
(0.119)

−2.435
(0.008)

4 1

ZEW −0.528
(0.299)

−0.565
(0.287)

0.282
(0.389)

−0.879
(0.191)

0.936
(0.176)

−1.534
(0.064)

−1.813
(0.036)

−2.592
(0.005)

0 3

FAZ 1.608
(0.055)

1.822
(0.036)

2.803
(0.003)

1.887
(0.031)

3.196
(0.001)

1.186
(0.119)

1.813
(0.036)

−1.100
(0.137)

6 0

OECD 2.442
(0.008)

2.300
(0.012)

2.712
(0.004)

2.767
(0.003)

2.749
(0.004)

2.435
(0.008)

2.592
(0.005)

1.100
(0.137)

7 0

h = 12 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) 0.798
(0.213)

1.400
(0.082)

1.656
(0.050)

1.692
(0.047)

0.701
(0.242)

1.048
(0.148)

0.527
(0.300)

0.511
(0.305)

3 0

AR −0.798
(0.213)

2.286
(0.012)

1.116
(0.133)

1.301
(0.098)

−0.612
(0.271)

0.525
(0.300)

−0.550
(0.292)

−0.546
(0.293)

2 0

ESI −1.400
(0.082)

−2.286
(0.012)

0.227
(0.411)

0.835
(0.203)

−1.743
(0.042)

−1.404
(0.082)

−1.750
(0.042)

−1.822
(0.036)

0 6

EJ −1.656
(0.050)

−1.116
(0.133)

−0.227
(0.411)

0.533
(0.298)

−1.596
(0.057)

−1.048
(0.148)

−1.395
(0.083)

−1.495
(0.069)

0 4

CFI −1.692
(0.047)

−1.301
(0.098)

−0.835
(0.203)

−0.533
(0.298)

−1.480
(0.071)

−1.107
(0.136)

−1.633
(0.053)

−1.419
(0.080)

0 5

EC −0.701
(0.242)

0.612
(0.271)

1.743
(0.042)

1.596
(0.057)

1.480
(0.071)

1.103
(0.136)

−0.039
(0.484)

0.108
(0.457)

3 0

ZEW −1.048
(0.148)

−0.525
(0.300)

1.404
(0.082)

1.048
(0.148)

1.107
(0.136)

−1.103
(0.136)

−1.066
(0.145)

−0.949
(0.172)

1 0

FAZ −0.527
(0.300)

0.550
(0.292)

1.750
(0.042)

1.395
(0.083)

1.633
(0.053)

0.039
(0.484)

1.066
(0.145)

0.143
(0.443)

3 0

OECD −0.511
(0.305)

0.546
(0.293)

1.822
(0.036)

1.495
(0.069)

1.419
(0.080)

−0.108
(0.457)

0.949
(0.172)

−0.143
(0.443)

3 0

Notes: See notes in Table 4.
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Table 6: Modified Diebold-Mariano test for recession weights (wle f t)

h = 1 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) −1.271
(0.103)

−2.563
(0.006)

−2.693
(0.004)

−2.323
(0.011)

−2.951
(0.002)

−2.098
(0.019)

−2.406
(0.009)

−2.646
(0.005)

0 7

AR 1.271
(0.103)

−2.557
(0.006)

−2.738
(0.004)

−2.330
(0.011)

−3.055
(0.001)

−2.106
(0.019)

−2.543
(0.006)

−2.749
(0.003)

0 7

ESI 2.563
(0.006)

2.557
(0.006)

−1.615
(0.055)

0.680
(0.249)

0.036
(0.486)

0.770
(0.222)

1.138
(0.129)

0.282
(0.389)

2 1

EJ 2.693
(0.004)

2.738
(0.004)

1.615
(0.055)

2.059
(0.021)

0.968
(0.168)

1.526
(0.065)

1.749
(0.042)

1.189
(0.118)

6 0

CFI 2.323
(0.011)

2.330
(0.011)

−0.680
(0.249)

−2.059
(0.021)

−0.428
(0.335)

0.529
(0.299)

0.837
(0.202)

−0.176
(0.430)

2 1

EC 2.951
(0.002)

3.055
(0.001)

−0.036
(0.486)

−0.968
(0.168)

0.428
(0.335)

0.757
(0.225)

1.648
(0.051)

0.422
(0.337)

3 0

ZEW 2.098
(0.019)

2.106
(0.019)

−0.770
(0.222)

−1.526
(0.065)

−0.529
(0.299)

−0.757
(0.225)

0.366
(0.358)

−0.570
(0.285)

2 1

FAZ 2.406
(0.009)

2.543
(0.006)

−1.138
(0.129)

−1.749
(0.042)

−0.837
(0.202)

−1.648
(0.051)

−0.366
(0.358)

−1.124
(0.132)

2 2

OECD 2.646
(0.005)

2.749
(0.003)

−0.282
(0.389)

−1.189
(0.118)

0.176
(0.430)

−0.422
(0.337)

0.570
(0.285)

1.124
(0.132)

2 0

h = 6 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) −0.990
(0.162)

−1.054
(0.147)

−1.282
(0.101)

−0.401
(0.345)

−1.458
(0.074)

−1.329
(0.093)

−1.498
(0.069)

−1.369
(0.087)

0 4

AR 0.990
(0.162)

−0.664
(0.254)

−1.593
(0.057)

1.180
(0.120)

−1.644
(0.052)

−1.480
(0.071)

−1.702
(0.046)

−1.415
(0.080)

0 5

ESI 1.054
(0.147)

0.664
(0.254)

−1.230
(0.111)

1.508
(0.067)

−1.699
(0.046)

−1.486
(0.070)

−1.828
(0.035)

−1.440
(0.076)

1 4

EJ 1.282
(0.101)

1.593
(0.057)

1.230
(0.111)

1.492
(0.069)

−1.557
(0.061)

−1.326
(0.094)

−1.556
(0.061)

−1.308
(0.097)

2 4

CFI 0.401
(0.345)

−1.180
(0.120)

−1.508
(0.067)

−1.492
(0.069)

−1.688
(0.047)

−1.518
(0.066)

−1.763
(0.040)

−1.512
(0.067)

0 6

EC 1.458
(0.074)

1.644
(0.052)

1.699
(0.046)

1.557
(0.061)

1.688
(0.047)

−0.071
(0.472)

0.389
(0.349)

−1.121
(0.132)

5 0

ZEW 1.329
(0.093)

1.480
(0.071)

1.486
(0.070)

1.326
(0.094)

1.518
(0.066)

0.071
(0.472)

0.279
(0.390)

−1.182
(0.120)

5 0

FAZ 1.498
(0.069)

1.702
(0.046)

1.828
(0.035)

1.556
(0.061)

1.763
(0.040)

−0.389
(0.349)

−0.279
(0.390)

−1.071
(0.143)

5 0

OECD 1.369
(0.087)

1.415
(0.080)

1.440
(0.076)

1.308
(0.097)

1.512
(0.067)

1.121
(0.132)

1.182
(0.120)

1.071
(0.143)

5 0

h = 12 AR(1) AR ESI EJ CFI EC ZEW FAZ OECD + -

AR(1) 0.370
(0.356)

0.965
(0.169)

0.473
(0.318)

1.126
(0.131)

0.249
(0.402)

0.264
(0.396)

−0.717
(0.238)

0.538
(0.296)

0 0

AR −0.370
(0.356)

1.155
(0.125)

0.026
(0.490)

1.433
(0.077)

−0.338
(0.368)

−0.517
(0.303)

−1.043
(0.150)

0.183
(0.428)

1 0

ESI −0.965
(0.169)

−1.155
(0.125)

−1.223
(0.112)

−0.178
(0.430)

−1.384
(0.085)

−1.362
(0.088)

−1.173
(0.122)

−0.860
(0.196)

0 2

EJ −0.473
(0.318)

−0.026
(0.490)

1.223
(0.112)

1.509
(0.067)

−0.765
(0.223)

−0.401
(0.345)

−0.988
(0.163)

0.185
(0.427)

1 0

CFI −1.126
(0.131)

−1.433
(0.077)

0.178
(0.430)

−1.509
(0.067)

−1.761
(0.041)

−1.736
(0.043)

−1.295
(0.099)

−0.889
(0.188)

0 5

EC −0.249
(0.402)

0.338
(0.368)

1.384
(0.085)

0.765
(0.223)

1.761
(0.041)

0.181
(0.428)

−0.834
(0.203)

0.448
(0.327)

2 0

ZEW −0.264
(0.396)

0.517
(0.303)

1.362
(0.088)

0.401
(0.345)

1.736
(0.043)

−0.181
(0.428)

−0.988
(0.163)

0.326
(0.372)

2 0

FAZ 0.717
(0.238)

1.043
(0.150)

1.173
(0.122)

0.988
(0.163)

1.295
(0.099)

0.834
(0.203)

0.988
(0.163)

0.847
(0.200)

1 0

OECD −0.538
(0.296)

−0.183
(0.428)

0.860
(0.196)

−0.185
(0.427)

0.889
(0.188)

−0.448
(0.327)

−0.326
(0.372)

−0.847
(0.200)

0 0

Notes: See notes in Table 4.
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Table 7: Results of the Hansen Test for Superior Predictive Ability (p-values)

h = 1 h = 6 h = 12
uniform boom recess. uniform boom recess. uniform boom recess.

AR(1) 0.03 0.03 0.03 0.03 0.03 0.03 0.41 0.56 0.36
AR 0.04 0.04 0.04 0.03 0.03 0.02 0.17 0.26 0.17
CFI 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03
EC 0.34 0.61 0.31 0.10 0.13 0.10 0.25 0.44 0.23
EJ 0.70 0.99 0.70 0.03 0.03 0.02 0.11 0.13 0.10
ESI 0.11 0.14 0.09 0.01 0.01 0.01 0.08 0.08 0.08
FAZ 0.23 0.31 0.22 0.14 0.23 0.14 0.75 0.93 0.58
OECD 0.39 0.57 0.31 0.60 0.92 0.60 0.15 0.18 0.11
ZEW 0.12 0.13 0.12 0.07 0.09 0.07 0.17 0.27 0.17

Notes: Reported are p-values of SPA tests with the null hypothesis that the row model has equal predictive
ability as all its competitor models against the alternative that at least one competitor yields more accurate
predictions.
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Figure 1: Empirical Cumulative Distribution Function F̂(yt)
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Figure 2: Reference Series and Weights
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Figure 3: Fluctuation MDM test for h = 1 against the AR(1) benchmark
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Figure 4: Fluctuation MDM test for h = 6 against the AR(1) benchmark

26



-4

-2

0

2

4

2006 2007 2008

Uniform

-4

-2

0

2

4

2006 2007 2008

AR

ESI

EJ

CFI

EC

ZEW

FAZ

OECD

Recession

-4

-2

0

2

4

2006 2007 2008

Boom

Figure 5: Fluctuation MDM test for h = 12 against the AR(1) benchmark

27


