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Abstract

In liberalized electricity markets strategic firms compete in an environment char-

acterized by fluctuating demand and non-storability of electricity. While spot market

design under those conditions by now is well understood1, a rigorous analysis of invest-

ment incentives is still missing. Existing models, as the peak-load-pricing approach,

analyze welfare optimal investment and find that optimal investment is higher with

more competitive spot markets.

In this article we want to extend the analysis to investment decisions of strategic

firms that anticipate competition on many consecutive spot markets with fluctuating

(and possibly uncertain) demand. We study how the degree of spot market competi-

tion affects investment incentives and welfare and provide an application of the model

to electricity market data. Our results show that more competitive spot market prices

strictly decrease investment incentives of strategic firms. The reduction of investment

incentives can be so intense to even offset the beneficial impact of more competitive

spot market design. Those results obtain with and without free entry. Our anal-

ysis thus demonstrates that investment incentives necessarily have to be taken into

account for a meaningful assessment of proper electricity spot market design.
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1 Introduction

Incentives to invest in generation capacity have been heavily debated in the recent literature

on electricity market regulation. Many authors suspect that there is a trade–off between

low spot market prices and proper investment incentives if firms behave strategically. As

Paul Joskow (2008) puts it, ”policymakers in many countries are concerned that competi-

tive wholesale markets for electricity do not provide adequate incentives for investment in

sufficient quantities of generating capacity.” A thorough analysis of investment incentives in

electricity markets, even though crucial for regulatory policy and electricity market design

is still missing, however. In this paper we provide a model to analyze investment incentives

of strategic firms prior to spot market competition. We illustrate how different degrees of

spot market competition affect investment incentives and welfare, and how the desirability

of different spot market regimes changes depending on the degree of competitiveness of

investment behavior. We finally provide an application of the model to data of a specific

electricity market.

Notice that an analysis of the impact of spot market competition on firms investment

decisions, the central question of this article, necessarily has to take into account the fluc-

tuating nature of demand as observed in the case of electricity markets. Due to the limited

storability of electricity, demand and supply have to match at any point in time in those

markets.2 A model which abstracts from this property by assuming constant demand would

not only be less realistic but most importantly would eliminate the central problem analyzed

in this article.3

We thus analyze a model where investment takes place at a first stage prior to compe-

tition at the spot markets which are subject to fluctuating production cost and fluctuating

demand. Spot market competition is based on the concept of supply function competition

developed by Klemperer and Meyer (1989) and applied to the case of electricity markets by

Green and Newbery (1992). The range of equilibria generated by this approach is bounded

2Notice that the type of questions we analyze (the main feature is limited storability of the good) is

relevant also for a series of other markets. Examples are oil and gas extraction, capacity choices of hotels

and hospitals (e.g. number of beds), or capacity choices of airlines (number of planes), etc. Our main

motivation for this paper was, however, to get a deeper understanding investment incentives in electricity

markets, an issue which is not yet well understood for liberalized electricity markets.
3As shown in previous contributions for the case of constant demand (compare for example Kreps and

Scheinkman (1983)), the degree of spot market competition is irrelevant for firms’ investment decisions,

since firms can fully determine the outcome at the spot market by choosing their capacities. This is not

true under fluctuating demand, where invested capacities are either binding or idle. Spot market outcomes

are determined by investment decisions in the first case and by the degree of spot market competition in

the latter, which has an impact on firms’ investment incentives.
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below by the competitive market outcome and above by the Cournot solution.4 Which of

the equilibria is being played in a particular market likely depends on specific market rules

and institutions. As Borenstein et al. (2008) put it: ”To the extent that market rules and

local regulatory differences influence market outcomes by helping determine which of the

many possible equilibria arise, these impacts can be thought of as placing the market price

within these bounds.” Throughout our paper we stick to this interpretation of Borenstein et

al. (2008). That is, we limit our analysis to those two extreme cases, the Cournot and the

competitive solution.5 This approach will allow us to address the central questions of this

paper: “How does spot market design influence firms’ investment decisions and how should

desirable spot market design look like when taking into account investment decisions?”

We establish existence and fully characterize all equilibria of the strategic investment

game for both regimes of spot market competition (Cournot and competitive prices). We

then show that the lower bound of the above mentioned range of spot market equilibria (the

case of perfect competition, which is clearly more desirable from a short run perspective)

is potentially less desirable in the long run: A competitive spot market leads to strictly

lower investment by strategic firms and might even lead to a welfare reduction. In a model

with free entry (where firms enter the market as long as they expect to cover some fixed

cost of entry) a competitive spot market is even less desirable since it gives rise to a lower

number of active firms in the market. In the empirical part of the paper we quantify the

effects we identified in the theoretical part using data of the German electricity market. We

also compare the results we obtain for strategic firms with those obtained in a framework

where optimal investment is derived. This replicates results obtained based on the already

existing “peak load pricing” literature (see below), which is currently adopted to analyze

investment in electricity markets.6 We obtain exactly the opposite result: if firms are not

modeled as strategic players a competitive spot market is more desirable both, from a short

run and from a long run perspective.

This demonstrates that it is crucial to precisely model potential strategic interaction at

the investment stage in order to accurately assess the desirability of spot market design,

a failure to do so produces drastically wrong predictions. Let us finally review some of

the related literature. The traditional investment literature focused on the case of optimal

4Especially when uncertainty regarding demand at each single spot market is small, the Cournot and

the competitive solution are indeed the lowest and the highest equilibrium.
5In a dynamic investment game a continuum of equilibria at the production stage implies very imprecise

overall equilibrium predictions ranging up to the collusive outcome. One could alternatively consider

specifications of the supply function game that yield unique equilibria, as in Holmberg (2008). Those

scenarios would yield less investment than the case of Cournot competition at the spot markets, but more

investment than the case of competitive behavior.
6See, for example, Boccard (2009), Bushnell (2005), Cramton and Stoft (2005), or Joskow (2007a).
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(instead of strategic) investment decisions. The “peak load pricing” literature was initiated

by Steiner (1957) and Boiteux (1960) and is extensively reviewed by Crew and Kleindorfer

(1986) and Crew et al. (1995). In a recent contribution Joskow and Tirole (2007) show how

those results can also be extended to the case of perfectly competitive markets.

Two papers have analyzed strategic investment prior to a Cournot spot market. For the

case of a linear duopoly Gabszewicz and Poddar (1997) show existence of a symmetric equi-

librium. Murphy and Smeers (2005) characterize equilibrium investment in the very same

linear duopoly setting, but allow for an asymmetric cost structure of the firms. The rela-

tionship between spot market design and firms’ investment decisions has not been touched

in those contributions, however.

As already mentioned above, there has been an intense debate of the question which

framework is best suited in order to model competition at electricity spot markets. Whereas

Green and Newbery (1992) proposed the supply function approach, an auction model was

proposed by von der Fehr and Harbord (1993). Recently, Reynolds and Wilson (2000),

Fabra and de Frutos (2006), and Fabra, Fehr and de Frutos (2008) have analyzed strate-

gic investment incentives in a duopoly prior to an auction-like spot market with price

competition.7 They show non-existence of symmetric equilibria (Reynolds and Wilson),

and characterize some of the asymmetric equilibria for the duopoly case (Fabra and co-

authors). It probably remains an unsolved question whether the supply function or the

auction approach models spot market competition more accurately. However, the analy-

sis of investment incentives prior to auction markets seems to be plagued by the lack of

existence results (of symmetric equilibira) and by multiplicity of asymmetric ones. This

makes policy evaluations or an analysis of the relationship of investment incentives and

spot market design rather difficult.

Finally, generalizing investment decisions to the case of strategic behavior can also

lead to the analysis of strategic timing of investment decisions. All above mentioned con-

tributions (including this paper) exogenously fix a point in time when firms make their

investment choices and focus exclusively on capacity levels chosen. In contrast, the ”real

option approach” analyzes the optimal timing of investment. Demand evolves according to

a stochastic process (typically a Brownian motion) and firms decide when to adjust their in-

vestment to increased demand levels. This literature has been initiated by Dixit and Pindyk

(1994), and has been applied to strategic games by Baldursson (1998) or Grenardier (2002).

In order to keep those models tractable, however, the authors typically assume that the

entire capacity is being used for production (the case that firms are unconstrained cannot

occur). That is, by assumption spot markets and most importantly the type of spot market

7Further interesting contributions based on the auction approach include Boom and Bhler (2007) and

Boom(2009).
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competition are not modeled explicitly, shifting levels of demand thus have to be interpreted

as movements of average demand in the long run.

Our paper is organized as follows: In section 2 we state the model. Section 3 contains the

theoretical analysis and results. We consider strategic investment in section 3.1 and welfare

optimal investment in section 3.2. In section 3.3 we provide a comparison of investment

levels in the scenarios we consider and show that the strategic approach reverts the policy

conclusion. Section 4 contains an empirical analysis, where we also discuss the welfare

implications of spot market regulation. Section 5 concludes.

2 The Model

We analyze an investment game where firms choose capacities anticipating demand and cost

fluctuations, and thereafter make output choices at a series of spot markets. We denote by

q = (q1, . . . , qn) a vector of outputs of the n firms at a spot market, and by Q =
∑n

i=1 qi

total quantity produced at that spot market.

Inverse demand in spot market θ is given by the function P (Q, θ), which depends on

Q ∈ R+, and the random variable θ ∈ R which represents the different demand scenarios.

All firms face the same cost function for each θ ∈ R, which we denote by C(qi, θ). The

random variable θ ∈ R is distributed according to a distribution F (θ), which specifies

relative frequencies of different demand realizations.

Remark 1 (Why a Continuum of Spot Markets?) We choose a continuum of spot

markets, which could be motivated in two different ways: First, firms bid for 8760 hours

each year and installed capacity serves for more than ten years. Thus, a continuum might

be an appropriate approximation. Second, also demand uncertainty might play a role since

firms typically cannot predict all future demand realizations exactly. This scenario would

certainly suggest a continuous framework and is also covered by our analysis.

We allow for a nonnegativity constraint on spot market prices. Let us denote by Q̄(θ)

the lowest total production quantity where the price equals zero in a given demand scenario

θ.8 If prices cannot become negative, the following regularity assumptions on demand and

cost have to be satisfied only for quantities Q < Q̄(θ), otherwise they have to hold for all

quantities Q ≥ 0.

8Whenever prices remain positive for all quantities we set Q(θ) = ∞. In order to ensure a bounded

solution we then have to assume limQ→∞ P (Q, θ) < Cq(0, θ) for each θ ∈ (−∞,∞].
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Assumption 1 (Assumptions at each θ) (i) Inverse demand P (Q, θ) is twice con-

tinuously differentiable9 in Q with Pq(Q, θ) < 0 and Pq(Q, θ) + Pqq(Q, θ)qi < 0.

(ii) C(qi, θ) is twice continuously differentiable in qi with Cq(qi, θ) ≥ 0 and Cqq(qi, θ) ≥ 0.

Assumption 2 (Monotonicity Assumptions regarding θ) (i) P (Q, θ) and

C(qi, θ) are differentiable in θ, and it holds that Pθ(Q, θ)− Cqθ(qi, θ) > 0.10

(ii) P (Q, θ)qi−C(qi, θ) is (differentiable) strict supermodular in qi and θ, i. e. Pθ(Q, θ)−
Cqθ(qi) + Pqθ(Q, θ)qi > 0.

The situation we want to analyze is captured by the following dynamic investment game.

At the investment stage firms simultaneously build up capacities x = (x1, . . . , xn). Capacity

choices are observed by all firms. Cost of investment K(xi) is the same for all firms and

satisfies

Assumption 3 (Investment Cost) Investment cost K(xi) is twice continuously differ-

entiable, with Kx(xi) ≥ 0 and Kxx(xi) ≥ 0.

Facing the capacity constraints inherited from the investment stage, firms simultane-

ously choose outputs at a sequence of spot markets with fluctuating demand levels. Since

demand in a particular scenario θ is known prior to the output decision, produced quantities

depend on the respective demand scenarios.

Finally, we state firm i’s profit from operating if capacities are given by x and firms

plan to choose feasible11 production schedules q(θ) for all θ ∈ [−∞,∞].

πi (x, q) =

∫ ∞
−∞

[P (Q (θ) , θ) qi (θ)− C (qi (θ) , θ)] dF (θ)−K (xi) . (1)

9Throughout the paper we denote the derivative of a function g(x, y) with respect to the argument x,

by gx(x, y), the second derivative with respect to that argument by gxx(x, y), and the cross derivative by

gxy(x, y).
10Notice that demand and cost fluctuations in principle can be distinct processes. Then the parameter θ

represents all joint realizations, which have to satisfy assumption 2. This requirement imposes some further

restrictions on the model if cost and demand fluctuations should be considered simultaneously. Consider,

for example, a model with linear demand P (Q, β) = β−bQ and fluctuating but constant marginal cost c(γ).

For ease of exposition let both, β and γ follow a discrete distribution. Now sort all joint realizations (β, γ)

such that β− c(γ) is increasing and index each realization by θ. Observe that the resulting system satisfies

assumption 2 (i) and 2 (ii). Thus, the model can deal simultaneously with cost and demand fluctuations

in the case of linear demand, which we exploit in the empirical part of the paper. In case of non–linear

demand it is more plausible to think about demand and cost fluctuations separately.
11That is, 0 ≤ qi(θ) ≤ xi for all θ ∈ [−∞,∞], i = 1, . . . , n.
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Throughout the paper we consider only cases where investment is gainful,

i.e.
∞∫
−∞

[P (0, θ) − C(0, θ)]dF (θ) > K(0). Note that if the condition does not hold, no

firm invests in capacity.

3 Results

In this section we analyze the investment game where firms simultaneously invest in capacity

anticipating spot market competition in a series of markets with fluctuating demand. In

order to be able to assess the impact of market power and of market design on investment

incentives and production, we analyze four different scenarios.

In section 3.1 we consider the case that strategic firms choose profit maximizing invest-

ment levels. In this context we consider two extreme scenarios, the case of anticipation of

high spot market prices (Cournot) as well as the case of competitive pricing (which may

be a result of regulatory intervention12 or just the result of competitive supply function

bidding).

In section 3.2 we analyze the investment game assuming that socially optimal investment

levels are chosen by the firms (i.e. we analyze unstrategic investment choice), and again

consider the case of anticipation of high spot market prices as well as the case of competitive

pricing at the spot market. The latter case coincides with the ”competitive benchmark”

that has been analyzed in the peak load pricing literature. On the one hand, an analysis of

welfare optimal capacity levels yields insights on capacity levels that a social planer would

like to implement. Comparison with strategic capacity choices as analyzed in section 3.1

reveals, moreover, that the policy conclusion is reverted when the analysis does not account

for the incentives of strategic firms at the investment stage.

3.1 Strategic Investment

Consider the market game where firms strategically choose capacities as to maximize prof-

its. Our first theorem shows that the investment game where firms engage in Cournot

competition at the spot markets (SH — Strategic firms, High spot market prices) has a

unique and symmetric equilibrium. If, however, firms anticipate competitive prices at the

spot market (SL — Strategic firms, Low spot market prices), the investment game has

multiple symmetric but no asymmetric equilibria.

12We are aware that regulation down to spot market prices requires a lot of information on the part of

the social planer. Although stylized, however, it allows detailed insights in what happens to investment

incentives should the regulator succeed in implementing competitive prices at the spot market.
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Theorem 1 (Strategic Investment Choice) Suppose firms choose their capacities

strategically.

(SH) If firms anticipate high spot market prices (Cournot competition) at the spot markets,

the investment game has a unique equilibrium which is symmetric.

(SL) Suppose that firms anticipate competitive pricing at the spot markets, and that Cq(q, θ)

is constant in q. Then, there exists at least one symmetric equilibrium, but there may

be more than one. No asymmetric equilibria exist.

Total equilibrium investment in scenario SD, D ∈ {H,L}, XSD, solves∫ ∞
θD(XSD)

[
P
(
XSD, θ

)
+ Pq

(
XSD, θ

) XSD

n
− Cq

(
XSD

n
, θ

)]
dF (θ) = Kx

(
XSD

n

)
,

where θD
(
XS
)

is the demand scenario from which on firms are capacity constrained at the

spot market.13

Proof See appendix B �

Let us emphasize some important aspects of our results. First, we could show that

under standard regularity assumptions the investment game has a unique equilibrium if

firms expect Cournot competition at the spot markets. Second, we find that equilibrium

investment can be characterized by a rather intuitive condition. The condition simply says

that marginal profit generated by an additional unit of capacity (at the spot markets) must

equal marginal cost of investment. When calculating the marginal profit generated by an

additional unit of capacity, however, one has to take into account that additional capacity

affects a firm’s profit only in those states of nature where capacity is binding. Thus, only

those spot markets are taken into account where firms are indeed capacity constrained,

i. e. only the interval [θD
(
XSD

)
,∞] is relevant, not the whole domain of θ.

Note that the critical demand scenario θ (from which on firms are capacity constrained)

depends on the degree of market power at the spot markets. If firms strategically withhold

production at the spot market (as under Cournot competition) the critical demand scenario

is higher than in the case where they behave competitively. Observe that actually the

market game at the spot markets enters into the first order condition solely through the

critical demand realization.

If firms anticipate competitive behavior at the spot markets, existence and uniqueness

of a symmetric equilibrium cannot be shown in the general case (part (SL) of the theorem).

13I.e. θH(XSH) is implicitly defined by P (XSH , θH) + Pq(X
SH , θH)X

SH

n = Cq(
XSH

n , θH) and θL(XSL)

is implicitly defined by P (XSL, θL) = Cq(
XSL

n , θL), respectively.
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Only for constant marginal production cost we obtain existence (but not uniqueness).14 An

immediate insight of this result is that regulatory intervention at the spot market (that

forces prices below the Cournot level) may lead to high strategic uncertainty for the firms.

Later in section 3.3 we will show that, moreover, investment incentives are lower if firms

anticipate competitive prices at the spot market than in the case where they anticipate

Cournot competition.

3.2 Optimal Investment

In this section we characterize investment levels that are optimal from a welfare point of

view — again for a Cournot and a competitive spot market market outcome. The analysis is

interesting for two reasons: First, from a comparison with the results of section 3.1 we learn

how a social planer would like to influence the capacity choices of strategic firms. Second,

the analysis reveals that the traditional approach (which does not account for strategic

investment) predicts higher investment prior to competitive spot markets, while strategic

firms actually invest less if the spot market is more competitive.

Optimal investment in cases WH (Welfare optimal investment at High spot market

prices) and WL (Welfare optimal investment at Low spot market prices) is characterized

in the following theorem.

Theorem 2 (Welfare Optimal Investment Choice) Welfare maximizing industry

capacity choices are unique and symmetric. Socially optimal capacity in scenario WD,

D ∈ {H,L}, XWD, solves∫ ∞
θD(XWD)

[
P
(
XWD, θ

)
− Cq

(
1

n
XWD, θ

)]
dF (θ) = Kx

(
1

n
XWD

)
, (2)

where θD
(
XWD

)
is the demand scenario from which on firms are capacity constrained at

the spot markets.15

Proof See appendix C �

Note that also the characterization of welfare optimal investment levels is rather intu-

itive. The condition implies that in the welfare optimum capacity should be chosen such

14The basic problem is that in neither case the profit is quasiconcave, which makes standard analysis

impossible. In the case of linear marginal cost, however, we can exploit recent insights on oligopolistic

competition that makes use of lattice theory (Amir (1996) and Amir and Lambson (2000)). In the general

case (i. e. strictly convex production cost), however, the game cannot be reformulated as a supermodular

game and thus, even those more sophisticated techniques do not help.
15I.e. θH(XWH) is implicitly defined by P (XWH , θH) + Pq(X

WH , θH)X
WH

n = Cq(
XWH

n , θH) and

θL(XWL) is implicitly defined by P (XWL, θL) = Cq(
XWL

n , θL), respectively.
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that expected marginal social welfare generated by an additional unit of capacity [LHS of

(2)] should equal marginal cost of investment [RHS of (2)]. Again it is important to notice

that only those scenarios are taken into account where firms are actually constrained given

the scheduled spot market production, that is, over the interval [θD(XWD),∞]. Note that

for a given level of investment, firms are constrained earlier if they behave competitively

at the spot markets, since under Cournot competition they withhold quantity at the spot

markets in order to affect prices. Consequently, additional capacity is used more often and

thus, contributes more to expected marginal welfare if the spot market behavior is more

competitive. This implies that welfare maximizing capacity should be higher if the spot

market is competitive than in case firms play the Cournot outcome. We show this formally

in section 3.3.

We finally point out that if firms do not act strategically, investment and production

levels coincide with the socially optimal solution, again given the number of firms:

Remark 2 (Non-Strategic Firms) If firms do not behave strategically (i. e. they act as

price takers at the spot markets and ignore their impact on total capacity at the investment

stage), the welfare maximizing market outcome (WL) is implemented.

3.3 Comparison of Market Outcomes for Strategic versus Opti-

mal Investment

In this section we compare equilibrium investment in the scenarios we analyzed in the

previous two sections and discuss how the consideration of strategic (instead of welfare

optimal) investment affects policy conclusions regarding the desirable spot market design.

Our first result shows that the traditional approach (unstrategic investment) predicts higher

investment for a more competitive spot market, while strategic firms would actually invest

less if the spot market outcome is expected to be competitive.

Theorem 3 (Investment Levels) (i) Non-strategic (welfare optimal) investment is

higher if the spot market is more competitive, i. e. XWL ≥ XWH .

(ii) Strategic firms invest less if the spot market is more competitive, i. e. XSL ≤ XSH .

Proof See appendix D �

Let us briefly provide some intuition for our result, using some characteristics of the first

order conditions as stated in theorems 1 and 2. Let us first draw the reader’s attention to the

particular structure of the first order conditions. They all equalize expected marginal profit

or welfare [LHS] with marginal cost of capacity [RHS]. Note that, at the LHS, the objective

at the investment stage (either profit or welfare) is reflected only in the integrand. That is,
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we integrate over marginal profit in cases where the firms maximize profits at the investment

stage (SH and SL) and over marginal welfare in cases where welfare is the investment

stage–objective (WL and WH). The scenario at the spot market enters exclusively into

the lower limit of integration, since the outcome of spot market competition affects the

demand scenario from which on firms are constrained given the capacities chosen at the

investment stage. Marginal profits or welfare once firms are constrained are not directly

influenced by the spot market regime, since prices are demand–driven if capacity is at its

bound.

Now consider the optimal capacity choice of strategic firms. If the firms anticipate

Cournot competition at the spot markets, marginal profit generated by additional capacity

is positive in each scenario where the firm is constrained. If firms expect competitive

behavior at the spot market, however, this is not the case. A firm thus anticipates that it

might be forced to use additional capacity although the marginal profit from using it may

be negative.16 Consequently, additional capacity is less valuable to the firms in the latter

case and investments are lower if the spot market is more competitive.

In contrast, if capacity is chosen as to maximize social welfare, an additional unit of

capacity has a positive impact whenever the spot market price is above marginal cost (which

is always the case). As already mentioned, firms are constrained earlier if spot market

behavior is more competitive. This implies that for any initial capacity level additional

capacity is used more often if the spot market is competitive and therefore generates a

higher increase in social welfare. Optimal investment must thus be higher for a competitive

spot market than for the case of Cournot competition at spot markets.

We have demonstrated above that for any fixed capacity level, additional capacity is

more valuable if welfare maximization is the objective (cases W ) than in case the firms

maximize profits (cases S), since expected marginal welfare is always higher than expected

marginal profit.17 An immediate result is that a social planer would always like to increase

the investment of strategic firms above the chosen level (this is also shown formally in the

proof of theorem 3).

Whereas capacities in the scenarios we analyze can be ranked unambiguously, this is

not always true when it comes to social welfare. A welfare comparison is simple and

straightforward for cases SH, WH, and WL (where welfare is increasing in this order). In

case firms choose their capacities strategically it is not obvious, however, whether welfare

is higher in case of high (Cournot) or low (competitive) spot market prices (case SH or

SL). In scenario SH firms exercise market power at the spot market, whereas in case SL

16This is the case in all demand scenarios in [θL(XSL), θH(XSH)].
17Formally, at a fixed capacity level, the critical value θD is the same in both cases, but the integrand is

pointwisely bigger in cases W than in cases S.
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spot prices are at the competitive level. Thus, in absence of capacity constraints welfare

would be higher in SL. However, at the investment stage strategic firms choose lower

capacities in case SL such that prices are higher in case SL than in SH whenever firms are

capacity constrained in both cases. Consequently, a welfare comparison of the two cases

is not straightforward and necessarily depends on details of the model’s specification. A

simplified model with linear demand demonstrates that both, an increase and a decrease

in welfare is possible and suggests that competitive prices at spot markets are particularly

undesirable from a welfare point of view if the number of firms is low. Thus, in particular

if market power already is a serious problem (few firms, Cournot spot market outcome), a

more competitive spot market reduces welfare even more. In markets with a higher number

of firms, however, the scenario with low spot market prices (SL) yields slightly higher

welfare. We come back to this issue in section 4, where we fit our model to the data of the

German electricity market. We obtain the following general results on welfare:

Theorem 4 (Welfare Comparison) (i) If investment is chosen as to maximize wel-

fare, implementation of a competitive spot market is always desirable, i.e. WWL ≥
WWH .

(ii) If investment is chosen strategically, implementation of a competitive spot market is

not always desirable, i.e. it may obtain that W SL ≤ W SH .

(iii) If investment is chosen strategically, implementation of a competitive spot market

is always less beneficial than in the case of welfare maximizing investment, i.e.(
WWL −WWH

)
≥
(
W SL −W SH

)
.

Proof See appendix E �

Theorem 4 shows that accounting for the fact that firms invest strategically (as compared

to the consideration of unstrategic firms) may revert the predicted impact of spot market

design on investment incentives and welfare. It rather seems essential to have a closer

look at the particular market conditions in order to derive reliable welfare conclusions. As

an example we conduct such an analysis for the German electricity market in section 4.

There we illustrate how our model can be applied to get deeper insights on welfare and

investment effects of different degrees of spot market competition in a particular market.

Before we proceed to the empirical part, however, we address the issue of entry, which has

been ignored in out analysis up to now. As it turns out, all our results continue to hold in

a model with free entry at some given entry cost, which is stated in the following theorem.

Theorem 5 (Free Entry) Suppose strategic firms can enter the market at some fixed

cost E in a free entry equilibrium. If firms expect a competitive spot market outcome, then

12



(weakly) less firms will enter the market. The statements of theorems 3 and 4 remain valid

also for the case of free entry.

Proof See appendix F �

4 An Empirical Analysis of Investment Choice in

Electricity Markets

In this section we fit our theoretical framework to a specific electricity market. For data

availability reasons we have chosen the German market, it seems unlikely that qualitatively

different results would obtain for other markets. It is our purpose to demonstrate how our

theoretical framework can be used to also empirically assess (long run) capacity and welfare

effects of electricity market liberalization. We show for example that implementation of a

competitive spot market not only leads to a drastic reduction of strategic firms’ investment

(figure 2) and a significant increase of spot market prices whenever capacity is binding

(figure 3) but also leads to a dramatic decrease of overall welfare in the case of concentrated

markets (figure 4). As an interesting side result we can also assess the competitive regime

present at a market by comparing observed market prices with those predicted by the 4

reference cases of our framework.

In order to use our theoretical model for the analysis we chose to make the following

specifications. We assume linear fluctuating demand P (Q) = θ − bQ and fluctuating but

constant marginal cost c(θ). If we sort all realizations of demand and cost according to the

differences θ− c(θ), the resulting framework satisfies assumptions 1 to 3. Furthermore, for

the sake of our applied example, we interpret the distribution over the demand scenarios

as relative frequencies which have been accurately predicted by all firms.18

Market demand: To construct fluctuating market demand, we start with hourly market

prices (from the European Energy Exchange (EEX)19) and hourly quantities consumed

(from the Union for the Co-ordination of Transmission of Electricity (UCTE)20) for the year

2006. We chose the value of b in line with other studies on energy markets. Most studies

that estimate demand for electricity21 find short run elasticities between 0.1 and 0.5 and

18That is, in our empirical analysis we have no uncertainty but just demand fluctuation over time. In

practice, also uncertainty is relevant, leading to fatter tails of F (θ). The benchmark determined should

thus yield too high investment.
19See www.EEX.com
20See www.UCTE.org
21See, for example, Lijsen (2006) for an overview of recent contributions on that issue.

13



long run elasticities between 0.3 and 0.7.22 The relevant range of prices is around P = 100

€/MWh and corresponding consumption is approximately Q = 50 GW. In our simulations

we take b from the interval [0.004, 0.007], which corresponds to elasticities between 0.5 and

0.29.

Production cost: The marginal technology which determines marginal cost of produc-

tion at the capacity bound is given by open cycle gas turbines in the case of electricity

markets (compare for example EWI and Prognos (2005)). Since investment in the last unit

of capacity (which determines total capacity) is always a marginal decision, we do not need

to specify the inframarginal technology mix for the empirical analysis. Note however, that

we need to assume that firms are symmetric in size (but not necessarily with respect to their

inframarginal technology mix). Since mark-ups in the Cournot model generally increase if

firms become asymmetric, our results yield a lower bound for the extent of market power

for a given number of firms.

The major components of variable production cost of open cycle gar turbines are gas

prices23 and prices for CO2 emission allowances.24 The average TTF gas price in 2006 was

20 €/MWh and CO2 permissions traded on average for 9.30 €/MWh.25 The efficiency

of gas turbines currently ranges at around 37, 5%.26 The resulting daily production cost

for the year 2006 was on average 66.30 €/MWh. Daily values, as used in our empirical

analysis, are illustrated in figure 1. In our simulations we use the observed distribution but

multiply each realization by the factor f from the range [0.9, 1.1].

Investment Cost: Since we analyze investment incentives based solely on one year, we

break down investment cost of open cycle gas turbines to annuities.27 In order to take

construction time of gas turbine plants into account we consider investment cost on the

basis of data from the year 2000. We assume perfect foresight, i.e. all cost components have

been predicted accurately by the firms at the time of their investment decision. We base

22E.g. Beenstock et al. (1999), Bjorner and Jensen (2002), Filippini Pachuari (2002), Booinekamp (2007),

and many others.
23Daily values from the Dutch Hub TTF, corrected for transportation cost.
24Daily data taken from the EEX. The emission-coefficient for natural gas is set by the German ministry

of environment at 56t CO2/TJ which corresponds to 0.2016t CO2/MWh. Compare Umweltbundesamt

(2004).
25Recall that we do not use the averages but the daily values in our simulation.
26See 2006 GTW Handbook or EWI and Prognos (2005).
27The results will thus only yield a benchmark for current profitability of investment. Provided, however,

that yearly demand is increasing over time (and that strategic timing of investment is not an issue) our

procedure should yield accurate predictions, even though once installed capacities cannot be removed the

subsequent year.
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Figure 1: Production Cost in the Year 2006.

investment cost on the following two studies: First, a study on the German energy market

commissioned by the German Parliament (2002), with scenarios for investment decisions

summarized in Weber and Swider (2004) [in the following GP/WS]. Second, Energiereport

III, a study conducted by the Institute of Energy Economics (EWI) in Cologne and Prognos

(2000) for the the German Ministry of Economics [in the following EWI/P].

The relevant annuity is determined as follows: Total investment cost ranges between

279 €/KW (GP/WS) and 300 €/KW (EWI/P). Annual fixed cost of running a gas turbine

is already included in GP/WS, and is given by 8 €/KWa in EWI/P. This value is corrected

by the average availability of gas turbines, which, in Germany, is given by 94%.28 Based

on a financial horizon of 20 years and an interest rate of 10 % this yields annuities of

34863 €/MWa (GP/WS) and 45998 €/MWa (EWI/P). Finally, the free allotment of CO2

allowances granted to new power plants results in a de facto reduction of the annuity by the

net value of the allocated allowances. Calculating their value on the basis of the average

market price in 2006 yields 6305.3 €/MWa. The range of relevant annuities which we use

in our simulation is consequently given by [28558, 39692] €/MWa.

Simulation: Based on the above calibration of our framework we are now able to de-

termine equilibrium investment and total welfare for a given number of firms for all four

benchmark scenarios. The numerical computations are based directly on the theoretical

results derived in theorems 1 and 2. In order to assess the robustness of our results, we

do not perform the analysis for single parameter values but conduct a simulation analysis.

28Compare VGB Powertech (2006).
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That is, we take the above specified plausible ranges of the parameters b, f , and k as sup-

port of uniformly distributed random variables and compute results for 1000 independent

random draws. For each random draw (b, f, k) we thus determine the distribution of θ and

then solve numerically for the four different benchmark scenarios SH, SL, WH, and WL.

The simulation procedure allows us to state confidence intervals for our results on total

industry investment and welfare.
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Figure 2: Investment Levels in all Four Cases.

Results: Figure 2 shows — for different numbers of firms — total investment in all four

scenarios we discuss. In the figure, the big symbols represent the average value while the two

smaller symbols of the same type determine the 90 % confidence interval of our simulation.

Obviously, predicted capacities are not very sensitive to changes in the parameters. The

first best investment does not change in the number of firms since we assume that each

firm’s marginal generating unit is a gas turbine, independently of the number of firms and

the level of demand. Strategic capacity choice prior to Cournot spot markets (scenario

SH) is at only 50 % of the optimal level for the monopoly case, while it is at 80 % of
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the optimal level for four firms. The graph illustrates that the presence of market power

not only affects spot prices, but also has a strong effect on capacity choices. Total capacity

installed in Germany in 2006 was approximately 68 GW in a market with four large firms.29

The relatively high level of actual capacity as compared to our results reflects the fact in

the pre-liberalization period (i.e. before 1998) generators where subject to a rate of return

regulation that imposed excessive investment incentives.
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Figure 3: Price Distribution in the Hours where Capacity is Binding, Cases SH, SL, WH,

WL, and Observed Prices.

From the predicted capacity levels we now compute the price distribution for those

hours where capacity is predicted to be binding in the Cournot game. Since we want to

compare predicted prices to the observed price distribution, we choose (in accordance with

the German market structure) a scenario of four firms. We, moreover, choose the mean

values of the parameter intervals which we used in our simulations, i.e. b = 0.0055, and k =

35430/MWa.30 For our data set strategic firms are capacity constrained in approximately

1107 hours (12.6 % of the year).31 Figure 3 provides the observed price distribution (grey

line), as well as the predicted price distributions during the hours with a binding capacity

29The German market consists essentially of four large players. Two of them (RWE and E.on) have a

market share of 26 % each, while the two smaller ones (ENBW and Vattenfall) together cover 30 % of the

market each. Compare, e.g., Monopolkommission (2007).
30We could also determine the price distribution for ranges of parameters. Since capacities have turned

out not to be very sensitive to changes in the parameters, however, we chose to use mean values to make

our illustration more readable.
31Our predicted values match the empirical observations. Due to Umweltbundesamt (2004), gas turbines

run approximately 10 % of the time.
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constraint, separately for scenarios WL, WH, SH, and SL (black lines). In order to make the

differences more visible, in the figure we focus on prices in the interval [0, 500] and provide

information on the highest price realizations in the legend. Obviously, for the parameter

configuration we chose, observed prices are above predicted prices in the first best scenario

but well below predicted prices in the Cournot market game. All depicted prices reflect the

willingness to pay for an additional unit of capacity that cannot be produced in the short

run. Notice that the relatively low level of observed prices (as compared to the Cournot

scenario) may well be due to the fact that currently firms have more capacity installed than

they would have chosen in a liberalized regime.32 Strategic investment would strongly affect

the price distribution, as comparison of the curves for the cases WL and SH illustrates.

Obviously, there is a strong potential for market power not only in the short run, but also

at the investment stage.
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Figure 4: Welfare Differences relative to Case SH for Cases SL, WH, and WL.

Finally, figure 4 illustrates the welfare effect that results from more competitive spot

market behavior (e. g. enforced by the regulatory authorities). All welfare differences are

calculated in relation to the strategic investment game with high spot market prices. Again,

we ran simulations using the relevant parameter ranges. Big symbols represent average

welfare differences while small symbols are the 90 % confidence intervals. As we have

already seen from the theoretical analysis and from figure 2, imposing marginal cost prices

at the spot market considerably decreases equilibrium investment. The figure shows that

32In the pre-liberalization period, generators where subject to a rate of return regulation that imposed

excessive investment incentives.
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if the number of firms in the market is low, competitive spot market behavior significantly

decreases total welfare (as compared to Cournot spot markets). Only if the number of

firms is four or higher, total welfare is increasing. Thus, our analysis demonstrates that

regulatory intervention only at the spot market does not necessarily have the desired effect

if firms choose their capacities strategically.

The figure moreover illustrates the welfare effect of intervention only at the investment

stage (scenario WH) and of implementation of the welfare optimum. As it becomes clear

from the graph, performance of the Cournot market game is getting very close to the welfare

optimum as the number of competitors becomes large. We also observe that, while the effect

of increasing capacities given that firms have market power at the spot market is moderate

for all market structures, intervention at the spot market may have relatively large negative

effects on welfare if the number of firms is low.

5 Conclusion

It has been the purpose of this article to investigate in how far electricity spot market

design influences firms’ investment decisions and how desirable electricity spot market de-

sign should look like when taking into account investment decisions. In this paper we have

provided a model of strategic investment prior to a series of spot markets with fluctuating

and potentially uncertain demand and production cost. As discussed in section 1, explicit

modeling of demand fluctuations not only makes our analysis of electricity markets more

realistic but is a necessary ingredient to study our central research question (remember:

under constant demand spot market competition is irrelevant for investment decisions).

Our framework builds on earlier research on electricity spot market competition and

extended the analysis by an investment stage. One of the most common approaches to

model electricity spot markets is the concept of supply function competition by Klemperer

and Meyer (1989) which has been applied to the case of electricity markets by Green

and Newbery (1992). The supply function game typically has multiple equilibria which

range from the competitive market outcome (lower bound) to the Cournot solution (upper

bound). Which of the equilibria is being played in a particular market likely depends

on specific market rules and institutions (compare Bushnell et al (2008)). In a dynamic

investment game a continuum of equilibria at the production stage implies very imprecise

overall equilibrium predictions ranging up to the collusive outcome (folk theorems). In

order to obtain meaningful solutions for the strategic investment game we thus limited

our analysis to the two extreme cases, the Cournot and the competitive solution. This

allowed us to pin down the effect of expected spot market prices on investment incentives

of strategic firms. Alternatively, one could use a specification of the supply function model
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that yields a unique equilibrium prediction, as for example provided by Holmberg (2008).

Let us briefly summarize our main results. We have shown that if firms invest strate-

gically the common intuition that spot markets should be more competitive is misleading.

The reason is that more competitive spot markets imply lower investment incentives, which

leads to higher scarcity prices, possibly also implies higher average prices and a welfare

reduction. Our results also hold under free entry of firms. Those findings are in contrast

to a well known result of the peak–load–pricing literature. This literature, which has an-

alyzed optimal investment in a similar environment, comes to the conclusion that optimal

investment (of non-strategic firms) is the higher, the more competitive the spot market

is. Our findings demonstrate that it is misleading to ”approximate” strategic investment

based on the intuition obtained from the peak load pricing literature. We thus show that

investment incentives and spot design cannot be considered as two separate problems but

are closely interconnected. In order to properly assess the quality of spot market design

it is indispensable to account for the interaction of investment incentives and spot market

behavior — and to model strategic players explicitly.

In order to quantify the effects we identified in the theoretical part of the paper we

fitted our model to data of the German electricity market. We derived predicted invest-

ment levels for various degrees of market concentration, and illustrated welfare effects of

changing from a Cournot spot market to a competitive spot market outcome. In a market

of four firms (which corresponds to the current situation in Germany) predicted strategic

capacity choices are at 80 % of the capacity non–strategic firms would choose prior to a

competitive spot market, while installed capacity is even at approximately 96 % of this

”competitive benchmark”. This is presumably due to high investment incentives in the

pre–liberalization period. In accordance with the relatively high current capacity level, the

observed distribution of prices in 2006 is close to the predicted ”competitive benchmark”

price distribution for those scenarios where our model predicts that capacity is binding.

Moreover, for a market structure of four firms we find a slightly positive welfare effect

of changing from a Cournot spot market to competitive spot market prices. For highly

concentrated markets (i.e. monopoly or duopoly), strategic capacity choices are far below

the level that unstrategic firms would choose. We thus find that in concentrated markets,

changing from Cournot–prices to competitive prices at the spot market would decrease the

investment incentives drastically and would therefore have a large and negative welfare

effect.
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A Analysis of the Production Stage

The appendix contains all proofs of the paper. In the first part (appendices A.1 and A.2),

we analyze spot market behavior, which we need in order to prove theorems 1 (appendix

B) and 2 (appendix C).

In the first step we characterize capacity constrained production choices at the spot

market for each θ given investment choices x. Note that we have to consider also asymmetric

investment scenarios. In order to simplify the exposition we will order the firms according

to their investment levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn, throughout the paper. At the spot

market either firms engage in Cournot competition or the behave competitively (i. e. because

a social planer implements the optimal production schedule given investment choices or

because firms choose a low supply function equilibrium). In the following two subsections

we analyze both scenarios.

A.1 Properties of the Highest Spot Market Outcome

(Capacity Constrained Cournot Game)

An equilibrium of the capacity constrained Cournot game at the spot market in scenario θ

given x, qH(x, θ), satisfies simultaneously for all firms

qHi (x, θ) ∈ arg max
q

{
P (q + qH−i, θ))q− C(q, θ)

}
s.t. 0 ≤ q ≤ xi. (3)

Note that at very low values of θ all firms are necessarily unconstrained. By assumption 1

the unconstrained Cournot equilibrium [which we denote by q̃H0(θ)] is unique and symmetric

for each θ ∈ [−∞,∞].33 From (3) it follows that q̃H0
i (θ) is implicitly determined by the

first order condition

P (nq̃H0
i , θ) + Pq(nq̃

H0
i , θ)q̃H0

i = Cq(q̃
H0
i , θ).

Now as θ increases, at some critical value that we denote by θH1(x), firm 1 (the one

with the lowest capacity) becomes constrained. The critical demand scenario is implicitly

determined by x1 = qH0
1 (θH1). If it holds that x1 < x2, then at θH1(x) only firm one

becomes constrained. Then, in equilibrium, firm 1 produces at its capacity bound whereas

the remaining firms produce their equilibrium output of the Cournot game among n − 1

firms given the residual demand P (Q− x1, θ) [denoted by q̃H1
i (x, θ)], which solves the first

order condition

P (x1 + (n− 1)q̃H1
i , θ) + Pq(x1 + (n− 1)q̃H1

i , θ)q̃H1
i = Cq(q̃

H1
i , θ).

33See, for example Selten (1970), or Vives (2001), pp. 97/98.
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The capacity constrained Cournot equilibrium in the case where one firm is constrained is

a vector qH1(x, θ), where qH1
i (x, θ) = min{xi, q̃H1(x, θ)}.

As θ increases further, we pass through n+1 cases, from case H0 (no firm is constrained)

to case Hn (all n firms are constrained). Note that two critical values θHm(x) and θHm+1(x)

coincide whenever xm = xm+1, and that it holds that θHm(x) < θHm+1(x) (by assumption

2) whenever xm < xm+1.

Now we are prepared to characterize the capacity constrained Cournot equilibrium in

case Hm where m firms are constrained. In this case, the m firms with the lowest capacities

produce at their capacity bound, whereas the n−m unconstrained firms produce

q̃Hmi (x, θ) =

{
qi ∈ R : P

(
m∑
i=1

xi + (n−m) q̃Hmi , θ

)
(4)

+Pq

(
m∑
i=1

xi + (n−m) q̃Hmi , θ

)
q̃Hmi = Cq

(
q̃Hmi , θ

)}
,

The equilibrium quantities of the capacity constrained Cournot game in case Hm are given

by

qHmi (x, θ) = min{xi, q̃Hmi (x, θ)}, (5)

and aggregate production in case Hm is

QHm(x, θ) =
n∑
i=1

qHmi (x, θ). (6)

This allows us finally to pin down the profit of firm i in scenario Hm,

πHmi (x, θ) =


P
(
QHm, θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QHm, θ

)
q̃Hmi (x, θ)− C

(
q̃Hmi (x, θ) , θ

)
if i > m.

(7)

Note that it holds that
dπHm

i

dxi
> 0 only if i ≤ m, and

dπHm
i

dxi
= 0 otherwise, since a firm’s capac-

ity expansion only affects production at the spot market in case the firm was constrained.

Obviously, in this case the derivative must be positive.

We can finally pin down maximal social welfare generated in demand scenario θ ∈
[θHm, θHm+1] (where, given x, the m lowest capacity firms are constrained) as

WHm (x, θ) =

∫ QHm(x,θ)

0

P (Q, θ) dQ−
n∑
i=1

C
(
qHmi (x, θ) , θ

)
. (8)

(we need this in order to prove Part (WH) of theorem 2). Note that WLm only depends on

xi if firm i is constrained in scenario m, that is if i ≤ m.
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Lemma 1 (Monotonicity of θHm) dθHm(x)
dxi

is strictly positive if i ≤ m (i.e. if firm i

produces at its capacity bound), and zero otherwise.

Proof θHm(x) is the demand realization from which on firm m cannot play its uncon-
strained output any more. At θHm(x) it holds that qHi (θHm(x)) = q̃Hmi (θHm(x)) = xm for
all i ≥ m and qHi (θHm(x)) = xi < xm for all i < m. Thus, θHm(x) is implicitly defined by
the conditions

P

(
m∑
i=1

xi + (n−m)xm, θ
Hm(x)

)

+Pq

(
m∑
i=1

xi + (n−m)xm, θ
Hm(x)

)
xm − Cq

(
xm, θ

Hm(x)
)

= 0.

Differentiation with respect to xi, i < m, yields

Pq (·) + Pθ (·) dθ
Hm (x)

dxi
+ Pqq (·)xm + Pqθ (·)xm

dθHm (x)

dxi
− Cqθ (·) dθ

Hm (x)

dxi
= 0,

and solving for dθHm(x)
dxi

we obtain

dθHm (x)

dxi
= − Pq (·) + Pqq (·)xm

Pθ (·) + Pqθ (·)xm − Cqθ (·)
> 0

due to assumption 1, part (i) and assumption 2, part (ii) [note that the expression in

the denominator is the cross derivative which was assumed to be positive in part (ii) of

assumption 2].
Differentiation with respect to xi, i = m, yields

(n−m+ 2)Pq (·) + Pθ (·) dθ
Hm (x)

dxi

+(n−m+ 1)Pqq (·)xm + Pxθ (·)xm
dθHm (x)

dxi
− Cxx (·)− Cqθ (·) dθ

Hm (x)

dxi
= 0,

and solving for dθHm(x)
dxi

we obtain

dθHm (x)

dxi
= − (n−m+ 2)Pq (·) + (n−m+ 1)Pqq (·)xm − Cxx (·)

Pθ (·) + Pqθ (·)xm − Cqθ (·)
> 0,

also due to assumption 1, parts (i) and assumption 2, part (ii). Finally, differentiation
with respect to xi, i > m, yields

Pθ (·) dθ
Hm (x)

dxi
+ Pxθ (·)xm

dθHm (x)

dxi
− Cqθ (·) dθ

Hm (x)

dxi
= 0,

which implies that dθHm(x)
dxi

= 0 for i > m. �
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A.2 Properties of the Lowest Spot Market Outcome

(Competitive Behavior)

In the following we specify, for a given vector of capacities x, the competitive (welfare

optimal) production schedule for any possible demand scenario (that is, for any possible

value of θ).

Note that necessarily all firms are unconstrained for very low values of θ. It is straight-

forward to show that in the welfare optimum, all unconstrained firms produce the same

(due to convex cost). Thus, the socially optimal total quantity of each firm if all firms are

unconstrained is given by qL0i (θ) = {qi ∈ R : P (nqi, θ) = Cq (qi, θ)}.
Now, as θ increases, at some critical value, that we denote by θL1(x), firm 1 (the

lowest capacity firm) becomes constrained. The critical demand scenario θL1(x) is im-

plicitly defined by x1 = qL01 (θL1). If it holds that x1 < x2, then at θL1(x) only firm

1 becomes constrained and the socially optimal (competitive) production plan implies

that firm 1 produces at its capacity bound whereas the remaining firms produce the un-

constrained optimal quantity given the residual demand P (Q − x1, θ), i. e. q̃L1i (x, θ) =

{qi ∈ R : P ((n− 1)qi + x1, θ) = Cq (qi, θ)}. The optimal production plan in scenario L1 is

a vector qL1(x, θ), where each element is given by qL1i (x, θ) = min{xi, q̃L1i (x, θ)}.
As θ increases further and more firms become constrained, we pass through n+ 1 cases,

from case L0 (no firm is constrained) to case Ln (all n firms are constrained). Note that

two critical values θLm(x) and θLm+1(x) coincide whenever xm = xm+1, and that it holds

that θLm(x) < θLm+1(x) (by assumption 2) whenever xm < xm+1.

Now we are prepared to characterize the socially optimal production plan and social

welfare generated in case Lm, where m firms are constrained. In this case, the m firms with

the lowest capacities produce at their capacity bound, whereas the n−m unconstrained firms

produce the unconstrained optimal quantity given the residual demand P (Q−
∑m

i=1 xi, θ),

i. e.

q̃Lmi (x, θ) =

{
qi ∈ R : P

(
m∑
j=1

xj + (n−m)qi, θ

)
= Cq(qi, θ)

}
. (9)

We denote the optimal production plan in case Lm by qLm(x, θ) where each element is

given by

qLmi (x, θ) = min{xi, q̃Lmi (x, θ)} i = 1, . . . , n. (10)

Consequently, the optimal total quantity produced in case Lm is

QLm(x, θ) =
n∑
i=1

qLmi (x, θ). (11)
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This allows to pin down firm i’s profit in scenario Lm,

πLmi (x, θ) =


P
(
QLm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QLm(x, θ), θ

)
q̃Lmi (x, θ)− C

(
q̃Lmi (·) , θ

)
if i > m.

(12)

We can finally pin down maximal social welfare generated in demand scenario θ ∈
[θLm, θLm+1] (where, given x, the m lowest capacity firms are constrained) as

WLm (x, θ) =

∫ QLm(x,θ)

0

P (Q, θ) dQ−
n∑
i=1

C
(
qLmi (x, θ) , θ

)
. (13)

(we need this in the proof of theorem 2). Note that WLm only depends on xi if firm i is

constrained in scenario m, that is if i ≤ m.

B Proof of Theorem 1

B.1 Proof of Theorem 1, Case SH

(Strategic Investment — High Spot Market Prices)

Now we are prepared to analyze capacity choices at the investment stage. The results

obtained for spot market behavior enable us to derive a firm i’s profit from investing xi,

given that the other firms invest x−i and quantity choices at the spot markets are given

by qHm(x, θ) for θ ∈ [θHm(x), θHm+1(x)]. Recall that when choosing capacities the firms

anticipate demand fluctuations. Thus, a firm’s profit from given levels of investments, x, is

the integral over equilibrium profits at each θ given x on the domain [−∞,∞], taking into

account the distribution over the demand scenarios. For each θ, firms anticipate equilibrium

play at the spot markets, which gives rise to one of the n+1 types of equilibria, EQH0, . . . ,

EQHm, . . . , EQHn. Note that any x > 0 gives rise to the unconstrained equilibrium if θ is

sufficiently low. As θ increases, more and more firms become constrained. Thus, a tuple of

investment levels that initially gave rise to an EQH0, then leads to an equilibrium where

first one (then two, three, . . . , and finally n) firms are constrained. In order to simplify the

exposition we define θH0 ≡ −∞ and θHn+1 ≡ ∞. Then, the profit of firm i is given by34

πi(x, q
H) =

m=n∑
m=0

∫ θHm+1

θHm

πHmi (x, θ)dF (θ)−K(xi). (14)

34Note that it is never optimal for a firm to be unconstrained at∞ and thus, we always obtain θHn ≤ ∞.
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Note that at each critical value θHm, m = 1, . . . , n it holds that πHm−1(x, θHm) =

πHm(x, θHm). Thus, πi(x, q
H) is continuous. Differentiating πi(x, q

H) yields35

dπi
(
x, qH

)
dxi

=
n∑

m=i

∫ θHm+1(x)

θHm(x)

dπHmi (x, θ)

dxi
dF (θ)−Kx (xi) (15)

We prove part (SH) of the theorem in two steps. In part I we show existence and in

part II uniqueness of the equilibrium.

Part I: Existence of Equilibrium In the following we show that a symmetric equilib-

rium of the investment game exists if firms invest strategically and expect high spot market

prices (case SH), and that equilibrium choices xSHi = 1
n
XSH , i = 1, . . . , n, are implicitly

defined by equation (2). For this purpose it is sufficient to show quasiconcavity of firm i’s

profit given the other firms invest xSH−i , πi(xi, x
SH
−i ), which we do in the following.

Note that πi(xi, x
SH
−i ) is defined piecewisely. For xi < xSHi , we have to examine the

profit of firm 1 (by convention the lowest capacity firm) given that x2 = x3 = · · · = xn.
Since this implies that θH2 = · · · = θHn and thus it follows from (14) that

π1(x1, x
SH
−1 ) =

∫ θH1(x)

−∞
πH0
1 (x, θ)dF (θ) +

∫ θHn(x)

θH1(x)

πH1
1 (x, θ)dF (θ) (16)

+

∫ ∞
θHn(x)

πHni (x, θ)dF (θ)−K(x1)

For xi > xSHi , the profit of firm i is the profit of the highest capacity firm (firm n according
to our convention), given all other firm have invested the same, i. e. x1 = · · · = xn−1. We
get

πn(xn, x
SH
−n ) =

∫ θHn−1(x)

−∞
πH0
n (x, θ)dF (θ) +

∫ θHn(x)

θHn−1(x)

πHn−1n (x, θ)dF (θ) (17)

+

∫ ∞
θHn(x)

πHnn (x, θ)dF (θ)−K(x1)

(i) The shape of πi(xi, x
SH
−i ) for xi > xSHi : The second derivative of the profit function

πn is given by36

d2πn
(dxn)2

= −dθ
Hn(x)

dxn

[
dπHnn (x, θHn)

dxn

]
︸ ︷︷ ︸
=0 (xn is opt. atθHn)

f(θHn) +

∫ ∞
θHn(x)

d2πHnn (x, θ)

(dxn)2︸ ︷︷ ︸
<0 by A1 part (iv)

f(θ)dθ < 0. (18)

35Note that continuity of πi implies that due to Leibnitz’ rule the derivatives of the integration limits

cancel out. Moreover, πHmi only changes in xi if firm i is constrained in scenario Lm, i. e. i ≤ m. Thus,

the sum does not include the cases where firm i is unconstrained, i. e. m < i.
36It is obvious that there is no incentive for any firm to deviate such that it is unconstrained at∞. Thus,

we only consider the case that all firms are constrained at ∞.
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Note that the first term cancels out and the second term is negative by concavity of the spot

market profit function (implied by assumption 1). We find that for xi ≥ xSHi , πi(xi, x
SH
−i )

is concave, which implies that upwards deviations are not profitable.

(ii) The shape of πi(xi, x
SH
−i ) for xi < xSHi : This region is more difficult to analyze since

the profit function π1(x1, x
SH
−1 ) is not concave. We can, however, show quasiconcavity of

π1(x1, x
SH
−1 ). For this purpose we need lemma 2 (below) in order to complete the proof of

existence (part I). We can show quasiconcavity of π1(x1, x
SH
−1 ) by showing that

dπ1(x
0
1, x

SH
−1 )

dx1
>
dπ1(x

SH
1 , xSH−1 )

dx1
= 0 for all x01 < xSH1 .

This holds true, since [compare also equation (15)]

dπ1(x01, x
SH
−1 )

dx1
=

∫ θHn(x0
1,x

SH
−1 )

θH1(x0
1,x

SH
−1 )

dπH1
1 (x01, x

SH
−1 , θ)

dx1
dF (θ)︸ ︷︷ ︸

≥0 by lemma 2, part (i)

+

∫ ∞
θHn(x0

1,x
SH
−1 )

dπHn1 (x01, x
SH
−1 , θ)

dx1
dF (θ)

≥
∫ ∞
θHn(x0

1,x
SH
−1 )

dπHn1 (x01, x
SH
−1 , θ)

dx1
dF (θ)

=

∫ θHn(xSH−1 ,x
SH
−1 )

θHn(x0
1,x

SH
−1 )

dπHn1 (x01, x
SH
−1 , θ)

dx1
dF (θ)︸ ︷︷ ︸

≥0 by properties 1 and 2, part (ii)

+

∫ ∞
θHn(xSH1 ,xSH−1 )

[
dπHn1 (x01, x

SH
−1 , θ)

dx1
−
dπHn1 (xSH1 , xSH−1 , θ)

dx1

]
dF (θ)︸ ︷︷ ︸

>0 by lemma 2, part (ii)

+

∫ ∞
θHn(xSH1 ,xSH−1 )

dπHn1 (xSH1 , xSH−1 , θ)

dx1
dF (θ)︸ ︷︷ ︸

=
dπi(x

SH )

dxi
=0 [recall that θH1(xSH)=θHn(xSH)]

≥ 0.

To summarize, in part I (i) and (ii) we have shown that πi(xi, x
SH
i ) is quasiconcave. We

conclude that the first order condition given in theorem 1 indeed characterizes equilibrium

capacities in the investment game with Cournot–style spot market competition.

Lemma 2 [Properties of Marginal Profits at Stage Two] Suppose all firms but

firm 1 have invested symmetric capacities summarized in the vector x0−1. Firm 1 has invested

x1, less than each of the other firms. We obtain:

(i)
dπH1

1 (x01,x
0
−1,θ)

dx1
≥ 0 for θH1 ≤ θ ≤ θHn.

(ii)
dπHn

1 (x′1,x
0
−1,θ)

dx1
≥ dπHn

1 (x′′1 ,x
0
−1,θ)

dx1
≥ 0 for x′1 < x′′1, θHn ≤ θ ≤ ∞.
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Proof (i) The first part holds due to the fact in case firm 1 is constrained, i. e. (θ ≥ θH1),

firm 1 would like to produce more than x1 for all demand realizations θ ≥ θH1, which,

however, is not possible due to the capacity constraint.

(ii) The first inequality follows from concavity of the profit functions in the spot markets,

which is implied by assumption 1. Thus, the first order condition at each spot-market is

decreasing in x1 until q̃H0
i , which immediately yields the first inequality of part (ii). The

second inequality is due to the fact that in case all firms are constrained, i. e. (θ ∈ [θHn,∞]),

firm 1 would like to produce more for all demand realizations θ (which is not possible because

it is constrained). �

Part II: Uniqueness In this part we show that (i) xSH is the unique symmetric equilib-

rium and (ii) that there are no asymmetric equilibria.

(i) xSH is the unique symmetric equilibrium. If capacities are equal, i. e. x01 = x02 =
· · · = x0n, we have

dπi(x
0)

dxi
=

∫ ∞
θHn(x0)

[P (nx0i , θ) + Pq(nx
0
i , θ)x

0
i − Cq(x0i , θ)]f(θ)dθ −Kx(x0i ).

Differentiation yields37

d2πi(x
0)

(dxi)2
=

∫ ∞
θHn(x0)

[
(n+ 1)Pq(nx

0
i , θ) + nPqq(nx

0
i , θ)x

0
i − Cqq(x0i , θ)

]
dF (θ)−Kxx(x0i ) < 0,

which is negative due to assumption 1. Thus, since dπi(x
SH)

dxi
= 0 and moreover πi(x) is

concave along the symmetry line, no other symmetric equilibrium can exist.

(ii) There cannot exist an asymmetric equilibrium. Any candidate for an asymmetric

equilibrium x̂ can be ordered such that x̂1 ≤ x̂2 ≤ · · · ≤ x̂n, where at least one inequality

has to hold strictly. This implies x̂1 < x̂n. The profit of firm n can be obtained by setting

i = n in equation (14), and the first derivative is given by

dπn
dxn

=

∫ ∞
θHn(x)

dπHnn (x, θ)

dxn
f(θ)dθ −Kx(xn).

It is easy to show that firm n’s profit function is concave by examination of the second

derivative [see equation (18)]. Thus, any asymmetric equilibrium x̂, if it exists, must satisfy
dπn(x̂)
dxn

= 0. We now show that whenever it holds that dπn(x̂)
dxn

= 0, firm 1’s profit is increasing

in x1 at x̂ (which implies that no asymmetric equilibria exist).

From equation (15) it follows that the first derivative of firm 1’s profit function is given

by

dπ1
dx1

=

∫ θH2(x)

θH1(x)

dπHn1 (x, θ)

dx1
f(θ)dθ + · · ·+

∫ ∞
θHn(x)

dπHn1 (x, θ)

dx1
f(θ)dθ −Kx(x1).

37Differentiation works as in (18).
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Note that all the integrals in dπ1
dx1

are positive since firm 1 is constrained at all demand
realizations and therefore would want to increase its production. Thus, we have

dπ1
dx1

>

∫ ∞
θHn(x)

dπHn1 (x, θ)

dx1
f(θ)dθ −Kx(x1),

where the RHS are simply the last two terms of dπ1
dx1

. Note furthermore that x̂1 < x̂n also

implies that Kx(x̂1) < Kx(x̂n) (due to assumption 3) and

dπ1(x̂)

dx1
= P (x̂, θ) + Pq(x̂, θ)x̂1 − Cq(x̂1, θ) < P (x̂, θ) + Pq(x̂, θ)x̂n − Cq(x̂n, θ) =

dπn(x̂)

dxn

(due to assumption 1). Now we can conclude that

dπ1
dx1

>

∫ ∞
θHn(x)

dπHn1 (x, θ)

dx1
f(θ)dθ −Kx(x1) >

∫ ∞
θHn(x)

dπHnn (x, θ)

dxn
f(θ)dθ −Kx(xn) = 0.

The last equality is due to the fact that this part is equivalent to the first order condition of

firm n, which is satisfied at x̂ by construction. To summarize, we have shown that dπ1
dx1

> 0,

which implies that there exist no asymmetric equilibria, since at any equilibrium candidate,

firm 1 has an incentive to increase its capacity.

B.2 Proof of Theorem 1, Case SL

(Strategic Investment — Low Spot Market Prices)

If firms behave competitively at the spot markets, firm i’s spot market–profit in scenario θ

is given by (12). The investment stage expected profit of firm i is obtained by integrating

over all profits associated with each demand realization,38

πi(x, q
L) =

n∑
m=0

∫ θLm+1(x)

θLm(x)

πLmi (x, θ)dF (θ)−K (xi) . (19)

Thus, the first order condition is

dπi
(
x, qL

)
dxi

=
n∑

m=i

∫ θLm+1(x)

θLm(x)

dπLmi (x, θ)

dxi
dF (θ)−Kx (xi) . (20)

Now note that dπi
dxi

> 0 at X = 0 (since investment is gainful), that dπi
dxi

< 0 for some finite

value of X, and that dπi
dxi

is continuous. Thus, a corner solution is not possible, and we

have at least one point where (2) is satisfied and dπi
dxi

is decreasing. Note, however, that

this does not assure existence. In fact, in the scenario considered here a firm’s investment

stage profit is not even quasiconcave, and it is not possible to reformulate the game as a

supermodular game.

38We define θL0 = −∞ and θLn+1 =∞.
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Now assume constant marginal production cost. Note that in the case of constant

marginal production costs it is, independently of the capacity choices firms made at the

investment stage, always true that either all firms are constrained at p = Cq(·, θ), or none

of them. Thus, it holds that θL1(x) = · · · = θLn(x).

In order to prove part (SL) of theorem 1, we apply theorem 2.1 of Amir and Lamb-

son (2000), p. 239. They show that the standard Cournot oligopoly game has at least one

symmetric equilibrium and no asymmetric equilibria whenever demand P (·) is continuously

differentiable and decreasing, cost C(·) is twice continuously differentiable and nondecreas-

ing and, moreover, the cross partial derivative dπ(X,q)
dX−idX

> 0, where X denotes total capacity

and X−i capacity chosen by the firms other than i. In order to see that the results of Amir

and Lambson apply to our setup, note that our game is equivalent to a game where firms

choose output given the expected demand and cost function. Note that if the first best

outcome occurs whenever capacity is sufficient, it follows that expected inverse demand is

given by

EP (X) =

∫ θLn(x)

−∞
P
(
QL0 (θ) , θ

)
dF (θ) +

∫ ∞
θLn(x)

P (X, θ) dF (θ) , (21)

and expected cost is given by

EC(xi) =

∫ θLn(x)

−∞
C
(
qL0i , θ

)
dF (θ) +

∫ ∞
θLn(x)

C (xi, θ) dF (θ) +K (xi) , (22)

Note that EP (X) is strictly decreasing in X and EC(xi) is strictly increasing in xi, but
they do not satisfy assumption 1, part (i), which is why existence and uniqueness are not
implied by standard (textbook) analysis.39 However, Amir and Lambson’s assumptions40

are satisfied, since the cross partial derivative

dπ2(X, qH)

dX−idX
= −dθ

Ln(x)

dX

[
−P (X, θLn(x)) + Cq(X −X−i, θLn(x))

]︸ ︷︷ ︸
=0 at θLn(x)

f(θLn(x))

+

∫ ∞
θLn(X)

[−Pq(X, θ) + Cqq(X −X−i, θ)]︸ ︷︷ ︸
>0

f(θ)dθ

is positive. This guarantees that we have at least one symmetric equilibrium and no

asymmetric equilibria in case of constant marginal cost.

39In fact, the expected profit function is not even quasiconcave, as it is easily seen by inspecting its

second derivative.
40The assumptions are: P (·) is continuously differentiable with Pq(·) < 0, C(·) is twice continuously

differentiable and nondecreasing, and Pq(X)− Cqq(xi) < 0.
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C Proof of Theorem 2

The proof of theorem 2 (where welfare maximizing capacities are chosen) is quite similar to

the proof of theorem 1. We therefore give only a brief sketch, and refer to a working paper

version of the paper (Grimm and Zoettl (2007)) for an extensive version of the proof.

In order to prove part (WL), we consider for each realization of θ the welfare maximum

at the spot market for fixed capacity choices. Integration over all realizations of spot market

demand then yields expected welfare, which is given by the following expression:

W(x, qL) =
n∑

m=0

∫ θLm+1(x)

θLm(x)

WLm(x, θ)dF (θ)−
n∑
i=1

K (xi) . (23)

Note that at each critical value θLm, m = 1, . . . , n, it holds that WLm−1(x, θLm) =

WLm(x, θLm). Thus, W(x) is continuous. Differentiating W(x) yields the following first

order condition:

dW(x, qL)

dxi
=

n∑
m=i

∫ θLm+1(x)

θLm(x)

dWLm (x, θ)

dxi
dF (θ)−Kx (xi) = 0. (24)

After verification of the second order conditions we can conclude that the above first order

condition (24) yields a unique and symmetric first best solution as stated in theorem 2,

part (WL).

In order to proof part (WH), we need to determine welfare generated at the spot market

at each realization of θ for fixed capacity choices given Cournot competition. Expected

welfare is then again determined by integrating over all realizations of spot market demand

and evaluation of first and second order conditions yields a unique and symmetric solution

stated in the theorem.

D Proof of Theorem 3

In appendices B and C we have shown that all games analyzed throughout this article

have only symmetric equilibria. In the remaining three proofs we therefore simplify our

notation of the critical demand scenarios in case of high and low demand. In the following,

the critical demand realization θDj, where D = {L,H} and j = 0, . . . , n will be denoted

by θD (since in a symmetric solution all firms are constrained from the very same demand

realization on) and unconstrained industry output QDj, where D = {L,H} and j = 0, . . . , n

can be denoted by QD for symmetric investment.
Now consider the first order conditions that implicitly define total capacities in the four

scenarios considered, as given in theorems 1 and 2. Recall that (i) Pq(X, θ) < 0, and note
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that (ii) θH(x) > θL(x) for all x. Furthermore, (iii) at (below, above) the demand realization

θH(xSH) we have that Pq(X
SH , θ)X

SH

n
+ P (XSH , θ) − Cq( 1

n
XSH , θ) = 0 (< 0, > 0). Thus,

the lefthand–sides of the first order conditions can be ordered as follows:

WL :

∫ ∞
θL(x)

[
P (X, θ)− Cq

(
1

n
X, θ

)]
dF (θ) (25)

WH : ≥
∫ ∞
θH(x)

[
P (X, θ)− Cq

(
1

n
X, θ

)]
dF (θ)

SH : >

∫ ∞
θH(x)

[
Pq (X, θ)

1

n
X + P (X, θ)− Cq

(
1

n
X, θ

)]
dF (θ)

SL : ≥
∫ ∞
θL(x)

[
Pq (X, θ)

1

n
X + P (X, θ)− Cq

(
1

n
X, θ

)]
dF (θ)

Note that according to theorems 1 and 2, the total capacities are determined as the values

of X where the respective term equals Kx

(
1
n
XZ
)
, Z ∈ {WL, WH, SH, SL}. Recall that

in all cases we get interior solutions and note that the above terms (except for the one

that determines XSL) are decreasing in X, while Kx is increasing in X. This immediately

implies XWL ≥ XWH > XSH .

In order to see why the ranking stated in the theorem also holds for case SL, note that

the above term in scenario SH is strictly decreasing in X, whereas in scenario SL the left

hand side (LHS) of the first order condition satisfies LHS(0) > Kx(0) (since investment is

gainful) and LHS(X) < Kx(X) for X high enough. Since Kx(X) is increasing in X, this

immediately implies that for any equilibrium investment XSL it holds that XSH ≥ XSL.

E Proof Theorem 4

Part (i). We first determine welfare generated in case WL, where firms behave competi-

tively at the spot markets and investment choice XWL is made such as to maximize welfare.

At all spot markets θ < θL(XWL) firms produce unconstrained output at marginal cost,

generating welfare given by WL(θ). For all spot markets θ ≥ θL(XWL) firms produce at

their capacity bounds given by XWL, generating welfare W̃L(θ,X).

WL(θ) =

∫ QL(θ)

0

P (Y, θ)Y − nC(Y/n, θ)dY, and W̃L(θ,X) =

∫ X

0

P (Y, θ)Y − nC(Y/n, θ)dY

Total welfare WWL is thus given by:

WWL =

∫ θL(XWL)

−∞
WL(θ)dF (θ) +

∫ ∞
θL(XWL)

W̃L(θ,XWL)dF (θ)− nK(XWL/n)

Notice that for given investment choice a perfectly competitive spot market yields the

welfare optimal spot market outcome. Since investment is chosen such as to maximize

welfare, this implies that case WL leads to the overall first best market outcome.
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We now derive welfare generated in case WH. Firms choose spot market output QH(θ)

strategically. For θ < θL(XWH) capacity is not binding, we denote generated welfare at

those spot markets by WH(θ). For θ ≥ θL(XWH) firms produce at their capacity bounds,

we denote generated welfare by W̃H(θ,X).

WH(θ) =

∫ QH(θ)

0

P (Y, θ)Y − nC(Y/n, θ)dY, and W̃H(θ,X) =

∫ X

0

P (Y, θ)Y − nC(Y/n, θ)dY

Total welfare WWH is then given by:

WWH =

∫ θH(XWH)

−∞
WH(θ)dF (θ) +

∫ ∞
θH(XWH)

W̃H(θ,XWH)dF (θ)− nK(XWH/n)

Notice that in case WH, spot market output for given investment is not chosen such as

to maximize welfare, but as the equilibrium of strategically interacting firms. This directly

implies that welfare in case WH is strictly lower than in case WL.

Part (ii). We now compare welfare generated in the cases SL and SH. In case SL firms

at all spot markets θ < θL(XSL) produce unconstrained output at marginal cost, generating

welfare WL(θ). For all spot markets θ ≥ θL(XSL) firms produce at their capacity bounds,

generating welfare W̃L(θ,X). We obtain for total welfare in case SL

WSL =

∫ θL(XSL)

−∞
WL(θ)dF (θ) +

∫ ∞
θL(XSL)

W̃L(θ,XSL)dF (θ)− nK(XSL/n). (26)

In case SH, firms choose spot market output QH(θ) strategically. For θ < θL(XSH)

capacity is not binding and welfare WH(θ) is generated at each spot market. For θ ≥
θL(XSH) firms produce at their capacity bounds, generating welfare W̃H(θ,X). We obtain

for total welfare in case SH

WSH =

∫ θH(XSH)

−∞
WH(θ)dF (θ) +

∫ ∞
θH(XSH)

W̃H(θ,XSH)dF (θ)− nK(XSH/n). (27)

For low spot market realizations θ < θL(XSL) capacities are binding neither in case SH,

nor in case SL. For those low demand realizations welfare generated at more competitive

spot markets (i.e. case SL) is clearly higher than for strategic spot market outcomes (i.e.

case SH). For high spot market realizations θ ≥ θL(XSH), capacities are binding in both

cases SH and SL. Welfare generated in case SH is now strictly bigger, since investment

strictly exceeds investment of case SL (see theorem 3). Which of those two effect dominates,

depends on the precise structure of the market and the pattern of demand fluctuation. As

we find, especially when market concentration is high, however, the implementation of a

competitive spot market leads to a reduction of overall welfare. Moreover, as illustrated in

figure 4, especially in highly strategic environments the impact of erroneous market design

is substantial, however.
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Part (iii). For the case of strategic investment, desirability of the more competitive

spot market outcome depends on the precise parameters of the market game, as we have

established in part (ii) of the theorem. In part (iii) we now establish a weaker statement,

which is always true, however. As we find, a market designer will always overestimate the

beneficial impact of implementing the competitive spot market outcome if basing his anal-

ysis on a framework of optimal investment but not of investment in a market equilibrium.

In order to proof the theorem, we have to show
(
WWL +W SH

)
≥
(
WWH +W SL

)
. This

can be verified by point wise inspection for all spot market realizations θ.

For spot market θ < θH(XSH) firms can produce the unconstrained strategic spot

market output in the cases SH and WH. For case SH this is true by definition of θH(XSH)

and for case WH this is true since XSH ≤ XWH , as established in the proof of theorem

3. welfare generated in the cases SH and WH is thus identical for all those spot market

realizations. Likewise, since XWL > XSL, welfare generated in case WL weakly exceeds

welfare generated in case SL for those spot market realizations.

For θ ≥ θH(XSH) firms produce at the investment boundary for both cases SH and

SL. For case SH this is true by definition of θH(XSH) and for case SL this is true since

XSL ≤ XSH , as established in the proof of theorem 3. As already established in part (ii),

whenever firms are constrained at the spot market, welfare generated in case SH clearly

exceeds welfare generated in case SL. Moreover, case WL always outperforms case WH in

terms of welfare, no matter if capacities are binding or not (compare part (i)).

F Proof of Theorem 5

We now consider the case of a free entry equilibrium. Entry is costly and firms enter the

market as long as profits are non–negative. We first show that weakly less firms enter

the market in case SL as compared to case SH in a free entry equilibrium, i.e. nSL ≤
nSH . Remember in case SH, for θ < θH , firms produce in an unconstrained spot market

equilibrium, and are capacity constrained for all higher demand realizations41. In case SL

for θ < θL firms produce unconstrained spot market output at marginal cost and produce

at the capacity bound for all higher demand realizations. We derive firms’ profits for both

cases (SL and SH).

41The free entry analysis obviously anticipates the symmetric equilibrium, established in theorem 1 as

the solution of the investment market game. In order to save on notation we omit equilibrium investment

XSH and XSL in the argument of the critical spot market realizations θH(XSH) and θL(XSL) respectively.
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πSHi (n) =

∫ θH

−∞
πH0
i

(
QH , θ

)
dF (θ) +

∫ θL

θH
πHni

(
XSH , θ

)
dF (θ) +

∫ ∞
θL

πHni
(
XSH , θ

)
dF (θ)−K

(
XSH/n

)
(28)

πSLi (n) =

∫ θH

−∞
πL0i

(
QL, θ

)
dF (θ) +

∫ θL

θH
πL0i

(
QL, θ

)
dF (θ) +

∫ ∞
θL

πLni
(
XSL, θ

)
dF (θ)−K

(
XSL/n

)
(29)

Notice that the expressions for firms’ profits have been expanded, such as to contain both

critical demand realizations θH and θL. We now show that for any fixed number n of firms,

profits are lower in case SL than in case SH, i.e. πSHi (n) ≥ πSLi (n).

First observe that πH0
i

(
QH , θ

)
> πH0

i

(
QL, θ

)
for all θ < θH . This follows from the

observation that firms are unconstrained at those spot markets, and profits for strategic

spot market behavior are higher, than under perfect competition.

In order to compare the remaining terms of expressions (28) and (29), have to make use

of the equilibrium conditions derived in theorem 1.42 We obtain for the remaining three

terms of expression (28):∫ θL

θH
πHni

(
XSH , θ

)
dF (θ) +

∫ ∞
θL

πHni
(
XSH , θ

)
dF (θ)−K

(
XSH

n

)
= (30)∫ ∞

θH
−Pq(·)

(
XSH

n

)2

+

(
Cq (·) X

SH

n
− C

(
XSH

n
, θ

))
dF (θ)) +

(
Kx (·) X

SH

n
−K

(
XSH

n

))
Analogously we rewrite the last three terms of expression (29) and obtain:∫ θL

θH
πL0i

(
QL, θ

)
dF (θ) +

∫ ∞
θL

πLni
(
XSL, θ

)
dF (θ)−K

(
XSL

n

)
= (31)∫ θL

θH
−Pq(·)

(
QL

n

)2

+

(
Cq (·) Q

L

n
− C

(
QL

n
, θ

))
dF (θ)) +∫ ∞

θL
−Pq(·)

(
XSL

n

)2

+

(
Cq (·) X

SL

n
− C

(
XSL

n
, θ

))
dF (θ)) +

(
Kx (·) X

SL

n
−K

(
XSL

n

))
Expressions (30) and (31) can now be compared point wisely for all θ > θH . Observe

that
(
−Pq(Y, θ)

(
Y
n

)2)
is strictly increasing in Y due to assumption 1 (i). Moreover

(Cq (y) y − C (y)) and (Kx (y) y −K (y)) are increasing in y due to concavity of production

and investment cost (assumptions 1 (ii) and 3). As established in theorem 3, XSL < XSH ,

furthermore, unconstrained production QL, by definition, is always below the capacity, i.e.

QL ≤ XSL. This directly implies, however, that expression (30) is strictly bigger than

expression (31).

42We expand the equilibrium conditions
∫∞
θH
P + Pqxi − CqdF (θ) = Kx as follows:∫ ∞

θH
Pxi − C (xi) dF (θ)−K (xi) =

∫ ∞
θH

(−Pqxi + Cq)xi − C (xi) dF (θ) +Kxxi −K (xi) .
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We thus established that for a fixed number of firms active on the market, profits of

firms are strictly lower in case SL than in case SH. That is, when investment is chosen

strategically by a fixed number of firms, overall profits are lower under competitive spot

markets than for strategic behavior at the spot markets. This implies, furthermore, that

in a free entry equilibrium weakly less firms will enter the market in case SL than in case

SH, i.e. nSL ≤ nSH .

We finally show that indeed the statements of theorems 3 and 4 are true also under

the hypothesis of free entry. From theorem 3 we obtain XSL
(
nSL
)
≤ XSH

(
nSL
)

for

some fixed number nSL of firms active in either case. Since under free entry nSL ≤ nSH

and since investment XSH is increasing in the number of firms active on the market we

can directly conclude that XSL
(
nSL
)
≤ XSH

(
nSH

)
. The same reasoning holds true for

the welfare analysis of theorem 4. We obtained W SL
(
nSL
)
≤ W SH

(
nSL
)

for a fixed

number of firms active on the market. Since under free entry nSL ≤ nSH and since welfare

W SH is increasing in the number of firms active on the market, we can conclude that

W SL
(
nSL
)
≤ W SH

(
nSH

)
.
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