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proposed by L (), also known as the Hodrick-Prescott filter. A practical

problem arises, however, when the time series contains structural breaks (such as

produced by German unification for German time series, for instance). This note

proposes a method for coping with this problem.
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 Introduction

Trend extraction from time series is often performed by using the filter proposed by L

(), also known as the Hodrick-Prescott filter, or HP-Filter. A practical problem arises,

however, when the time series contains structural breaks (such as produced by German

unification for German time series, for instance). This note proposes a method for coping

with this problem.

 The Leser Filter

The idea proposed by L () for the case where all data are available is to look for a

trend y ∈ RT such that deviation

u = x− y ()

is “small” and the trend is “smooth.” The size of the deviation is measured by the sum of

squared residuals u′u, and the smoothness of the trend is measured by the sum of squares of

changes in the direction of the trend v′v where the trend disturbances v ∈ RT−2 are defined

as

vt = ((yt − yt−1)− (yt−1 − yt−2)) t = 3, 4, ... , T

or

v = P y ()

with

P :=


1 −2 1 0

1 −2 1

. . .

0 1 −2 1


of order (T − 2)× T .

The decomposition of the original series x into trend y and and residual u is obtained by

minimizing the weighted sum of squares

V = u′u + α · v′v = (x− y)′ (x− y) + α · y′P ′P y ()

 The formailization below follows S ().





with respect to y. This gives the first-order condition

(IT + α · P ′P ) y = x. ()

As (I + α P ′P ) is positive definite, the second order condition is satisfied in any case.

Equation () has the unique solution

y = (IT + α P ′P )
−1

x ()

which defines the Leser-Filter. It associates a trend y with the time series x, depending on

the smoothing parameter α.

From () and () we obtain

V = x′
(
IT − (IT + α · P ′P )

−1
)

x ()

as the value of the criterion function ().

 Structural Breaks

A practical problem arises when the time series contains structural breaks. Equation ()

interprets these wrongly as disturbances. The obvious way to generalize the filter in order

to cope with this problem is to look for a smooth trend by introducing dummy variables

to capture these effects, and to select these variables such that the criterion function () is

minimized. This can be done as follows.

Consider a time series x ∈ RT with m ≤ T − 2 structural breaks. The break points are

indicated by a vector m ∈ RT with components mt = 1 for all t ∈ {1, 2, ...T} where a

break point occurs, and mt = 0 otherwise. Denote the break points by t1, t2, .., tm. Define

the (T ×m)-matrix with elements bi,j = 0 for i < tj and bi,j = 1 for i ≥ tj . For T = 5

and break points at t1 = 2 and t2 = 4 we would have, for example

B =


0 0

1 0

1 0

1 1

1 1

 .
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Define further the vector of dummies dor the break points d ∈ Rm, where di gives the

dummy for the i-th break point.

The adjusted vector of observations is

x∗ = x + Bd. ()

It is a function of the values assumed for the dummies d. These values can now easily be

determined by replacing x by x∗ in (), and minimizing this expression. Thus we obtain the

positive definite quadratic form

V = (z′ + s′B′)
(
IT − (IT + α · P ′P )

−1
)

(z + Bd) ()

that is to be minimized with respect to s.The first-order conditions for a minimum is

∂V

∂s
= 2B′

(
IT − (IT + α · P ′P )

−1
)

(z + Bs) = 0. ()

and the second-order condition is that B′ (IT − (IT + α · P ′P )−1) B is positive definite.

As

(IT + αP ′P )
−1

= IT − αP ′P + (αP ′P )
2 − (αP ′P )

3
+ ...

we can write (
IT − (IT + α · P ′P )

−1
)

= αP ′ (IT−2 + α · PP ′)
−1

P.

Hence
(
IT − (IT + α · P ′P )−1) is non-negative definite of rank T − 2 and

B′ (IT − (IT + α · P ′P )−1) B has full rank and is positive definite. Therefore equa-

tion () defines the unique maximizing choice of the dummy terms as

d∗ = −
(
B′

(
IT − (IT + α · P ′P )

−1
)

B
)−1

B′
(
IT − (IT + α · P ′P )

−1
)

z. ()

The replenished time series is obtained now by inserting () into ().

x∗ = z + Bd∗

and the trend is obtained by using the replenished series x∗ instead of the original series x


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Figure : (a) The original US unemployment rate - has been augmented
by adding, beginning with period , two percentage points to the original se-
ries. The corrected series overcorrects the structural break in this case. (b) The
smoothed series reproduce this pattern. (Smothing constant is α =, data from
the Bureau of Labor Statistics.)

in ():

y∗ = (IT + α P ′P )
−1

(z + Bs∗) .

This gives the trend the time series, adjusted for structural breaks.

 An Example

As an example, consider the time series of US unemployment (Figure ). Beginning with

period , a structural break has been introduced by adding  percentage points to the

original time series. The correction obtained by the method sketched above overcorrects this

break by subtracting . percentage points. The corrected trend estimation is overcorrected

as well. As can be seen, the correction produces a smoother trend than the original one,

as is implied by the logic of the method. A manual correction would look not very much

different, or would look even worse if the adjustment is made such that the adjacent data

points  and  are made to have identical values. (The correction would have been -.

rather than -. in this case.)

 All computations done with the package by L ().





 Concluding Comments

The example illustrates the functioning, as well as the problematic, of introducing dummies,

as these will not only correct for structural breaks, but will also mask changes in the

underlying trend. Yet there seems no better way available to do such corrections. If the Leser

method is interpreted stochastically as in S (), a theoretical justification is that

it can be interpreted as giving Maximum-Likelihood estimates for the dummies that capure

structural breaks.
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