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June 28, 2006

In applied microeconometric panel data analyses, time-constant random ef-
fects and first-order Markov chains are the most prevalent structures to account
for intertemporal correlations in limited dependent variable models. An exam-
ple from health economics shows that the addition of a simple autoregressive
error terms leads to a more plausible and parsimonious model which also cap-
tures the dynamic features better. The computational problems encountered in
the estimation of such models – and a broader class formulated in the framework
of nonlinear state space models – hampers their widespread use. This paper
discusses the application of different nonlinear filtering approaches developed
in the time-series literature to these models and suggests that a straightforward
algorithm based on sequential Gaussian quadrature can be expected to perform
well in this setting. This conjecture is impressively confirmed by an extensive
analysis of the example application.

∗The author would like to thank Alexander Ludwig, Axel Börsch-Supan, Dan McFadden, Mike Hurd,
Viktor Winschel, Joachim Winter, and David Wise for valuable discussion, comments and suggestions.
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1 Introduction

Panel data provide repeated observations on the same individuals, firms, or other units

over time. This allows the identification of a much richer set of effects in a more general

setting than pure cross-sectional data. Many microeconometric models, especially lim-

ited dependent variable models, are inherently nonlinear. This nonlinearity complicates

the analysis of panel data models, for a general discussion see for example Chamberlain

(1984). In applied microeconometric research, the vast majority of nonlinear panel data

models specify unobserved heterogeneity as time-constant individual effects and/or state

dependence as a low-order Markov model. While the estimation of these models is fairly

straightforward, they impose a quite inflexible dynamic structure on the data.

As an example, a health economics application is presented. For studying the evolution of

health over time, the literature has so far focused on first-order Markov chain and random

effects models. Contoyannis, Jones and Rice (2004) thoroughly discuss these approaches

and their estimation. I argue that a simple ordered logit model with an AR(1) error term

is theoretically more convincing. Furthermore it is more parsimonious and captures the

observed intertemporal correlation pattern much better.

The widespread application of such models is hampered by the computational difficulties

encountered in their estimation. This paper discusses these problems and different solutions

for a class of models which includes limited dependent variable models with AR(1) errors

but is much more general. It is formulated in a state space framework. This approach

has a long tradition in linear time series models, see Hamilton (1994). The increase in

computational power makes it also feasible for general nonlinear models which generated

increased interest in the econometric time series literature, see for example Fernández-

Villaverde and Rubio-Ramı́rez (2005).

The computational problem in evaluating the likelihood function of such models is that

the unobserved state process has to be integrated out. With continuously distributed

states, these integrals have to approximated numerically and their dimension is typically
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proportional to the time-series dimension of the data. Unlike time series models, this data

dimension is usually moderate for microeconometric analyses and asymptotic arguments

are applied to the cross-sectional dimension. This makes it feasible to approximate the

full multidimensional integral for example by Monte Carlo simulation or by numerical

integration (Heiss and Winschel 2006).

For time-series models, various attempts have been made to break up the full integral

into a sequence of lower-dimensional integrals in the spirit of the Kalman filter. Outside

of economics, these nonlinear filtering approaches are widely studied e.g. in engineering

(Doucet, De Freitas and Gordon, eds 2001). In the econometric time-series literature,

they have been discussed e.g. by Danielsson and Richard (1993), Fernández-Villaverde and

Rubio-Ramı́rez (2006), and Tanizaki and Mariano (1994). For a survey of these methods,

see Tanizaki (2003).

Also applications with a moderate time-series dimension can profit from nonlinear fil-

tering techniques. Loosely speaking does each reduction of dimensionality help for each

method of numerical integration. This paper briefly reviews different filtering algorithms

such as nonlinear particle filters (Gordon, Salmond and Smith 1993) and sequential im-

portance sampling Tanizaki and Mariano (1994). Given the features of microeconometric

models discussed here with a moderate time series dimension and a univariate latent state

space, it is then argued that a similar, straightforward to implement, approach using se-

quential Gaussian quadrature can be expected to perform well.

Different algorithms are then implemented for the illustrative health model. While all

converge to the same results as the computational effort is increased, the speed of this

convergence differs dramatically. Simulation estimation with a total run time of 15 hours

delivers less accurate results than the preferred sequential quadrature algorithm achieves

in 11 minutes.

The paper is structured as follows. Section 2 presents the general model structure and

the illustrative example. In section 3, different approaches and algorithms for the likelihood

approximation are discussed and the sequential Gaussian quadrature algorithm is presented
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in detail. Section 4 revisits the illustrative example, implements different algorithms and

compares their performance. Section 5 concludes.

2 Microeconometric State-Space Models

This paper discusses estimation for a relatively rich set of micro-econometric models that

can be represented in a state-space framework. We start out by defining the structure of

and requirements on these models.

2.1 Model Specification

Suppose a sequence of dependent variables is observed over time for a number N of cross-

sectional units, say individuals. All random variables involved in the model are assumed

to be independent across cross-sectional units. Let T be the number of observations over

time (“waves”) for each cross-sectional unit. In the following discussion, assume that T

is the same number for each cross-sectional unit so that we are dealing with a balanced

panel. This is merely for notational convenience – unbalanced panels can easily be dealt

with if the individual number of observations is random or modeled jointly.

The vectors of random variables Yit for i = 1, ..., N and t = 1, . . . , T represent dependent

variables of individual i in wave t. In many applications, they are one-dimensional, but I

allow for the more general case since this does not create any complications neither in the

notation nor in the analysis. The vector of dependent variables may consist of discrete,

continuous, or both types of random variables. They are modeled conditional on exogenous

variables xi, unobserved states which are correlated over time ait and unobserved i.i.d. error

terms eit. The model is specified as

Yit = g(xi, ait, eit;θ), (1)

where g(·) is a general parametric function. The vectors xi contain time-constant and

time-varying strictly exogenous variables. In the latter case, xi collects all time-specific
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values. The random variables (“states”) ait are allowed to be continuously distributed and

correlated over time in a relatively flexible way discussed in detail below. In this paper,

ait is assumed to be a scalar random variable, but generalizations to a higher-dimensional

state-space are straightforward. The i.i.d. error terms eit may reflect measurement errors

and/or transitory influences on Yit. For notational simplicity, all model parameters are

collected in the vector θ.

This model can be viewed as a generalization of a random effects model. In this case,

ai,1:T = [ait : t = 1, ..., T ] has a degenerate joint distribution with ait = ai for all t = 1, ..., T .

In the more general case, it could for example represent an AR(1) component of the error

term.

Suppose we are interested in likelihood-based estimation such as maximum likelihood or

Bayesian analysis. With P (yi,1:t|xi;θ) denoting the joint probability mass (or probability

density) of Yi,1:t = [Yis : s = 1, ..., t] conditional on xi, evaluated at the observed values

yi,1:t, the likelihood function is

L(θ) =
N∏

i=1

P (yi,1:T |xi;θ) (2)

The computational problem in evaluating this expression mainly arises due to the pres-

ence of the latent states ait in the model. Before discussing this problem and solutions in

detail, the class of models is restricted in the following way. For convenience of presenta-

tion, it is understood that all expressions depend on the parameter vector θ which is in

the following left out of the notation.

Measurement

Let P (yit|xi,yi,1:t−1,ai,1:T ) represent the joint probability mass (or density) of Yi,1:t con-

ditional on xi, ai,1:T , and past values of yit, evaluated at the observed values yit.

Make the following conditional independence assumption.

P (yit|xi,yi,1:t−1,ai,1:T ) = P (yit|xi, ait) ∀i = 1, ..., N, t = 1, ..., T (3)
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Conditional on xi and the contemporaneous value of the latent state ait, the outcome prob-

ability of yit is independent of both past and future values of the state process ai,1:T and

lagged dependent variables. The latter assumption avoids the usual initial value problems

which could be dealt with with the usual approaches, see Heckman (1981), Wooldridge

(2005), and Honoré and Tamer (2006). Under this assumption, all contemporaneous cor-

relation of yit conditional on xi is generated by the sequence of latent states ai,1:T which

is correlated over time.

Assume that the i.i.d. error terms eit can easily be integrated out of the model so that

P (yit|xi, ait) is a known parametric function. It might for example follow from a typical

limited dependent variable (LDV) model specification in (1) in which the unknown ait enter

as additional regressors analogous to LDV models with random effects.

States

For the sequence of latent states ai,1:T , assume that the marginal distribution of ait is

known up to a finite set of parameters included in the general parameter vector θ. In the

following, these states are treated as vectors of continuous random variables. The only

real difference with discrete or mixed distributions is that the numerical analysis would be

less difficult. For notational simplicity assume that these marginal distributions are the

same for all i = 1, ..., N and t = 1, ..., T and denote its p.d.f. conditional on the exogenous

covariates as f(ait|xi). For identification of the model, it will in many cases be necessary

to assume independence of xi analogous to random effects models.

As noted before, states are allowed to be dependent over time. For notational and

analytical convenience, assume that they are first-order Markov. Also assume that there is

no feedback from the sequence of dependent variables yi,1:T . Therefore, for the conditional

p.d.f.

f(ait|xi,yi,1:T ,ai,1:t−1) = f(ait|xi, ai,t−1) (4)
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This conditional distribution is again assumed to be known up to parameters. This struc-

ture allows to write the joint p.d.f. of ai,1:T as

f(ai,1:T |xi) = f(ai1|xi)
T∏

t=2

f(ait|xi, ai,t−1) (5)

2.2 An Ordered Logit Model of Health with an AR(1) Error Term

One of the most frequently studied measures of individual health is the self-rated health

status (SRHS). The Health and Retirement Study (HRS) asks all respondents “Would you

say your health is excellent, very good, good, fair, or poor?”. It is included in many other

surveys with a similar wording. Despite its obvious subjectiveness, it has been found a

useful and powerful measure. It maps the high-dimensional and complex concept of health

into one dimension using individual perceptions and judgments. It is also a very powerful

predictor of objective events such as mortality.

The data used for the empirical example is from the Health and Retirement Study

(HRS) which is sponsored by the National Institute of Aging (NIA) and conducted by the

University of Michigan. For the analyses presented here, I use the RAND HRS Data File

(Version E). It was developed by the RAND Center for the Study of Aging with funding

from the National Institute on Aging (NIA) and the Social Security Administration (SSA).

The HRS contains data on different cohorts of elderly Americans. I use a sample of all

cohorts with the only restriction that they are at least 50 years old at the time of the first

interview. The sample includes 25,353 respondents with up to 6 observations over time

each. A total of 102,233 observations are available.

Panel data analyses of SRHS are not only useful because unobserved heterogeneity of

health itself, but also heterogeneity of reporting SRHS given health can be accounted for.

Table 1 shows the distribution of SRHS in the sample. As the tabulations conditional on

the previous response indicate, SRHS is highly correlated over time. Here, we focus on

the question how to model this correlation. In the literature, this correlation is almost

exclusively modeled as time-constant unobserved heterogeneity and/or state dependence
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of SRHS. Contoyannis et al. (2004) discuss and compare these approaches. I will argue that

a simple model with correlated error terms is both more plausible and fits the correlation

pattern better.

Table 2 gives an impression on the intertemporal correlation pattern over a longer period

of time. It shows the results of an orered logit regression of SRHS in wave 6 on a typical

set of covariates plus lagged values of SRHS. Note that this is obviously only done for

respondents with six observations. Due to the sampling scheme, this holds only for the

original HRS cohort born between 1931 and 1941. The two most interesting results are

that the coefficients of all lags (i) are all highly significantly different from zero and (ii)

get smaller the further away the respective observation is from wave 6. A random effects

model would imply equal predictive power of all lags which contradicts observation (ii).

A first-order Markov chain model would imply no additional predictive power of waves 1

through 4 once wave 5 is controlled for which contradicts observation (i). A combination

of a time-constant random effect (RE) with a first-order Markov chain model would imply

predictive power of all waves with wave 5 having a higher predictive power than waves 1

through 4. But a Wald test of the hypothesis of equal predictive power of the earlier four

waves is clearly rejected (test statistic a∼ χ2
3 = 40.05).

I interpret these findings as an indication that the models typically used for modeling

SRHS in panels such as Contoyannis et al. (2004) are not capable of capturing the corre-

lation pattern found in the data.1 An obvious strategy to capture the correlation pattern

better would be to combine a higher-order Markov chain model of state dependence with

a RE specification. But this would aggravate the initial values problem already present in

the first-order Markov chain model with RE.

In a structural model, state-dependence of SRHS is actually not very convincing. While

for example in a model of labor force participation lagged outcomes can causally affect

1Note that these models typically do not specify the lagged values as the 5-point scale SRHS measure but

as four dummy variables. This does not change the conclusions from Table 2 but only makes the results

harder to read.
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today’s outcome, this is unlikely for this application: Which of the five SRHS categories a

respondent ticks in a survey won’t affect future health. So in a model with state dependence

and RE, the coefficients determining the state dependence can be interpreted to capture the

diminishing predictive power of higher lags evident in Table 2 in a reduced-form fashion.

But a structurally more plausible model would be one in which SRHS depends on current

health and this underlying variable follows some random process over time with decreasing

correlation. I suggest a simple model with an AR(1) error term.

Let Y ∗
it denote a latent variable which represents a continuous representation of health.

It is modeled as a function of covariates xit, an unobserved stochastic process ait and an

i.i.d. error term eit. For simplicity, consider the linear specification

Y ∗
it = xitβ + ait + eit. (6)

Assume that SRHS Yit ∈ {1, ..., 5} is generated by a standard ordered response model.

Yit = j ⇔ αj−1 ≤ Y ∗
it < αj with 1 ≤ j ≤ 5, (7)

where α0 = −∞, α5 = ∞, and α1 through α4 are unknown model parameters. In the

general notation of section 2.1, equations (6) and (7) correspond to the specification of the

model in (3).

In order to derive a parametric expression of conditional outcome probabilities, assume

that the i.i.d. error terms eit are i.i.d. with a logistic distribution. They may represent

transitory health problems like a cold, general mood at the time the survey was completed

or general measurement errors. This parametric assumption leads to a standard ordered

logit specification except that the latent process ait is present. With Λ(·) representing the

logistic c.d.f., the conditional outcome probabilities in (3) can in this model be written as

P (yit|xi, ait) = Λ (αyit − xitβ − ait)− Λ (αyit−1 − xitβ − ait) . (8)
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To complete the model, the joint distribution of the state-space ait has to be specified.

Assume independence of xi and a normal AR(1) process. With φ(·;µ, σ2) denoting the

normal p.d.f. with mean µ and variance σ2, the marginal distribution is

f(ait|xi) = φ(ait; 0, σ2). (9)

Assume the AR(1) structure

ait = ρai,t−1 + uit (10)

where the innovations uit are i.i.d. normal with zero mean and variance (1 − ρ2)σ2. The

correlation parameter −1 ≤ ρ ≤ 1 is another model parameter. This leads to a conditional

distribution corresponding to (4) of

f(ait|xi, ai,t−1) = φ(ait; ρai,t−1, (1− ρ2)σ2). (11)

This completes the model definition discussed in general in section 2.1 with a parameter

vector θ = [β, α1, ..., α4, σ, ρ].

A standard ordered logit model follows in the special case σ = 0 and a standard random

effects ordered logit model follows in the case ρ = 1. The correlation between Yit and Yis

conditional on the covariates xi is ρ|t−s|. With 0 < ρ < 1, it can explain the significant but

decreasing predictive power of lagged dependent variables in Table 2.

3 Evaluation of the Likelihood Contributions

For the evaluation of the likelihood function (2), the probabilities P (yi,1:T |xi) have to be

evaluated. Because of the presence of the latent process ai,1:T in the conditional outcome

probabilities specified in (3), this expression can in general not be evaluated directly. In-

stead, it can be approximated numerically as will be discussed in the remainder of this

section.
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3.1 Joint Simulation and Numerical Integration

The simplest approach is to integrate out the full latent process ai,1:T :

P (yi,1:T |xi) =
∫
· · ·

∫
P (yi,1:T |xi,a1:T )f(ai,1:T |xi) dai1 · · · daiT (12)

All terms in this equation are known by assumption. The integral does in general not

have an analytic solution. The typical approach in micro-econometrics to these kinds of

problems is simulation: Given a number of R draws [ar
i,1:T : r = 1, ..., R] from the joint

distribution f(ai,1:T |xi), the simulated probability is equal to

P̃ SIM(yi,1:T |xi) =
1
R

R∑
r=1

P (yi,1:T |xi; ar
i,1:T ). (13)

Pseudo-maximum likelihood estimators of θ using P̃ SIM(yi,1:T |xi) instead of its true value

is under weak regularity conditions consistent (in N) if the number of replications R rises

with N (Hajivassiliou and Ruud 1994).

It has been shown in various cases that with a given number of replications R, the accu-

racy of the simulated probabilities and estimators based on them can improve dramatically

if instead of (pseudo-)random draws antithetic or quasi-random draws are used. This can

also be expected in this setting.

Instead of simulation, deterministic numerical integration methods can be used to ap-

proximate analytically infeasible integrals. While Gaussian quadrature is know to work

effectively in univariate integration problems, the integral in (12) is T -dimensional even

if ait is one-dimensional and a multiple thereof otherwise. The well-known product rule

extension of Gaussian quadrature to multiple dimensions suffers from exponentially rising

computational costs as the number of dimensions increases. Even in 3 or 4 dimensions,

this “curse of dimensionality” makes this approach computationally inefficient. In higher

dimensions, it quickly becomes infeasible even on modern computers.

Heiss and Winschel (2006) suggest to apply a different approach of extending Gaussian

quadrature to multiple dimensions for integration problems such as (12). This method of
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integration on sparse grids (ISG) does not suffer from the curse of dimensionality. The

authors demonstrate its superior performance for a similar estimation problem and for as

many as 20 dimensions. This should suffice for the typical micro-econometric model at

least with a univariate latent state space. This method is similarly easy to implement as

simulation. It prescribes a set of R nodes [ar
1:T : r = 1, ..., R] and corresponding weights

[wr : r = 1, ..., R] according to the dimension and distribution of ait. The probability is

then approximated as

P̃ ISG(yi,1:T |xi) =
R∑

r=1

wrP (yi,1:T |xi;ar
1:T ). (14)

The higher the time-series dimension of the data, the worse can all methods of integrat-

ing out the full sequence of latent states be expected to work. This is extremely so for

the Gaussian integration based on the product rule, but also for SGI, the computational

burden rises with the dimensions of integration. While the asymptotic (in R) properties of

simulation estimators do not depend on the dimension, the accuracy given a finite number

of replications often does, see e.g. Lee (1997).

3.2 Nonlinear filtering

Nonlinear filter techniques separate the full integral in (12) into a sequence of lower-

dimensional integrals using the structure of the model. These approaches can be interpreted

as a generalization of the Kalman filter to nonlinear models with possibly nonnormal dis-

turbances. For a survey of nonlinear filtering methods, see Tanizaki (2003). Compared to

time series models in engineering, finance or macroeconomics for which nonlinear filters are

usually discussed, the typical microeconometric panel data model has a low-dimensional

state space and a short time-series dimension.

The general idea how to decompose the integral in (12) for the model structure described

in section 2.1 is the following. For a simplification of notation, denote P (yi1|xi,yi,1:0) =
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P (yi1|xi). By the rules of conditioning, the probabilities of interest can then in general be

written as

P (yi,1:T |xi) =
T∏

t=1

P (yit|xi,yi,1:t−1). (15)

Each of these terms P (yit|xi,yi,1:t−1) are now approximated separately by some

P̃ (yit|xi,yi,1:t−1) and the approximated individual likelihood contributions are

P̃ SEQ(yi,1:T |xi) =
T∏

t=1

P̃ (yit|xi,yi,1:t−1). (16)

Note that the expressions P (yit|xi,yi,1:t−1) are nontrivial to calculate. They are compli-

cated functions of past values because of the presence of the unobserved sequence of latent

states ait.

The structure of the model allows to obtain these approximations in a sequential fashion.

The outcome probabilities conditional on past values can be written as

P (yit|xi,yi,1:t−1) =
∫

P (yit|xi, ait) f(ait|xi,yi,1:t−1) dait (17)

by (3). This equation reflects the model assumption that all dependence of yit conditional

on xi is induced by the presence of the latent state process of ait. The problem of this equa-

tion is that the conditional distribution f(ait|xi,yi,1:t−1) is again a complicated function

of past realizations yi,1:t−1.

For t = 1, the conditional densities are simply equal to the initial distribution f(ai1|xi)

which is known by the model specification. For t > 1, they can be expressed in a re-

cursive fashion. Suppose that the conditional density f(ait|xi,yi,1:t−1) is known so that

P (yit|xi,yi,1:t−1) can be calculated by (17). Then, density for the next wave t + 1 can be

derived as follows. First, note that by the conditional independence assumption (4),

f(ait, ai,t+1|xi,yi,1:t) = f(ait|xi,yi,1:t)f(ai,t+1|xi, ait). (18)

A marginalization with respect to ait leads to the wanted expression of the conditional

distribution for t + 1:

f(ai,t+1|xi,yi,1:t) =
∫

f(ai,t+1|xi, ait) f(ait|xi,yi,1:t) dait. (19)

13



The first term in this integral is known by the model specification, the second term can be

expressed in terms of known functions. Bayes’ rule and the model assumption (3) imply

f(ait|xi,yi,1:t) = f(ait|xi,yi,1:t−1)
P (yit|xi, ait)

P (yit|xi,yi,1:t−1)
. (20)

A combination of (19) and (20) results in an expression for f(ai,t+1|xi,yi,1:t) as a function of

terms which are either known by the model specification (P (yit|xi, ait) and f(ai,t+1|xi, ait))

or from the previous recursion step (P (yit|xi,yi,1:t−1) and f(ait|xi,yi,1:t−1)).

The computational problem lies in the fact that the integrals in (17) and (19) gener-

ally do not have an analytic solution. For the type of models discussed in this paper, a

computational approach based on Gaussian quadrature to approximate these integrals is

discussed in the next section.

3.3 Sequential Gaussian Quadrature

Gaussian quadrature prescribes a set of R nodes [zr : r = 1, ..., R] and corresponding

weights [wr : r = 1, ..., R] for a general integration problem of the form
∫

g(z)w(z) dz which

depend on the weighting function w(z). The approximation is then given as
∑R

r=1 wrg(zr).

It will be the exact solution of the integral if g(z) is a polynomial of order 2R − 1 or

less. If the integrand is reasonably smooth and can therefore be closely approximated by a

polynomial, the approximation can be expected to be very accurate. Gaussian quadrature

has long been used for univariate integration problems such as random effects models, see

for example Butler and Moffit (1982).

A problem with applying Gaussian quadrature directly to the integrals in (17) and (19)

is that the natural weight functions f(ait|xi,yi,1:t−1) have no closed-form expression and

therefore the appropriate nodes and weights cannot be derived. Therefore, a reformulation

of the integrals very much in the spirit of the sequential importance sampling algorithm

of e.g. Tanizaki and Mariano (1994) is used here. Define a “proposal density” for which a

Gaussian quadrature rule is known and which is as close to f(ait|xi,yi,1:t−1) as possible.
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For simplicity, I assume that this is the case for the marginal distribution f(ait|xi) and use

it as the “proposal density”. Define the ratio of the two densities as

qit(ait) =
f(ait|xi,yi,1:t−1)

f(ait|xi)
. (21)

With this definition, rewrite (17) as

P (yit|xi,yi,1:t−1) =
∫

qit(ait) P (yit|xi, ait) f(ait|xi) dait (22)

and combine (19) and (20) to obtain

f(ai,t+1|xi,yi,1:t) =
∫

qit(ait) f(ai,t+1|xi, ait)
P (yit|xi, ait)

P (yit|xi,yi,1:t−1)
f(ait|xi) dait. (23)

This gives a recursion of the “importance weights”:

qi,t+1(ai,t+1) =
∫

qit(ait)
f(ai,t+1|xi, ait)

f(ai,t+1|xi)
P (yit|xi, ait)

P (yit|xi,yi,1:t−1)
f(ait|xi) dait. (24)

Both integrals in (22) and (24) can now be sequentially approximated by Gaussian

quadrature with quadrature nodes [ar : r = 1, ..., R] and weights [wr : r = 1, ..., R] ap-

propriate for f(ait|xi). Initialize qr
i1 = 1 for all r = 1, ..., R and for all t = 1, ..., T do the

following calculations:

1. Approximate P (yit|xi,yi,1:t−1) as

P̃ (yit|xi,yi,1:t−1) =
R∑

r=1

qr
it P (yit|xi, a

r)wr (25)

2. For all s = 1, ..., R, approximate qi,t+1(ar) as

q∗s
i,t+1 =

R∑
r=1

f(as|xi, a
r)

f(as|xi)
qr
it P (yit|xi, a

r)
P̃ (yit|xi,yi,1:t−1)

wr. (26)

3.4 Other Nonlinear Filtering Approaches

There are various other approaches to the approximations of the time-specific probabilities

P̃ (yit|xi,yi,1:t−1) in (16). In the following, different approaches known in the time series

literature are briefly discussed. For a more extensive overview, see Tanizaki (2003).
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Very closely related to the sequential is the sequential importance sampling (SIS) ap-

proach of Tanizaki and Mariano (1994) and Tanizaki (1999). It uses the same transforma-

tions as (21) through (24) but uses Monte Carlo simulation instead of numerical integration

to approximate the involved integrals. At least in the case of a one-dimensional state-space

discussed in this paper, Gaussian quadrature can be expected to be more accurate in most

cases. Furthermore, it uses the same nodes for all observations which can save computa-

tional costs.

Both SGQ and the SIS share the problem that the involved importance weights qit(ait) =
f(ait|xi,yi,1:t−1)

f(ait|xi)
generally diverge as t →∞ since more and more information is accumulated

in yi,1:t−1. For the moderate time series dimension typical for microeconometric panel

data models and with asymptotics in the cross-sectional dimension N with a fixed T , this

problem is less problematic than in pure time-series models with asymptotics in T .

For the estimation of long time series, the nonlinear particle filter (NPF) has proved to

work efficiently, see Doucet et al., eds (2001) or – for econometric time series – Fernández-

Villaverde and Rubio-Ramı́rez (2005, 2006). Instead of the transformations in (21) through

(24), the particle filter generates draws from f(ait|xi,yi,1:t−1) by a sequential resampling

scheme. While it avoids the problem of diverging importance weights as T → ∞, the

involved resampling creates additional noise compared to SIS and is computationally cum-

bersome. Furthermore, the simulated likelihood contributions are not smooth in the param-

eters. This impedes gradient-based maximization algorithms for the likelihood function.

In section 2.2, SGQ, SIS, and NPF are compared to the joint simulation and numerical

integration methods discussed in section 3.1 for a typical micro-econometric model. For

the discussion of other approaches, the reader is referred to the literature, see for example

the survey of Tanizaki (2003).
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4 Results

For the SRHS model described in section 2.2, this section implements and compares the

following algorithms for evaluating the likelihood function discussed above:

• Random Simulation: Simulation of the full sequence of the latent state space

discussed in section 3.1 using a standard random number generator for drawing from

the joint distribution.

• Antithetic Simulation: The same algorithm but using Modified Latin Hypercube

Sequences (MLHS) instead of random draws. These are straightforward to implement

and work effectively in the context of likelihood approximation, see Hess, Train and

Polak (2006) for details.

• Sparse grids integration: Numerical integration on sparse grids as discussed in

section 3.1. The algorithm for generating nodes and weights is given in Heiss and

Winschel (2006).2

• Nonlinear particle filter: the standard nonlinear particle filter (Fernández-

Villaverde and Rubio-Ramı́rez 2006) is implemented with MLHS for the initial state

and innovations to improve the performance.

• Sequential importance sampling: The algorithm of Tanizaki (1999) except that

a fixed grid of nodes instead of antithetic draws are used. For the univariate state

space, this proved to be most successful.

• Sequential Gaussian quadrature as detailed in section 3.3. Pseudo-Code is shown

in the appendix.

Each algorithm is implemented for a different number of nodes R at which all likelihood

contributions are to be evaluated. As R → ∞, all methods should converge to the true
2Code in Matlab and Stata for generating nodes and weights for integration on sparse grids can be

requested from the author.
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likelihood. The question is how fast they do and what computational costs each algorithm

needs to achieve accurate results. First, the approximate values of the log likelihood func-

tion at a fixed parameter vector is calculated and compared to its limiting value. Second,

each method is used to estimate the parameter vector by maximizing the approximated

likelihood function.

4.1 Approximation of the likelihood function

Figure 1 shows the approximated log likelihood value at a fixed parameter vector for

the different algorithms with the numbers of calculations R on the abscissa – note the

logarithmic scaling. As expected, all algorithms converge to the same value, but the speed

of convergence differs dramatically. Random simulation of the whole sequence converges

the slowest and even with 5000 replications, there is still a notable difference to the limiting

value. For small R, the approximation is severely biased downwards. This is due to the fact

that while outcome probabilities are simulated without bias, the concave log transformation

creates downward bias by Jensen’s inequality. Antithetic simulation with MLHS performs

better requiring roughly half as many evaluations to achieve a comparable accuracy. Sparse

grids integration converges notably faster.

Coming to the sequential algorithms, the nonlinear particle filter performs better than

the joint algorithms with R < 100 but it is still far away from the limiting value and

converges slower than sparse grids integration with a higher number R > 100. Compared

to this, the sequential importance sampling algorithm with a fixed grid of nodes is very

successful. With R = 200 the results are hardly different from the limiting value. By far

the fastest algorithm is sequential Gaussian quadrature. With only R = 20 replications,

the results are practically indistinguishable from the limit R →∞.

The number of evaluations of the conditional outcome probabilities R is not the only

determinant of computational costs. The additional required calculations are

• The random simulation, antithetic simulation, and nonlinear particle filter require

a large number of random numbers. With R = 5000, 102233 ∗ 5000 ≈ 500 million
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random numbers have to be generated. With 8 bytes storage for each number, this

corresponds to roughly 4GB. This is beyond the RAM capacity of most modern per-

sonal computers, so the numbers have to be sequentially generated for each likelihood

evaluation.

• The resampling step of the nonlinear particle filter is computationally costly.

• The updating of the importance weights of the sequential importance sampling and

Gaussian quadrature algorithms is not too expensive with low R but rise quadratically

with R since it involves the calculation of R weighted sums over R elements.

To provide a different comparison, Figure 2 shows the same results as Table 1 but with

the total time the implemented methods needed for each likelihood evaluation instead

of the number of function evaluations. The methods were implemented in Matlab and

run on a Pentium 4 PC with 3GHz. Of course, these results depend on how efficiently the

different algorithms were coded. While the author tried to do a good job for all algorithms,

these results should not be interpreted too literally. As can be seen, the long run times

for the resampling step make the nonlinear particle filter less competitive than when just

considering the number of evaluations R. The random simulation now performs better

than the MLHS because the generation of random numbers is considerably faster. The

sequential Gaussian quadrature run very fast, so its advantage over the other methods is

at least as pronounced as in Figure 1.

For an gradient-based maximization algorithm with numerical gradients, the likelihood

function of the model has to be evaluated 17 times. Assuming 10 iterative steps for the

maximization, the total number of likelihood calculations is 170. This translates into a

total computing time of about 15 hours for random simulation with R = 5000 and 11

minutes for sequential quadrature with R = 20 with the latter approach clearly delivering

more accurate results.
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4.2 Parameter estimation

The ultimate goal of the approximated likelihood functions is to base parameter estimation

on them. Intuitively, a better approximation of the likelihood function ceteris paribus

leads to better estimates based on it. For the different algorithms and accuracy levels

discussed above, the model parameters can for example be estimated by maximization of

the approximated likelihood. As seen above, the sequential Gaussian quadrature algorithm

seems to perform very well with only R = 20 function evaluations. To be on the safe side,

this algorithm with R = 50 is declared as a “reference algorithm”. Table 3 shows the QML

estimates obtained by this algorithm. Notably, the estimated standard deviation of the

latent state process σ is large compared to the standard logistic i.i.d. error term eit which

has a standard deviation normalized to π/
√

3 ≈ 1.82. The correlation parameter ρ is large

but highly significantly smaller than unity.

Figure 3 shows the estimates of these two most interesting parameters that drive the

intertemporal correlation pattern using the different algorithms and number of evaluations

R. The qualitative picture is the same as for the likelihood values. While with 20 eval-

uations, the sequential Gaussian quadrature algorithm has reached its limiting value, the

other methods need considerably more computations with random simulation perform-

ing worst. The estimated standard deviation σ seems to be downward biased with the

simulation methods, while the correlation parameter is upward biased.

A measure of overall deviations of the estimated parameters from their limiting values is

shown in Figure 4. It shows the LR test statistic for the null hypothesis that all parameters

are equal to the estimates obtained by the different algorithms, where the statistic is

calculated for the “reference algorithm”. The broad message of this graph is the same

as from the previous figures: all methods converge to the parameters obtained by the

“reference algorithm” so that the test statistic approaches zero. Sequential quadrature

does so extremely faster than the other algorithms.
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4.3 Performance of the model

How well is this extremely simple and parsimonious model able to capture the intertemporal

correlation patterns observed in Table 2? Table 4 approaches this question. In the first

column, the parameter estimates from the descriptive regression on covariates and five lags

of SRHS are repeated from Table 2. The other three columns show results from simulated

data set. Given the SRHS model, the parameter estimates and the actual covariates in

the data, 100 different data set were simulated. The same descriptive regression is then

repeated for each of the simulated data sets. The table shows shows the mean and the 95%

confidence interval over the 100 repititions.

Most of the parameters are well in line with the original estimates. The coefficients

of lagged SRHS are all highly significant and decrease over time. Only the coefficient of

the most recent lag (SRHS wave 5) is significantly higher in the original estimates than

with the simulated data. This might be an indication that the model specification can be

refined, for example the AR(1) process is too simple. Or the correlation parameters differ

across the population so that some interactions might help. Remember that the model is

estimated on the full sample, whereas the results in Table 4 are obviously for the subsample

with six observations. This subsample only contains the original (relatively young) HRS

cohort. Overall, the model does a very good job in replicating the intertemporal correlation

pattern – much better than e.g. a first-order markov chain model with a random effect

which would imply equal coefficients for SRHS in wave 1 through 4.

The general model structure discussed in section 2.1 would also easily allow more elabo-

rate models. An obvious extension would be to add mortality to the measurement model.

This would allow a straightforward and model-consistent treatment of the obvious dy-

namic selection effect through mortality. Another straightforward generalization would

be to specify the unobserved state process in continuous time. The only required change

would be in the transition equation (10). This would allow to easily take care of the fact

that the time between surveys, and therefore probably also the correlation between adja-
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cent measures, differ considerably in the HRS. For the discussion of such issues, see Heiss,

Börsch-Supan, Hurd and Wise (2006).

5 Conclusions

This paper discusses the numerical approximation of the likelihood for a certain class of

nonlinear panel data models including limited dependent variable models with AR(1) error

terms. The computational difficulties arise because the likelihood function involves multiple

integrals without analytic solutions. While methods for multiple numerical integration are

available, their accuracy decreases with a rising dimensionality if the computational effort

is held constant. Equivalently, the computational costs for a given accuracy increase with

a rising dimensionality.

This paper discusses how these models allow to split the multiple integrals into sev-

eral integrals with lower dimensions using nonlinear filtering algorithms. In the examples

discussed here, the integrals become one-dimensional. Since these integrals are approxi-

mated accurately with relatively low computational costs, the overall approximation can

be expected to perform better than the “brute force” approach to approximate the joint

integral.

There are several approaches to actually implement the sequential evaluation of the

likelihood function. In engineering where most of these methods were developed and in

the econometric time series literature where they receive increased attention, the number

of time periods is high compared to the typical microeconometric panel data. This affects

the relative advantages and disadvantages of the algorithms. I suggest an approach that

is plausibly very powerful for moderate time series dimensions. It is based on Gaussian

quadrature for one-dimensional problems. This allows very precise approximations with

little computational effort.

In an application, the panel data modeling of self-rated health status is discussed. It it

argued that a simple ordered logit model with an AR(1) error term is more plausible that
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the typically specified random effects and/or first-order Markov models. It is also more

parsimonious and yet captures the observed intertemporal corralation pattern better. For

the estimation of this example model, different algorithms are implemented. The proposed

sequential quadrature method dramatically outperforms the typically used approach of

joint simulation and also other nonlinear filters. While sequential Gaussian quadrature

needs only about 20 function evaluations R for an accurate parameter estimation, the joint

simulation still suffers from bias with R = 5000. The method is also easily implemented

and needs only moderate additional computations.
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Appendix: Pseudo-Code for sequential Gaussian quadrature

The sequential Gaussian quadrature algorithm was discussed in section 3.3. In the follow-

ing, pseudo-code for the implementation of the SRHS model is presented for the convenience

of the reader.3

1. Preparations:

• Fix a number of replications R.

• Obtain R nodes and weights for Gaussian quadrature and store them in the Rx1

vectors a and w, respectively.

• For the updating, relative densities are required often. Since they do not change,

calculate them once and reuse them every time: Generate a RxR “transition

matrix” m, where

m(r,c) =
φ
(
a(r);rho·a(c),(1−rho2)·sigma2

)
φ
(
a(r);0,sigma2

) represents f(a(r)|xi,a(c))
f(a(r)|xi)

.

2. For each cross-sectional unit i = 1, ..., N

a) Initialize the vector q as a Rx1 vector of ones.

b) For each wave t = 1, ..., T (T may differ across i):

• Calculate the Rx1 vector of weighted conditional probabilities qp as qp(r) =

q(r) · P (y(i,t)|x(i,t), sigma · a(r)).

• Approximate the likelihood contribution according to (25) as L(i,t) =

qp′w.

• Update the importance weights according to (26) as q = 1
L(i,t)

(m*qp)′w

with “*” denoting matrix multiplication.

3All calculations for this paper were done in Matlab. The actual code can be requested from the author.
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Table 1: Distribution of SRHS

poor fair good very good excellent

Frequency 10,099 19,579 30,811 27,665 14,079

Percent 9.9 19.2 30.1 27.1 13.8

By previous SRHS [%]:

poor 56.9 30.5 9.5 2.4 0.8

fair 16.6 48.0 26.5 7.3 1.6

good 4.4 19.1 49.9 22.4 4.2

very good 1.8 6.7 27.7 50.6 13.3

excellent 1.0 3.2 12.9 33.9 48.9
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Table 2: Ordered Logit of SRHS in wave 6 on past SRHS

age -0.0188 (0.006)**

female 0.0823 (0.046)+

high school 0.1861 (0.065)**

some college 0.1762 (0.076)*

college degree+ 0.3308 (0.078)**

nonwhite -0.1198 (0.063)+

SRHS wave 5 0.9847 (0.039)**

SRHS wave 4 0.5175 (0.038)**

SRHS wave 3 0.3251 (0.036)**

SRHS wave 2 0.2034 (0.035)**

SRHS wave 1 0.2390 (0.032)**

Observations 7173

Log likelihood -7663.4

Robust SE in parantheses, + : p < 0.10, ∗ : p < 0.05, ∗∗ : p < 0.01
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Table 3: Parameter estimates (sequ. quadrature with R = 50)

age splines: 50+ −0.1069 (0.0048)**

age splines: 60+ 0.0624 (0.0076)**

age splines: 70+ −0.0485 (0.0082)**

age splines: 80+ −0.0074 (0.0122)

age splines: 90+ 0.0912 (0.0306)**

female 0.0828 (0.0360)**

nonwhite −1.0119 (0.0465)**

high school 1.2658 (0.0380)**

some college 1.8584 (0.0474)**

college degree+ 2.7922 (0.0509)**

Latent states ait: SD σ 2.8764 (0.0276)**

Latent states ait: corr. ρ 0.9439 (0.0128)**

Individuals 25,353

Observations 102,233

Log likelihood -128,311.0

Robust SE in parantheses, ∗∗ : p < 0.01

30



Table 4: Correlation patterns: ordered logit on original and simulated data

original simulated data

data mean 2.5% 97.5%

age -0.0188 -0.0036 -0.0140 0.0083

female 0.0823 0.0214 -0.0726 0.1138

high school 0.1861 0.1590 0.0294 0.2853

some college 0.1762 0.2310 0.0938 0.4135

college degree+ 0.3308 0.3642 0.2209 0.5177

nonwhite -0.1198 -0.1286 -0.2601 -0.0196

SRHS wave 5 0.9847 0.7832 0.7206 0.8481

SRHS wave 4 0.5175 0.4874 0.4255 0.5567

SRHS wave 3 0.3251 0.3161 0.2470 0.3795

SRHS wave 2 0.2034 0.2112 0.1394 0.2804

SRHS wave 1 0.2390 0.1676 0.0937 0.2206
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Figure 1: Approximate log likelihood at fixed parameter vector
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Figure 2: Approximation of the likelihood function by computational costs
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Figure 3: Results: Estimated Parameters σ and ρ

(a) σ (b) ρ
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Figure 4: Results: LR statistic for estimated parameters

35


