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1 Introduction

This paper studies the relation between multi-period discrete-time and continuous-time

principal-agent models in the seminal paper of Holmström and Milgrom (1987). For

certain intertemporal contracting problems, Holmström and Milgrom have argued that

optimal incentive schemes for an agent with constant absolute risk aversion controlling

a stationary technology must be linear. We propose to elucidate the structure under-

lying their linearity results by studying the relation between the discrete-time and the

continuous-time models in their paper. We provide an explicit construction establishing

the continuous-time model as a limit of discrete-time models with ever shorter periods

and establish a suitable continuity result for optimal incentive schemes in the transition

between the two. We also clarify the distinction between two kinds of linearity of optimal

incentive schemes and provide a discrete-time version of the economically more interesting

“linearity in profits” that Holmström and Milgrom establish only for the continuous-time

model.

Our work is motivated by two concerns. First, in the introduction of their paper,

Holmström and Milgrom argue that the nonlinearities or even discontinuities of optimal

incentive schemes that are typical for static principal-agent models are unlikely to be

robust to changes in these models that provide the agent with more scope to manipu-

late information. However, much of their actual analysis does not involve this notion of

manipulation at all. Manipulation of information plays no role in either their discrete-

time models or their continuous-time model in which the principal observes the entire

realization of the outcome process and yet a linearity result is obtained. Manipulation

of information does play a role in a version of the continuous-time model, in which the

principal is restricted to observing a linear aggregate of the outcome process, where a

stronger linearity result is obtained. However, this result has no immediate counterpart

in the discrete-time models.

Our second concern relates to the distinction between different kinds of linearity.

Most of the linearity results of Holmström and Milgrom refer to counting variables indi-

cating the frequencies of different kinds of outcomes rather than to economic variables such

as revenues, costs or profits. To understand the difference, consider their discrete-time
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models. In the static, i.e. one-period model, the agent chooses a vector of probabilities

over a finite set of possible states of the world. The payment the agent receives depends

on the outcome, i.e., the realization of the state of the world, according to the incentive

scheme that has been agreed on. The m-period model is an m-fold repetition of the static

model. In each period, the agent chooses a vector of probabilities over a finite set of

possible states of the world for that period; the associated effort cost is assumed to be

stationary. Under the assumption that the principal and the agent have constant absolute

risk aversion (CARA), a simple m-fold repetition of an optimal incentive scheme for the

one-period model is optimal for this m-period model. The overall payment the agent

receives then is the sum over the possible period outcomes of the associated one-period

incentive payments multiplied by the number of times the outcomes have been realized.

The overall incentive scheme is thus a linear function of the frequencies with which the

different possible outcomes are observed. The order in which the different outcomes arise

plays no role.

This linearity in accounts listing the frequencies of incidence of different outcomes

does not in general provide for linearity in outcome variables such as overall revenues,

costs or profits. There is no fundamental reason why, say, in a 2-period model, two

profit realizations of one should be treated as being equivalent to one profit realization of

zero and one profit realization of two. The dependence of payments on outcomes in any

period reflects the action the principal wants to implement in that period and the agent’s

effort cost function, but may have little to do with the revenues, costs or profits that are

associated with the different outcomes.

The distinction between the two notions of linearity concerns the continuous-time

model as well. In the continuous-time analysis of Holmström and Milgrom, the agent

controls the drift rate vector of a multi-dimensional Brownian-motion with an exoge-

nous diffusion process. The different dimensions of this process correspond to the differ-

ent states of the world in the static model. The process itself may be interpreted as a

continuous-time version of the process indicating the evolution of the vector of frequencies

of the different outcomes from period to period in the m-period model. As in the discrete-

time models, CARA utility functions and stationarity in the technology ensure that the

optimal incentive scheme can be represented as a linear function of the cumulative change
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in this continuous-time analogue of the frequency accounts of the static model. Again

though, this linearity in accounts has little to do with economic variables such as revenues,

costs and profits.

Within their continuous-time model, Holmström and Milgrom obtain the linearity

with respect to outcome variables that they are really after by imposing the additional

assumption that the principal observes only the time path of a linear aggregate of the

different “accounts”, i.e., of the different dimensions of the Brownian motion whose drift

rate vector the agent controls. The optimal incentive scheme is then linear in the final

value of the aggregate.

However, this result has no immediate discrete-time analogue. To see this consider a

multi-period discrete-time model and suppose that the principal observes only the time

path of, say, total profits. By substracting total profits at time t − 1 from total profits

at time t, he can easily compute the increment in profits in period t. This increment

perfectly reveals the state of the world in this period. Hence, in the discrete-time model

the principal is always able to recover the information about the different “accounts” from

observing the time path of the aggregate. Again we only get linearity in “accounts” - no

matter how short the time period is.

In the following we first develop a unified framework in which the continuous-time

Brownian-motion model is explicitly obtained as a limit of discrete-time models. To see

that this is a nontrivial matter, note that in a discrete-time model the process indicating

how many times each outcome has been observed up to time t is nondecreasing in t,

negative instances of observation being out of the question. For convergence of such

processes to Brownian motion, one must be comparing the accounts process to some

norm so that a negative change can be interpreted as a shortfall from the norm. The

question is where this norm comes from and how it is specified. Holmström and Milgrom

do not say anything about this. Nor do they say anything about the dependence of

outcome variables upon the periodization. We fill this gap, and as a by-product provide

a characterization of the class of Brownian-motion models that can be approximated in

our setting.

Secondly, we show that in our discrete-time approximations there does exist an
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analogue of the Holmström-Milgrom result providing for “linearity in profits” in the

continuous-time model when the principal observes only the time path of profits as a

linear aggregate of the different dimensions of the Brownian motion. For this purpose we

assume that in the discrete-time model, the principal does not observe the time path of

the outcome process at all. He only observes total profits at the end of the final period.

Moreover, by the time the principal observes the aggregate, the agent may have destroyed

some returns that had actually been realized. With these assumptions about asymmet-

ric information concerning outcomes, we prove that the linear incentive scheme that is

optimal in the continuous model is approximately optimal in the discrete-time models if

the period length is sufficiently short. The argument relies on the continuity of certain

features of the model in the transition between discrete and continuous time. Stationarity

of solutions to discrete-time models, which is central for Holmström and Milgrom, plays

no role because under the given information assumption such stationarity is not obtained.

Holmström and Milgrom also argue that the optimal incentive scheme is linear in

aggregates if the agent’s effort cost depends only on a linear aggregate of the drift rate

vector he controls, e.g. on expected total profits. However, in Hellwig and Schmidt (2001)

we show that in the discrete-time models and in any continuous-time model that can be

obtained as a limit of discrete-time models, this effort cost function is not compatible

with their assumption that the principal always wants to induce the agent to choose his

actions in the interior of the admissible set.

The next section develops the framework for the analysis by introducing one-period

and multi-period models and specifying the role of the “length of the period” as a pa-

rameter of these models. Section 3 considers a sequence of control paths in the discrete

models and shows that if this sequence converges to a well defined control path in the

continuous model, then the incentive schemes that implement the control paths in the

discrete models converge to an incentive scheme that implements the limit path in the

continuous model. Whereas this result takes the convergence behavior of control paths as

given, Section 4 shows that this convergence behaviour is actually obtained for suitable

subsequences of optimal control paths and incentive schemes. Section 5 considers the

optimality of incentive schemes that are linear in aggregate profits. In this section we

show that in a discrete-time model with many short periods, a linear incentive scheme is
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approximately optimal if the principal only observes cumulative total profits at the end,

possibly after some profits have been destroyed by the agent. Section 6 concludes with a

discussion of related literature and of the implications of different modeling alternatives

in specifying the “length of the period”. Appendix A gives the formal proofs of all results

in the text. Certain supplementary results are given in Appendix B.

2 A Discrete Multi-Period Model

We start with a static model involving one period. At the beginning of the period the

agent chooses an action which gives rise to a random profit π̃ ∈ {π0, . . . , πN}, π0 <

. . . < πN . Following Holmström and Milgrom (1987) we assume that the agent chooses

the probability distribution p over possible profit levels πi ∈ IR directly at personal cost

c(p) ≥ 0. Thus, the agent’s action is p = (p0, . . . , pN) ∈ P where P is the N -dimensional

simplex. Throughout the paper we assume the following:

Assumption 1 The effort cost c(p) of an action p ∈ P is given by a function

c(·) on IRN+1 which is strictly convex and continuously differentiable on some

open set that contains P .

The agent is assumed to have a constant coefficient of absolute risk aversion r > 0.

Given an incentive scheme associating the payment si with the outcome πi, he chooses

action p ∈ P so as to maximize his expected utility

−
N∑

i=0

pie
−r(si−c(p)) . (1)

The principal is assumed to be risk neutral. His payoff from implementing an action

p by an incentive scheme s = {s0, . . . , sN} is given by:

N∑
i=0

pi(πi − si) . (2)

In the static model, the contracting problem is to choose an action p and an incentive

scheme (s0, . . . , sN) so as to maximize (2) subject to incentive compatibility and to the
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individual-rationality condition that the certainty equivalent of the contract to the agent

be nonnegative.1

An m-period model is simply an m-fold repetition of the one-period model. In this

model, the agent chooses a new action (p0, . . . , pN) ∈ P in each period. This action

determines outcome probabilities for that period. Overall outcomes in the m-period

model are simply sums of period outcomes, i.e., sums of realized incentive payments,

effort costs, and profits.

As we look at models with varying numbers of periods m, we want to adapt the

“length of one period” so as to keep the total length of the time interval considered

fixed. We normalize this time interval to one and suppose that in an m-period model, the

individual period has “length” ∆ = 1
m

. The “length of one period” is to be understood

as a parameter which enters the data of the static model in such a way that a model

with m periods of length 1
m

has in some sense a similar economic structure as a model

with one period of length one. As m goes to infinity, presumably such models converge

to a continuous-time model in which the agent adjusts his choices continuously. For the

purpose of approximating the Holmström-Milgrom Brownian motion model we want the

continuous-time model to be one where the agent’s choices concern the drift rate, but not

the covariance matrix of a Brownian motion process. In the Concluding Remarks at the

end of this paper, we discuss other continuous-time processes and other approximations

including some that allow for an endogenous covariance matrix and some that are not

diffusions.

The data of the static model consist of (i) the N + 1 profit levels πi associated with

the outcomes i = 0, 1, . . . , N , and (ii) the effort cost function c(·). We need to specify

how these data depend on ∆ = 1
m

. For this purpose, we assume that in a model with

period length ∆, the profit levels π∆
i and effort cost function c∆(p∆) are given by:

π∆
i = πi∆

1
2 ∀ i ∈ {0, . . . , N} . (3)

and

c∆(p∆) ≡ ∆ · c
(
p̂0 +

p∆
0 − p̂0

∆
1
2

, . . . , p̂N +
p∆

N − p̂N

∆
1
2

)
. (4)

1We assume that the certainty equivalent of the agent’s utility if he does not work for the principal is
0. By Theorem 2 of Holmström and Milgrom (1987), this is no more than a normalization.
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where π0, . . . , πN and c(·) are given as data of the static model with period length one,

and p̂ ∈ P , p̂ � 0 is some exogenously given reference “standard”. It will become clear in

Section 3 that this standard is closely related to the disturbance of the stochastic profit

process in the continuous-time limit of our model. Without loss of generality, we assume

that profits are normalized so that

N∑
i=0

p̂iπ
∆
i =

N∑
i=0

p̂iπi = 0 . (5)

for all ∆.2

To see the point of this specification, it is useful to introduce auxiliary variables

µ∆
1 , . . . , µ∆

N , such that for i = 1, 2, . . . , N

µ∆
i = ki

p∆
i − p̂i

∆
1
2

, (6)

with ki = πi − π0, or equivalently,

p∆
i (µ∆) = p̂i + µ∆

i

∆
1
2

ki

∀ i ∈ {1, . . . , N} , (7)

p∆
0 (µ∆) = 1−

N∑
i=1

p∆
i = p̂0 −

N∑
i=1

µ∆
i

∆
1
2

ki

. (8)

From (7) and (8), we see that there is a one-to-one correspondence between probabil-

ity vectors p∆ and vectors µ∆ of the auxiliary variables, provided the latter satisfy the

inequalities

−kip̂i

∆
1
2

≤ µ∆
i ≤ ki(1− p̂i)

∆
1
2

(9)

for all i ∈ {1, . . . , N} and

−1− p̂0

∆
1
2

≤
N∑

i=1

µ∆
i

ki

≤ p̂0

∆
1
2

. (10)

We may therefore think of the agent choosing a vector µ∆ of auxiliary variables satisfying

(9) and (10), with associated probability vector p = p∆(µ∆) given by (7) and (8), rather

2To see that this is indeed a normalization, suppose that
∑N

i=0 p̂iπi = π̂ 6= 0. Let π̃ = πi− π̂. Now we
can define π∆

i = ∆π̂ + π̃i∆
1
2 . It is easy to check that for any time path of actions chosen by the agent

expected total profits in the m-period model are given by equation (11) below plus the constant term π̂.
Furthermore, this constant term has no effect on the disturbance process.

In Holmström and Milgrom (1987, p. 318) the dependence of π∆
i on ∆ is implicit in their appeal to

the central limit theorem. For a more systematic discussion of the role played by this dependence, see
the Concluding Remarks.
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than choosing p∆ as such. If his choice is formulated in these terms, then in a model with

period length ∆, the choice µ∆ entails expected profits equal to

N∑
i=0

p∆
i π∆

i =
N∑

i=0

(p∆
i − p̂i)(πi − π0)∆

1
2 = ∆

N∑
i=0

(πi − π0)
p∆

i − p̂i

∆
1
2

= ∆
N∑

i=1

µ∆
i . (11)

and effort costs equal to

c∆(p∆) = ∆ · c
(
p̂ +

p∆(µ∆)− p̂

∆
1
2

)
= ∆ · c

(
p̂0 −

N∑
i=1

µ∆
i

ki

, p̂1 +
µ∆

1

k1

, . . . , p̂N +
µ∆

N

kN

)
≡ ∆ · ĉ(µ∆). (12)

Both the effort costs and the expected profits with a given vector µ∆ are thus simply

proportional to the “length” of the period. If the agent were to choose a constant vector

µ∆ = µ in each of the m periods having length ∆ = 1
m

, total expected profits would be∑N
i=1 µi and total effort cost would be ĉ(µ), both independent of m and ∆ = 1

m
. The

tradeoff between expected profits and effort costs is thus not affected by the choice of m

and ∆ = 1
m

. This is precisely the invariance property across multi-period models that

we need. More generally, if in the m-period model with period length ∆ = 1
m

, the agent

chooses µ∆,τ = (µ∆,τ
1 , ..., µ∆,τ

N ) in period τ = 1, ...,m, then expected gross profits are

equal to ∆
∑m

τ=1

∑N
i=1 µ∆,τ

i , and effort costs are equal to ∆
∑m

τ=1 ĉ(µ∆,τ ). In particular, if

µ∆,τ = µ regardless of τ and ∆, expected gross profits and effort costs are equal to
∑N

i=1 µi

and ĉ(µ), regardless of ∆.

However, the probability vector p∆(µ) that is associated with a given µ depends on

∆. Indeed as ∆ goes to zero, for any finite µ, p∆(µ) converges to the exogenously given

vector p̂. Underlying this convergence is the following structure: As indicated by (9) and

(10), we can think of the agent’s actions in terms of departures from the reference vector

p̂. Consider an action p∆ that shifts probability mass from some low-profit outcome to

some high-profit outcome as compared to the action p̂. With profit levels proportional to

∆
1
2 this raises expected profits by an order of magnitude ∆

1
2 . However the agent’s cost of

this shift in probability mass is made to depend on ∆ in such a way that the agent will

keep the order of magnitude of such shifts ordinarily to ∆
1
2 . That is, if the isoquants of

the cost function c(·) exhibit nonzero curvature, then the deviation of the action p∆ that

is actually chosen from the zero-expected-profits action p̂ will be on the order of ∆
1
2 , and

expected profits per period will be on the order of ∆.
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In the m-period model with period length ∆, the principal’s problem is to choose a

time path of actions {µ∆,τ}τ=1,2,...,m and an incentive scheme so as to maximize

m∑
τ=1

N∑
i=0

p∆
i (µ∆,τ )(π∆

i − s∆
i ) = ∆

m∑
τ=1

N∑
i=1

µ∆,τ
i −

m∑
τ=1

N∑
i=0

p∆
i (µ∆,τ )s∆

i (13)

subject to incentive compatibility and individual rationality. This problem depends not

only on expected profits and effort costs but also on the variance and the other higher

moments of the distribution of profits, all of which depend on ∆. However, as will be

shown in the next section, when ∆ is small and the agent’s action is close to the standard

p̂, these higher moments are close to being independent of µ, and the incentive payments

that are required to implement p∆(µ) admit a simple approximation.

3 Approximation of the Brownian Model

We will consider the continuous-time model as a limit of the discrete-time models when

∆ goes to 0. The following definitions will be useful. Let Ã∆,τ
i ∈ {0, 1} be a random

variable such that Ã∆,τ
i = 1 ⇔ π̃∆,τ = π∆

i , i ∈ {0, . . . N}, ∆ ∈ { 1
m
}m=1,..., τ ∈ {1, . . . ,m}.

Clearly, Prob(Ã∆,τ
i = 1) = p∆,τ

i , and Ã∆,τ
i = 1 implies Ã∆,τ

j = 0 for all j 6= i. Thus, each

Ã∆,τ
i has a Bernoulli distribution, but Ã∆,τ

i and Ã∆,τ
j are not stochastically independent.

We consider the incentive payments s∆
i , i = 0, 1, ..., N that the principal needs to

implement a given action p∆ of the agent if the period length is ∆. For now we assume

that the action p∆ belongs to the relative interior of the set of feasible actions in the

model with period length ∆. Under this assumption, the first-order conditions for the

agent’s maximization problem imply that an incentive scheme s∆ = (s∆
0 , . . . , s∆

N) which

implements p∆ with certainty equivalent 0 in the model with period length ∆ must satisfy:

s∆
i = c∆(p∆)− 1

r
ln

1− rc∆
i + r

N∑
j=0

p∆
j c∆

j

 , (14)

for i = 0, 1, ..., N, where, as usual, c∆
i refers to the partial derivative of the effort cost

function c∆ with respect to p∆
i , see Theorem 3 of Holmström and Milgrom (1987). In

terms of the vector µ∆, with p∆ = p∆(µ∆), one can use (12) to rewrite s∆
i as:

s∆
i = ∆ĉ(µ∆)− 1

r
ln

1− rĉiki∆
1
2 + r

N∑
j=0

p∆
j ĉjkj∆

1
2

 , (15)
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where ĉi = ci−c0
ki

is the partial derivative of ĉ with respect to µ∆
i , ĉ0 = 0, and use has been

made of the fact that by (4) c∆
i = ∆

1
2 ci for all i.3

Using a Taylor series expansion of the logarithmic term in (15), the incentive payment

s∆
i is approximated by:

s∆
i = ∆ĉ(µ∆)+

ĉiki −
N∑

j=0

p∆
j (µ∆)ĉjkj

∆
1
2 +

r

2

ĉiki −
N∑

j=0

p∆
j (µ∆)ĉjkj

2

∆+O
(
∆

3
2

)
(16)

If the principal wants to implement the time path of actions {µ∆,τ}τ=1,...,m,4 the total

renumeration that has to be offered is given by5

s̃∆ = ∆
m∑

τ=1

ĉ(µ∆,τ ) +
m∑

τ=1

N∑
i=0

ĉi(µ
∆,τ )

(
Ã∆,τ

i − p∆
i (µ∆,τ )

)
ki∆

1
2

+
r

2

m∑
τ=1

N∑
i=0

Ã∆,τ
i

ĉi(µ
∆,τ )ki −

N∑
j=0

p̂j ĉj(µ
∆,τ )kj

2

∆ + O(∆
1
2 ) (17)

Equation (17) admits a simple interpretation:6 The first term reflects the total effort cost

of the agent from choosing {µ∆,τ}, τ = 1, . . . ,m. The second term gives the appropriate

incentives to the agent to actually choose this time path of actions. If outcome i is realized

in period τ , this raises the agent’s overall incentive payment by an amount ĉi(µ
∆,τ )ki∆

1
2 ,

reflecting the marginal cost of shifting probability mass towards outcome i. The expected

value of this payment, p∆
i (µ∆,τ )c∆

i (µ∆,τ )ki∆
1
2 , is subtracted again because in expected-

value terms the principal’s payments to the agent depend only on individual-rationality

considerations. Thus the second term in (17) is proportional to the difference between

the actual realization of this profit level and the expected realization given that the agent

chooses p∆
i (µ∆,τ ). The third term is the risk premium that has to be paid to the agent

3Clearly the convexity and differentiability assumption on c(·) imply that ĉ(·) is strictly convex and
continuously differentiable on the set of all vectors µ = (µ1, . . . , µN ) for which p̂0 >

∑N
i=1 µi/ki and

p̂i > −µi/ki for i = 1, . . . , N .
4We restrict attention to deterministic time paths of actions that do not depend on the history of

profit realizations up to time τ . Holmström and Milgrom have shown that the agent will be induced
by the optimal contract to take a constant deterministic action in each period, so there is no need to
consider stochastic controls (that may be history dependent) explicitly at this stage. However, we deal
with such control paths in Section 5 and in Appendix B.

5Here we made use of the fact that
∑N

i=0 Ã∆,τ
i = 1 for all τ ∈ {1, . . . ,m}. Furthermore, we substituted

p∆
j (µ∆,τ ) in the squared term by (7) and (8), used ĉ0 = 0, and rearranged by putting the appropriate

terms into O(∆
1
2 ).

6See also Schättler and Sung (1993, p. 337).
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to compensate him for the randomness of the second term. The last term reflects the

approximation we are using; it vanishes as ∆ goes to zero.

Given the way the per-period deviations X̃∆,τ
i = ki∆

1
2

(
Ã∆,τ

i − p∆
i (µ∆,τ )

)
of realized

from expected profits depend on the length of the period, the cumulative deviations

X̃∆
i (τ) = ki∆

1
2

τ∑
τ ′=1

[Ã∆,τ ′

i − p∆
i (µ∆,τ ′

)] (18)

from period one to period τ are more convenient to work with. For i = 1, . . . , N , X̃∆
i (τ)

can be thought of as the cumulative deviation (up to τ) of realized profits under outcome

i from the expected value of these profits under the given policy of the agent. X̃∆
i (τ) will

be called the “stochastic process of cumulative deviations from the mean”. As we restrict

attention to deterministic time paths of actions {µ∆,τ}τ=1,...,m, the increments of X̃∆
i (τ)

are stochastically independent.

To embed the discrete-time model in continuous time, we use a linear interpolation to

represent the process X̃∆
i (τ) by a continuous-time process X∆

i (t) such that for t ∈ [0, 1]:

X∆
i (t) =

(
1− t

∆
+
[

t

∆

])
X̃∆

i

([
t

∆

])
+
(

t

∆
−
[

t

∆

])
X̃∆

i

([
t

∆

]
+ 1

)
(19)

where [ t
∆

] denotes the greatest integer less than or equal to t
∆

. Note that X∆
i (t) is a

random function taking values in C = C[0, 1], the space of continuous functions on [0, 1].

For any deterministic time path of actions {µ∆,τ}τ=1,...,m in the discrete-time model we

also use a continuous-time representation µ∆(·) where

µ∆(t) = µ∆,[t/∆] . (20)

Theorem 1 Consider a sequence of discrete models with period length ∆,

∆ = 1, 1
2
, 1

3
, . . .. Suppose that, as ∆ → 0, the time path of actions µ∆(t)

converges uniformly to some continuous function µ(t), t ∈ [0, 1] such that

p̂0 >
∑

i µi(t)/ki and p̂i > −µi(t)/ki for all t and i = 1, . . . , N . Then, as

∆ → 0,

(a) the stochastic process of cumulative deviations from the mean X∆(·) =

(X∆
1 (·), . . . , X∆

N (·)) converges in distribution to a process X(·) which is a

11



driftless N-dimensional Brownian motion with starting point X(0) = 0

and covariance matrix Σ = (σij) where, for i = 1, ..., N, and j = 1, ..., N,

σij = k2
i p̂iδij − kikj p̂ip̂j (21)

with δij = 1 if i = j and δij = 0 if i 6= j.

(b) the total cost to the agent converges to
∫ 1
0 ĉ(µ(t))dt;

(c) the joint distributions of the incentive payment s̃∆ and the cumulative-

deviations process X∆(·) converges to the distribution of the pair (s̃, X(·)),
where X(·) is the driftless Brownian motion specified in (a) and, with

probability one,

s̃ =
∫ 1

0
ĉ(µ(t))dt +

∫ 1

0
ĉ′(µ(t))dX +

r

2

∫ 1

0
ĉ′(µ(t))Σ[ĉ′(µ(t))]T dt (22)

where ĉ′(·) = (ĉ1(·), . . . , ĉN(·)).

Theorem 1 is closely related to the results of Holmström and Milgrom (1987) and

Schättler and Sung (1993). Equation (22) can be rewritten in the form

s̃ = s(Z(·), µ(·)) (23)

where Z(·) is the stochastic process satisfying

Z(t) =
∫ t

0
µ(t′)dt′ + X(t) (24)

for all t and, for any N -dimensional process Ẑ(·) of the form

dẐ = µ̂ dt + dX, (25)

and any adapted process µ(·),

s(Ẑ(·), µ(·)) =
∫ 1

0
ĉ(µ(t))dt+

∫ 1

0
ĉ′(µ(t))dẐ−

∫ 1

0
ĉ′(µ(t))µ(t)dt+

r

2

∫ 1

0
ĉ′(µ(t))Σ[ĉ′(µ(t))]T dt.

(26)

In the continuous-time analysis of Holmström and Milgrom or Schättler and Sung, the

agent controls the drift rate process process µ̂(·) of the N -dimensional Brownian motion

Ẑ(·); the control process µ̂(·) must be adapted to the disturbance process X(·), which is

taken as given. The principal observes the realizations of the process Ẑ(·), but not the

12



control process µ̂(·) or the disturbance process X(·). Under the additional assumption

that controls are restricted to a bounded set K, they show that an incentive scheme

implements a desired control process µ(·) with values in the interior of K if and only if

it takes the form s(Ẑ(·), µ(·)) given by (26).7 Theorem 1 shows that this implementation

condition on incentive schemes and policies in the Brownian model can be interpreted as

a limit of implementation conditions on incentive schemes and policies in approximating

discrete-time models.

In the continuous-time limit the agent controls only the drift rate while the higher

moments of the cumulative output process are fixed and fully determined by the fixed

vector p̂. In contrast, he does control the entire distribution in the discrete-time models.

However, when ∆ is small, implementation of a given drift rate process involves actions

p∆(µ(·)) close to the constant action p̂, the difference in any period being of order ∆
1
2 .

Because of this convergence of the path of actions to the constant path with value p̂, the

second moments of the cumulative-returns process in the limit are fully determined by p̂,

and the higher moments vanish. The critical action vector p̂ thus determines the “noise”

of the agency problem in continuous time.

The vector p̂ also matters for the interpretation of the process Z(·), by which the

principal assesses the agent’s performance in the continuous-time model. Discrete-time

approximations of the process (24) are obtained by specifying

Z̃∆
i (τ) = ki∆

1
2

[
τ∑

τ ′=1

Ã∆,τ ′

i − p̂iτ

]
(27)

as the cumulative contribution to total profits stemming from outcome i in excess of

some standard that is given by the probability p̂i. Using linear interpolation as be-

fore, one obtains continuous-time representations Z∆(·) of these discrete-time approxi-

mations. By a simple corollary to Theorem 1, the pairs (s̃∆, Z∆(·)) converge to the pair

(s(Z(·), µ(·)), Z(·)) that is given by (26) and (24). For any τ, by (3) and (5), the sum∑N
i=1 Z̃∆

i (τ) is just equal to the sum
∑τ

τ ′=1 π̃∆,τ ′
of profits from period 1 to period τ .

Theorem 1 takes the discrete model as given and shows how to obtain a Brownian

model as the limit of a sequence of these discrete models. We could have proceeded the
7Theorem 6 of Holmström and Milgrom shows that (26) is necessary to implement µ(·). In a more

general model, Theorems 4.2 and Corollary 4.1 of Schättler and Sung show that if the effort cost function
ĉ(·) is convex, then (26) is sufficient as well as necessary to implement µ(·).
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other way round, asking whether it is possible to approximate a given Brownian model

with some sequence of discrete models. The following result, which is an immediate

corollary to Theorem 1, gives an answer to this question.

Corollary 1 Let B be a given N-dimensional Brownian motion with zero drift

and covariance matrix Σ. Suppose that if the agent chooses a control process

µ(·), then the agent’s cumulative costs are given by the differential equation

dc = ĉ(µ(t))dt (28)

and the stochastic process X(·) of cumulative deviations of actual profits from

mean profits induced by µ(·) is B. If there exist real numbers k1, . . . , kN and

positive real numbers p̂1, . . . , p̂N with
∑N

i=1 p̂i ≤ 1 such that Σ = (σij) can

be written as in (21), then to this continuous-time model there corresponds a

discrete-time model with period length ∆ in which

- there are N + 1 possible profit levels in each period which are given by

π∆
0 = −∆

1
2

N∑
i=1

p̂iki and π∆
i = ∆

1
2

(
ki −

N∑
i=1

p̂iki

)
(29)

- the probability p∆
i (µ∆) is given by (7) and (8), with µ∆,[t/∆] = µ([t/∆]),

- and the cost to the agent in each period is given by c∆(p∆(µ∆)) = ∆ĉ(µ∆),

such that the continuous model is the limit of this discrete model (in the sense

of Theorem 1) as ∆ approaches 0.

Corollary 1 requires that the covariance matrix Σ = (σij) of the N -dimensional

Brownian motion can be written as in (21). If N = 1, this is always possible. If N > 1, this

condition implies a restriction on the set of Brownian models that can be approximated

by a sequence of discrete models. This restriction stems from the fact that in the discrete

model only one state of the world can materialize in each period. This implies that the

accounts Ã∆,τ
i and thus also the accounts X̃∆,τ

i have a special covariance structure. For

example, it is impossible that the X̃∆,τ
i are stochastically independent. Therefore this

restriction is very natural.

14



In the entire analysis here, the dimension N of the Brownian motion has referred to

the number of different profit levels that can be distinguished. Holmström and Milgrom

(1987, p. 322) offer a second interpretation according to which N refers to different

activities of the agent. For example, if N = 2, account X1 could be a measure of revenues,

while X2 could be a measure of costs. Thus, µ1 reflects the agent’s effort to increase

revenues, while µ2 reflects his effort to reduce costs. With this interpretation the Brownian

model could have any variance-covariance structure. It is possible to show that any N -

dimensional Brownian motion model (with an arbitrary covariance matrix Σ) can be

approximated by a discrete model, if we extend the dimension of the discrete model to

2N − 1. However, we do not want to go into the details of this approximation here.8

4 The Convergence of Optimal Control Paths

and Incentive Schemes

So far, we have only been concerned with the behaviour of the agent. We now consider the

behaviour of the principal. Holmström and Milgrom (1987, Theorem 5) have shown that

in the repeated discrete-time model, the principal’s problem always has a solution in which

he induces the agent to take the same action in each period, regardless of prior history.

For m = 1, 2, ... and ∆ = 1
m

, let µ∆∗(·) be such a control path with constant value µ∆∗ that

is optimal for the principal in the discrete-time model with period length ∆ and consider

the behaviour of the sequence {µ∆∗(·)} as ∆ goes to zero. Our claim that the discrete-

time specifications considered in this paper provide “appropriate” approximations of the

continuous-time Brownian-motion model rests on the proposition that the solutions to the

principal’s problems in the discrete-time models are close to solutions to the principal’s

8To sketch the basic idea suppose that the Brownian model is two-dimensional and that µ1 is the drift
rate of revenues while µ2 is the drift rate of costs. To approximate this model by a sequence of discrete
models we need at least two different levels of revenues R ∈ {R1, R2} and two levels of costs C ∈ {C1, C2}.
Thus, in each period there are four different possible outcomes {(R1, C1), (R1, C2), (R2, C1), (R2, C2)},
which means that there are 22 − 1 = 3 different accounts. With this three-dimensional model we can
approximate any variance-covariance matrix in the two-dimensional continuous model by choosing the
correlation between the Bernoulli distributions over {R1, R2} and {C1, C2} appropriately. If we want
to allow for, say, Mr levels of revenues and Mc levels of costs, we need a model with Mr ·Mc possible
outcomes and hence Mr · Mc − 1 different accounts. The problem of getting from these Mr · Mc − 1
different accounts to incentive schemes that are defined in terms of just revenue and cost aggregates is
then the same as the problem of aggregation across accounts that is studied in Sections 5 and 6.
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problem in the continuous-time model if the length of the period is short and there are

many periods. This requires that the sequence {µ∆∗(·)} of optimal control paths in the

discrete-time models have a limit path µ∗(·) and that this limit path in turn be an optimal

control path in the continuous-time model.

Three issues arise: First, under what conditions does the sequence {µ∆∗(·)} have a

limit path µ∗(·) at all? Second, if it does have a limit path, can Theorem 1 - which is based

on first-order conditions for interior controls - be applied to µ∗(·) and the subsequence

{µ∆′∗(·)} of {µ∆∗(·)} that converges to µ∗(·)? Third, does µ∗(·) provide a solution to the

principal’s problem in the continuous-time model? We consider each issue in turn.

First, to ensure that the sequence {µ∆∗(·)} of constant optimal control paths in the

discrete-time models have a limit path µ∗(·), we assume that controls are restricted to a

compact set K̂ ⊂ IRN . This guarantees that the sequence {µ∆∗} of values taken by the

paths µ∆∗(·) has a subsequence {µ∆′∗} that converges to a limit µ∗. The corresponding

subsequence {µ∆′∗(·)} of constant optimal control paths converges uniformly to the control

path µ∗(·) with constant value µ∗.

Second, Theorem 1 with its reliance on first-order conditions for interior choices

of actions by the agent can be applied to the sequence {µ∆′∗(·)} and its limit µ∗(·) if

these paths all take values in the interior of the feasible set K̂ so that the first-order

necessary conditions presumed in Theorem 1 are in fact appropriate. Therefore we impose

an additional assumption which ensures that any controls which the principal wants to

implement in the continuous-time model or in the discrete-time models when ∆ is close

to zero must lie in the interior of the set K̂.9

We start from the idea that there is some minimum payoff level, which the principal

can guarantee himself when ∆ is small, and that any action in the boundary of the

feasible set provides the principal with a payoff strictly below this guaranteed minimum.

To specify the guaranteed minimum, we consider the price that the agent would be willing

to pay (which may be negative) if he could have the entire project to himself and choose

9Alternatively we could allow for control paths with values on the boundary of K̂. In Hellwig and
Schmidt (1998), the conclusions of Theorems 2 and 3 were obtained regardless of whether optimal control
paths take values in the interior or on the boundary of the feasible set, see also Hellwig and Schmidt
(2001). However, the formalism is rather more messy when boundary controls have to be considered.
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the time path of actions he likes best. Selling the project to the agent for a price q is

equivalent to imposing the incentive scheme

s̃∆ =
m∑

τ=1

π̃∆,τ − q. (30)

This is acceptable to the agent if q is no greater than the certainty equivalent of the differ-

ence between the cumulative total profits
∑m

τ=1 π̃∆,τ and the effort cost
∑m

τ=1 c∆(p∆,τ ) =

∆
∑m

τ=1 ĉ(µ∆,τ ) under the time path of actions {µ∆,τ} that he chooses. If the agent is

free to choose µ∆,τ = 0 (or p∆,τ = p̂) for τ = 1, . . . ,m, this is no less than the certainty

equivalent of the difference
∑m

τ=1 π̃∆,τ − ĉ(0) between the sum of returns and effort costs

at the constant action µ∆,τ = 0. Conditions (3) and (5) imply that as ∆ converges to zero,

the distribution of the sum of returns
∑m

τ=1 π̃∆,τ that is induced by the constant action

µ∆,τ = 0 for τ = 1, ...,m converges to a normal distribution with mean zero and vari-

ance σ2 :=
∑N

i=0 p̂iπ
2
i , and the certainty equivalent of the difference

∑m
τ=1 π̃∆,τ− ĉ(0) to the

agent at the constant action µ∆,τ = 0 converges to − r
2
σ2− ĉ(0). If q < − r

2
σ2− ĉ(0), then

for ∆ sufficiently small, the incentive scheme (30) is acceptable to the agent and provides

the principal with the payoff q. This is also true in the continuous-time model because

− r
2
σ2− ĉ(0) is also the certainty equivalent for the agent of the difference

∑N
i=1 Zi(1)− ĉ(0)

under the distribution induced by the constant action µ(t) ≡ 0.10 Thus we obtain:

Lemma 1 Assume that µ = 0 is a feasible action. Then for any η > 0 and

any sufficiently small ∆ > 0, in the discrete-time model with period length ∆

and in the continuous-time model, the principal can guarantee himself a payoff

no less than − r
2
σ2 − ĉ(0)− η.

Lemma 1 motivates the following assumption:

Assumption 2 In the discrete-time models and in the continuous-time model,

controls are constrained to lie in a compact convex set K̂ ⊂ IRN . Moreover,

there exists a compact subset K of the interior of K̂ such that 0 ∈ K and for

some η > 0,
N∑

i=1

µi − ĉ(µ) < −r

2
σ2 − ĉ(0)− η (31)

10By (24) and (5), (30) can also be written as s̃∆ =
∑N

i=1 Z̃∆
i (m)−q, so the scheme s̃ =

∑N
i=1 Zi(1)−q

is just the continuous-time version of (30).
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whenever µ /∈ K.

Note that Assumption 2 concerns the values of the cost function not its derivatives.

It does not require any derivative to go out of bounds, e.g., near the boundary of the set

K. Unboundedness of derivatives would be incompatible with Assumption 1, which has

been used extensively in the proof of Theorem 1(c).

The left hand side of (31) would be the expected net profit of the principal of im-

plementing µ 6∈ K if he could do so without compensating the agent for bearing the risk

that is necessary to induce him to choose µ. The assumption states that this is strictly

less than and bounded away from the minimum payoff that, according to Lemma 1, the

principal can guarantee himself in the discrete-time model with a sufficiently small period

length ∆ and in the continuous-time model. For small ∆, it can therefore not be optimal

for the principal to induce the agent to choose controls outside of K.

Lemma 2 Impose Assumption 2 as well as Assumption 1. For ∆ = 1, 1
2
, ...

and m = 1
∆

, let µ∆∗ ∈ IRN be a control vector such that the control path

{µ∆∗(·)} with the constant value µ∆∗ solves the principal’s problem in the m-

period problem with period length ∆ when controls are restricted to lie in K̂.

Then µ∆∗ ∈ K for any sufficiently small ∆.

Because K is a subset of the interior of the feasible set K̂, this justifies the reliance

on first-order conditions for interior solutions in Theorem 1 and settles the second issue.

Let us now turn to the third and most difficult issue. As mentioned above, the

assumption that in the m-period problem with period length ∆, a control path with a

constant value µ∆∗ is optimal for the principal is without loss of generality, see Holmström

and Milgrom (1987, Theorem 5). With controls constrained to lie in the compact set K̂,

the sequence {µ∆∗} has a subsequence {µ∆′∗} which converges to a limit µ∗; by Lemma 2,

µ∗ actually belongs to K and, hence, to the interior of K̂. The corresponding subsequence

{µ∆′∗(·)} of constant optimal control paths converges to the path µ∗(·) with constant

value µ∗. We want to show that this control path is itself optimal for the principal in the

continuous-time model.
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Technically, we need a continuity property of maximizers in the transition from

discrete-time to continuous-time models. This requires an application of the maximum

theorem of Berge (1959), by which a limit of a sequence of solutions to different maximiza-

tion problems is itself a solution to the maximization problem “in the limit” provided the

maximization problems along the sequence are sufficiently “similar” to the maximization

problem “in the limit”. The question is whether the principal’s maximization problems

in the multi-period discrete-time models are in fact “similar” - in the sense required for

the application of Berge’s theorem - to his problem in the continuous-time model.

Theorem 1 - in combination with the results of Schättler and Sung - provides one part

of the answer to this question: If a subsequence {µ∆′∗(·)} of optimal control paths with

constant values µ∆′∗ in the discrete-time models converges to a control path µ∗(·), then

the path µ∗(·), with constant value µ∗ = lim µ∆′∗, is implementable in the continuous-time

model. Moreover, the incentive payments s̃∆′
that are associated with the implementation

of the paths µ∆′∗(·) in the discrete-time models converge in distribution to the incentive

payment s̃ that is associated with the implementation of the path µ∗(·) in the continuous-

time model. The expected cost to the principal of implementing µ∗(·) in the continuous-

time model is not significantly different from the expected cost of implementing µ∆′∗(·)
in the discrete-time model with period length ∆′ when ∆′ is close to zero. This ensures

that the principal’s maximum payoff in the continuous-time model is no worse than the

limit of the maximum payoffs in the discrete-time models.

To infer that µ∗(·) is in fact optimal for the principal in the continuous-time model,

we must also show that his maximum payoff in this model is no better than the limit of the

maximum payoffs in the discrete-time models. For this purpose we want to argue that in

any discrete-time model with short periods the principal is able to implement - at similar

costs - a control path which is close to an optimal path for the continuous-time model.

In contrast to the analysis so far, which has exclusively focused on first-order necessary

conditions for implementation, this requires some account of sufficient conditions for the

implementation of control paths in the discrete-time models.

The importance of the distinction between first-order necessary and sufficient con-

ditions for the implementation of an action by an incentive scheme is well known from

the work of Mirrlees (1999) or Grossman and Hart (1983). There does not seem to be
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any direct approach to obtaining sufficient conditions in the multi-period discrete-time

models. However we can use an indirect approach: For the continuous-time model, the

convexity assumptions on the effort cost function and on the feasible set imply that the

first-order necessary conditions for implementation of a stipulated control path by an in-

centive scheme are also sufficient, see Schättler and Sung (1993, Theorem 4.2). Indeed

our assumption of strict convexity of the effort cost function ensures that when the agent

is faced with a given incentive scheme in the continuous-time model, his choice of control

path is unique. By continuity considerations (another application of Berge’s maximum

theorem, this time to the agent), it follows that, in a discrete-time model with short pe-

riods, any control path that the agent is willing to choose when faced with an incentive

scheme close to the scheme that implements an optimal control path in the continuous-

time model must itself be close to the optimal control path in the continuous-time model.

This ensures that the principal’s maximum payoff in the continuous-time model cannot

be strictly better than the limit of his maximum payoffs in the discrete-time models.

This result is stated formally in the following theorem which proves our claim that

our discrete-time models approximate the Brownian-motion model of Holmström and

Milgrom.

Theorem 2 Impose Assumption 2 as well as Assumption 1. For ∆ = 1, 1
2
, ...

and m = 1
∆

, let µ∆∗ ∈ IRN be a control vector such that the control path

{µ∆∗(·)} with the constant value µ∆∗ solves the principal’s problem in the m-

period problem with period length ∆ when controls are restricted to lie in K̂.

If µ∗ is any limit point of the sequence {µ∆∗}, then µ∗ ∈ K. Moreover the

control path µ∗(·) with the constant value µ∗ solves the principal’s problem in

the continuous-time model when controls are restricted to K̂; in terms of the

control process µ∗(·) the optimal incentive scheme s∗ has the representation

s∗(·) = ĉ(µ∗) +
N∑

i=1

ĉi(µ
∗)Xi(1) +

r

2

N∑
i=1

N∑
j=1

ĉiσij ĉj, (32)

with (σij) given by (21).

We conclude this section with a brief discussion of optimal incentive schemes. The
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schemes

s̃∆∗ =
m∑

τ=1

N∑
i=0

Ã∆,τ
i s∆∗

i , (33)

which implement the optimal control paths µ∆∗(·) in the discrete-time models, can be

rewritten in the linear form:

s̃∆∗ = α∆
0 +

N∑
i=1

α∆
i Z∆

i (1) , (34)

where, for i = 1, . . . , N , α∆
i = [s∆∗

i − s∆∗
0 ]/ki∆

1
2 , α∆

0 = s∆∗
0 − ∑N

i=1 α∆
i µ∆∗, and Z∆

i (·)
is the continuous-time representation of the process Z̃∆

i (·) defined in (27). Under the

assumptions of Theorem 2 one easily sees that for any subsequence {µ∆′∗} of {µ∆∗} that

converges to a limit µ∗, the corresponding subsequence of coefficients {α∆′
0 , α∆′

1 , . . . , α∆′
n }

in (34) converges to a limit (α0, α1, . . . , αN) such that αi = ĉi(µ
∗) for i = 1, . . . , N , and

the incentive scheme

s(Z(·)) = α0 +
N∑

i=1

αiZi(1) = α0 +
N∑

i=1

ĉi(µ
∗)Zi(1) (35)

implements the control path µ∗(·) with constant value µ∗ in the continuous model. More-

over, (35) and (32) are equivalent in the sense that s∗ = s(Z(·)) if Z(·) is the stochastic

process satisfying Z(t) ≡ µ · t + X(t).11

5 Linearity in Aggregate Profits

So far the optimal incentive schemes in the discrete multi-period and in the corresponding

Brownian model are linear only in accounts, not in total gross profits. For total incentive

payments in (35) to be representable as a linear function of the principal’s cumulative

total gross profits
∑N

i=1 Zi(1), we should require that

ĉ1(µ
∗) = . . . = ĉN(µ∗). (36)

As Holmström and Milgrom point out, (36) is trivially true if N = 1 and the static model

involves only two possible outcomes (“success” and “failure”). In this case, the principal’s

11In terms of the processes X∆(·) and X(·) that are defined in (18) and (19) and Theorem 1, (34) and
(35) become s̃∆ = α̂∆

0 +
∑N

i=1 α∆
i X∆

i (1), and s̃ = α̂0 +
∑N

i=1 αiXi(1), where, for i = 1, . . . , N , α∆
i and

αi are the same as before and α̂∆
0 = α∆

0 +
∑N

i=1 α∆
i µ∆∗

i , α̂0 = α0 +
∑N

i=1 αiµ
∗
i .
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cumulative total gross profit is just Z1(1), and (35) itself represents s̃ as a linear function

of Z1(1). However, this case is very special.

Holmström and Milgrom also observe that for N > 1 (36) is again trivially true if

the effort cost function takes the form ĉ(µ) = g (E(µ)), where E(µ) :=
∑N

i=1 µi. In this

case (35) yields

s̃ = α0 + g′
(

N∑
i=1

µi

)
N∑

i=1

Zi(1) , (37)

so again, s̃ is represented as a linear function of the principal’s cumulative total gross

profits.

However, the specification ĉ(µ) = g (E(µ)) is inconsistent with our Assumptions 1

and 2 as well as Holmström and Milgrom’s assumption that in the static model the prin-

cipal wants to implement an action in the relative interior of the simplex P. In Hellwig

and Schmidt (2001) we show that in a discrete-time model with this effort cost specifi-

cation, the principal never wants to implement an action in the relative interior of the

feasible set.12 Any limit of a sequence of optimal control paths in the discrete-time models

must therefore lie on the boundary of the feasible set; the corresponding optimal incentive

scheme in the continuous-time model has a representation of the form

s̃ = α0 +
N∑

i=1

[
g′
(

N∑
i=1

µi

)
− di

]
Zi(1) (38)

where (d1, ..., dN) is a vector of shadow values to the agent of being constrained at the

boundary of the feasible set, and, typically di differs across dimensions. On the boundary

of the feasible set, incentive constraints are less demanding; there is no need to discourage

deviations that would lead out of the feasible set. This can be used by the principal to

reduce the agent’s salary risk without adverse incentive effects; the variables d1, ..., dN in

(38) serve this very purpose.13

In their most interesting approach to obtaining linearity of incentive schemes in total

12The intuition for this is fairly simple. For any given level of expected total profits, the overall surplus
increases if the riskiness of the agent’s salary is reduced. Starting from any path of actions in the interior
of the feasible set, in the discrete-time models, such a reduction of the agent’s salary risk can be obtained
by shifting probability mass in any period to the two outcomes with profit levels just adjacent to the
desired target for expected profits for that period.

13Holmström and Milgrom (1987) assume that in the continuous-time model, the set of feasible actions
for the agent is open. For the given effort cost specification, this yields (37), but then the continuous-time
model has no discrete-time counterparts.
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profits, Holmström and Milgrom impose the additional assumption that the principal

cannot observe the time paths of the individual accounts Zi(t), i = 1, ..., N, contributing

to total profits, but only the time path of the aggregate z(t) =
∑N

i=1 Zi(t) and hence

of total profits. Given that in the continuous-time model, the disturbance terms are

independent of the agent’s actions, in this case, any change of the control process µ(·)
that leaves the drift rate process (

∑N
i=1 µi(·)) of the accounting aggregate z(·) unchanged

will remain undetected by the principal and will leave the distribution of payments to the

agent unchanged. Therefore the agent will always choose the control process µ(·) so as

to achieve a given target E(·) for the aggregate drift rate process (
∑N

i=1 µi(·)) at minimal

cost to himself. At an interior solution, the first-order condition for this minimization

problem requires that the marginal costs of raising expected gross profits be the same

in all accounts, which is just condition (36). As shown in Theorem 8 of Holmström and

Milgrom (1987), the optimal incentive scheme in the continuous-time model must then

be linear in cumulative total profits.

We state this result formally. As before, let K̂ ⊂ IRN be the set of admissible control

vectors. Let E, E be the minimum and the maximum of E(µ) on K̂. For any E ∈ [E, E],

let γ(E) be the minimum of ĉ(µ) for µ ∈ K̂ satisfying E(µ) = E, and let µ(E) ∈ K̂ be such

that ĉ(µ(E)) = γ(E) and E(µ(E)) = E. By standard arguments, γ(·) is a continuously

differentiable, strictly convex function on [E, E]. The derivative of γ(·) is denoted as γ′(·).

Proposition 1 Impose Assumption 2 as well as Assumption 1. Suppose also

that E∗ maximizes the expression

E − γ(E)− r

2
γ′(E)2σ2 (39)

over [E, E]. Then µ(E∗) ∈ K and, for all i, ĉi(µ(E∗)) = γ′(E∗) ≥ 0. More-

over, the control path µ∗∗(·) with the constant value µ∗∗(t) = µ(E∗) solves the

principal’s problem in the continuous-time model when controls are restricted

to K̂ and the principal observes the aggregate process z(·) =
∑N

i=1 Zi(·), but

not its individual components. In terms of the cumulative profits process Z(·),
the optimal incentive scheme s∗∗ has the representation

s∗∗ = γ(E∗) + γ′(E∗)

(
N∑

i=1i

Zi(1)− E∗
)

+
r

2
γ′(E∗)2σ2. (40)
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In the remainder of this section, we consider the relevance of this result for our

discrete-time approximations of the continuous-time model. We begin by noting that

there is no immediate discrete-time analogue. To see this, note that in any period τ ∈
{1, . . . ,m} the principal observes

∑τ
τ ′=1 π∆,τ ′

. As the profit in period τ is simply π∆,τ =∑τ
τ ′=1 π∆,τ ′ − ∑τ−1

τ ′=1 π∆,τ ′
, the principal can compute the individual accounts Z̃∆,τ

i even

if he observes the time path of total profits only. Since this information can be used

to improve the incentive scheme, the principal will use it as before. Thus we again get

linearity in accounts only. As this is true for any ∆ > 0, there seems to be a discontinuity

in the transition from discrete to continuous time.

Indeed, such a discontinuity may appear even if the principal observes only the final

profit aggregate z∆ =
∑N

i=1 Z∆
i (1). For suppose that in the static model, there are three

different profit levels, π ∈ {−1, 1
e
, +1}, where e is Euler’s number. For any ∆ then, the

decimal expansion of the aggregate z∆ reveals how often the profit level 1
e
∆

1
2 has been

realized; this in turn makes it possible to infer how often the profit levels −∆
1
2 and +∆

1
2

have been realized, so again the principal can infer the quantities Z∆
i (1) that he needs to

know in order to implement the scheme (35).

To avoid such discontinuities in the transition from discrete to continuous time, we

need to impose a stronger form of information asymmetry. Going beyond Holmström and

Milgrom, we assume that the principal does not observe the time path of profits and,

moreover, that the agent is able destroy profits before he reports them to the principal.

The principal observes only the undestroyed profit ẑ ≤ ∑N
i=0 Z∆

i (1) at date 1. He might

ask the agent to report not only undestroyed total profits but also the time path of

profits.14 Even more generally, he could ask for a message w from some general message

space and make the payment S∆(w, ẑ) depend on this message as well as the level ẑ of

undestroyed total profits. However, the revelation principle implies that there is nothing

to be gained by such a procedure. This is the point of the following result.

Proposition 2 Suppose that in the discrete-time model with period length

∆ the principal can implement a (possibly stochastic or history dependent)

14Like Holmström and Milgrom (1987) we rule out the possibility that the principal requires the agent
to continuously report profits at any points in time t ∈ [0, 1]. The idea is that the principal cannot
monitor the agent continuously but only at exogenously given discrete points in time.
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control path µ∆(·) with an incentive scheme S∆(·, ·), which makes the payment

to the agent, S∆(w, ẑ), depend on some message w as well as undestroyed total

profits ẑ. Then there exists a nondecreasing incentive scheme s∆(·) such that,

when faced with the scheme s∆(·), the agent is willing to choose the control

path µ∆(·) and truthfully report total profits as ẑ =
∑N

i=0 Z∆
i (1). The resulting

payoff for the agent is the same and for the principal is no less than under the

implementation of µ∆(·) through the scheme S∆(·, ·).

Proposition 2 shows that, without loss of generality, we can restrict attention to in-

centive schemes that depend only on reported total profits. Moreover we may suppose

that these incentive schemes are nondecreasing, inducing the agent to report total profits

truthfully as ẑ =
∑N

i=0 Z∆
i (1), without any destruction. These are in fact the only ad-

ditional restrictions that the information asymmetry introduces. If an incentive scheme

implements a control path µ∆(·) under the information assumptions of Section 2 and if

this incentive scheme can be represented by a nondecreasing function of cumulative total

profits, then it also implements µ∆(·) under the information assumptions in this section.

To see this, note that the incentive scheme is feasible for the principal because it depends

only on total profits. Moreover, as the incentive scheme is nondecreasing, the agent is

willing to report total profits truthfully. Finally, when the agent chooses the control path

µ(·), he faces exactly the same incentives under the information assumptions of Section 2

and of this section.

The assumption that the agent can destroy profits unnoticed and, therefore, that the

incentive scheme must be monotonic has strong implications. For example, any nonlinear

incentive scheme that is stationary violates monotonicity if the number of periods is

sufficiently large.15 For the model of Section 2, Holmström and Milgrom (1987, Theorem

5) have shown that the optimal incentive scheme is stationary. However, in the model

15A simple example illustrates this point. Suppose that there are three different profit levels, π0 < π1 <
π2, and three corresponding incentive payments, s0 < s1 < s2, in the one period model, and normalize
π0 = s0 = 0. Suppose the incentive scheme is not linear, i.e. s1

π1
6= s2−s1

π2−π1
. Consider the case where

s1
π1

< s2−s1
π2−π1

. Then there exist numbers m1,m2 ∈ IN such that m1π1 > m2π2 and m1s1 < m2s2. If the
number of periods, m, satisfies m > max{m1,m2} and if the incentive scheme is stationary, monotonicity
is violated. To see this consider two time paths of profit realizations: In path A there are m1 realizations
of π1 and m−m1 realizations of π0. In path B there are m2 realizations of π2 and m−m2 realizations
of π0. Hence, total profit after path A is larger than after path B, but the agent’s total renumeration is
smaller.
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considered in this section, where the agent’s renumeration has to be a nondecreasing

function of total profits, the optimal incentive scheme need not be stationary. A nonlinear

incentive scheme might enable the principal to neutralize at least some of the effects of

having to condition on total profits rather than on each outcome separately.

Nevertheless, if the incentive scheme has to be nondecreasing, the scope for doing

so is limited when there are many short periods. To see where monotonicity makes a

difference, go back to the example with profit levels π ∈ {−1, 1
e
, 1} in the static model,

and suppose that, in any discrete-time model with period length ∆, the principal would

like to penalize outcomes π∆ = 1
e
∆

1
2 and to reward outcomes π∆ = ∆

1
2 in any period.

Without the monotonicity assumption the corresponding incentive schemes as a function

of cumulative total profits would fluctuate ever more wildly as ∆ becomes small; such a

sequence of incentive schemes has no convergent subsequence. In contrast, if the agent

can destroy output unnoticed, it is impossible to penalize, e.g., an outcome involving ten

realizations of π∆ = 1
e
∆

1
2 as opposed to an outcome involving six realizations of π∆ = ∆

1
2

and four realizations of π∆ = −∆
1
2 . Indeed, as shown in the following result, monotonicity

automatically implies the existence of a convergent subsequence. It is this property that

is crucial to establish Theorem 3 below.

Proposition 3 Suppose that in the discrete-time model with period length ∆,

the principal can implement a control process µ∆(·) with a nondecreasing incen-

tive scheme s∆(·). Suppose also that the means of the resulting final payments

s∆(
∑N

i=0 Z∆
i (1)) are uniformly bounded. Then there exists a nondecreasing,

upper semi-continuous function s(·) such that, for some subsequence {s∆′
(·)}

of the sequence {s∆(·)},

lim
∆̄→0

sup
∆′≤∆̄

s∆′
(z) ≤ s(z) for all z, (41)

and

lim
∆′→0

s∆′
(z) = s(z) for all z at which s(·) is continuous. (42)

Given a convergent subsequence of incentive schemes, another application of Berge’s

maximum theorem shows that as the length of the period goes to zero, the control pro-

cesses chosen by the agent converge to the control process which he chooses when he is
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faced with the limit scheme in the continuous-time model. The argument is much more

complex than in Section 4 because for nonlinear incentive schemes, the solutions to the

agent’s optimization problems will typically involve nonstationary, time-dependent and

history-dependent controls. Even so, the maximum theorem can be applied, and we can

infer that the restriction to nondecreasing incentive schemes eliminates certain disconti-

nuities in the transition from discrete to continuous time.

Convergence of control processes is discussed in terms of cumulative controls. Instead

of processes µ∆(·), µ(·), which refer to the time paths of actions taken by the agent, we

look at the associated cumulative processes M∆(·) and M(·) where, for any t ∈ [0, 1]

M∆(t) =
∫ t

0
µ∆(t′)dt′ and M(t) =

∫ t

0
µ(t′)dt′. (43)

We think of the processes M∆(·) and M(·) as random functions taking values in the space

CN where C is again the space of continuous real-valued functions on [0, 1].

Proposition 4 Impose Assumption 2 as well as Assumption 1. Suppose that

in the discrete-time model with period length ∆, the principal can implement a

control process µ∆(·) with a nondecreasing incentive scheme s∆(·). Suppose

also that the processes µ∆(·) take values in the interior of the set K̂ and

that there exists a nondecreasing, upper semi-continuous function s(·) such

that (41) and (42) are satisfied for some subsequence {s∆′
(·)} of the sequence

{s∆(·)}. Then there exists a control process µ(·) in the continuous-time model

such that (i) the joint distributions of the cumulative control processes M∆′
(·)

associated with µ∆′
(·) and the processes X∆′

(·) of cumulative deviations from

the mean converge to the joint distribution of the cumulative control process

M(·) associated with µ(·) and the driftless Brownian motion X(·) that is spec-

ified in Theorem 1, and (ii) the incentive scheme s(·) implements µ(·) in the

continuous-time model. Moreover, as ∆′ converges to zero, the expected incen-

tive payment Es∆′
(
∑N

i=0 Z∆
i (1)) of the principal to the agent under the control

process µ∆′
(·) in the discrete-time model with period length ∆′ converges to

the expected incentive payment Es(
∑N

i=0 Zi(1))to the agent under the control

process µ(·) in the continuous-time model.
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Propositions 3 and 4 imply that whatever the principal can implement in a discrete-

time model with many short periods will not be very different from something he can

implement in the continuous-time model. Given that in the continuous-time model, a

linear incentive scheme is optimal, it follows that not much is to be gained from a nonlinear

incentive scheme, i.e., a suitably chosen linear incentive scheme is approximately optimal

in a discrete-time model when the number of periods is large and the length of each period

is small. The linear incentive schemes that we consider take the form

s∆∗∗(ẑ, η) = γ(E∗) + γ′(E∗) [ẑ − E∗] +
r

2
γ′(E∗)2σ2 + η (44)

where E∗ is the optimal value of the aggregate drift rate in Proposition 2 and η > 0 is a

sweetener that we introduce to avoid running afoul of the agent’s participation constraint

in the discrete-time model.

Theorem 3 Impose Assumption 2 as well as Assumption 1, and suppose that

controls are restricted to lie in the interior of K̂. If the principal is restricted to

using incentive schemes that can be represented as nondecreasing functions of

cumulative total gross profits, then for any ε > 0, there exist ∆ > 0 and η > 0

such that for any ∆ < ∆, the principal’s payoff from using the linear incentive

scheme s∆∗∗(·, η) that is given by (44) is no more than ε below his payoff from

the optimal incentive scheme in the discrete-time model with period length ∆.

Theorem 3 shows that the optimal incentive scheme in the continuous model (plus

an arbitrarily small constant η is ε-optimal in the discrete model if ∆ is sufficiently

small. It is our discrete-time counterpart to the optimality of linear incentive schemes

in continuous-time models that is established in Theorem 8 of Holmström and Milgrom

(1987) or in Proposition 1 above. Like those results, Theorem 3 reflects the basic intuition

that nonlinear incentive schemes are vulnerable to manipulation. First, because profits

are aggregated over time and across accounts and because the agent can destroy profits

unnoticed, the principal has to use an incentive scheme that is a nondecreasing function of

total profits. As the number of periods increases, this severely restricts his ability to infer

the actual profit realizations by exploiting the discrete structure of the game. Second,

as the principal cannot distinguish between profits generated by different accounts, he
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cannot prevent the agent from spreading his effort across accounts so that the cost to

him of generating a given time path of expected profits is minimal; the equality (36) that

permits the aggregation across accounts in (35) is derived from this behaviour of the agent

rather than any structural property of the cost function. Because of these limitations on

implementability, the choice of an optimal incentive scheme is eventually driven by the

stationarity of preferences and technologies that push the principal to providing the agent

with stationary incentives that are independent of time and histories; as mentioned above,

a monotonic incentive scheme that provides for stationary incentives is necessarily linear.

Note that the principal’s inability to obtain the relevant information about indi-

vidual accounts stems not only from the fact that he observes only an aggregate across

accounts, but also from the aggregation over time that results from his observing only

cumulative totals at the end and from the agent’s ability to destroy profits unnoticed.

Aggregation over time also plays a role in the continuous-time analysis of Holmström and

Milgrom. When the principal is said to “observe” the time path of a Brownian motion

Z(·) = (Z1(·), ..., ZN(·)) or z(·) =
∑N

i=1 Zi(·), he is not actually observing any incremental

changes that could be interpreted as “rates of growth” of cumulative profits at any given

instants. After all, with probability one, the sample paths of the processes Z(·) and z(·)
are almost nowhere differentiable, and the stochastic differential equation dz =

∑N
i=1 dZi

is meaningful only in terms of its integral version

z(t2)− z(t1) =
N∑

i=1

∫ t2

t1
dZi,

involving aggregation over time as well as across accounts.

As for the assumption that the agent can destroy profits unnoticed, we suspect that

this can be replaced by something else. This assumption restricts the principal to non-

decreasing incentive schemes, which in turn guarantees the existence of a convergent

subsequence of such schemes. It seems likely that other assumptions on the information

available to the principal can serve the same purpose.

This should also be true of the restriction to interior controls. In the present setting,

in contrast to Section 4, we have not been able to endogenize this condition, which we

use to ensure that as we vary the length of the period the agent’s payoffs are uniformly

integrable and there is no discontinuous change in expected payoffs. It should be possible
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though to obtain the desired uniform integrability of payoffs in some other way.

6 Concluding Remarks

The unified framework developed in this paper makes it possible to directly compare the

discrete-time and the continuous-time models of Holmström and Milgrom and to explicitly

derive the latter as a limit of the former with ever shorter periods. For a variant of the

discrete-time model, in which the agent can shift profits over time and across accounts and

in which he may destroy profits unnoticed, we have shown that an incentive scheme that

is linear in total profits is approximately optimal if the length of the period is sufficiently

small. This result reflects the intuition that a linear incentive scheme is desirable because

it is robust against manipulation of information by the agent.

The Holmström-Milgrom paper has given rise to a large literature, but only a few

papers are concerned with the methodological and mathematical underpinnings of the

analysis. Most papers in the literature just appeal to their results to justify the use

of linear incentive schemes in applications; for an example see Holmström and Milgrom

(1991). Among the more method-oriented papers, Schättler and Sung (1993) develop a

general mathematical framework for the study of agency problems when the agent controls

the drift of a Brownian motion in continuous time; we heavily rely on their results, which

strengthen and greatly extend the continuous-time results of Holmström and Milgrom

(1987). Sung (1995) further extends the analysis by allowing for moral hazard with

respect to risk choices, more precisely, choices concerning the diffusion parameters of a

Brownian motion. Sung (1997) develops the corresponding analysis for continuous-time

agency problems concerning jump processes. Bolton and Harris (1997) also consider

continuous-time problems concerning jump processes as well as diffusions. However they

are concerned with first-best rather than second-best problems, considering optimal risk

sharing and optimal actions without concern for incentive compatibility and showing that

for arbitrary preference specifications risk-sharing considerations will typically call for

nonlinear contracts in a first-best setting.

The above-mentioned papers all work directly in continuous time and do not dis-

cuss the relation between static or multi-period discrete-time and continuous-time agency
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models. Multi-period discrete-time agency models and their relation to continuous-time

models are studied by Schättler and Sung (1997) and by Müller (2000). Unlike Holmström

and Milgrom (1987) these papers consider multi-period models as m-fold repetitions of

a static model in which the agent’s effort choice determines the mean of a normally dis-

tributed random variable. Müller (2000) shows that, as in Mirrlees (1974), in a model of

this type, the principal’s problem typically does not have a solution because a first-best

allocation can be approximated (but not reached) by a sequence of incentive schemes using

penalties for low outcome realizations to discourage shirking, the incidence of penalties

becoming ever rarer and the penalties themselves becoming ever more severe as one goes

along the sequence.16 In Schättler and Sung (1997), existence of a solution to the prin-

cipal’s problem in discrete time is also a problem. To get around it the authors impose

a restriction on the class of incentive schemes they admit; with this restriction, they find

that conditions for implementing a given strategy of the agent are similar in an m-period

discrete-time and in a continuous-time Brownian-motion model. Neither paper asks how a

continuous-time Brownian-motion model would be approximated by discrete-time models

with finitely many possible outcomes in any one period or what is the relation between lin-

earity of incentive payments in “accounts” and linearity of incentive payments in outcome

aggregates, e.g. in profits.

Finally, we would like to point out that our procedure for linking discrete-time and

continuous-time models is not the only one to be considered. Different approaches to

what one means by the “length of the period” yield different approaches to the relation

between discrete-time and continuous-time models; for some of these the continuous-time

limits may have very different properties. In the analysis here, the length of the period

was introduced through a particular parameterization of the agent’s effort cost function

c∆(·) and of the profit levels π∆
i associated with different outcomes. As an alternative to

the approach considered here, Hellwig (2001) considers the effort cost specification

c∆(p) = ∆c̄

(
E(p)

∆
,
V (p)

∆

)
, (45)

where E(p) is the mean and V (p) is the variance of profits in the given period under

the action p. He also considers a profit level specification π∆
i = πi, regardless of ∆, in

16In Holmström and Milgrom (1987), this difficulty was avoided by the assumption that the set of
states of the world in the static model is finite.
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addition to the specification (3), π∆
i = πi∆

1
2 that was considered here. The effort cost

specification (45) is a generalization of the specification considered in Section 5. The

difficulties considered there are avoided if limV→0 c̄(E, V ) = ∞. With this assumption

the discrete-time models have well-defined continuous-time limits. However, depending

on the specification of profit levels at different outcomes, the qualitative properties of the

continuous-time limits are quite different: If π∆
i = πi, regardless of ∆, the continuous-

time limit of optimal outcome processes in the discrete-time models is a jump process; in

this case optimal incentive schemes are bounded away from being linear. If π∆
i = πi∆

1
2 ,

the continuous-time limit is a Brownian motion with drift, this time with endogenous

diffusion parameters. In this case, optimal incentive schemes in the continuous-time limit

are linear and a version of Proposition 1 is true even without an additional restriction on

the principal’s information.

These results suggest that there may be several “canonical” continuous-time agency

models all of which embody the notion that the environment is stationary and the agent

takes frequent decisions, being all the time fully aware of the history up to the present. As

one would expect from the theory of infinitely divisible processes, continuous-time spec-

ifications involving jump processes can be approximated just as specifications involving

Brownian motion, but whenever a specification like π∆
i = πi∆

1
2 is available to guar-

antee that sample paths in the continuous-time limit are almost surely continuous, the

continuous-time specification will involve Brownian motion. Among such specifications

the one considered by Holmström and Milgrom stands out for the exogeneity of the diffu-

sion parameters. The effort cost parametrization (4) provides the basis for approximating

just this class of models.
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Appendix A

Proof of Theorem 1: Part (a) is a special case of Proposition B.1 in Appendix B. To prove

(b), suppose that the agent takes the time path of actions µ∆,τ , τ = 1, . . . ,m, where µ∆(t)

converges to µ(t) uniformly in t as ∆ goes to zero. Since µ(t) is continuous, there exists

a compact set K ⊂ IRN such that for any sufficiently small ∆ one has µ∆(t) ∈ K for all

t. Since ĉ(·) is continuous - and hence bounded on K - we find for the agent’s cost in the

limit as ∆ goes to 0:

lim
∆→0

m∑
τ=1

∆ĉ(µ∆,τ ) = lim
∆→0

∫ 1

∆
ĉ(µ∆(t))dt =

∫ 1

0
ĉ(µ(t))dt . (A.1)

As for (c), substituting X̃∆,τ
i in (17) yields:

m∑
τ=1

s̃∆,τ =
∆∑

τ=1

∆ĉ(µ∆,τ ) +
m∑

τ=1

N∑
i=1

ĉi(µ
∆,τ )X̃∆,τ

i (A.2)

+
r

2

m∑
τ=1

N∑
i=0

∆Ã∆,τ
i

ĉi(µ
∆,τ )ki −

N∑
j=1

p̂j ĉj(µ
∆,τ )kj

2

+ O(∆
1
2 )

From (b), the first term in (A.2) converges to
∫

ĉ(µ(t))dt as ∆ converges to zero. As for

the second term, the same argument as in (b) implies that for any sufficiently small ∆,

µ∆,τ belongs to a compact set K for all τ , and ĉi(µ
∆,τ ) is bounded, uniformly in τ . From

part (a) therefore, one finds that for any sufficiently small ∆′, the pairs(
X∆(·),

N∑
i=0

m∑
τ=1

ĉi(µ
∆′,[τ∆/∆′])X̃∆,τ

i

)
=

(
X∆(·),

N∑
i=0

m∑
τ=1

ĉi(µ
∆′,τ )

[
X∆

i (τ∆′)−X∆
i (τ∆′ −∆′)

])
(A.3)

converge in distribution to(
X(·),

N∑
i=0

m∑
τ=1

ĉi(µ
∆′,τ ) [Xi(τ∆′)−Xi(τ∆′ −∆′)]

)
=

(
X(·),

N∑
i=0

∫ 1

0
ĉi(µ

∆′
(t))dXi(t)

)
,

(A.4)

as ∆ goes to zero, uniformly in ∆′. One also has lim∆′→0 ĉi(µ
∆′

(t)) = ĉi(µ(t)) uniformly

in t; hence
∑N

i=0

∫
ĉi(µ(t))dXi(t) converges in square mean to

∫
ĉi(µ

∆′
(t))dXi(t) as ∆′

converges to zero (see, e.g. Gikhman and Skorokhod (1972), p. 233). Therefore the joint

distributions of the processes X∆(·) and the sums
∑N

i=0

∑
τ ĉi(µ

∆,τ )X∆,τ
i in the second

term of (A.2) converge to the joint distribution of the process X(·) and the stochastic

integral
∑N

i=0

∫
ĉi(µ(t))dXi(t) as ∆ goes to zero.
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Turning to the third term in (A.2), we rewrite this in the form

r

2

m∑
τ=1

N∑
i=0

∆
(
Ã∆,τ

i − p∆
i (µ∆,τ )

) ĉi(µ
∆,τ )ki −

N∑
j=1

p̂j ĉj(µ
∆,τ )kj

2

+
r

2

m∑
τ=1

N∑
i=0

p∆
i (µ∆,τ )

ĉi(µ
∆,τ )ki −

N∑
j=1

p̂j ĉj(µ
∆,τ )kj

2

(A.5)

By the law of large numbers, the first of these terms converges to zero almost surely as

∆ goes to zero. The second term converges to the integral r
2

∫ 1
0 ĉ′(µ(t))Σ[c′(µ(t))]T dt,

a nonrandom constant. Thus, if the time paths of actions that the principal wants to

implement converge to µ(·), then the joint distributions of the processes X∆(·) and the

incentive payments s̃∆ converge to the joint distribution of the process X(·) and

s̃ =
∫ 1

0
ĉ(µ(t))dt +

∫ 1

0
ĉ′(µ(t))dX +

r

2

∫ 1

0
ĉ′(µ(t))Σ[c′(µ(t))]T dt . (A.6)

Q.E.D.

Lemma 1 follows from the argument in the text and does not require any further

argument.

Proof of Lemma 2: For any ∆, let s∆∗ = (s∆∗
0 , ..., s∆∗

N ) be the incentive scheme implement-

ing µ∆∗ in the static model with period length ∆, and consider the expected payoff

UP∆(µ∆∗) =
1

∆

N∑
i=0

p∆
i (µ∆∗)[π∆

i − s∆∗
i ] (A.7)

that the principal gets from implementing µ∆∗ in m = 1
∆

periods of length ∆. The agent’s

participation constraint implies

−
N∑

i=0

p∆
i (µ∆∗) e−r[s∆∗

i −c∆(p∆(µ∆∗))] ≥ −1, (A.8)

hence, by the concavity of the CARA utility function,

N∑
i=0

p∆
i (µ∆∗) s∆∗

i ≥ c∆(p∆(µ∆∗)). (A.9)

Upon combining (A.9) and (A.7) and using (12) and (13), one finds that the principal’s

expected payoff from implementing µ∆∗ in m = 1
∆

periods of length ∆ is bounded above

by

UP∆(µ∆∗) ≤
N∑

i=1

µ∆∗
i − ĉ(µ∆∗). (A.10)
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By Lemma 1 and the optimality of µ∆∗ for the principal in the multi-period model with

period length ∆, it must also be the case that

−r

2
σ2 − ĉ(0)− η ≤ UP∆(µ∆∗) (A.11)

whenever ∆ is close to zero. Thus, by (A.10) and (A.11) and by the definition of K in

Assumption 2, µ∆∗ must belong to K whenever ∆ is close to zero. Q.E.D.

The proof of Theorem 2 relies on some properties of the continuous-time model under

Assumptions 1 and 2. The following proposition states these properties formally.17

Proposition A.1 Impose Assumption 2 as well as Assumption 1. Let µ∗∗ maximize the

expression

UP (µ) =
N∑

i=1

µi − ĉ(µ)− r

2

N∑
i=1

N∑
j=1

ĉi(µ)σij ĉj(µ)

over the set K̂. Then µ∗∗ ∈ K. Moreover the control path µ∗∗(·) with the constant value

µ∗∗ is a solution to the principal’s problem in the continuous-time model when controls

are restricted to K̂. When faced with the incentive scheme s(Ẑ(·), µ∗∗(·)) that is given by

(26) for µ(·) = µ∗∗(·), the agent strictly prefers the control path µ∗∗(·) to any alternative

path that is distinct from it.

Proof of Proposition A.1: We first show that µ∗∗ ∈ K. For this purpose we claim that

there exists a control µ̂ ∈ K such that

UP (µ̂) ≥ −r

2
σ2 − ĉ(0). (A.12)

From the definitions of UP (·) and µ∗∗, we have

N∑
i=1

µ∗∗i − ĉ(µ∗∗) > UP (µ∗∗) ≥ UP (µ̂), (A.13)

so (A.12) implies
∑N

i=1 µ∗∗i − ĉ(µ∗∗) > − r
2
σ2 − ĉ(0) and hence µ∗∗ ∈ K.

17The key property is that under Assumption 2, any solution to the principal’s problem necessarily
takes values in the interior of the admissible set K̂. In Schättler and Sung (1993), this is simply assumed,
with some indication of the tension between this assumption and the requirement that the admissible set
be bounded.
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The desired µ̂ is obtained as the solution to the problem

max
µ∈K̂

[
N∑

i=1

µi − ĉ(µ)

]
. (A.14)

Because 0 ∈ K, we have
∑N

i=1 µ̂i − ĉ(µ̂) ≥ −ĉ(0) > − r
2
σ2 − ĉ(0). Therefore µ̂ ∈ K, i.e.,

the solution to the maximization problem (A.14) lies in the interior of K̂ and satisfies the

first-order conditions ĉi(µ̂) = 1 for i = 1, ..., N. Thus

UP (µ̂) =
N∑

i=1

µ̂i − ĉ(µ̂)− r

2

N∑
i=1

N∑
j=1

σij ≥ −ĉ(0)− r

2

N∑
i=1

N∑
j=1

σij . (A.15)

From (21) and (5), one easily verifies that
∑N

i=1

∑N
j=1 σij =

∑N
i=0 p̂iπ

2
i = σ2, so (A.12)

follows. As mentioned above, this implies µ∗∗ ∈ K.

Next, we show that the process µ∗∗(·) with the constant value µ∗∗ solves the principal’s

problem in the continuous-time model. Consider any admissible18 control process µ(·)
taking values in K̂ and incentive scheme s̃ that implements µ(·) relative to K̂. By a result

of Schättler and Sung (1993, Theorem 4.1), there exist adapted processes qi(·), i = 1, ..., N,

taking values in IR such that in terms of the control process µ(·), the implementing

incentive scheme has the representation

s̃ =
∫ 1

0
ĉ(µ(t))dt +

∫ 1

0

N∑
i=1

qi(t) dXi(t) +
r

2

∫ 1

0

N∑
i=1

N∑
j=1

qi(t)σijqj(t) dt; (A.16)

moreover qi(t) = ĉi(µ(t)) whenever µ(t) belongs to the interior of K̂. This yields

E

[∫ 1

0

N∑
i=1

µi(t)dt− s̃

]
= E

∫ 1

0

 N∑
i=1

µi(t)− ĉ(µ(t))− r

2

N∑
i=1

N∑
j=1

qi(t)σijqj(t)

 dt (A.17)

for the principal’s expected payoff from implementing the process µ(·). Consider the

integrand on the right-hand side of (A.17). For any t and any event in which µ(t) belongs

to K, by the definition of µ∗∗, we have

N∑
i=1

µi(t) − ĉ(µ(t))− r

2

N∑
i=1

N∑
j=1

qi(t)σijqj(t)

=
N∑

i=1

µi(t)− ĉ(µ(t))− r

2

N∑
i=1

N∑
j=1

ĉi(µ(t))σij ĉj(µ(t))

= UP (µ(t)) ≤ UP (µ∗∗).
18For a precise definition of of admissibility of a control process, as well as other details of the principal’s

problem in continuous time, we refer the reader to Schättler and Sung (1993).
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For any t and any event in which µ(t) belongs to IRN\K, by the definition of K in

combination with (A.12 ) and (A.13), we have

N∑
i=1

µi(t) − ĉ(µ(t))− r

2

N∑
i=1

N∑
j=1

qi(t)σijqj(t)

≤
N∑

i=1

µi(t)− ĉ(µ(t)) < −r

2
σ2 − ĉ(0) ≤ UP (µ∗∗) .

The integrand on the right-hand side of (A.17) is thus bounded above by UP (µ∗∗) for all

t almost surely. Therefore

UP (µ∗∗) ≥ E

[∫ 1

0

N∑
i=1

µi(t)dt− s̃

]
(A.18)

for any admissible process µ(·) and incentive scheme s̃ that implements µ(·). From (26)

applied to the process µ∗∗(·), one also has

UP (µ∗∗) = E

[∫ 1

0

N∑
i=1

µ∗∗i (t)dt− s̃

]
(A.19)

when s̃ = s(Z(·), µ∗∗(·)) is the scheme that implements µ∗∗(·). Together, (A.19) and (A.18)

show that the control process µ∗∗(·) solves the principal’s problem in the continuous-time

model when controls are restricted to K̂.

To conclude the proof of Proposition A.1, we observe that by the results of Schättler

and Sung (1993, Theorem 4.1 and formula (25), any alternative control process µ̂(·) that

also solves the agent’s problem at the incentive scheme s(·, µ∗∗(·)) that is given by (26)

applied to the process µ(·) = µ∗∗(·) must have the property that for almost all t ∈ [0, 1],

with probability one, the expression
∑N

i=1 µiĉi(µ
∗∗) − ĉ(µ) is maximized at µ = µ̂(t).

Because ĉ(·) is strictly convex, it follows that any such alternative solution to the agent’s

problem must satisfy µ̂(t) = µ∗∗ for almost all t ∈ [0, 1] almost surely, i.e., the process

µ̂(·) must be indistinguishable from µ∗∗(·). Q.E.D.

Proof of Theorem 2: Relying on the compactness of K̂, let {µ∆′∗} be a convergent sub-

sequence of {µ∆∗}. For any ∆′, let s∆′∗ = (s∆′∗
0 , ..., s∆′∗

N ) be the incentive scheme imple-

menting µ∆′∗ in the static model with period length ∆′, and let

s̃∆′∗ =
m∑

τ=1

N∑
i=0

Ã∆′,τ
i s∆′∗

i (A.20)
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be the associated cumulative total payment to the agent. By Lemma 2, for any sufficiently

small ∆′, µ∆′∗ belongs to the interior of K̂ and so does the limit µ∗. By Theorem 1, as ∆′

goes to zero, the random variables s̃∆′∗ converge in distribution to

s̃∗ = ĉ(µ∗) +
N∑

i=1

ĉi(µ
∗)Xi(1) +

r

2

N∑
i=1

N∑
j=1

ĉi(µ
∗)σij ĉj(µ

∗). (A.21)

One easily verifies that the principal’s expected payoffs,

UP∆′
(µ∆′∗) =

1

∆′

N∑
i=0

p∆′

i (µ∆′∗)[π∆′

i − s∆′∗
i ] =

N∑
i=1

µ∆′∗
i − Es̃∆′∗ (A.22)

also converge to

UP (µ∗) =
N∑

i=1

µ∗i − ĉ(µ∗)− r

2

N∑
i=1

N∑
j=1

ĉi(µ
∗)σij ĉj(µ

∗). (A.23)

By a result of Schättler and Sung (1993, Theorem 4.2) and the convexity of ĉ(·), the

incentive scheme s̃∗ actually induces the agent to choose the control path µ∗(·) with the

constant value µ∗, providing the principal with the payoff UP (µ∗). Therefore the principal’s

maximum payoff in the continuous-time model cannot be less than the limit of the payoffs

UP∆′
(µ∆′∗) in the discrete-time models.

It remains to be shown that is actually optimal for the principal to implement the

control path µ∗(·) in the continuous-time model. If this is not optimal, we must have

UP (µ∗) < UP (µ∗∗) (A.24)

where µ∗∗ is the optimal constant control that is given by Proposition A.1. For any ∆′,

consider an incentive scheme with cumulative total payments

s̃∆′∗∗ =
m∑

τ=1

N∑
i=0

Ã∆′,τ
i s∆′∗∗

i (A.25)

to the agent where, for i = 0, 1, ..., N,

s∆′∗∗
i = ∆′ĉ(µ∗∗)− 1

r
ln

1− rĉi(µ
∗∗)ki∆

′ 1
2 + r

N∑
j=1

p∆′

j (µ∗∗)ĉj(µ
∗∗)kj∆

′ 1
2

 . (A.26)

The following facts are easily verified:
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• When faced with the incentive scheme (A.25) in the discrete-time model with period

length ∆′, the agent can assure himself an expected payoff equal to −1 simply by

choosing the constant action p∆′
(µ∗∗). Therefore it is individually rational for him

to accept the principal’s proposing this incentive scheme.

• If in the discrete-time model with period length ∆′, the agent is free to choose

control vectors µτ ∈ K̂, inducing actions p∆′
(µτ ) ∈ P, for τ = 1, ...,m = 1

∆′ , then in

face of the incentive scheme (A.25), an optimal strategy for the agent is to choose a

history-independent constant control µτ = µ∆′ ∈ K̂ for all τ, where µ∆′
maximizes

the expected payoff

UA∆′
(µ) = −

N∑
i=0

p∆′

i (µ) e−r(s∆′∗∗
i −∆′ĉ(µ)) (A.27)

of the agent in the model with period length ∆′ and incentive payments s∆′∗∗
i ,

i = 0, 1, ..., N .

• From (A.26), one may rewrite (A.27) as

UA∆′
(µ) = −e−r∆′[ĉ(µ∗∗)−ĉ(µ)]

(
1− r

N∑
i=0

[p∆′

i (µ)− p∆′

i (µ∗∗)]ĉi(µ
∗∗)ki∆

′ 1
2

)

= −

e−r[ĉ(µ∗∗)−ĉ(µ)]

(
1− r

N∑
i=0

[µi − µ∗∗i ]ĉi(µ
∗∗)∆′

) 1
∆′


∆′

. (A.28)

• As ∆′ goes to zero, (−UA∆′
(µ))

1
∆′ converges to exp(−r[ĉ(µ∗∗)− ĉ(µ) + r

∑N
i=0[µi −

µ∗∗i ]ĉi(µ
∗∗)], uniformly for µ ∈ K̂.

• For any ∆′, maximization of UA∆′
(µ) over K̂ is equivalent to minimization of

(−UA∆′
(µ))

1
∆′ over the set K̂, so by Berge’s maximum theorem, any limit point of

the sequence {µ∆′} is a minimizer of exp(−r[ĉ(µ∗∗)− ĉ(µ) + r
∑N

i=0[µi− µ∗∗i ]ĉi(µ
∗∗)]

and hence of ĉ(µ)− r
∑N

i=0 µiĉi(µ
∗∗) over the set K̂.

• Because ĉ(·) is strictly convex, µ∗∗ is the unique minimizer of ĉ(µ)− r
∑N

i=0 µiĉi(µ
∗∗)

over the set K̂. Therefore any limit point of the sequence {µ∆′} must be equal to

µ∗∗, and the sequence {µ∆′} itself must be converging to µ∗∗.

• The control vectors µ∆′
belong to the interior of K̂ whenever ∆′ is sufficiently close

to zero.
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• By Theorem 1, applied to the control processes µ∆′
(·) with constant values µ∆′

, as

∆′ goes to zero, the incentive payments s̃∆′∗∗ that are associated with the imple-

mentation of µ∆′
converge in distribution to

s̃∗∗ = ĉ(µ∗∗) +
N∑

i=1

ĉi(µ
∗∗)Xi(1) +

r

2

N∑
i=1

N∑
j=1

ĉi(µ
∗∗)σij ĉj(µ

∗∗), (A.29)

and the principal’s payoff expectations UP∆′
(µ∆′

) converge to UP (µ∗∗).

Given the convergence of UP∆′
(µ∆′

) to UP (µ∗∗) and of UP∆′
(µ∆′∗) to UP (µ∗), the

inequality (A.24) would imply that UP∆′
(µ∆′

) > UP∆′
(µ∆′∗) for any sufficiently small ∆′.

As this contradicts the optimality of µ∆′∗ for the principal in the discrete-time problem

with period length ∆′, it follows that the inequality (A.24) must be false, and µ∗(·) must

indeed be optimal for the principal in the continuous-time model. Q.E.D.

Proof of Proposition 1: To prove that µ(E∗) ∈ K, one uses the same argument as for the

claim in Proposition A.1 that µ∗∗ ∈ K. The maximizer µ̂ of E(µ)− ĉ(µ) over K̂ is also a

minimizer of ĉ(µ) over K̂ under the constraint E(µ) = E(µ̂) , and we have ĉ(µ̂) = γ(E(µ̂))

and γ′(E(µ̂)) = 1. Then (A.15) implies

E(µ̂)− γ(E(µ̂))− r

2
γ′(E(µ̂))2σ2 ≥ −ĉ(0)− r

2
σ2. (A.30)

By the definition of E∗, it follows that

E∗ − γ(E∗) > E∗ − γ(E∗)− r

2
γ′(E∗)2σ2 ≥ −ĉ(0)− r

2
σ2, (A.31)

hence, µ(E∗) ∈ K. By standard arguments, it follows that the first-order conditions for

the agent’s cost minimization problem take the form ĉi(µ(E∗)) = γ′(E∗) for i = 1, ..., N.

To prove that γ′(E∗) ≥ 0, we note that as γ(·) is convex, γ′(·) is nondecreasing. If γ′(E∗)

were negative, then at E = E∗, γ′(E)2 would be nonincreasing, and E−γ(E)− r
2
γ′(E)2σ2

would be strictly increasing, contrary to the definition of E∗.

To show that the control path µ∗∗(·) with the constant value µ(E∗) solves the princi-

pal’s problem under the given information assumption,we again follow the line of argument

in the proof of Proposition A.1. Consider any admissible control process µ(·) taking values

in K̂ and any incentive scheme s̃ that implements µ(·) when the principal only observes
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the aggregate process z(·) =
∑N

i=1 Zi(·). By Theorem 4.1 of Schättler and Sung, there exist

adapted processes qi(·), i = 1, ..., N, taking values in IR such that the incentive scheme s̃

has the representation

s̃ =
∫ 1

0
ĉ(µ(t))dt +

∫ 1

0

N∑
i=1

qi(t)dZi(t)−
∫ 1

0

N∑
i=1

qi(t)µi(t)dt (A.32)

+
r

2

∫ 1

0

N∑
i=1

N∑
j=1

qi(t)σijqj(t)dt.

If the principal observes only the process z(·) =
∑N

i=1 Zi(·), the processes qi(·) must

satisfy q1(t) = ... = qN(t) almost surely, for all t. By Theorem 4.1 of Schättler and Sung,

it must also be the case that for any t, with probability one,
∑N

i=1 qi(t)µi − ĉ(µ) reaches

a maximum over K̂ at µ = µ(t); with q1(t) = ... = qN(t), this implies that for any t, with

probability one, under the constraint E(µ) = E(µ(t)), ĉ(µ) reaches a minimum over K̂ at

µ = µ(t). This in turn yields ĉ(µ(t)) = γ(E(µ(t))) and, by a standard envelope argument,

q1(t) = ... = qN(t) = γ′(E(µ(t))). Then (A.32) can be rewritten as:

s̃ =
∫ 1

0
γ(E(µ(t)))dt +

∫ 1

0
γ′(E(µ(t)))

N∑
i=1

dZi(t)−
∫ 1

0
γ′(E(µ(t)))E(µ(t))dt

+
r

2

∫ 1

0
γ′(E(µ(t)))2σ2dt. (A.33)

Conditional on the process E(µ(·)), the principal’s net expected payoff from implementing

the control process µ(·) through the incentive scheme s̃ is then almost surely equal to∫ 1

0
E(µ(t))dt−

∫ 1

0
γ(E(µ(t)))dt− r

2

∫ 1

0
γ′(E(µ(t)))2σ2dt. (A.34)

By the definition of E∗, this is no larger than E∗ − γ(E∗) − r
2
γ′(E∗)2σ2, the principal’s

net expected payoff from implementing the control process µ∗∗(·) with constant value

µ∗∗(t) = µ(E∗). This confirms that under the given information assumption it is optimal

for the principal to implement the process µ∗∗(·). The representation (40) of the incentive

scheme that implements µ∗∗(·) is obtained by substituting for E(µ(t)) = E∗ in (A.33) and

using the fact that
∫ 1
0

∑N
i=1 dZi(t) =

∑N
i=1[Zi(1)− Zi(0)] =

∑N
i=1 Zi(1). Q.E.D.

Proof of Proposition 2: Given the incentive scheme S∆(·, ·), let (w(·), ẑ(·)) be the optimal

reporting strategy of the agent, and define

s∆(·) = S∆(w(·), ẑ(·)) . (A.35)
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If the true value of cumulative total profits is z, he prefers to choose the pair (w(z), ẑ(z))

as opposed to destroying profits unnoticed down to z′ < z and reporting (w(z′), ẑ(z′)).

Therefore it must be the case that S∆(w(z), ẑ(z)) ≥ S∆(w(z′), ẑ(z′)), whenever z > z′, so

s∆(·) is nondecreasing. Given that s∆(·) is nondecreasing, an optimal reporting strategy

ẑ∗(·) for the agent when faced with s∆(·) is to tell the truth, i.e., set ẑ∗(z) ≡ z.

To show that under the given information assumptions the incentive scheme s∆(·)
implements the control path µ∆(·), we note that since S∆(·, ·) implements µ∆(·), with

reports given by (w(·), ẑ(·)), we have

EUA(S∆(w(·), ẑ(·)), µ∆(·)) ≥ EUA(S∆(w̄(·), z̄(·)), µ̂∆(·)) (A.36)

for any alternative reporting strategy (w̄(·), z̄(·)) that is feasible and any alternative con-

trol process µ̂∆(·) where EUA(S∆(w̄(·), z̄(·)), µ̂∆(·)) denotes the agent’s expected payoff

from choosing the control process µ̂∆(·) and reporting strategy (w̄(·), z̄(·)) when the in-

centive scheme is S∆(·, ·). In particular,

EUA(S∆(w(·), ẑ(·)), µ∆(·)) ≥ EUA(S∆(w(·), ẑ(·)), µ̂∆(·)) (A.37)

and hence

EUA(s∆(ẑ∗(·)), µ∆(·)) ≥ EUA(s∆(ẑ∗(·)), µ̂∆(·)) (A.38)

for any alternative control path µ̂∆(·), where ẑ∗(·) is again the truthtelling strategy. Since

s∆(·) is nondecreasing, it follows that

EUA(s∆(ẑ∗(·)), µ∆(·)) ≥ EUA(s∆(z̄(·)), µ̂∆(·)) (A.39)

for any alternative control path µ̂∆(·) and reporting strategy z̄(·) under the incentive

scheme s∆(·).

Finally, since s∆(·) implements the same time path of actions and yields the same

payments to the agent, his expected utility is the same under s∆(·) with the truthtelling

strategy ẑ∗(·) as under S∆(·, ·) with the optimal reporting strategy (w(·), ẑ(·)). As for

the principal, he benefits when there is no destruction of profits, so on top of the payoff

that he would get under S∆(·, ·) with the reporting strategy (w(·), ẑ(·)) he obtains the

(expected value of) the difference z− ẑ(z), which is destroyed under the reporting strategy

(w(·), ẑ(·)). Q.E.D.
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Proof of Proposition 3: Proposition 3 is essentially a version of Helly’s selection theorem,

see, e.g. Billingsley (1968, p. 227). To apply Helly’s argument, we need to show that for

any z ∈ IR, there exists a compact interval [s(z), s̄(z)] ⊂ IR such that s∆(z) ∈ [s(z), s̄(z)]

for any sufficiently small ∆.

For any ∆, the fact that the incentive scheme s∆(·) serves to implement the control

process µ∆(·) implies that the participation constraint

−E exp{−r[s∆(z∆)−
∫ 1

0
ĉ(µ∆(t))dt]} ≥ −1 (A.40)

is satisfied, where z∆ :=
∑N

i=1 Z∆
i (1) =

∑N
i=1[M

∆
i (1) + X∆

i (1)]. Given that µ∆(t) ∈ K̂

with probability one for all t, we have E + x∆ ≤ z∆ ≤ Ē + x∆, where, as before, E and

Ē are the minimum and the maximum of
∑N

i=1 µi on K̂, and x∆ :=
∑N

i=1 X∆
i (1). By the

monotonicity of s∆(·), (A.40) implies

−E exp{−rs∆(Ē + x∆)} ≥ − exp{−rc}, (A.41)

where c is the minimum of ĉ(µ) on K̂. By the monotonicity of s∆(·), it follows that, for

any fixed z ∈ IR,

− exp{−rs∆(z)}prob{x∆ ≤ z − Ē} ≥ − exp{−rc
¯
}. (A.42)

Proposition B.1 in Appendix B implies that, as ∆ goes to zero, prob{x∆ ≤ z − Ē}
converges to Φ(z − Ē), where Φ(·) is the cumulative normal distribution function with

mean zero and variance σ2. If we fix some ε ∈ (0, Φ(z − Ē)) and set

s(z) := rc
¯

+ ln(Φ(z − Ē)− ε), (A.43)

we may conclude that s∆(z) ≥s
¯
(z) for any sufficiently small ∆.

To obtain a uniform upper bound s̄(z) for s∆(z), we note that, by assumption, there

exists a bound S̄ such that Es∆(z∆) ≤ S̄ and, hence,

E[s∆(z∆)| z∆ ≤ z] prob{z∆ ≤ z}+ s∆(z)(1− prob{z∆ ≤ z}) ≤ S̄. (A.44)

for all ∆. From (A.40), we also have

−E[exp{−rs∆(z∆)}| z∆ ≤ z] prob{z∆ ≤ z} ≥ − exp{−rc
¯
},
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hence, since the agent is risk averse,

E[s∆(z∆)| z∆ ≤ z] ≥ rc
¯

+ ln prob{z∆ ≤ z}.

Thus (A.44) implies

s∆(z)(1− prob{z∆ ≤ z}) ≤ S̄ − [rc
¯

+ ln prob{z∆ ≤ z}] prob{z∆ ≤ z} (A.45)

and hence

s∆(z) ≤ max{S̄, 0, −[rc
¯

+ ln prob{z∆ ≤ z}]}

≤ max{S̄, 0, −[rc
¯

+ ln prob{x∆ ≤ z − E
¯
}]}. (A.46)

By Proposition B.1 in Appendix B, prob{x∆ ≤ z−E
¯
} converges to Φ(z−E

¯
) as ∆ converges

to zero. If for some ε > 0, we set

s̄(z) = max{S̄, 0, −[rc
¯

+ ln prob{x∆ ≤ z − E
¯
}]}+ ε,

we may conclude that s∆(z) ≤ s̄(z) for any sufficiently small ∆.

Now for any z ∈ IR, the fact that s∆(z) ∈ [s(z), s̄(z)] for any sufficiently small

∆ implies that the sequence {s∆(z)} has a convergent subsequence. More generally if

{z1, z2, ...} be a countable and dense subset of IR, then, by a standard diagonalization

argument, there exists a subsequence of incentive schemes, {s∆′
(·)}, such that for any i,

the sequence {s∆′
(zi)} converges to a limit s(zi). This defines a nondecreasing function

s(·) on the set {z1, z2, ...}. Given that the set {z1, z2, ...} is dense in IR, an extension of

s(·) to IR is defined by setting

s(z) = lim
zi↓z

s(zi) (A.47)

where the limit is taken with respect to any sequence in {z1, z2, ...} that converges to z

from above. Since s(·) is nondecreasing on {z1, z2, ...}, for any z ∈ IR, the limit in (A.47) is

well defined. Moreover, from (A.47), one easily sees that s(·) is everywhere nondecreasing

and right-continuous, hence upper semi-continuous. From the mononicity of the incentive

schemes s∆′
(·), one also finds that for any ε > 0 and any z,

s(z − ε) ≤ lim inf s∆′
(z) ≤ lim sup s∆′

(z) ≤ s(z).

Hence lim∆′→0 s∆′
(z) = s(z) for any z ∈ IR at which s(·) is continuous. Q.E.D.
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Sketch of the Proof of Proposition 4:19 As discussed in the text, for any control processes

µ∆(·), µ(·) in the discrete-time models and the continuous-time model, the associated

cumulative control processes can be thought of as random variables that take values in

the space CN of continuous-functions from the time interval [0, 1] into IRN . If controls

are restricted to the subset K̂ of IRN , the realizations of the cumulative control processes

M∆(·) and M(·) must actually belong to the subspace CN
K̂

of functions F on [0, 1] that

have a representation

F (t) =
∫ t

0
fF (t′)dt′ (A.48)

for some function fF (·) from [0, 1] into K̂. For any such function F, we can define

Γ(F ) =
∫ 1

0
ĉ(fF (t))dt (A.49)

as the associated cumulative total effort cost. Given that the set K̂ is compact, the

functions in CN
K̂

are uniformly bounded and equicontinuous, and the function space CN
K̂

is

precompact. Indeed, because K̂ is convex and the effort cost function ĉ(·) is convex, one

can show that CN
K̂

is actually compact and the cost function Γ : CN
K̂
→ IR that is defined

by (A.49) is lower semi-continuous.

Let {(M∆′
(·), X∆′

(·))} be the sequence of cumulative-control and cumulative-devia-

tions processes that corresponds to the convergent subsequence of incentive schemes.

Compactness of the space CN
K̂

is used to show that any subsequence {(M∆′′
(·), X∆′′

(·))}
of the sequence {(M∆′

(·), X∆′
(·))} has a further subsequence which converges in distri-

bution to a pair (M(·), X(·)) such that X(·) is the driftless Brownian motion specified in

Theorem 1. The distributions Φ∆′′
of the joint processes (M∆′′

(·), X∆′′
(·)) are supported

by the product CN
K̂
× CN . By Proposition B.1 in Appendix B, the sequence of marginal

distributions of the cumulative-deviations processes X∆′′
(·) converges to the distribution

of the process X(·), so by Prohorov’s Theorem (Billingsley, 1968, p. 240), this sequence is

tight. Given that CN
K̂

is compact, this implies that the sequence {Φ∆′′} itself is tight. By

Prohorov’s Theorem again, it follows that the sequence {Φ∆′′} has a subsequence which

converges to a distribution Φ∞ on CN
K̂
× CN . The marginal distribution on CN that is

induced by Φ∞ must obviously coincide with the distribution of the process X(·).
19The full proof is available upon request or can be downloaded directly from

http://www.vwl.uni-muenchen.de/ls schmidt/research/disc/disc.htm.
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The limit process (M(·), X(·)) has the additional property that for any t, the history

of the process (M(·), X(·)) up to t and the continuation of the process X(·) from t on

are conditionally independent given X(t), i.e., the cumulative-control process M(·) does

not require the agent ever to rely on information about the continuation of the process

X(·) that he cannot be presumed to have. One easily verifies that for any t ∈ (0, 1), the

argument in the proof of Proposition B.1 in Appendix B remains valid if the distributions

of the processes X∆(·) = (X∆
1 (·), ..., X∆

N (·)) are replaced by the (regular) conditional

distributions of the continuations {X∆(t′)}t′∈(t.1] = {(X∆
1 (t′), ..., X∆

N (·))}t′∈(t.1] given the

histories of the joint processes {(M∆(·), X∆(·))} up to time ∆[t/∆].20 By an argument

given in Hellwig (1996), this convergence property of conditional distributions is sufficient

for the desired conditional-independence property in the limit.

Given that any subsequence {(M∆′′
(·), X∆′′

(·))} of the sequence {(M∆′
(·), X∆′

(·))}
has a subsequence which converges in distribution, convergence of the sequence

{
(M∆′

(·),
X∆′

(·))
}

itself is assured if all convergent subsequences have the same limit. For this it

suffices to show that the control process µ(·) which corresponds to the cumulative control

process M(·) is actually an optimal control process for the agent in the continuous-time

model with incentive scheme s(·). This is so because, with a strictly convex cost function,

by the results of Schättler and Sung (1993, Theorems 4.1 and 4.2), regardless of the

incentive scheme, the solution to the agent’s problem in the continuous-time model is

unique in the sense that any two optimal control processes must have the same values

almost surely for almost all t ∈ [0, 1].

In an abuse of notation, we write {(M∆′
(·), X∆′

(·))} for whichever convergent subse-

quence is to be considered, and we show that if {(M∆′
(·), X∆′

(·))} converges in distribu-

tion to a pair (M(·), X(·)), then the limiting cumulative control process M(·) must almost

surely coincide with the process M∗(·) which is optimal for the agent in the continuous-

time model with incentive scheme s(·). The argument proceeds in three steps.

Step 1: The agent’s expected payoff from the limit pair (M(·), X(·)) in the continuous-

time model with incentive scheme s(·) is not significantly worse than his expected payoffs

20These regular conditional distributions themselves can be regarded as measure-valued random vari-
ables, i.e., functions from the appropriate spaces of histories into spaces of measures on continuations.
In the absence of a common underlying probability space, convergence in distribution of these measure-
valued random variables then is the appropriate convergence concept; for details see Hellwig (1996).
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from the pairs {(M∆′
(·), X∆′

(·))} in the discrete-time models with incentive schemes s∆′

when ∆′ is small. Formally,

lim
∆̄→∞

sup
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(·))]}]

≤ −E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(·))]}, (A.50)

where, as before, z∆′
=
∑N

i=1 Z∆′
i (1) =

∑N
i=1[M

∆′
i (1) + X∆′

i (1)].

Step 2: The agent’s payoff from the limit pair (M(·), X(·)) in the continuous-time

model with incentive scheme s(·) is no better than his maximal payoff in the continuous-

time model with this incentive scheme. Formally,

−E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(·))]}

≤ −E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(·))]}, (A.51)

where M∗(·) is the optimal cumulative control process in the continuous-time model with

incentive scheme s(·).

Step 3: The agent’s maximal payoff in the continuous-time model with the incentive

scheme s(·) is not significantly better than his maximal payoffs in the discrete-time models

with incentive schemes s∆′
(·) when ∆′ is small. Formally,

−E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(·))]}

≤ lim
∆̄→∞

inf
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(·))]}]. (A.52)

Given that

lim
∆̄→∞

inf
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(·))]}]

≤ lim
∆̄→∞

sup
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(·))]}],

the three inequalities (A.50) - (A.52) imply that

−E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(·))]}

= −E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(·))]}, (A.53)
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i.e., that the limit pair (M(·), X(·)) provides the agent with the maximal payoff that he

can obtain in the continuous-time model with incentive scheme s(·). By the results of

Schättler and Sung mentioned above (1993, Theorems 4.1 and 4.2), this in turn implies

that M(·) = M∗(·) almost surely. The three inequalities (A.50) - (A.52) are therefore

sufficient to establish Proposition 4.

Turning to the arguments required to prove these inequalities themselves, the proof of

(A.50) is routine. Given the convergence in distribution of the sequence {(M∆′
(·), X∆′

(·))},
one uses (41), the upper semi-continuity of s(·) and the lower semi-continuity of Γ(·) as

well as Skorokhod’s theorem, the change-of-variables formula, and Fatou’s lemma (Hilden-

brand (1974), pp. 50 and 46). The proof of (A.51) involves a version of Kuhn’s theo-

rem to the effect that, with the independence property specified above, the limit pair

(M(·), X(·)) is payoff-equivalent to a mixed strategy in the sense of a prior randomization

of pure strategies of the agent, where a pure strategy is defined as a (suitably adapted)

function from the space CN of realizations of the process of cumulative deviations from

the mean to the space CN
K̂

of realizations of the cumulative control process. Any pure

strategy in the support of the mixed strategy corresponding to (M(·), X(·)), is dominated

by the agent’s optimal pure strategy in the continuous-time model with incentive scheme

s(·). This implies that the mixed strategy itself - and with it the pair (M(·), X(·)) - is so

dominated, which is just (A.51).

The proof of (A.52) starts from the optimal control process µ∗(·) at the incentive

scheme s(·) in the continuous-time model. The idea is to construct approximations of this

process for the different discrete-time models so that for small period lengths expected

payoffs from these approximations are not significantly worse than expected payoffs from

choosing the process µ∗(·) in the continuous-time model with incentive scheme s(·). Triv-

ially, this implies that for small period lengths expected payoffs from optimal control

processses in the discrete-time models are also not significantly worse than the agent’s

payoff from choosing the process µ∗(·) in the continuous-time model with incentive scheme

s(·). Construction of the desired approximations is routine except for the need to take

account of possible discontinuities in the (pure) strategy that generates the process µ∗(·)
in the continuous-time model and in the incentive scheme s(·). Relying on Lusin’s theo-

rem one avoids the former by first approximating the process µ∗(·) in the continuous-time
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model by some other process µ∗η(·) generated by a continuous strategy. To avoid the

latter one has the agent add just a little ε > 0 of effort so that the approximations we are

considering lead him “to the right” of whatever discontinuity point the limiting incentive

scheme may have.

Once the construction of approximating control processes is set up, the remainder of

the argument is routine, along the same lines as in the proof of (A.50). However, where

the proof of (A.50) can do with Fatou’s lemma, the corresponding argument here needs

Lebesgue’s convergence theorem, hence uniform integrability of the agent’s payoffs under

the approximating control processes. Specifically, it must not be the case that under the

approximating control processes the incentive schemes s∆′
(·) involve ever larger penalties

with ever smaller probabilities affecting expected payoffs along the sequence, but not in

the limit. Under the assumption that the original control processes µ∆′
(·) take values in

the interior of the feasible set, this uniform-integrability condition is satisfied because the

first-order conditions for interior control choices of the agent relate payments to (marginal)

costs, and these are uniformly bounded on the compact set K̂. Q.E.D.

Proof of Theorem 3: We first consider the implications of the incentive schemes s∆∗∗(·, η),

η > 0, in the discrete-time model with period length ∆. Suppose first that controls can

be chosen from the boundary as well as the interior of K̂. Then one easily verifies that,

when faced with this scheme, the agent is willing to choose a control path µ∆∗∗(·) with

a constant value µ∆∗∗, which is independent of η. Moreover, as ∆ goes to zero, µ∆∗∗

converges to µ(E∗) as specified in Proposition 1. Since µ(E∗) belongs to the interior of

K̂, for any sufficiently small ∆, µ∆∗∗ also belongs to the interior of K̂, and the process

µ∆∗∗(·) is optimal for the agent even if boundary controls are ruled out. By Theorem 1,

the certainty equivalents of the agent’s payoffs converge to η > 0, so for any sufficiently

small ∆, the participation constraint is also satisfied. This shows that for any η > 0 and

any sufficiently small ∆, by offering the incentive scheme s∆∗∗(·, η), the principal obtains

the expected payoff

N∑
i=1

µ∆∗∗
i − γ(E∗)− γ′(E∗)(E(µ∆∗∗)− E∗)− r

2
γ′(E∗)2σ2 − η.

As ∆ goes to zero, this converges to E∗−γ(E∗)− r
2
γ′(E∗)2σ2−η, so for any η > 0 and any

sufficiently small ∆, by offering the incentive scheme s∆∗∗(·, η), the principal can assure
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himself an expected payoff which is no less than E∗ − γ(E∗)− r
2
γ′(E∗)2σ2 − 2η.

Now suppose that the theorem is false. Then there exist ε > 0 and a sequence {∆′} of

period lengths such that for every ∆′, there exists an incentive scheme s∆′
(·) implementing

a control process µ∆′
(·) with values in the interior of K̂ so that the principal obtains an

expected payoff equal to at least E∗− γ(E∗)− r
2
γ′(E∗)2σ2 + ε

2
. Given this uniform bound

on the principal’s expected payoffs, expected incentive payments satisfy

Es∆′
(z∆′

) ≤ Ē − [E∗ − γ(E∗)− r

2
γ′(E∗)2σ2 +

ε

2
] (A.54)

and are thus uniformly bounded. By Proposition 3, it follows that there exists a non-

decreasing, upper semi-continuous function s(·) such that some subsequence of the se-

quence {s∆′
(·)}, converges to s(·) in the sense of (41) and (42). By Proposition 4, it

follows that the pairs (M∆′
(·), X∆′

(·)) of cumulative control and deviations processes

associated with the processes µ∆′
(·) converge in distribution to a pair (M(·), X(·)) of cu-

mulative control and deviations processes associated with the optimal control process µ(·)
in the continuous-time model with incentive scheme s(·). Moreover the expected incen-

tive payments Es∆′
(
∑N

i=1[M
∆′
i (1) + X∆′

i (1)]) converge to the expected incentive payment

Es(
∑N

i=1[Mi(1) + Xi(1)]) in the continuous-time model. Then we must have

lim
∆′→0

E

[
N∑

i=1

M∆′

i (1)− s∆′
(

N∑
i=1

[M∆′

i (1) + X∆′

i (1)])

]
= E

[
N∑

i=1

Mi(1)− s(
N∑

i=1

[Mi(1) + Xi(1)])

]
(A.55)

However, by the definition of E∗ and the optimality of µ(·) in the continuous-time model

with incentive scheme s(·), we also have

E

[
N∑

i=1

Mi(1)− s(
N∑

i=1

[Mi(1) + Xi(1)])

]
≤ E∗ − γ(E∗)− r

2
γ′(E∗)2σ2. (A.56)

From (A.55) and (A.56) together, one concludes that for any sufficiently small ∆′

E

[
N∑

i=1

M∆′

i (1)− s∆′
(

N∑
i=1

[M∆′

i (1) + X∆′

i (1)])

]
≤ E∗ − γ(E∗)− r

2
γ′(E∗)2σ2 +

ε

4
. (A.57)

This contradicts the assumption that the principal’s expected payoffs from using the

incentive schemes s∆′
(·) in the discrete-time models are bounded below by E∗ − γ(E∗)−

r
2
γ′(E∗)2σ2 + ε

2
. The assumption that the theorem is false has thus led to a contradiction,

which proves the theorem. Q.E.D.
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Appendix B

In this appendix we discuss the relationship between discrete-time and continuous-time

strategies and outcome processes when the agent’s choice at any one time may depend on

the history of the process up to this time. In the m-period discrete-time model with period

length ∆ = 1
m

, the agent chooses a sequence {µ̃∆,τ}m
τ=1 of possibly history-dependent

controls. This choice generates a sequence {π̃∆,τ}m
τ=1 of random profit levels. We assume

that for each τ , the agent’s control choice µ̃∆,τ is given by a - possibly degenerate - function

of profit realizations prior to τ , i.e., that we can write

µ̃∆,τ = µ̂∆,τ (π̃∆,1, ..., π̃∆,τ−1) (B.1)

for all τ , and we identify the agent’s strategy with the sequence of functions {µ̂∆,τ}m
τ=1.

The range of each function µ̂∆,τ is taken to be the compact set K̂ ⊂ IRN . Given the

control strategy {µ̂∆,τ}m
τ=1 the profit sequence {π̃∆,τ}m

τ=1 is assumed to satisfy the con-

dition that for each τ ∈ {1, ...,m}, π̃∆,τ takes values in {π0∆
1
2 , ..., πN∆

1
2} and, for given

π∆,1, ..., π∆,τ−1

Prob({π̃∆,τ = πi∆
1
2} | π̃∆,1 = π∆,1, ..., π̃∆,τ−1 = π∆,τ−1) (B.2)

= p∆
i (µ̂∆,τ (π∆,1, ..., π∆,τ−1))

As in the text, a given control strategy {µ̂∆,τ}m
τ=1 and associated profit sequence {π̃∆,τ}m

τ=1

are used to define counting variables Ã∆,τ
i , i = 0, 1, ..., N, τ = 1, ...,m,m = 1

∆
= 1, 2, ...

such that Ã∆,τ
i = 1 ⇔ π̃∆,τ = πi∆

1
2 and Ã∆,τ

i = 0 ⇔ π̃∆,τ 6= πi∆
1
2 . From (B.2) one

obviously has:

E[Ã∆,τ
i |π̃∆,1 = π∆,1, ..., π̃∆,τ−1 = π∆,τ−1] ≡ p∆

i (µ̂∆,τ (π∆,1, ..., π∆,τ−1)) (B.3)

It follows that if we write

X̃∆
i (τ) = ki∆

1
2 (Ã∆,τ

i − p∆
i (µ̂∆,τ (π∆,1, ..., π∆,τ−1)) (B.4)

for the cumulative deviations of realized from expected profits in dimension i, we have

E[X̃∆
i (τ)|π̃∆,1 = π∆,1, ..., π̃∆,τ−1 = π∆,τ−1] ≡ 0 (B.5)
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i.e., for any ∆ the process {(X̃∆
1 (τ), ..., X̃∆

N (τ))}m
τ=1 of cumulative deviations from the

means is a martingale. Again using a linear interpolation to obtain a continuous-time

representation of this process, we write for any i and any t ∈ [0, 1]:

X∆
i (t) =

(
1− t

∆
+
[

t

∆

])
X̃∆

i

([
t

∆

])
+
(

t

∆
−
[

t

∆

])
X̃∆

i

([
t

∆

]
+ 1

)
(B.6)

where again [ t
∆

] denotes the greatest integer less than or equal to t
∆

. For any ∆,

(X∆
1 (·), ..., X∆

N (·)) is a random function taking values in the space CN of continuous func-

tions from [0, 1] into IRN . The distribution of (X∆
1 (·), ..., X∆

N (·)) depends on the chosen

control strategy of the agent. Taking CN to be endowed with the topology of uniform

convergence, we obtain:

Proposition B.1 For m = 1, 2, . . . , and ∆ = 1
m

, let {µ̂∆,τ}m
τ=1 be a control

strategy taking values in the compact set K̂, and consider the induced process

(X∆
1 (·), ..., X∆

N (·)) of cumulative deviations from the means. As m goes out

of bounds and ∆ converges to zero, the processes (X∆
1 (·), ..., X∆

N (·)) converge

in distribution to the Gaussian process X(·) with initial value X(0) = 0, zero

drift, and covariance matrix Σ given by (21) .

Proof: For any ∆, let {π̃∆,τ}m
τ=1 be the random profit sequence that is induced by the

control strategy {µ̂∆,τ}m
τ=1. For any ∆ and any t ∈ [0, 1], let F∆

t be the σ-algebra on the

underlying probability space that is generated by the random variables π̃∆,1, ..., π̃∆,[t/∆].

Fix some vector q ∈ IRN , and consider the stochastic process X∆
q (·) on [0, 1] such that

for any t ∈ [0, 1],

X∆
q (t) =

N∑
i=1

qiX
∆
i (t) (B.7)

For any t and ∆, (B.5) and (B.6) yield:

E[X∆
q ([t/∆]∆ + ∆)−X∆

q ([t/∆]∆)|F∆
t ] = E[

N∑
i=1

qiX̃
∆,[t/∆]+∆
i |F∆

t ] = 0 (B.8)

For any two vectors q1, q2 ∈ IRN , one also has:

E[(X∆
q1([t/∆]∆ + ∆) − X∆

q1([t/∆]∆)(X∆
q2([t/∆]∆ + ∆)−X∆

q2([t/∆]∆)|F∆
t ]

= E[
N∑

i=1

N∑
j=1

q1
i X̃

∆,[t/∆]+∆
i q2

j X̃
∆,[t/∆]+∆
j |F∆

t ]
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= E[
N∑

i=1

q1
i q

2
i k2

i ∆ (1− p∆
i (µ̃∆,[t/∆])) p∆

i (µ̃∆,[t/∆])|F∆
t ]

−E[
N∑

i=1

∑
j 6=i

q1
i q

2
j kikj ∆ p∆

i (µ̃∆,[t/∆]) p∆
j (µ̃∆,[t/∆])|F∆

t ]

=
N∑

i=1

q1
i q

2
i k2

i ∆ p̂i −
N∑

i=1

N∑
j=1

q1
i q

2
j kikj ∆ p̂i p̂j + ∆O(∆)

=
N∑

i=1

N∑
j=1

q1
i q

2
j σij ∆ + ∆O(∆) (B.9)

where σij is the ij-th element of the matrix Σ (see (21) in the text) and O(∆) is a term

that goes to zero when ∆ goes to zero, uniformly in strategies and histories.

Now consider the vector process

X∆
Q = (X∆

q1 , ..., X∆
qN ) (B.10)

where q1, ..., qN are eigenvectors of the matrix Σ, normed so that qr ′qr = λ−1
r where λr

is the eigenvalue of Σ that corresponds to qr. Given that Σ is a symmetric, positive

definite matrix, the eigenvectors qr, qs, r 6= s, are mutually orthogonal. For this choice of

q1, ..., qN , (B.9) yields:

E[(X∆
qr([t/∆]∆ + ∆) − X∆

qr([t/∆]∆)(X∆
qs([t/∆]∆ + ∆)−X∆

qs([t/∆]∆)|F∆
t ]

=
N∑

i=1

N∑
j=1

qr
i q

s
j σij ∆ + ∆O(∆)

=
N∑

i=1

qr
i λsq

s
i ∆ + ∆O(∆)

= δrs ∆ + ∆O(∆) (B.11)

where δij = 1 if i = j and δij = 0 if i 6= j.

Finally we also have, for any ε > 0, any t and any i,

Prob{|X∆
qi ([t/∆]∆ + ∆)−X∆

qi ([t/∆]∆| ≥ ε|F∆
t } = 0 (B.12)

for any ∆ < [ε/ max |kj|]2.

From (B.8), (B.11), and (B.12), one easily sees that the processes X∆
Q , ∆ = 1, 1

2
, 1

2
, ...

satisfy the assumptions of Theorems 6 and 7 of Gihman and Skorohod (1979, p.195). It fol-

lows that for any t, as ∆ converges to zero, the conditional distributions of {X∆
Q (t′)}t′∈[t,1]
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given F∆
t converge to the conditional distribution of a standard N -dimensional Brownian

motion B(·) on [t, 1] given the “initial” value B(t). In particular the overall distributions

of the processes X∆
Q on [0, 1] converge to the distribution of a standard Brownian motion

on [0, 1] with ininital value B(0) = 0.

Given this convergence result, the proposition follows from Theorem 5.1 of Billingsley

(1968, p.30) in conjunction with the observation that for any ∆, one has (X∆
1 (·), ..., X∆

N (·)) =

(Q′)−1X∆
Q . Q.E.D.
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