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Abstract

The paper generalizes Kuhn�s Theorem to extensive form games in which

players condition their play on the realization of ambiguous randomization

devices and use a maxmin decision rule to evaluate the consequences of their

decisions. It proves that ambiguous behavioral and ambiguous mixed strate-

gies are payo¤�and outcome equivalent only if the latter strategies satisfy a

rectangularity condition. The paper also discusses dynamic consistency. In

particular, it shows that not only the pro�le of ambiguous strategies must

be appropriately chosen but also the extensive form must satisfy further re-

strictions beyond those implied by perfect recall in order to ensure that each

player respects her ex ante contingent choice with the evolution of play.
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1 Introduction

In this paper we develop a general theoretical framework to analyze dynamic

games in which players employ ambiguity as strategy to in�uence the outcome of

a game1. We build on previous work by Riedel and Sass (2013) who study normal

form games with objective ambiguity. As the authors conceptualize it, each player

can create objective ambiguity by setting up an Ellsberg urn (i.e., an urn where the

exact composition of balls of di¤erent colors is not known) and conditioning her

strategy choice on a draw from this urn. In this paper, we extend this approach to

�nite extensive games in which players are allowed to choose compact and convex

sets of mixed strategies. Such strategies are called Ellsberg strategies and games

where players employ such strategies are called Ellsberg games (hence, the title

of the paper). In our setting, players possess objective but imprecise information

which we model by using sets of probability distributions over possible outcomes of

a game. As shown by Gajdos et al. (2008), in such an environment each player�s

preferences can be represented by the minimal expected utility evaluated with

respect to all possible probability distributions over the outcomes of a game.

Our �rst contribution is a version of Kuhn�s Theorem for extensive�form

games.2 More precisely, we show that for each Ellsberg strategy satisfying a

�rectangularity� condition there exists an outcome- and payo¤-equivalent Ells-

berg behavioral strategy, and vice versa. The rectangularity condition that we

impose can be regarded as a generalization of the familiar condition used in the

standard analysis which establishes the relationship between behavioral and mixed

strategies. Speci�cally, with an Ellsberg strategy satisfying this condition, a player

1 In his paper on peace negotiations between two countries seeking to end the continuing
military confrontation, Greenberg (2000) argues that the best strategy for the mediator is to
�remain silent�regarding its policy to impose sanctions in case the negotiations break down. More
recently, in his study of the Two China Problem D�Amato (2010) �nds that the US deliberately
relied on strategic ambiguity to deter China from using force against Taiwan. In particular, by
signing the Taiwan Relations Act in 1979, which was neither a treaty nor a nontreaty, it actually
left the two sides guessing at its willingness to intervene in a con�ict. In a similar vein, the
literature on communication provides numerous examples where agents pursuing con�icting goals
opt to be vague or imprecise in their statements. As Eisenberg (1984) puts it: �Many di¤erent
strategies are used to orient toward con�icting interactional goals; some examples include avoiding
interaction altogether, remaining silent, or changing the topic.�

2Kuhn�s Theorem states that mixed and behavioral strategies are equivalent (in the sense that
they induce the same probability distribution over outcomes of a game) if and only if the game
satis�es perfect recall.
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evaluates her ex ante expected utility by minimizing separately the conditional ex-

pectations on each of her information sets and then minimizing the expectation

of these conditional expectations. Since, with an Ellsberg behavioral strategy,

she evaluates her expected utility in exactly the same way, both strategies yield

identical ex ante payo¤s.

In contrast to Kuhn�s Theorem, our proof does not rely on the notion of

perfect recall. The reason is as follows. In Kuhn�s setting, this property ensures

that for every mixed strategy there exists a behavioral strategy which induces

identical probability distribution over terminal nodes. In our setting, it is the

rectangularity condition that plays a similar role. More precisely, if an Ellsberg

strategy is rectangular then it comprises only those mixed strategies that can be

replicated by behavioral strategies.

Our second main result is that dynamic consistency associated with the re-

quirement that all players respect their ex ante contingent choices with the evolu-

tion of play generally does not hold in Ellsberg games even if they satisfy perfect

recall. A similar point is made by Aryal and Stauber (2013) in their note on Kuhn�s

Theorem with ambiguity averse players. In particular, they provide an example of

a three-player extensive game in which it is impossible to achieve dynamic consis-

tency if one assumes consistency and independency of ambiguous beliefs/strategies

across the players. Although their example is instructive, it does not fully capture

the role of perfect recall in ensuring dynamic consistency. In this paper, we focus

on this issue and show by means of examples that dynamic consistency may be

violated even in (two-player) extensive games satisfying perfect recall.

Our third main result is that, in order to achieve dynamic consistency, the

extensive game must satisfy further restrictions beyond those implied by perfect

recall. One restriction implies that every time when a player is called upon to move

she needs to make a conjecture about the actions of only one of her opponents

who moved at the immediately preceding stage.3 Another restriction implies that

in doing so she can disregard everything what happened before that stage. We

show that if the game satis�es those restrictions then dynamic consistency can be

restored by suitably choosing the pro�le of ambiguous strategies.

The paper is organized as follows. In the next section, we introduce notation

3Note that this condition is stronger than the one of perfect recall because it requires a player
to remember not only what she did but also what her opponents did before the previous period.
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and de�nitions. In Section 3, we prove a version of Kuhn�s Theorem for extensive

form Ellsberg games. In Section 4, we give examples of Ellsberg games satisfying

perfect recall in which dynamic consistency cannot be achieved. We use these

examples to justify the restrictions that we impose on the ambiguous strategies

and the structure of a game in order to ensure dynamic consistency. In Section 5,

we o¤er concluding remarks.

2 Notation and De�nitions

We �nd it convenient to employ the tree-based de�nition of extensive game which

was originally introduced by Kuhn (1953) and, recently, has been adopted in a

number of related studies.4 Formally, an extensive game comprises the following

constituents.

� A �nite rooted tree hT ;!; t0i which speci�es the order of moves. Here, T
denotes a �nite collection of nodes, t0 2 T is the root, and for any t0; t00 2 T ;
the relation t0 ! t00 means that t0 is immediate predecessor of t00 or t00 is

immediate successor of t0: A path from node t0 to node t00 is a sequence

(t1; : : : ; tn) of nodes starting at t1 = t0 and ending at tn = t00 such that tk
is immediate successor of tk�1 for all k = 2; : : : ; n. We denote by � the

precedence relation on T with t0 � t00 if there is a path from t0 to t00: We call

then t0 a predecessor of t00: As usual, t0 - t00 means t0 = t00 or t0 � t00: Recall
that the precedence relation is a well�ordered partial order ; each node t 2 T
(except t0) has exactly one immediate predecessor and the set of predecessors

is linearly ordered. The nodes that are not predecessors of any other nodes

are called terminal nodes, and the set of these nodes is denoted by Z: Each
terminal node z induces a unique path �z from the root to z; such paths are

called plays. We also denote by X � T nZ the set of decision nodes.

� A set of players N = f1; :::; Ng and a partition of X into subsets X1; :::;XN
where each Xi denotes the set of player i�s decision nodes.

� An equivalence relation � de�ned on the product spaces Xi � Xi such that
for x0 � x00 2 Xi then the number of immediate successors of x0 is equal

4See, for example, Brandenburger (2007) and Bonnano (2004).
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to the number of immediate successors of x00: Thus, x0 � x00 means that

player i does not have the information to distinguish between x0 and x00:

The equivalence relation allows us to further partition each Xi into subsets
called information sets. We denote by Hi the partition of Xi and by Hi 2 Hi
a typical information set of player i:

� A choice partition which partitions the branches out of nodes in a given

information set of a player into that player�s choices in that information

set. We write x0 !c x
00 if c is the action or choice that leads from x0 to

its immediate successor x00. The choice partition satis�es the following two

conditions: (i) if x0 !c t and x00 !c t then x0 = x00; and (ii) if x0 !c t
0 and

x00 �i x0 then there exists t00 such that x00 !c t
00: We denote by C(Hi) the

set of choices available at the information set Hi:

� A player i�s payo¤ associated with each terminal node which is represented

by a function ui : Z ! R (where R is the set of real numbers).

As is common in the literature, we shall consider only those extensive games in

which every decision node has at least two outgoing branches, and in which no path

from the root to a terminal node crosses any information set more than once. In

the latter case, we require the game to satisfy the so called �no absentmindedness�

condition. Formally, it states:

(NAM) If x0 � x00 and x0 - x00 then x0 = x00 for all x0; x00 2 X :

Within the class of extensive games that we consider, it will prove useful to

distinguish the games which satisfy perfect recall. This property, which was �rst

introduced by Kuhn (1953), requires that no player ever forgets what she knew

and what she did in the past. Formally, the game is of perfect recall if

(PR) For every player k 2 N ; for all nodes x1; x01; x02 2 Xk and t1 2 T and for

every choice c; if x1 !c t1; t1 - x01 and x
0
1 � x02 then there exists nodes

x2 2 Xk and t2 2 T such that x2 � x1; x2 !c t2 and t2 - x02:

We now turn to the de�nitions of strategies.
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De�nition 1 A pure strategy of player i is a function si that maps player i�s

information sets into choices available at those sets such that si(Hi) 2 C(Hi) for
each Hi 2 Hi:

We write si(Hi) = c if si speci�es that player i makes a choice c at Hi: The

set of pure strategies of player i is given by Si � �Hi 2HiC(Hi):

De�nition 2 A mixed strategy of player i is a probability distribution �i on Si so
that �i(si) is the probability of playing si 2 Si:

De�nition 3 A behavioral strategy of player i is a function �i that assigns to

each Hi 2 Hi a probability distribution �Hi over the set of choices available at Hi:

Let �(A) denote the set of all probability distributions on some set A: The

set of player i�s mixed strategies is then given by �(Si) while the set of player i�s

behavioral strategies is given by �Hi 2Hi�(C(Hi)):
Denote by Pz(�i; ��i) the probability of reaching a terminal node z 2 Z in-

duced by the strategy pro�le (�i; ��i):5

De�nition 4 The strategies �0i and �
00
i are equivalent if Pz(�

0
i; ��i) = Pz(�

00
i ; ��i)

for all z 2 Z and all ��i 2 �j 6= i�(Sj):

The de�nition thus states that two (mixed) strategies of player i are equivalent

if they induce the same probability distribution over terminal nodes regardless of

how the opponents play.

Denote by z the path from the root t0 to a terminal node z 2 Z: Note that for
the class of games that we consider every strategy pro�le s � (s1:::; sN ) 2 �i2NSi
induces a unique z: This allows us to state the following de�nitions.

De�nition 5 Given a play z; the strategy si 2 Si is compatible with z if there
exists s�i 2 S�i such that the pro�le (si; s�i) induces z:

De�nition 6 Given information set Hi 2 Hi; the strategy si is compatible with
Hi if there exists s�i 2 S�i such that the path induced by the pro�le (si; s�i) passes
through node x 2 Hi:

5We shall refer to all players other than player i as �player i�s opponents� and denote them
by ��i�.
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For each player i denote by SHi the set of pure strategies that are compatible

with Hi and by SHi(c) the set of pure strategies that are compatible with Hi and

c 2 C(Hi); i.e.,

SHi � fsi 2 Si : si is compatible with Hig;

SHi(c) � fsi 2 Si : si 2 SHi and si(Hi) = cg:

For given probability distribution �i 2 �(Si); de�ne the probability �Hi which
is the restriction of �i on SHi ; i.e.,

�Hi =
X

si 2SHi

�i(si); (1)

and the probability �Hi(c) which is the restriction of �i on SHi(c); i.e.,

�Hi(c) =
X

si 2SHi (c)
�i(si): (2)

Also, for �Hi > 0; de�ne the probability �Hi(c) of making a choice c 2 C(Hi)
conditional on Hi as

�Hi(c) = �Hi(c)�Hi : (3)

If �Hi = 0 then the information set Hi is a �null event� in the sense that it

will never be reached regardless of the strategies chosen by player i�s opponents.

In this case, the conditional probability �Hi(c) cannot be derived from the initial

probability distribution �i: Nevertheless, this feature does not a¤ect our results

since what matters for the analysis is the strategies chosen by player i at the

information sets that can occur with strictly positive probabilities. We thus take

�Hi to be the uniform distribution over available choices in this case.

The following example illustrates these concepts.

Example 1. Consider the game-tree in Figure 1.6 Suppose that, by the rules

of the game, player 1 is allowed to move at x1 and x3 while player 2 is allowed

to move at x2; x4 and x5: In which case, player 1�s information sets are given

6Hereafter, each letter placed along the branch out of a node denotes the choice made at this
node. Note that the choices available at x4 and x5 are the same which re�ects the fact that these
nodes are equivalent.
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Figure 1: Game-tree in Example 1.

by H11 = fx1g and H12 = fx3g while player 2�s information sets are given by
H21 = fx2g and H22 = fx4; x5g: This implies that S1 = fsAE ; sAF ; sBE ; sBF g and
S2 = fsae; saf ; sbe; sbfg:

Consider H11: Since every s1 2 S1 is compatible with H11 then SH11 = S and,
therefore, �H11 = 1: Next, the only strategies which are compatible with H11 and

c = A are sAE and sAF : Hence, SH11(A) = fsAE ; sAF g: Likewise, it can be shown
that SH11(B) = fsBE ; sBF g: Therefore,

�H11(c) = �1(scE) + �1(scF ) = �H11(c) for each c = fA;Bg: (4)

Consider now H12: Since this set can be reached only if player 1 chooses A

at H11; then SH12 = fsAE ; sAF g implying that �H12 = �1(sAE) + �1(sAF ): By

applying a similar reasoning as before, it can be shown that SH12(E) = fsAEg and
SH12(F ) = fsAF g: As a result, we have �H12(c) = �1(sAc) and

�1(sAc) = �H12(c)(�1(sAc) + �1(sAc)) for each c = fE;Fg: (5)
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Let us now turn to player 2 and consider H21: As before, it can be shown that

SH21 = S2; SH21(a) = fsae; safg and SH21(b) = fsbe; sbfg which yields

�H21(c) = �2(sce) + �2(scf ) = �H21(c) for each c = fa; bg: (6)

Finally, consider H22: In which case, every s2 2 S2 is compatible with H22: In-
deed, sbe and sbf are compatible with H22 because the paths induced by (sAF ; sbe)

and (sAF ; sbf ) cross H22 at x4: Similarly, sae and saf are compatible with H22
because the paths induced by (sBF ; sae) and (sBF ; saf ) cross H22 at x5: Since

SH22(e) = fsae; sbeg and SH22(f) = fsaf ; sbfg, we have

�H22(c) = �2(sac) + �2(sac) = �H22(c) for each c = fe; fg; (7)

which completes the discussion. �

Following the approach of Riedel and Sass (2013), we allow each player to

condition her strategy choice on the realization of an ambiguous randomization

device such as an Ellsberg urn. Formally, we state:7

De�nition 7 An Ellsberg strategy of player i is a compact and convex set �i �
�(Si):

The de�nition thus implies that each element �i 2 �i is a mixed strategy of
player i: By analogy with the rectangularity condition imposed by Epstein and

Schneider (2003) on decision maker�s ambiguous beliefs, we impose a rectangular-

ity condition on the Ellsberg strategy �i: Speci�cally, we require that for every

�0Hi corresponding to some �
0
i 2 �i and every �00Hi corresponding to some �

00
i 2 �i;

the combination �0Hi�
00
Hi
corresponds to some �000i 2 �i; provided that �Hi > 0 for

7We will discuss the appropriateness of this de�nition in Footnote 10.
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every �i 2 �i:8 More formally, de�ne the following sets:

�Hi = f�Hi : �i 2 �ig ;

�Hi = f�Hi : �i 2 �ig ;

�Hi = f�Hi : �i 2 �ig :

Denoting by JHi the collection of sets SHi(c); i.e., JHi � fSHi(c)gc2C(Hi); we
state:

De�nition 8 An Ellsberg strategy �i is fJHig-rectangular if for every Hi 2 Hi

�Hi =
�
�Hi�Hi : �Hi 2 �Hi ; �Hi 2 �Hi

	
:

A rectangular set �i can be constructed by, �rst, specifying the set �Hi for

every Hi 2 Hi and, then, using recursively (1)-(3) to determine the relationship
between the corresponding probability measures so as to satisfy the rectangularity

condition.

An alternative way to de�ne a rectangular Ellsberg strategy could rely on

the event-based approach proposed by Epstein and Schneider (2003) to modeling

ambiguous beliefs. Speci�cally, one could view an extensive game as an event-

tree in which each event is represented by a subset of the set of pure strategies

compatible with a choice at some information set. The interpretation is that a

player does not observe the strategy chosen as the realization of a draw from an

Ellsberg urn; what she observes is the choices made at the information sets which

allow her to re�ne the knowledge of the strategy actually played. In this setting,

the information structure would be represented by the �ltration fJHigHi 2Hi where

JHi � fSHi(c)gc2C(Hi) for each Hi 2 Hi; and a rectangular set �i could be
constructed by specifying the sets of one-step-ahead distributions for eachHi 2 Hi:
Although such a speci�cation is equivalent to our speci�cation of �Hi�s and both

approaches yield identical rectangular sets �i�s (if player i has perfect recall), we

do not pursue such a de�nition because it relies on the notion of �time line�along

8 If �0Hi
= 0 for some �0i 2 �i; then �0Hi

can be speci�ed arbitrarily. In particular, it can

be set equal to b�Hi which corresponds to some b�i 2 �i that induces b�Hi > 0: In this case, the
requirement that the combination �0Hi

�00Hi
corresponds to some �000i 2 �i is equivalent to the

requirement that the combination b�Hi�
00
Hi
corresponds to some �000i 2 �i:
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which the information sets can be ordered. While other approaches to de�ne the

rectangularity condition for Ellsberg strategies are possible, we view our approach

as the most parsimonious departure from the standard analysis under expected

utility maximization, which relies on condition (3) to establish the relationship

between mixed and behavioral strategies.

In particular, by analogy with the standard analysis, we allow each player i

to employ stochastically independent Ellsberg urns governing her choices at each

of her information sets instead of employing a unique Ellsberg urn governing her

choice of a mixed strategy (associated with the strategic form of the extensive

game). Formally, we state:

De�nition 9 An Ellsberg behavioral strategy of player i is a function that assigns
to each information set Hi 2 Hi a compact and convex set BHi � �(C(Hi)):

The de�nition thus implies that player i�s Ellsberg behavioral strategy is the

collection of sets B = �Hi 2HiBHi with typical element �i = (�Hi)Hi 2Hi where

�Hi 2 BHi : The set of player i�s behavioral strategies is Bi � �Hi 2Hi�(C(Hi)):
As we explained in the Introduction, our modeling approach captures the idea

of introducing objective ambiguity in a setting of strategic interaction. Players�

preferences in such an environment have been characterized by Gajdos et al. (2008)

who show that in case of strict ambiguity aversion they can be represented by the

utility functionals in the spirit of Gilboa and Schmeidler (1989). In our game-

theoretical setting, this means that each player i evaluates her expected utility not

only with respect to the worst probability distribution induced by her opponents�

ambiguous strategy pro�le ��i but also with respect to the worst probability

distribution induced by her own ambiguous strategy �i; i.e., her expected utility

is given by9

Ui(�i;��i) � min
�i 2�i
��i 2��i

E�i; ��i [ui(z)];

where E�i; ��i is the expectation operator associated with the probability distrib-

utions �i and ��i:10

9Throughout the paper, it will be assumed that each player i has complete knowledge of her
opponents�strategies ��i:
10The above condition, in particular, implies that de�ning Ellsberg strategies as compact and

convex sets of probability measures is without loss of generality. Indeed, if co(cl(�i)) denotes the
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The following de�nition captures the notion of relative amounts of ambiguity

associated with playing the strategies �0i and �
00
i :

De�nition 10 Given the strategy pro�le ��i; the strategy �0i is more ambiguous
than the strategy �00i if for any �

00
i 2 �00i there exists �0i 2 �0i such that Pz(�0i; ��i) =

Pz(�
00
i ; ��i) for all z 2 Z and all ��i 2 ��i:

Note that the above de�nition implies that if �0i is more ambiguous than �
00
i

then it must be Ui(�0i;��i) � Ui(�00i ;��i): Finally, we state:

De�nition 11 Given the strategy pro�le ��i; the strategies �0i and �
00
i are pay-

o¤ equivalent if Ui(�0i;��i) = Ui(�
00
i ;��i): The strategies �

0
i and �

00
i are called

outcome equivalent if they are payo¤ equivalent for every speci�cation of terminal

payo¤s ui.

Note that we do not have a natural notion of outcome distribution in our

Knightian setting; we thus de�ne Ellsberg strategies to be outcome equivalent if

their minimal payo¤s do not depend on the particular terminal payo¤s.

3 Version of Kuhn�s Theorem

In his seminal paper, Kuhn (1953) establishes the relationship between mixed and

behavioral strategies for �nite extensive games. More precisely, he proves the

following result.

Theorem (Kuhn, 1953). An extensive game satis�es (PR) if and only if, for
any mixed strategy �i of every player i 2 N there exists an outcome equivalent

behavioral strategy �i; and vice versa.

In this section, we generalize Kuhn�s Theorem to extensive form Ellsberg games

with ambiguity averse players. We proceed by stating two preliminary results.

convex hull of cl(�i); then we must have (using that E�i; ��i [ui(z)] is a linear function of �i and
��i)

min
�i 2 cl(�i)

E�i; ��i [ui(z)] = min
�i 2 co(cl(�i))

E�i; ��i [ui(z)];

for every ��i 2 ��i:
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Theorem 1. Suppose that an extensive game satis�es (NAM) and the strategy
pro�le ��i is given. Then, for any behavioral Ellsberg strategy Bi there exists a

more ambiguous rectangular Ellsberg strategy �i:

Proof. Given Bi = �Hi 2HiBHi ; set �Hi = BHi for every Hi 2 Hi: De�ne the
rectangular strategy �i such that

�Hi =
�
�Hi�Hi : �Hi 2 BHi ; �Hi 2 �Hi

	
;

for every Hi 2 Hi:
Fix a path z from the root to a terminal node z 2 Z: Suppose that z crosses

the information sets Hj1; :::;HjKj that belong to player j where Kj � 1 for j = i
and Kj � 0 for j 6= i: Denote by cjk the choice of player j at Hjk such that the
branch associated with cjk is contained in z:

Next, choose �i 2 Bi and ��i 2 ��i: For given �i and ��i; de�ne the probabil-
ity e�Hjk(cjk) that player j chooses cjk at Hjk: If j = i then e�Hjk(cjk) = �Hjk(cjk);
while if j 6= i then e�Hjk(cjk) is determined by �j : Since condition (NAM) implies
that no information set can appear more than once along any path from the root

to a terminal node, we have

Pz(�i; ��i) = P z(��i)
KiQ
k=1

�Hik(cik);

where

P z(��i) �
Q
j 6= i

KjQ
k=0

e�Hjk(cjk): (8)

Consider now the mixed strategy �i which assigns to the pure strategy si =

(cHi)Hi 2Hi the probability

�i(si) =
Q

Hi 2Hi

�Hi(cHi): (9)

This strategy is well de�ned, since (using Si = �Hi 2HiC(Hi))

X
si 2Si

�i(si) =
Q

Hi 2Hi

0@ X
cHi 2C(Hi)

�Hi(cHi)

1A = 1:

13



Denote by bSHi(cHi) the set of strategies that require player i to choose cHi at
Hi; i.e.,11 bSHi(cHi) � fsi : si 2 Si and si(Hi) = cHig:

Using (9); we have

X
si 2 bSHi (cHi )

�i(si) = �Hi(cHi)
Q

H0
i 2HinHi

0B@ X
cH0

i
2C(H0

i)

�H0
i
(cH0

i
)

1CA (10)

= �Hi(cHi):

It can be veri�ed that the set of player i�s pure strategies which are compatible

with z is \Ki
k=1

bSHik(cik): Thus, by using (10) and applying a similar argument as
before, we have

Pz(�i; ��i) = P z(��i)
X

si 2\
Ki
k=1

bSHik (cik)
�i(si)

= P z(��i)
KiQ
k=1

0B@ X
si 2 bSHik (cik)

�i(si)

1CA
= P z(��i)

KiQ
k=1

�Hik(cik)

= Pz(�i; ��i):

It remains to show that �i is an element of the rectangular Ellsberg strategy

�i: Note �rst that �i(si) can be written as (again, using si = (cHi)Hi 2Hi)

�i(si) = �Hi(cHi)
Q

H0
i 2HinHi

�H0
i
(cH0

i
)

= �Hi(cHi)
X

cHi 2C(Hi)

Q
H0
i 2Hi

�H0
i
(cH0

i
)

= �Hi(cHi)
X

cHi 2C(Hi)
�i(si):

11Note that, by construction, SHi(c) � bSHi(c) for each c 2 C(Hi):

14



Using the above condition, we have

�Hi(c) =
X

si 2SHi (c)
�i(si)

=
X

si 2SHi (c)
�Hi(c)

X
cHi 2C(Hi)

�i(si)

= �Hi(c)
X

cHi 2C(Hi)

X
si 2SHi (c)

�i(si)

= �Hi(c)�Hi ;

which implies that �Hi can be represented as the product of �Hi and �Hi : Since the

set �Hi comprises all the combinations �Hi�Hi where �Hi 2 BHi and �Hi 2 �Hi ;
�Hi must belong to �Hi : This completes the proof. �

At this point, it is worth clarifying the role of the rectangularity condition

for the result obtained. Speci�cally, if the Ellsberg strategy �i induces the set of

probability measures BHi at each Hi 2 Hi but it is not rectangular then there
exists �i 2 Bi such that neither �i 2 �i induces the same probability of reaching
each terminal node z 2 Z as �i does. The following example illustrates the point.

Example 1 (continued). As before, suppose that player 1 is allowed to move at
x1 and x3: Since there are only two choices available at x1 and x3; her Ellsberg be-

havioral strategy is given by B1 = [�A; �A]� [�F ; �F ] where [�A; �A] and [�F ; �F ]
are the sets of probabilities which correspond to choosing A at H11 and F at H12;

respectively. De�ne the rectangular Ellsberg strategy

�1 = f(�1(sAE); �1(sAF ); �1(sBE); �1(sBF )) : �1(sBE) + �1(sBF ) = 1� �A;

�1(sAE) = �A(1� �F ); �1(sAF ) = �A�F ; �A 2 [�A; �A] and �F 2 [�F ; �F ]g:

It is straightforward to verify that for each �1 2 B1 there exists �1 2 �1

which induces identical probabilities of reaching each z 2 Z: In Figure 2, the
projection of the set �1 onto the (�1(sAE); �1(sAF )) plane is illustrated by the

area QTKM; and the set BH2 is represented by the thick black line connecting

the points (1� �F ; �F ) and (1� �F ; �F ):
Consider now the set b�1 represented by the shaded area QYKW in Figure 2.

This set is not rectangular: even though for any �1 2 b�1 there exists �1 2 B1 such
15



Figure 2: Projection of the set �1 onto the (�AE ; �AF ) plane.
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that �1(sAE) = �A(1� �F ); �1(sAF ) = �A�F and �1(sBE) + �1(sBF ) = 1� �A;
the converse is not true. For example, for �1 = (�A; �F ) there is no �1 2 �1 which
induces the same probability distribution over the terminal nodes as �1 does. �

We now state our second preliminary result.

Theorem 2. Suppose that an extensive game satis�es (NAM) and the strategy
pro�le ��i is given. Then, for any rectangular Ellsberg strategy �i there exists a

more ambiguous behavioral Ellsberg strategy Bi:

Proof. Fix a path z from the root to a terminal node z 2 Z: Suppose that z
crosses the information sets Hj1; :::;HjKj that belong to player j where Kj � 1

for j = i and Kj � 0 for j 6= i: Denote by cjk the choice of player j at Hjk such
that the branch associated with cjk is contained in z:

Choose �i 2 �i and ��i 2 ��i: For given �i and ��i; de�ne the probabilitye�Hjk(cjk) that player j chooses cjk atHjk: Note that, since the Ellsberg strategy �i
is rectangular, then there exist �Hi 2 �Hi and �Hi 2 �Hi such that �Hi = �Hi�Hi
for every Hi 2 Hi: Thus, if j = i then e�Hjk(cjk) = �Hjk(cjk); while if j 6= i thene�Hjk(cjk) is determined by �j : Condition (NAM) implies that no information set
can appear more than once along any path from the root to a terminal node.

Thus, the probability of reaching any terminal node z 2 Z is equal to

Pz(�i; ��i) = P z(��i)
KiQ
k=1

�Hik(cik);

where P z(��i) is given by (8):

De�ne the strategy Bi = �Hi 2HiBHi such that BHi = �Hi for every Hi 2 Hi:
By applying a similar argument as before, it can be shown that

Pz(�i; ��i) = P z(��i)
KiQ
k=1

�Hik(cik) = P z(��i)
KiQ
k=1

�Hik(cik) = Pz(�i; ��i);

for any �i 2 Bi; ��i 2 ��i and all z 2 Z: This completes the proof. �

Once again, it is worth emphasizing the role of the rectangularity condition

since in case of expected utility maximization an analogous result is obtained

under the assumption of perfect recall. In particular, if an extensive game does

not satisfy perfect recall then there are mixed strategies that cannot be generated
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by either behavioral strategy, i.e., they cannot be represented as the product

of the marginal probability � and the conditional probability �: As De�nition 8

implies, our rectangularity condition guarantees that such representation holds

always true. This is because it requires considering only those mixed strategies

which can be decomposed in terms of marginals and conditionals. Consequently,

the assumption of perfect recall becomes super�uous in this case. To see this more

clearly, consider the following example.

Example 1 (continued). Consider player 2 who is allowed to move at x2; x4
and x5 which implies that she does not have perfect recall. Since she has only

two choices available at H21 = fx2g and H22 = fx4; x5g; her Ellsberg behavioral
strategy is given by B2 = [�a; �a]� [�f ; �f ] where �a 2 [�a; �a] and �f 2 [�f ; �f ]
are the probabilities that she chooses a at H21 and f at H22; respectively. Note

that (6) and (7) imply that �2(scec) = �H21(c)�H22(ec) for c = a; b and ec = e; f: Set
BH2i = �H2i for every i = 1; 2 and de�ne the rectangular Ellsberg strategy

�2 = f(�2(sae); �2(saf ); �2(sbe); �2(sbf )) : �2(scec) = �c�ec for c = a; b and ec = e; f
�b = 1� �a; �e = 1� �a; �a 2 [�a; �a] and �f 2 [�f ; �f ]g:

Consider (�2(sae); �2(saf ); �2(sbe); �2(sbf )) = (1=2; 0; 0; 1=2): This mixed strat-

egy cannot be generated by either behavioral strategy. However, it cannot belong

to any rectangular set �2 either because it cannot be decomposed into marginal

and conditional probabilities. �

We now state the main result of this section.

Theorem 3. Suppose that an extensive game satis�es (NAM) and the strategy
pro�le ��i is given. Then, for any rectangular Ellsberg strategy �i there exists an

outcome and payo¤ equivalent behavioral Ellsberg strategy Bi; and vice versa.

Proof. Choose the rectangular Ellsberg strategy �i and the behavioral Ells-

berg strategy Bi such that BHi = �Hi for every Hi 2 Hi: As shown in the
proof of Theorem 1, the strategy �i is then more ambiguous than the strategy

Bi implying that Ui(�i;��i) � Ui(Bi;��i): Likewise, as shown in the proof of

Theorem 2, the strategy Bi is then more ambiguous than the strategy �i im-

plying that Ui(Bi;��i) � Ui(�i;��i): Taken together, the two conditions yield

Ui(Bi;��i) = Ui(�i;��i): �
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Theorem 3 thus states that rectangular Ellsberg strategies and behavioral Ells-

berg strategies are payo¤-equivalent. Note however that this result applies only

to the ex ante choice of these strategies and, therefore, it cannot guarantee that a

player will respect this choice during the course of play. We address this issue in

the following section.

4 Dynamic (in)consistency

It is well established in the literature that dynamic consistency may not hold in

settings where decision maker�s preferences conform to the multiple priors model.

One solution to this problem is proposed by Epstein and Schneider (2003) who

show that dynamic consistency can be restored if decision maker�s beliefs about the

overall uncertainty satisfy a certain rectangularity condition.12 Literally speaking,

this condition requires that the initial set of priors can be constructed by recur-

sively combining all conditional and marginal probabilities corresponding to the

information available at each point of time. The key di¤erence of our setting from

the one developed by Epstein and Schneider is that each player�s beliefs are rep-

resented by the opponents�ambiguous strategies which are assumed to be chosen

independently. Given such an assumption, we can ask whether it is possible to

construct the system of beliefs/strategies satisfying the rectangularity condition

identi�ed by Epstein and Schneider in extensive games with perfect recall.

We begin with the example which demonstrates that this may not be possible

to do if one maintains the assumption that players choose their strategies in a

non-cooperative way.

Example 2. Consider the game in Figure 3 in which each player has perfect
recall. In this game, player 1 moves at the information sets H11 and H12 while

players 2 and 3 move at the information set H21 and H31; respectively. Suppose

12The consistency property in dynamic choice situations appears extensively in the literature.
For example, in a setting where a single decision maker faces multi-stage decision problems, Sarin
and Wakker (1998) illustrate how consistency can be preserved for a class of nonexpected utility
models. Using a somewhat similar approach but focusing on �nancial trading, Riedel (2004)
shows that consistency in risk assessment can be achieved if risk measures satisfy the axioms of
coherence and the axiom of dynamic consistency.
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Figure 3: Extensive game in Example 2.

that the Ellsberg behavioral strategies of players 2 and 3 are given by

B2 = f(�A; �B) : �B = 1� �A and �A 2 [�A; �A] � [0; 1]g; (11)

B3 = f(�E ; �F ) : �F = 1� �E and �E 2 [�E ; �E ] � [0; 1]g: (12)

Thus, if upon arriving at H11 player 1 chooses b with probability one, the set

of the induced probabilities �AF ; �AE and �B corresponding to the events that

the play will continue along the paths AF; AE and B is given by

� = f(�AE ; �AF ; �B) : �AE = �A�E ; �AF = �A(1� �E);

�B = 1� �A; �A 2 [�A; �A] and �E 2 [�E ; �E ]g:

In Figure 4, this set is represented by the trapezium V QSU (for the case �
E
<

�A�E):

To show that player 1 is not dynamically consistent (i.e., her ex ante choice at

H12 is di¤erent from the one that she actually makes upon arriving at this set),
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it su¢ ces to establish that the set � is not rectangular relative to the information

�ltration F � (F1;F2) where F1 = ffAE;AF;Bgg and F2 = ffAEg; fAF;Bgg:
Denote by �uAF and �

u
B the updated probabilities that she assigns to the events

that the play has evolved along the paths AF and B upon arriving at H12: �uAF
and �uB are obtained by updating all probability measures in � according to the

Bayes�rule which gives rise to the following set of updated priors

�u = f(�uAF ; �uB) : �uAF = 1� �uB and �uB 2 [�uB; �
u
B]g;

where

�uB =
1� �A
1� �A�E

and �
u
B =

1� �
A

1� �
A
�
E

:

In Figure 4, the set �u is given by the thick black segment of the line having

slope �1: Next, as it has been noticed by Epstein and Schneider (2002), in order
to construct a rectangular set of priors that induces �u; the marginal probability

of reaching H12 can be speci�ed in an arbitrary way. Since this probability is equal

to 1� �AE ; we can write the rectangular set of priors as

f(�AE ; �AF ; �B) : �AF = �
u
AF (1� �AE); �B = �uB(1� �AE);

�AE 2 [�
A
�
E
; �A�E ] and (�

u
AF ; �

u
B) 2 �ug:

In Figure 4, this set is represented by the trapezium PTY J which includes the

trapezium V QSU (i.e., the set �) and the four triangles V TQ; QY S; SJU and

UPV: The �gure makes it clear that the rectangularity condition necessarily fails

in this example.

Remark: Our conclusion would continue to hold if instead of having two players

moving at H21 and H31 we had a single player employing stochastically indepen-

dent ambiguous randomization devices at those information sets. �

Example 2 shows that dynamic consistency implicit in Kuhn�s Theorem cannot

be achieved in every extensive game with imperfect information even if it satis�es

perfect recall.13 Given that each player�s information �ltration is induced by the

13As Brandenburger (2007) shows (see, Example 3.4), if players are allowed to use only unam-
biguous strategies then dynamic consistency may be violated if the game does not satisfy perfect
recall. Allowing players to use ambiguous strategies in such games makes it even more di¢ cult
to achieve dynamic consistency.
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Figure 4: Rectangular set of priors in Example 2.
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structure of the game, we can ask whether it is possible to derive restrictions on

the structure of the game so that dynamic consistency can be implemented by

suitably choosing the pro�le of ambiguous strategies.

As Example 2 suggests, this may be impossible to do in games in which the

information structure requires a player to form beliefs over the histories of play in

some information set by using the probability distributions over her opponents�

actions in more than one information set. To rule out such situations, we impose

the following condition (�RI�stands for �Relevant Information�):

(RI) For each player k 6= l; all nodes x0; x00 2 Xk and x 2 Xl and for every choice
c0; if x!c0 x

0 and x0 � x00 then there exists a choice c00 such that x!c00 x
00:

The above condition states that every node in player k�s information set is an

immediate successor of the same node in player l�s information set. By analogy

with the temporal precedence relation over nodes, we can say that this condition

induces a temporal precedence relation over information sets in the following sense:

set Hl is an immediate predecessor of set Hk or set Hk is immediate successor of

set Hl if there exists node x 2 Hl which is an immediate predecessor of every node
in Hk:

Note also that recursively applying this condition to all information sets of each

player yields that any two paths ending at player k�s information set must pass

through the same sequence of nodes of that player and contain identical actions

at all such nodes. This in turn implies that player k must have perfect recall. The

following lemma con�rms this intuition.

Lemma 1. If an extensive game satis�es (RI) then it satis�es (PR).

Proof. Fix any x01; x
0
2 2 Xk such that x01 � x02: If (PR) is not satis�ed, then there

must exist x1; x2 2 Xk and t1; t2 2 T such that xi !ci ti; ti - x0i for each i = 1; 2
and c1 6= c2: Since each node has exactly one immediate predecessor, then the

paths from x1 to x01 and from x2 to x02 must di¤er. As a result, there must exist

t01; t
0
2 2 T such that t0i !c0i

x0i for each i = 1; 2 and c
0
1 6= c02: This contradicts (RI).

�

Although condition (RI) guarantees that every time when a player is called

upon to move she needs to make a conjecture about her opponent�s moves in
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Figure 5: Extensive game in Example 3.

only one immediately preceding information set, still it might not su¢ ce to ensure

dynamic consistency. The following example illustrates this point.

Example 3. The game in Figure 5 satis�es (RI). In this game, player 1 moves at
H11; H12 and H13 while player 2 moves at H21: A distinct feature of this game is

that player 1�s choice at H11 in�uences her information �ltration F : In particular,
F is given by (F1;F2) where F1 = fA;B;Cg and F2 = ffAg; fB;Cgg if she
chooses a; and it is given by (F 01;F 02) where F 01 = F1 and F 02 = ffA;Bg; fCgg if she
chooses b: The dynamic consistency fails in this example because the requirement

that player 2�s strategy B2 = BH21 is rectangular with respect to the �ltration

(F1;F2) is incompatible with the requirement that it is rectangular with respect
to the �ltration (F 01;F 02):

To show this, consider Figure 6 which gives a two-dimensional representation

of any probability measure in B2: In the �gure, the horizontal axis corresponds to

the probability of state C; denoted by �C ; while the vertical axis corresponds to

the probability of state B; denoted by �B: By applying a similar argument as the

one in Example 2, it can be shown that typical sets which are rectangular relative

to the �ltrations (F1;F2) and (F 01;F 02) would be given by the trapezia QY JP and
V TSU; respectively. The �gure makes it clear that the set B2 cannot satisfy both
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Figure 6: Rectangular sets of priors in Example 3.

rectangularity conditions. �
Guided by this example, we impose another condition which we call �Consis-

tency of Information Filtration�(hereafter, �CIF�).

(CIF) For each player k 6= l; all nodes x1; x2; bx1; bx2 2 Xk and x; bx 2 Xl and for
all choices c1 and c2; if x � bx; x1 � x2; x !c1 x1; x !c2 x2; bx !c1 bx1 andbx!c2 bx2 then bx1 � bx2:

Condition (CIF) states that if player k cannot distinguish between two choices

of player l at one node of the immediately preceding information set then the same

must hold true for every other node in that information set. It thereby implies

that there is no reason for player k to base her conjecture, as to what player l did

right before the time when she is called upon to move, on the history of play up

to that time (hence, the term �Consistency of Information Filtration�).

In what follows, we shall restrict attention to the class of extensive games that

satisfy conditions (RI) and (CIF). This class is su¢ ciently more restrictive than
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the class of extensive games with imperfect information but is su¢ ciently less

restrictive than the class of extensive games with perfect information.

As is explained above, condition (RI) implies that what matters for player

k upon arriving at the information set Hk is the knowledge of the probability

distribution over player l�s choices at the immediately preceding information set

Hl: In turn, condition (CIF) implies that the partition of the event space which

comprises all the choices available at Hl is invariable across the nodes in Hl:

Denote by Hk(Hl) the collection of Hk�s which are immediate successors of Hl
and by Ck(Hl) � C(Hl) the set of choices in Hl which lead to Hk 2 Hk(Hl); i.e.,

Ck(Hl) � fc : c 2 C(Hl) and x!c x
0 for some x 2 Hl and all x0 2 Hkg:

Also, denote by CO(Hl) the set of choices in Hl which lead to terminal nodes,
i.e.,

CO(Hl) � C(Hl)n [
Hk 2Hk(Hl)

Ck(Hl):

Thus, at any point of time before the game reaches any Hk 2 Hk(Hl) the
information structure of player k (regarding continuation play starting at Hl) can

be represented by the �ltration FHl � (F0Hl ;F
1
Hl
) where

F0Hl = C(Hl) and F
1
N = ffCO(Hl)g; fCk(Hl)gHk 2Hk(Hl)g:

For any probability measure �Hl 2 BHl de�ne a marginal, or one-step-ahead,
distribution �0+Hl which is the restriction of �Hl to F

1
Hl
: Denote also by �1Hl the

conditional distribution (i.e., the Bayesian update) given F1Hl : By applying the
standard decomposition in terms of marginals and conditionals, we have

�Hl =

Z
�1Hld�

0+
Hl
: (13)

Denote by B0+Hl the set of one-step-ahead distributions and by B
1
Hl
the set of

conditional distributions induced by all the probability measures in BHl : Following

Epstein and Schneider (2003), we de�ne a rectangular set of priors.
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De�nition 12 The set BHl is FHl-rectangular if

BHl =

�Z
�1Hld�

0+
Hl
: �1Hl 2 B

1
Hl
and �0+Hl 2 B

0+
Hl

�
:

Using this, we de�ne a rectangular Ellsberg behavioral strategy.

De�nition 13 The Ellsberg behavioral strategy Bl = �Hl 2Hl
BHl is rectangular

if BHl is FHl-rectangular for every Hl 2 Hl.

De�nition 14 The pro�le of Ellsberg behavioral strategies B = (B1; :::; BN ) is

rectangular if Bl is rectangular for every l 2 N :

Since, by assumption, each player k is averse to uncertainty created by her

opponents playing the strategy pro�le B�k; her ex ante expected utility from

using strategy �k 2 Bk is given by

Uk(�k; B�k) = min
��k 2B�k

X
z 2Z

Pz(�k; ��k)uk(z);

where Pz(�k; ��k) is the probability of reaching a terminal node z 2 Z induced

by the strategy pro�le (�k; ��k):

De�nition 15 Given the opponents� strategy pro�le B�k; the strategy b�k is ex
ante optimal for player k if Uk(b�k; B�k) � Uk(�k; B�k) for all �k 2 Bk:

Denote by �Hk+ the continuation strategy induced by �k at Hk and all the

information sets that follow Hk; by B�k;Hk+ the components of B�k that corre-

spond to the information sets that follow Hk; and by �Hk the set-valued beliefs

of player k over the histories in Hk: Given �Hk and B�k;Hk+; de�ne player k�s

expected utility from playing �Hk+ at Hk as

Uk(�Hk+;�Hk ; B�k;Hk+jHk) = min
��k;Hk+ 2B�k;Hk+

Hk
2�Hk

X
z 2Z

Pz(�Hk+; Hk ; ��k;Hk+jHk)uk(z);

where Pz(�Hk+; Hk ; ��k;Hk+jHk) is the probability of reaching a terminal node
z 2 Z conditional on Hk:
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De�nition 16 Given the opponents� strategy pro�le B�k; the strategy b�k is op-
timal at Hk 2 Hk if Uk(b�Hk+;�Hk ; B�k;Hk+jHk) � Uk(�Hk+;�Hk ; B�k;Hk+jHk)
for all �k 2 Bk:

We now state the main result of this section.

Theorem 4. Suppose that (i) an extensive game satis�es (RI) and (CIF), and
(ii) the strategy pro�le B�k is rectangular. Then, b�k is ex ante optimal if it is
optimal at each Hk 2 Hk:

Proof. Suppose that b�k is optimal at each Hk 2 Hk but it is not ex ante opti-
mal. Then, there must exist �k such that �Hk+ 6= b�Hk+ for some Hk 2 Hk and
Uk(�k; B�k) > Uk(b�k; B�k):

Let � � (�k; ��k); �Hk+ � (�Hk+; ��k;Hk+) and

E�[uk(z)] �
X
z 2Z

Pz(�)uk(z);

EHk ;�Hk+
[uk(z)jHk] �

X
z 2Z

Pz(Hk ;�Hk+jHk)uk(z):

Since the game satis�es (RI), there must exist information set Hl 2 Hl which
immediately precedes Hl: Denote by ZHl the set of terminal nodes such that for
every z 2 ZHl the path z passes through Hl:14 In which case, the expression for
E�[uk(z)] can be written as

E�[uk(z)] =
X

z 2ZHl

Pz(�)uk(z) +
X

z 2ZnZHl

Pz(�)uk(z): (14)

Denote by zc 2 ZHl the terminal node that follows c 2 CO(Hl); by PHl(�)
the probability of reaching Hl;15 and by Pz(�Hk+; ��k;Hk+jc) the probability of
reaching z conditional on Hl and c 2 Ck(Hl):

Since the game satis�es (CIF), the partition of C(Hl) relative to the information
sets that immediately follow Hl is invariable across the nodes in Hl: Hence, the

14Note that for the class of games that we consider the path z is unique for every z 2 Z and
it crosses any information set only once.
15We write PHl(�) for notational simplicity, even though only those components of � that

correspond to the information sets which appear along the paths ending at Hl will a¤ect this
probability.
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�rst term in (14) can be written as

X
z 2ZHl

Pz(�)uk(z) = PHl(�)

0@ X
c2CO(Hl)

�Hl(c)uk(zc) (15)

+
X

Hk 2Hk(Hl)

X
c2Ck(Hl)

�Hl(c)
X

z 2ZHl

Pz(�Hk+jc)uk(z)

1A :
Using the fact that �Hl can be decomposed into marginals and conditionals,

according to (13); we have

X
z 2ZHl

Pz(�)uk(z) = PHl(�)

0@�0+Hl (O) X
c2CO(Hl)

�1Hl(c)uk(zc) (16)

+
X

Hk 2Hk(Hl)

�0+Hl (Hk)
X

c2Ck(Hl)
�1Hl(c)

X
z 2ZHl

Pz(�Hk+jc)uk(z)

1A :
The rectangularity condition also implies that �Hk = B1Hk because each ele-

ment in B1Hk corresponds to the Bayesian update of the histories in Hk: Hence,

E�1Hk ;�Hk+
[uk(z)jHk] =

X
c2Ck(Hl)

�1Hl(c)
X

z 2ZHl

Pz(�Hk+jc)uk(z): (17)

By supposition, the Ellsberg behavioral strategy B�k is rectangular which

implies that the set BHl is FHl-rectangular. Due to this rectangularity condition,
the problem of minimizing any function over the set BHl can be decomposed into

two independent problems of minimizing this function over the sets B1Hl and B
0+
Hl
:

Denoting by B�knHl the collection of the components of B�k except BHl ; the

expression for Uk(�k; B�k) can then be written as

Uk(�k; B�k) = min
��k 2B�k

E�k;��k [uk(z)] (18)

= min
��knHl2B�knHl

min
�1Hl

2B1Hl
�0+Hl

2B0+Hl

E�k;�1Hl ;�
0+
Hl
;��knHl

[uk(z)];
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where the minimand in the above expression is given by (using (14); (16) and (17))

E�k;�1Hl ;�
0+
Hl
;��knHl

[uk(z)] (19)

= PHl(�)

0@�0+Hl (O) X
c2CO(Hl)

�1Hl(c)uk(zc)

+
X

Hk 2Hk(Hl)

�0+Hl (Hk)E�1Hl ;�Hk+
[uk(z)jHk]

1A
+

X
z 2ZnZHl

Pz(�)uk(z):

As we explained above, �Hk = B
1
Hk
for every Hk 2 Hk(Hl): Using (18); (19)

and the expression for Uk(�Hk+;�Hk ; B�k;Hk+jHk); we thus have
16

Uk(�k; B�k) = min
��knHl2B�knHl

min
�1Hl

2B1Hl
�0+Hl

2B0+Hl

PHl(�)

0@�0+Hl (O) X
c2CO(Hl)

�1Hl(c)uk(zc)

+
X

Hk 2Hk(Hl)

�0+Hl (Hk)Uk(�Hk+; B
1
Hk
; B�k;Hk+jHk)

1A
+

X
z 2ZnZHl

Pz(�)uk(z):

From the above expression it follows that if �Hk+ 6= b�Hk+ for some Hk 2
Hk(Hl) and b�Hk+ maximizes Uk then it must be

Uk(��Hk ; �Hk+; B�k) � Uk(b�k; B�k);
where ��Hk stands for all components of �k other than �Hk+: This contradicts

the supposition that Uk(�k; B�k) > Uk(b�k; B�k): �
16We write ��knHl

2 B�knHl
in the minimization problem for notational simplicity, even

though the components that correspond to the information sets that follow Hl are re�ected in
Uk(�Hk+

; B1
Hk
; B�k;Hk+jHk) for every Hk 2 Hk(Hl):
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5 Concluding remarks

In this paper, we make three primary points. First, we prove that �nite extensive

games with objective ambiguity can equivalently be analyzed using ambiguous

behavioral and ambiguous mixed strategies, as long as the latter strategies satisfy

the rectangularity condition. In contrast to the standard Kuhn�s Theorem, this

result does not rely on the assumption of perfect recall. However, it applies only

to the ex ante choice of ambiguous strategies and, as such, it cannot be relied

upon in ensuring dynamic consistency. Second, we show by means of examples

that even in games satisfying perfect recall it might be impossible to achieve

dynamic consistency if one maintains the assumptions that players choose their

(ambiguous) strategies in a non-cooperative way. Finally, we argue that, in order

to ensure dynamic consistency, one must impose restrictions not only on the ex

ante choice of ambiguous strategies but also on the structure of a game. Overall,

our results lay the foundation for studying equilibrium notions in games where

players are capable of creating ambiguity.
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