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Cautious Belief Formation

Jörg Bleile∗
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Abstract

We provide an axiomatic approach to a belief formation process in an informational environment

characterized by limited, heterogenous and differently precise information. For a list of previously

observed cases an agent needs to express her belief by assigning probabilities to possible outcomes.

Different numbers of observations of a particular case give rise to varying precision levels associated

to the pieces of information. Different precise information affects the cautiousness and confidence

with which agents form estimations. We modify the Concatenation axiom introduced in Billot,

Gilboa, Samet and Schmeidler (BGSS) (Econometrica, 2005) in a way to capture the impact of

precision and its related perceptional effects, while still keeping its normative appealing spirit. We

obtain a representation of a belief as a weighted sum of estimates induced by past cases. The

estimates are affected by cautiousness and confidence considerations depending on the precision

of the underlying observed information, which generalizes BGSS. The weights are determined by

frequencies of the observed cases and their similarities with the problem under consideration.
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1 Introduction and Motivation

Beliefs of agents are important ingredients in many economic models dealing with uncer-

tainties. Belief formation is studied recently in environments with limited and heteroge-

nous information, that are not suitable to be modeled in the widely used and accepted

state space framework of Savage (1954) and Bayes. Lacking a state space representation

of uncertainties an agent needs to form her belief explicitly by directly using available

information.

We axiomatize a belief formation process based on limited, differently relevant and

precise available information. Our main axiom modifies the concatenation axiom in Billot

et al. (2005)(BGSS), which precludes the impact of agents’ perceptions and reactions

to differently precise information. Their axiom says, that for any two information sets

the belief induced by their combination can be expressed as a weighted average of the

beliefs induced by each information set separately. The averaging of beliefs induced by

any arbitrary information sets requires a cognitive challenging tradeoff of identical, but

differently precise information contained in the particular information sets. Our axiom

says, that agents, that care about precision of information, can only average beliefs (in

a normatively reasonable way) induced by specific - almost disjoint - information sets.

Thereby, we focus not only on the precision itself, but also on its perception and impact

in form of cautiousness and confidence feelings.

The most prominent and often used models to describe and analyze uncertainty in eco-

nomic theory are versions of the approach of Savage and Bayes. The fundamental idea

in this approach is to model uncertainty by a grand state space, which is sufficiently rich

to describe and resolve all possible sources of uncertainties. In this way a state space

implicitly incorporates some (perfect) belief (and theorization about structures and rela-

tionships) about the future and thereby requires a large (often un-achievable) imagination

and theorization task of agents. In addition, insufficient (or too complex) information may

preclude the derivation or definition of a grand state space. Another principle of the state-

based approach is the representation of a belief as an unique probability over the grand

state space. In this framework a purely subjective probability distribution over states can

be endogenously deduced from preferences, which inherently lacks an explicit description

of the formation of the belief that generated the preference 1.

There is basically only one way to deal with these two difficulties. Sticking to the grand

state space-principle, but abandoning the subjective prior approach, would precludes an

direct (objective) assignment of probabilities, since the state space already encodes all

available information. More promising is to give up the representation of uncertainty

by a state space, when an agent is (cognitive) incapable to translate information into

(imagined and theorized) states or the information is not all encompassing as needed for

the ”correct” description of a grand state space. In many real-life situations list of pieces of

information (databases) represent our informational basis. We will replace the state space

as an information aggregation by such a database representation of (actually observed)

information (data-points or recalled cases).

A belief based on a database needs to explicitly incorporate factual objective knowledge,

1See Gilboa et al. (2012) for extensive discussion of these issues.
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characteristics and theoretical considerations provided by the present database. In general,

belief formation based on a database is very close to the goal of statistical inference. In

contrast to mainly asymptotic considerations in statistical inference, our focus (as in BGSS

and Eichberger and Guerdjikova (2010) (EG)) lies on behavioral foundations (axiomati-

zations) of a belief formation and the analysis of small databases containing differently

precise information.

Usually statistical experiments are dealing with identical observations, which are equally

relevant. However, since small or medium sized databases contain limited and heterogenous

information agents might want to take into account not only (a few) identical but also

partially relevant observations for their belief formation. In this sense - differently to

statistical experiments - relevance or similarity measures become important, when data

sets contain limited heterogenous information.

Case-based Decision Theory (Gilboa and Schmeidler (1995, 2001)) deals with such a

framework in decision theoretic contexts. BGSS can be interpreted as an adoption of it to

belief formation 2. Their axiomatized belief describes a generalized (subjective) frequentist,

in which agents assign different similarity weights to information with different degree of

relevance. For a new problem and given a database of past observations, their belief over

possible outcomes is represented as a similarity weighted average of estimates, that are

induced by the observed cases.

Their main concatenation axiom deals with relationships between databases and their

induced belief. It requires that for a new problem x the belief P (probability vector over

outcomes for x) induced by the combination (concatenation) of any two databases (D◦E),

is a weighted average of the belief induced by each single database (D and resp. E)

separately, i.e. for all databases D and E, there exists a λ ∈ (0, 1) such that

P (x,D ◦ E) = λP (x,D) + (1− λ)P (x,E)

Our paper deals mainly with the modification of this concatenation axiom in order to

allow for impacts of precision of information and its induced cautiousness and confidence

concerns. Additionally, our precision dependent belief formation is suitable for small

databases, which is only partially possible and reasonable for BGSS.

The concatenation axiom shows some irrelevance of growing precision. The belief in-

duced by a database coincides with the belief induced by arbitrary many replications of

the same database, i.e. P (x,D) = P (x,DT ) for all T ∈ N. Growing precision might not

be a concern for sufficiently rich and large databases such that observing additional iden-

tical information will not affect her predictions. However for small database, specifically

consisting only of one piece of information c, it is unreasonable that additional observa-

tions do not induce some learning and refinement of an already ”perfect” estimation, i.e.

P (x, cT ) = P (x, c) for all T.

In this way the concatenation axiom implies that one observation carries already any-

thing, that can be inferred by arbitrary many confirming observations. Such a instanta-

neous learning in a highly objective (and perfect) way of forecasting appears to be ques-

tionable and un-intuitive. For instance consider a situation, in which an agent throws a

2Related also to Gilboa and Schmeidler (2003) and Gilboa et al. (2011) and related Gilboa (2009).
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dice once and the figure six results. A guess of the outcome of the next throw of the dice

would differ form the estimation an agent would come up after observing one million times

a six in one million throws of that dice. However roughly speaking, the concatenation

axiom requires that an agent would infer right after the first dice throw that all sides of

the dice show the figure six, without any doubt. A procedure to base the estimation on

just one observation appears to be in-cautious, hazardous (error-prone) and unrealistic and

cannot be considered as an appealing normative advice. In fact, as in controlled statistical

experiments, additional (identical) confirming observations may serve as a proxy for its

increased informativeness, precision or accuracy, which should be reflected in a dynamic

learning and refinement of the estimations.

In addition, increasing precision might affect estimations through its perception in form

of altered cautiousness (to wrongly eliminate some outcomes) with which the forecast is

made and her changed confidence in this forecast3. If information becomes more precise, an

agent’s decreased cautiousness and increased confidence might allow to specify their pre-

diction. After receiving substantial information of disconfirming evidence that makes some

outcomes negligible, agents even might want to eliminate some (not observed) outcomes.

More general, differently precise information should lead to different induced beliefs, i.e.

P (x, cT ) 6= P (x, cL) for different L, T ∈ N, which contradict the concatenation axiom and

requires a modification in order to incorporate precision and cautiousness issues.

In general, the concatenation axiom is stated for any kind of databases, but (with regard

to potentially induced different precise estimations) it is most appealing and appropriate

as a normative advice for disjoint databases. For disjoint databases, the belief induced

by the concatenated database can be quite intuitively interpreted as an average of the

beliefs induced by the single databases separately, since no pieces of information appear in

different precision in different databases and cause conflicting considerations. The average

is determined solely by a weighting of the relevances of the concatenating databases.

However, we will explain, that for unrestricted non-disjoint databases - with common,

but differently precise pieces of information - the normative appealing spirit of averaging

beliefs conflicts with a simultaneous care about precision and cautiousness in the belief

formation 4.

A first obvious modification deals with the issue, that a precision related concate-

nation axiom cannot be formulated for pure (non-disjoint) concatenating database, but

would require additional information, such that averaging occurs according to P (D ◦E) =

λP (DL) + (1− λ)P (ET ) for some appropriate L, T ∈ N (which we will specify later). For

example consider the concatenation of the easiest non-disjoint databases (c7) = (c3) ◦ (c4).

By definition, the beliefs induced by combining databases (e.g. (c3), (c4)) are based on

less precise pieces of information (and hence also their weighted average) than the beliefs

based on the combined database (e.g. (c7)). Thus, for a cautious agent, that cares about

precisions, the information contained in concatenating databases may not be sufficient for

a belief formation according to the (unmodified) concatenation axiom5.

3See Ellsberg (1961) (p.657): ”What is at issue might be called the ambiguity of this information, a quality depending
on the amount, type, reliability, and ”unanimity” of information, and giving rise to ones degree of ”confidence” in an
estimate of relative likelihoods.”

4Stating the axiom only in terms of disjoint databases does not offer sufficient structure to derive a belief formation.
5This problematic issue does not appear in the concatenation axiom of BGSS, where precision is (endogenously)

neglected and one appearance of a case captures already all information.
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However, in general there are no replications T and L, such that each single pieces

of information is captured in equal precision in all involved databases D ◦ E, DT and

EL. These differences in precision of single common cases complicate the averaging of the

beliefs. Determining the average weight cannot anymore be interpreted as normatively ap-

pealing comparison based solely on relative relevance of the particular databases. Rather,

it is a result of a cognitive challenging (impossible) interwoven tradeoff, balancing and

aggregation of different emphasis an agent assigns to single pieces of differently precise

information in the various database. Moreover, the average weight might need to reflect

also the compensation for failures of the compulsory (by the axiom) incorporation of rel-

ative more imprecise estimations (based on the same kind of information) contained in

some beliefs than in others. Therefore, a (modified) concatenation axiom allowing for all

(replicated) databases leads to the serious problem, that agents might be cognitively over-

strained by averaging beliefs based on several identical information with different precision

levels6.

As a consequence, we propose a restriction on databases to be admissible for our modi-

fied version of the concatenation axiom, such that it sustains its normative appealing spirit.

Our anchored concatenation axiom restricts databases to a specific (almost disjoint) struc-

ture consisting of only two cases, where only exactly one of these cases (the anchor) appears

in all involved databases. The main feature is, that this single common (non-disjoint an-

chor) piece of information is contained in all involved databases in equal precision. This

enables an easy averaging of beliefs without cognitively demanding compromising between

estimations induced by differently precise observations. In addition, the equal appearance

of the anchor case in all involved databases intuitively allows to ”neglect” its effect in

determining the average weights and to compare only the relative importance of the pieces

of information, that appear only in exactly one of the involved databases. This facilitates

a very straightforward way to find the average weights for the beliefs - almost in the spirit

of averaging beliefs induced by disjoint databases.

In order to take into account the precision of beliefs induced by databases, our agent

focusses on the most precise and hence reliable information in the database. Since it is

impossible to capture all information in its actual precision level perfectly in a non-disjoint

combination of databases (as explained above), our agents require to cover at least the most

precise information objectively in her belief. Consequently our axiom requires, that there

exists no distortion of the most reliable information in the process of averaging beliefs. To

achieve this, the precision of most reliable information in the concatenated database must

be conveyed by the single beliefs induced by the corresponding admissible (sufficiently

replicated) databases used for the concatenation.

Besides BGSS, the closest work to ours is the axiomatization of multi-prior beliefs in

Eichberger and Guerdjikova (2010) (EG) ”Case based belief formation under ambiguity”.

Their extension of the framework of BGSS aims to formalize two kinds of ambiguity caused

by insufficient information (vanishing ambiguity) and irrelevant information (persistent

ambiguity). The focus in their paper lies predominantly on the introduction of a multi-

prior setup for an information environment with persistent ambiguity. Whereas our work

6Alternatively, if one would stick to general non-disjoint databases, then the only way to ”unify” the differently precise
information in all involved databases is given by assuming ad hoc some arbitrary (imagined) level of precision, according
to which all cases are evaluated independent of their actual observation. This will be discussed in detail in Section 6.1.
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focuses on the analysis of precision in the sense of vanishing ambiguity (imprecision) and

related cautiousness in a single prior belief. EG’s modification of the concatenation axiom

of BGSS is adequate to specify how beliefs over outcomes change in response to additional

information and tackles also the mentioned drawback of BGSS regarding irrelevance of

growing precision of information. Different to our work, their modification reflects the idea

of ”controlling for the ambiguity ” (p.4) (precision) by restricting the involved databases to

equal length. However, as discussed above controlling for precision by equal lengths of the

involved databases is not sufficient to control for different precise information contained in

these databases. As a direct consequence, EG’s modification of the concatenation axiom

assumes (and does not prevent) that agents are (cognitively) able to aggregate and balance

information of the same kind, but in different precision. In contrast, the focus of our paper

lies exactly on the issue to avoid such cognitive challenging or even impossible tradeoffs in

the aggregation of differently precise information and to keep the spirit of a normatively

reasonable and easy averaging procedure. Moreover, in general EG’s axiom implies that

no estimation is based on objectively present information in the database, which would

require (in our context) that agents need to imagine the (true) cautiousness feeling evoked

by a precision level that is imagined as well. In contrast our approach implicitly requires

only the ability to estimate based on already experienced cautiousness and thus avoids

imaginations of unexperienced feelings of cautiousness.

In sum, adopting parts of the axiomatization of BGSS and EG, our anchored concatena-

tion axiom will allow for a structural similar belief representation as in BGSS and EG. All

three axiomatized representations differ in the way, how they treat information of different

qualities of precision. BGSS does not take into account precision at all and EG captures

the effect of (persistent) ambiguous information by a set of beliefs, which are based on

precision-dependent estimates, where the level of (imagined) precision is according to the

total amount of information contained in the entire database. In our representation the

cautiousness related estimates are based on the level of precision and cautiousness induced

by the most precise information in the database. More precisely, for a new problem and

a given database, its induced belief can be represented as a similarity-weighted average of

cautious estimates induced by past observations in the database. Thereby the similarities

and estimates are endogenously derived.

The remainder of the paper is organized as follows. In the next section we will outline

the model and in Section 3 we develop an example to illustrate reasonable belief formations

and our leading example. Then the axioms are stated and discussed, where the central

Section 5 points out the drawbacks and necessary modification of the concatenation axiom

to incorporate precision, which eventually leads to our version of the concatenation axiom.

Section 6 presents and discusses the main representation result. Section 7 concludes the

paper. Appendix A and B contain both directions of the proof, where B.4 gives a rough

sketch of the main part of the proof. The rest of the Appendix deals with an objective

belief, the relationship to EG’s axiom and an alternative axiomatization of a very cautious

belief.
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2 The model

2.1 Cases and Databases

A basic case c = (x, r) consists of a description of the environment or problem x ∈ X and

an outcome r ∈ R, where X = X1 × X2 × .... × XN is a finite set of all characteristics

of the environment, in which Xj denotes the set of possible values features j can take. R

denotes a finite set of potential outcomes, R = {r1, ..., rm}.
The set C ⊆ X ×R consists of all m basic cases, i.e. |C| = m.

A database D is a sequence or list of basic cases c ∈ C. The set of databases D consisting

of L cases, i.e. D = ((x1, r1), ..., (xL, rL)) is denoted by CL and the set of all databases

by C∗ = ∪L≥1CL. The description of databases as sequence of potentially identical cases

allows multiple observation of an identical case to be taken into account and treated as an

additional source of information.

For a database D ∈ C∗, fD(c) denotes the relative frequency of case c ∈ C in databases D.

We need some definitions for the framework of database.

The concatenation of two databases D = (c1, c2, ..., cL) ∈ CL and E = (c′1, c
′
2, ..., c

′
T ) ∈ CT

is denoted by D ◦ E ∈ CL+T and is defined by D ◦ E := (c1, c2, ..., cL, c
′
1, c
′
2, ..., c

′
T ).

In the following we will abbreviate the concatenation or replication of L-times the identical

databases D by DL. Specifically, cL represents a database consisting of L-times case c.

If a case c ∈ C appears in a database D, i.e. fD(c) > 0, we write c ∈ D.

Two databases D and E are called disjoint if for all c ∈ C: c ∈ D if and only if c 6∈ E.

2.2 Induced Beliefs

For a finite set S, ∆(S) denotes the simplex of probability vectors over S and for n ∈ N
∆n denotes the simplex over the set {1, 2, ..., n}.
An agent will form a belief over the outcomes P (x,D) ∈ ∆(R) in a certain problem char-

acterized by x ∈ X using her information captured in a database D ∈ C∗, i.e.

P : X × C∗ → ∆(R). The restriction to databases of length T is denoted by PT (x,D) ∈
∆(R) for D ∈ CT and PT : X × CT → ∆(R).

One can interpret PT (x,D) as the belief over outcomes induced by database D ∈ CT (given

environment or problem x ∈ X).

Throughout the paper the problem x is fixed, therefore x is often suppressed in the follow-

ing, i.e. P (x,D) = P (D).

3 Motivating examples

3.1 Exemplary development of a belief formation process

A doctor needs to evaluate the likelihood of potential outcomes of a specific treatment.

Let a patient be described by a vector of characteristics x ∈ X, where X might consist of

measures of characteristics like age, gender, weight, height, blood pressure, temperature,

blood count, vital signs, medical history, drug tolerability, etc.

The doctor might have observed several outcomes of the treatment in the past, which are

collected in a set R, containing e.g. feels better, worse or unchanged, measures of side
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effects like headaches, sleepy, depressive, passed out, giddy, dizzy, etc.

The doctor has acquired some working experience prescribing this treatment and/or has

access to some medical record on this treatment. Thus, she is able to base her judgement on

past experience or observations collected in a database D = (c1, ..., cT ), where in each case

ci the characteristic and the observable outcome of patient i is recorded, i.e. ci = (xi, ri),

where xi ∈ X and ri ∈ R. It means that a patient characterized by xi responded to the

treatment with outcome ri.

Given the characteristics x ∈ X of a current patient and her available information and ex-

perience in form of a database D, the doctor derives a probabilistic belief P (x,D) ∈ ∆(R)

over potential outcomes in R for this treatment. How can she do the evaluation?

a) A first intuitive approach for the prediction is, to consider only patients in the

database, which are identical (with respect to the measured characteristics) to the present

patient. Based on this sub-sample Dx := (c ∈ D|c = (x, ri) for some ri ∈ R) ⊆ D the

doctor might derive a prediction over potential outcomes via empirical frequencies:

P (x,D) =

∑
cj∈Dx δrj

|Dx|
,

where δj is the probability vector on R with mass 1 on the outcome rj ∈ R. Of course this

belief formation process is not practical, if the sub-sample Dx contains only few observa-

tions, i.e. if there are only a couple of identical (with respect to the measured characteris-

tics) patients.

b) To overcome this problem of limited or insufficiently many identical observations,

the doctor might include into her prediction procedure not only identical, but in addition

also similar patients. Suppose, that she is able to judge how similar patients are, i.e. she is

able to employ a function s : X×X → R, where s(xt, xj) measures the degree of similarity

between patients characterized by xt and xj . Her belief formation process might run in a

”subjective” frequentist way:

P (x,D) =

∑
cj∈D s(x, xj)δrj∑
cj∈D s(x, xj)

c) In addition, the doctor might infer from a case cj = (xj , rj) ∈ X×R not only a point

prediction on δrj , but a more general induced estimation P cj 7. Basically, she attaches

also some likelihood to outcomes that are closely or reasonably related to the observed rj :

P (x,D) =

∑
c∈D s(x, xj)P

c∑
c∈D s(x, xj)

. (1)

This belief formation process is axiomatized in BGSS.

d) Furthermore, the doctor might process the past observations not in an one by one

estimation problem as in the approaches above, but might want to sample the database

7More precisely, actually P c = P (x,c) represents an estimate induced by c given the current patient x, i.e. if c is
totally unrelated to the current patient, it might be that P c is uniform on R.

8



beforehand according to identical cases. Many observations of the same case might foster

some learning and improved understanding of the relationship between characteristics of a

patient and corresponding outcomes. Additional confirming observations should affect the

judgment of a cautious doctor as well by an increased confidence and decreased cautiousness

in predicting the observed outcome. In this way, the doctor might generate different

predictions depending on how many observations of this case are present in the database.

For instance, suppose there is a generally observed side-effect of many different medicines,

then the doctor might still assign a positive likelihood to this side-effect, if the doctor has

observed just a few (identical) patients not suffering from this side effect under the specific

treatment. However, if the treatment is well established and many identical patients did

not feel this side-effect, then she might not consider this side-effect as a potential hazard

anymore. This intuition can be modeled by incorporating precision into a cautious belief

formation, where the number of observation can be interpreted as a proxy for the precision

of the information:

P (x,D) =

∑
c∈D s(x, c)fD(c)P cTD(c)∑

c∈D s(x, c)fD(c)
,

where P cL represents the precision dependent estimation on R induced by L observation of

case c, where usually P cT 6= P cL for T 6= L. Hence TD(c) ∈ N denotes a database dependent

precision (and induced cautiousness) level, according to which a doctor will estimate the

outcomes based on observation of case c.

Interestingly, the already mentioned belief formations of BGSS and EG are special cases

of this representation:

(i) BGSS’s axiomatization implies TD(c) = ∞. Hence, their agent learns instantaneously

the ”correct” distribution P c∞ = P c induced by case c (see representation (1)).

(ii) The axiomatic derivation in EG results in TD(c) = T for D ∈ CT .

(e) A natural interpretation of TD(c) in (d) is TD(c) = fD(c)T for all c ∈ D ∈ CT :

PT (x,D) =

∑
c∈D s(x, c)fD(c)P cfD(c)T∑

c∈D s(x, c)fD(c)
, (2)

where fD(c)T gives the actual number of appearance of case c in database D. Such a

representation is very objective by incorporating only actually available and observed in-

formation. This representation is (unfortunately) irreconcilable (see Appendix C) with any

generalized version of a concatenation axiom (in the sense of not only combining disjoint

databases), which is an important behavioral component of a belief formation.

However, unless its appealing objective character, this belief formation might entail the

following problem. Obviously, the belief employs (in general) an aggregation of estimates

(P cfD(c)T )c∈D based on different precise single pieces of information c, which carry different

deficits in their correctness of prediction. This might over-complicate the evaluation since

the doctor might want to accompany the fact, that some of her predictions are more reliable

than others and should receive more weight independent from the similarity and frequency

weighting. In this sense, she might want to include an additional weighting scheme taking

into account the precision or reliability of the estimates 8.

8Alternatively, these considerations might be incorporated into the weights s, which prevents an desirable independent
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f) However, a doctor might not only rely on objective precisions of the estimations, but

also wants to capture her perception of its precision, i.e. the influence of how cautious and

confident she feels while estimating P cTD(c). In this vein, we prefer a different choice for

TD(c) in order to take the doctor’s cautiousness and confidence concerns into account.

The underlying intuition is that she does not change or adjust constantly her cautious-

ness and confidence attitude in response to each differently precise information. Rather,

after the doctor has experienced an (extreme) level of cautiousness and confidence by

estimating based on objectively available (unimagined) information, she might keep and

adopt it to other estimations. Basically she attained an ”appropriate” sustainable attitude

regarding her cautiousness sensation or learned how to confidently estimate sufficiently

cautious and applies it to all remaining estimations. This also overcomes the mentioned

potential disfavor of aggregating different precise estimations emerging in the objective

belief formation (2).

The most intuitive choices for a cautiousness attitude are the two extreme perceptions,

i.e. the experience of minimal and maximal cautiousness, which are induced by the most

or least precise information in the database. A minimal cautious attitude might distract

from any other more cautious perceptions, since the doctor learned how to handle infor-

mation in an appropriate cautious way. A maximal cautious agent might be intimidated

by the experienced imprecision and can not be convinced to leave her skeptical mood to

adopt a more confident attitude for estimating according to the available more accurate

information.

The following cautious belief formation captures these ideas (for a attitude of min-

imal cautiousness) and will be axiomatized in our paper:

PT (x,D) =

∑
c∈D s(x, c)fD(c)P cmaxc fD(c)T∑

c∈D s(x, c)fD(c)
.

The above examples were intended to clarify the framework and demonstrate a meaning-

ful evolution of a belief formation taking into account subjective and precision concerns.

However, in the following we will use a reduced version as our leading example.

3.2 Leading Example

Assume that, the patients are not anymore described by a large vector of their personal

characteristics, but just according to their symptoms or diagnosed sickness. In particular,

each patient is characterized by just a single symptom and the outcome of a treatment is

only roughly distinguishable between w(orse), n(ot affected) or b(etter), i.e. R = {w, n, b}.
So basically a doctor has prescribed a certain medicine to many patients with different

symptoms or illnesses and observed the outcome of this drug, i.e. a case is described as a

pair of symptom and outcome of the treatment. For example the drug improved on the

state of patients suffering from sore throat, but was harmful for most patients suffering

from stomach problems.

interpretation in similarity terms and requires the function s to depend also on the databases directly, which will be
precluded (later) by our constant similarity axiom. In addition, it conflicts with the easy averaging intuition
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4 Axioms

In the first part we adopt modified versions of the uncritical axioms in BGSS. The second

main part discusses in detail the concatenation axiom and its drawbacks in a precision

dependent framework, which eventually leads to our new anchored concatenation axiom.

4.1 Uncritical Axioms

4.1.1 Invariance Axiom

For every T ≥ 1, every database D = (c1, ..., cT ) ∈ CT and any permutation π on {1, ..., T}

PT ((c1, ..., cT )) = PT ((cπ(1), ..., cπ(T )))

The Invariance axiom states, that an induced belief over outcomes depends only on the

content of that database and is insensitive to the sequence or order in which data arrives.

However, the order in which information is provided or obtained can influence the

judgment strongly and may carry information by itself (e.g. see Rubinstein and Salant

(2006)). For example, first and last impressions or reference effect demonstrate the different

impacts of cases depending on their positions. One way to cope with these order effects

is to describe the cases informative enough. E.g. if one wants to capture the position or

time of occurrence of a case in a database, one could implement this information into the

description of the cases itself. Put differently, if one challenges the invariance axiom, then

there must be some criteria which distinguish the cases at different positions in a database

and paying attention explicitly to this difference in the description of the cases may lead

the agent to reconcile with the invariance assumption.

Hence, we will base our belief formation only on the content of the database D, which

allows to characterize each D by the pair of its frequency vector and length, i.e. (fD, |D|).

4.1.2 Learning Axiom

For every c ∈ C the limit of PT (cT ) exists, i.e. the sequence converges to P c∞.

In the context of precision dependent beliefs the axiom can be interpreted as a stable

learning process. For instance, an agent starts out with an initial prior (like a uniform

as in the principle of insufficient reason) that will be adjusted in the process of observing

additional information. Increasing the number of confirming observations will lead to

vanishing imprecision and cautiousness in estimating. Basically, the estimate will become

less sensitive to new additional confirming information and will eventually converge to a

limit distribution. This intuition is as in Bayesian updating, where additional (confirming)

information may render the prior beliefs more precise, but differently to Bayesian updating

the support might change here. For instance, it is reasonable to assume that finally the

agent will learn the true distribution of a case c = (x, r) ∈ C given the problem x ∈ X,

i.e. limT→∞ P (x, cT ) = δr, where δr is again the Dirac measure. However for a problem

x′ 6= x ∈ X the belief might just converge to a general uniform-like distribution on R, since

the observed case does not give relevant information for the current problem at all. Hence,

we require only that such a limit estimation exists.

11



Another intuition that we mentioned already, runs as follows. T many observations a

case c = (x, r) might not make a cautious agent feel confident to reliably rule out a non-

observed outcomes completely, but she wants to assign at least some positive likelihood

to it, i.e. PT ((x, r)T )(r′) > 0. However, observing further confirming cases might carry

sufficient evidence, such that an agent would feel confident not to make a mistake or act

incautious in excluding some outcomes, i.e. PL(x, r)L)(r′) = 0 for L� T .

Alternatively, one can apply a (accordingly adjusted) learning procedure as in Epstein

and Schneider (2007), where an agent might start out with a uniform estimation and after

observing new information keep only the most plausible estimates. Plausible estimations in

their sense are those that survive a maximum likelihood test (according to some strictness

parameter, which might correspond with a cautiousness measure in our setup) against the

belief that best explains the observations, i.e. the dirac measure on the observed outcome.

4.1.3 Diversity Axiom

There exist T ∗ ∈ N, such that for all T ≥ T ∗, no three of {PT (cT )}c∈C are collinear.

Form a technical point of view this axiom allows to derive an unique similarity function,

but it also carries an appealing intuition. Roughly it states, that sufficiently many obser-

vations induce always estimations, which are informative (or diverse) in the sense that no

combination of two other sufficiently often observed cases can deliver the same estimation.

Hence, no sufficiently precise case can be ”replaced” by sufficient observations of two other

cases in this sense. The reason to base the diversity of induced estimation on a precision

threshold T ∗ is the following. In order to derive unique similarity values one could also

require non-collinearity for every value of T, but this would exclude learning as mentioned

in the description of the learning axiom. If an agent would start out with an uniform-like

prior for databases containing few observations, it might happen that different cases induce

very similar estimations, which are likely to be collinear. The axiom just rules out, that

after a sufficient learning period any three estimations are still collinear.

4.2 Different Versions of the Concatenation Axiom

4.2.1 Concatenation Axiom of BGSS

For every database D,E ∈ C∗ there exists some λ ∈ (0, 1) such that:

P(D ◦ E) = λP (D) + (1− λ)P (E).

In the following we will call the database which emerges from concatenations of other

databases the combined or concatenated database, whereas the databases used for

the concatenation will be called combining or concatenating databases. We call the

weights λ, (1− λ) average weights.

The concatenation axiom states that the belief induced by a combined database is a

weighted average of the beliefs induced by its combining databases. It captures the idea

that a belief based on the combined database can not lie outside the interval spanned by

12



the beliefs induced by each combining database separately. Intuitively it can be interpreted

in the following way (from an exclusion point of view): if the information in any database

induces an belief that does not exclude an outcome r, then the outcome r cannot be ex-

cluded by the belief induced by the combination of all these databases 9. Alternatively, if a

certain conclusion is reached given two databases, the same conclusion should be reached

given their union.

The normatively appealing spirit of the axiom is that the average weights are determined

by relative relevances or importance of the combining databases for its combination.

As already mentioned, the Concatenation axiom implies an irrelevance of growing

precision or insensitivity to additional information in the beliefs, i.e. P (D) = P (DZ)

for all D ∈ C∗ and Z ∈ N, which might be appropriate for sufficiently rich and large

databases. However, already BGSS admit, that it ”... might be unreasonable when the

entire database is very small ....” (BGSS (2005), p. 1129)10. Indeed, the axiom induces

some sort of perfect objectivity and instantaneously learning. Estimation based on one

observation c = (x, r) needs to coincide with the estimation induced by arbitrarily many

observation, which can be identified in some sense with the ”true” limiting distribution, i.e.

P (x, (x, r)) = P (x, (x, r)∞). For our leading example it would mean that a doctor would

predict after one unsuccessful treatment of a sore throat that this treatment is worthless

for (identical) patients suffering from sore throat. However, this appears very unrealistic

and un-intuitive, since a database c = (x, r) might be considered more imprecise and might

induce a more cautious belief than cT = (x.r)T for sufficiently many observations T, i.e.

P (c) 6= P (cT ).

In order to incorporate precision and cautiousness aspects into the belief formation

process, the concatenation axiom needs to be modified in various ways to maintain its

normative appeal in a modified framework.

For this purpose an immediate modification concerns the issue that an agents can not

rely on beliefs induced by the concatenating databases directly, but requires appropriately

replicated concatenating database 11, i.e.

P (D ◦ E) = λP (DT ) + (1− λ)P (EL) for appropriate T, L ∈ N (3)

The reason for that is that the information contained in non-disjoint concatenating databases

appears by definition in less precision as in their concatenation, e.g. consider c2Z = cZ ◦cZ .

However, for a cautious agent caring about precision, P (cZ)(r) > 0 does not necessarily

imply P (c2Z)(r) > 0. For example our doctor might not want to rule out a successful

treatment of a coughing agent after observing 20 or 30 unsuccessful treatments according

to her perceived cautiousness, i.e. (i.e. P (cT )(r) > 0 for T = 20, 30). However, the com-

bined information of 50 unsuccessful treatments on coughs might make her feel confident

and convinced to evaluate the treatment as useless for curing a cough without violating

her cautiousness feeling, i.e. P (c50)(r) = 0. Thus, non-disjoint concatenating databases

9Of course the axiom is stronger in the sense, that it not only requires that the probability of such an r is positive,
but it should lie between the minimal and maximal assigned probabilities induced by the combining databases.

10From this perspective, our modification can be interpreted as an extension of BGSS to derive a belief formation also
for relatively small databases, which is only partially possible and reasonable given their concatenation axiom.

11This problem emerges only if the databases are non-disjoint. However to allow only disjoint databases in the
concatenation axiom does not offer enough structure to derive a belief.
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do not carry sufficient information to capture refinements of a cautious belief implied by

the concatenated database and as stated in (3) more precise (i.e. appropriately replicated)

concatenating information is required.

Furthermore, in general there exist no replications T and L that ensure that each case

in D ◦E is captured in identical precision for unrestricted non-disjoint DT and EL 12. De-

pending on its precision the same case might induce differently cautious estimations. This

leads to the difficulties that agents need to balance the differently cautious estimations

induced by the same case appearing in different precisions in the replicated concatenating

databases. Such a compromising between estimates is necessary for all cases, that are

observed in more than one database. For instance, our doctor compares the (replicated)

databases D2 = (c41, c
6
2, c

4
3) and E2 = (c41, c

8
2, c

2
3) (and eventually average its induced be-

liefs), where each (replicated) database contains differently many observations of harmfully

treated colds c2 (6 vs. 8), neutrally treated colds c3 (4 vs. 2) and at least the successfully

treated sore throats c1 are observed identically often (4 vs. 4) (by replicating D and E,

with the focus on unifying according to c1). Hence each induced beliefs rely on different

precision with regard to observations of cases c2 and c3. How could an objective doctor

compare and average the differently precise information incorporated in these databases?

Intuitively, the doctor should use the most precise available information contained in these

databases. Information c2 is contained in the belief induced by E2 in a more precise fashion

than in database D2 and hence the doctor would like to rely predominately on (i.e. assign

high weight to) E2 regarding c2 (since P c28 vs P c26 ) and to ignore the less precise estimation

wrt. c2 in D2. However, the opposite is true for the precision of information c3, for which

she relies predominately on D2 and ignores E2.

However, such a reasonable behavior is not admissible in any version of a concatenation

axiom, where an agent is forced to assign exactly one (non-zero) average weight to the

beliefs induced by the entire databases D2 and E2 and not many different weights to the

estimates induced by the single pieces of information contained in the databases 13. In

order to reach one ”aggregated” average weight, these single weights would need to be

balanced, traded off and aggregated somehow. In particular, since the beliefs induced by

D2 and E2 contain induced estimates, that are too imprecise and cautious in comparison

to other available ones, our doctor needs to offset and capture these imprecisions and

mistakes by adjusting the average weights accordingly. However, a determination of the

average weight as a result of difficult balancing and interwoven compromising appears to

be even in this easy example rather cognitively challenging and becomes impossible for

more complex (decompositions of) databases. Further and most importantly, it conflicts

with the normatively appealing spirit of the concatenation axiom to average beliefs by an

easy comparison of relevances of the particular underlying databases.

Our modification of the concatenation axiom will deal with this problem by restricting it

to specifically structured database such that balancing and compromising due to differently

precise information is avoided and the cognitively simple averaging intuition sustains.

12This follows from the general non-existence of solutions T, L to the system of equations resulting from fD(c)|D|T =
{0, fD◦E(c)|D ◦ E|} and fE(c)|E|L = {0, fD◦E(c)|D ◦ E|} for all c ∈ D ◦ E.

13However, this potential cognitive difficulties are not an issue in the way the concatenation axiom of BGSS processes
information, where information is additive in the sense that L observations in one database and T observations in
another is equivalent to observing T + L. Since one observation caries all information, literally only the entire amount
of appearance is important for the average weight.
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However interestingly, following the idea of a concatenation axiom that still allows for

unrestricted non-disjoint concatenating databases would eventually arrive at an (not yet

given) intuition and explanation for the modification of the concatenation axiom followed

in EG. The basic idea is that agents tackle the immense compromising considerations of

different cautious estimations by assuming or choosing a common arbitrary level of pre-

cision, according to which all cases are estimated - independent of their true objective

precision. Since objective or imagined precisions might evoke different feelings of cautious-

ness such an approach would interfere with our purpose to seriously take into account

objective precision and its related concerns. A more detailed discussion on that and on

EG’s modification can be found in the Appendix D.

4.2.2 Anchored Concatenation Axiom

The above discussion shows that a concatenation axiom for unrestricted non-disjoint con-

catenating databases might destroy the underlying normatively appealing idea of an easy

averaging, when agents care about precision and its perceptional consequences. In order

to keep the normative appealing spirit, we will restrict the involved databases to a specific

reasonable structure. These databases will contain sufficiently precise information (in the

sense of (3)) and allow an cognitively easy averaging. We have seen that an agent will

run into a difficult balancing process to determine the average weights when she is faced

with concatenating databases containing common cases. For this reason, our anchored

databases are as disjoint as possible, but still sharing a specific (exploitable) structure, to

facilitate an easy comparison (and in the end a straightforward averaging of its induced

beliefs). In particular, the anchored databases consist of only two different cases, where

all anchored databases admissible for the concatenation contain a common anchor (refer-

ence) case with identical frequency and one additional mutually different case in each of

the databases14. Besides the desire to employ databases that are almost disjoint, their

structure is also driven by the general observation, that agents can compare items easier,

if they consist of less features (here: only two) and if they contain common features in the

same fashion as a reference (here: anchor case).

Recall, that m ∈ N denotes the number of basic cases, i.e. |C| = m.

Definition 4.1

Let k ∈ [0, 1] and Tj ∈ N be s.th. kTj ∈ N for all 1 ≤ j ≤ m and let T :=
∑

j 6=i≤m Tj. Let

ci, cj ∈ C for all j 6= i ≤ m
(i) For all j 6= i ≤ m a database Dj

i (k, Tj) ∈ CTj defined by

Dj
i (k, Tj) : = (c

(1−k)Tj
j , c

kTj
i )

is called an anchored database of length Tj with non-anchor case cj (for all j 6= i)

and anchor (case) ci, which appears in the database with frequency k.

(ii) An anchored chain F ∈ CT (wrt. to case ci) is defined as a concatenation of anchored

14In some sense, one can interpret the restriction to such database by agents feeling to only being cognitively skilled
or capable to confidently compare such easily structured databases.
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databases Dj
i (k, Tj) ∈ CTj for all j 6= i (with common anchor case ci ∈ C), i.e.

F = ◦j 6=i≤mDj
i (k, Tj) = (c

(1−k)T1
1 , ..., c

(1−k)Ti−1

i−1 , ckTi , c
(1−k)Ti+1

i+1 , ..., c(1−k)Tmm )

Note, that not all databases can be interpreted as an anchored chain, since it requires to

be a result of a concatenation of specifically structured anchored databases.

In order to illustrate the anchor-framework, we use our leading example of a doctor,

that forms a belief over the outcomes of a treatment -worse, no effect, better- {w, n, b}.
For our doctor anchored databases and chains might look as follows. Each involved (an-

chored) database consist of only two different cases (patient groups), where one of these

groups (the anchor case) needs to be observed in all involved database, e.g. patients with

a successful treatment (b) of their cough (c) might be the anchor group (i.e. c1 = (c, b)).

The other patient group observed in each database is different in all involved databases,

for instance the different non-anchor groups might be patients with a neutral treatment

(n) of their sore throats (st) (i.e. c2 = (st, n)) or stomachache problems (i.e. c3 = (s, n))

or harmful treatment (w) of patients suffering from sore throats (st) (i.e. c4 = (st, w)).

To simplify the comparison of the databases (by providing a systematical structural guide-

line) the anchored database contain the (anchor) group c1 in a specific proportion k (e.g.

k = 2
3) of the databases’ total length. E.g. each database consisting of two thirds of

successfully treated coughing patients and one third of patients with any other mutually

different (symptom,outcome)-pair.

• For example a anchored database consists of 20 successfully treated coughs (i.e. c201 )

and 10 neutrally treated sore throats (i.e. c102 ), which results in the anchored database

with 30 patients D2
1(23 , 30) = (c201 , c

10
2 ).

• Another database might contain 40 successfully treated coughs (i.e. c401 ) and 20

neutrally treated stomachaches (i.e. c203 ), i.e. anchored databaseD3
1(23 , 60) = (c401 , c

20
2 )

with 60 patients.

• Another anchored database consist of 16 successfully and 8 harmfully treated coughs

(i.e. c161 and c84), i.e. D4
1(23 , 24) = (c161 , c

8
4) with 24 patients.

The corresponding anchored chain based on Dj
1(

2
3 , Tj) (for j = 2, .., 4 and T2 = 30, T3 =

60, T4 = 24 and T :=
∑5

j=2 Tj = 114) reads F = ◦4j=2D
j
1(

2
3 , Tj) = (c761 , c

10
2 , c

20
3 c

8
4).

However, within the anchor structure the comparison of the almost disjoint anchored

databases (Dj
i (k, Tj))j 6=i is still not directly straightforward, since the precision of the

anchor case ci in each of the database varies with the corresponding lengths Tj , i.e. ci

is contained in Dj
i (k, Tj) in the amount of kTj -in our leading example reflected by the

different numbers of successfully treated coughing patients. These difference in the pre-

cision would again cause the already extensively discussed difficulties in determining the

average weights. In order to avoid this problem and also to respond to the issue of insuf-

ficiently precise information in non-disjoint concatenating database (see equation (3) and

its derivation), we need to replicate some of the anchored database to attain a common

level of precision for the anchor case. Due to the identical structure of the databases,

enforcing a common precision for anchor case is equivalent to obtain a specific common
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length L for all involved anchored databases 15. More precisely, for an anchored chain F

of (Dj
i (k, Tj))j 6=i≤m a belief induced by F should rely on an average of the beliefs induced

by anchored databases (Dj
i (k, L))j 6=i≤m. Obviously, this enables an agent to compare eas-

ily the involved databases Dj
i (k, L) since their only common case -the anchor case ci -

appears in identical amounts kL in all databases. Therefore, in comparing the anchored

database (and determining the average weights) the agent can concentrate on the single

and mutually different non-anchor cases.

It remains to specify and motivate a choice for a common precision level of the anchor

case and (indirect) the common length L. We will introduce it in close relationship to our

notion of the precision of an induced belief. As already discussed in general for non-disjoint

databases in the last section (see discussion after equation (3)), there exists no replication

for anchored concatenating databases, such that all single cases appear in equally precision

in (Dj
i (k, L))j 6=i≤m and in the related anchored chain F = ◦j 6=i≤mDj

i (K,Tj)
16. Obviously,

this leaves the freedom to choose a specific piece of information, that should be captured in

equal precision in all involved induced beliefs. A very intuitive (and from our point of view

most reasonable) choice to control for precision (and related confidence and cautiousness) is

to ensure that the most precise and hence reliable piece of information in the anchored chain

is captured in the identical precision in the beliefs induced by the corresponding replicated

combining databases 17. The focus and reliance on the most precise case can be justified

by interpreting it as the driving factor of the precision of the belief. Focussing on another,

less precise information would imply a less precise belief, since the most precise information

would not be captured objectively anymore (in all involved databases) 18. Hence it appears

reasonable to require, that at least the most reliable information is incorporated in the belief

without any distortions, which requires that it is also contained unbiased its generating

(averaging) beliefs.

More technically, this can be achieved by requiring a particular adjusted length of the

combining anchored databases, which is given in the following definition.

Definition 4.2

Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m.

A length L ∈ N is called the adjusted (maximal) length and denoted by L(k, (Tj)j 6=i≤m)

if it is such that the number of observations of the most frequent case in an anchored chain

F ∈ CT is identical to the number of observations of the most frequent case in the anchored

databases Dj
i (k, L) (for all j 6= i), (i.e. maxc∈C fF (c)T = maxc∈C fDji (k,L)

(c)L) 19.

Our leading example will clarify the relationships and intuition of the adjusted length.

Example:

(i) Our doctor considers the records of different patient groups collected in two studies, i.e.

15This seem to be close to the EG approach in fixing the lengths of the databases. However here it is a consequence of
fixing a common precision for a single case. The two approaches use different incompatible restrictions on the databases
involved in the modifications of the concatenation axioms.

16This is due to the different appearances of the cases, i.e. for the anchored chain the appearance of an non-anchor
case cj is (1 − k)Tj (for all j 6= i ≤ m) in contrast to (1 − k)L in the (replicated) anchored databases Dj

i (K,Tj) and
similar for the anchor case ci, there exists the difference between kT = k

∑
j 6=i≤m Tj and kL.

17Another reasonable choice is the minimal precise information, that a very cautious agent might adopt (see App. E).
18Section 6.1 discusses another interpretation in terms of an induced persistent cautiousness attitude, that is evoked

by the most precise information in the database and serves as basis for all other estimations.
19In Appendix E the maximum is replaced by a minimum to focus on minimal precise information.
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D2
1(23 , 30) = (c201 , c

10
2 ) and D3

1(23 , 60) = (c401 , c
20
2 ) with common patient group c1. Patient

group c1 is also the most precise information (with 60 observations) in the correspond-

ing anchored chain F = (c601 , c
10
2 , c

20
3 ) ∈ C90. Thus the doctor requires it be matched

equally precise in appropriate replications (of the study results) of the anchored databases

D2
1(23 , 30) and D3

1(23 , 60). The adjusted length L such that for j = 2, 3

60 = max
c∈F

fF (c)90 = max
c∈Dj1

f
Dj1

(c)L = max{2

3
,
1

3
}L =

2

3
L,

is given by L = 90, i.e. D2
1(23 , 90) = (c601 , c

30
2 ) and D3

1(23 , 90) = (c601 , c
30
2 ). Obviously, the

most precise case c1 is capture in identical precision (60) in all three databases F,D2
1(23 , 90)

and D3
1(23 , 90). This allows an easy averaging of beliefs induced by Dj

1(
2
3 , 90).

(ii) Similarly, let there be two public studies of the treatment for some specific patient

groups summarized in the following anchored chain

F = (c301 , c
40
2 , c

80
3 ) = (c101 , c

40
2 ) ◦ (c201 , c

80
3 ) = D2

1(
1

5
, 50) ◦D3

1(
1

5
, 100),

where again the anchor patient group is ”successfully treated coughs” c1. The most precise

case in F is c3 (with 80 observations), implying that an adjusted length L = 100 is deter-

mined by 80 = max{15 , 45}L. Again, the most precise case c3 is capture in identical precision

(80) in the relevant databases F and D2
1(15 , 100) = (c201 , c

80
3 ), D3

1(15 , 100) = (c201 , c
80
2 ).

With these definitions at hand we can state our anchored Concatenation Axiom, where a

modified version focussing on minimal precise information can be found in Appendix E.

Recall, the length T of a database in an induced belief P becomes visible via the restriction

to PT . In particular for anchored databases Dj
i (k, Tj), we can skip the length Tj in the

induced belief..

Maximal Anchored Concatenation Axiom:

(i) Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m, i.e. F = ◦mj 6=iD

j
i (k, Tj) and

let L ∈ N be the corresponding adjusted (maximal) length, i.e. L = L(k, (T ji )j 6=i), then

there exists λ ∈ ∆m (where λj = 0 for all j ≤ m s. th. Tj = 0), such that

PT (F ) =
∑

j 6=i≤m
λjPL(Dj

i (k))

(ii) Let for three distinct i, j, l ≤ m and any V,W ∈ N: Dj
i (1, V ) = (cVi ) ∈ CV and

Dl
j(1/2, 2W ) = (cWj , c

W
l ) ∈ C2W . Let F = Dj

i (1, V ) ◦ Dl
j(1/2, 2W ), then there exist

λ ∈ int(∆2):

PV+2W (F ) = λPmax{V,W}(D
j
i (1)) + (1− λ)Pmax{2V,2W}(D

l
j(1/2)).

Part (i) states that the belief induced by an anchored chain is a weighted average of

the beliefs induced by the related (replicated) anchored databases. The very similar and
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almost disjoint databases allow a simple averaging, which keeps the normative appealing

spirit of the concatenation axiom. The databases share only one identical precise piece

of information (the anchor case in kL-many observations)). Hence its induced identical

estimate is contained in all their induced beliefs. This allows to ”neglect” its impact for

the determination of the average weights. Since in addition, the mutually different non-

anchor cases appear only in one of the anchored databases, there emerge no difficulties in

(cognitively challenging (interwoven)) balancing of differently cautious estimations based

on identical, but differently precise observations in various databases. Thus, the anchored-

agent can basically determine the average weights based on judging the relative importance

and relevance of the mutual different non-anchor cases 20. In this way, an anchored agent

can find the average weights in a very simple case by case comparison.

The particular (maximal adjusted, Def. 4.2) length of the related corresponding con-

catenating databases ensures that the most precise case in an anchored chain is captured

objectively in the average of their induced beliefs. An anchored-agent does not accept

an average of beliefs induced by databases that evoke less precise estimations regarding

this information, since this would directly imply a distortion of the precision of the belief

induced by the anchored chain.

We continue the Examples to illustrate the anchored Concatenation axiom.

(i) cdt. The belief induced by F = (c601 , c
10
2 , c

20
3 ) is an average of the beliefs induced by

D2
1(23 , 90) = (c601 , c

30
2 ) and D3

1(23 , 90) = (c601 , c
30
2 ). Since by construction the estimate based

on the anchor case c1 is identically contained in all beliefs, the doctor can neglect its in-

fluence of the anchor case for determining the average weight. Hence the weights can be

easily determined by just comparing the relative (a frequency-weighted) importance of c302
and c303 for evaluating the remaining parts of the anchored chain (c102 , c

20
3 ). Intuitively,

the discrepancies in the precisions for c2 and c3 are negligible, since the focus lies pre-

dominantly on capturing perfectly the impact of the most precise case c1. This is directly

achieved in this example, since the most precise case c1 is also the anchor case, and hence

appears equally often in all databases.

(ii) cdt. The belief induced by F = (c301 , c
40
2 , c

80
3 ) is an average of the beliefs induced by

D2
1(15 , 100) = (c201 , c

80
2 ) and D3

1(15 , 100) = (c201 , c
80
3 ). Again, the anchor case c1 appears

equally in both replicated anchored databases, i.e. c201 , which enables to neglect it for

finding the average weight. The agent only needs to weight the amount and relevance of

c802 and c803 for judging (c402 , c
80
3 ). Thereby it is essential that the most precise case (in the

anchored chain F) c3 is captured perfectly. The discrepancies in the objective precisions

for the cases c1 (20 in Dj
1 vs 30 in F) and c2 (Dj

1 are negligible, since the focus lies on

capturing the most precise information c3 objectively.

A straightforward consequence of the agent’s focus on the most precise case and the spe-

cific structure of the anchored databases is that the estimations based on minor precise

pieces of information are not made in their objective precision, but in the precision of the

most precise case. This can be seen directly by the recursive application of the anchored

concatenation axiom, i.e. PT (D) =
∑

c∈D λcP
c
maxc fD(c)·T for appropriate λc.

20Of course, the estimation based on the anchor case is not contained in the same weight in each belief, but this is
directly adjusted for by assigning the desired weights to the beliefs induced by the particular databases.
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Since this structure (obviously) reappears in our representation theorem, we will postpone

the discussion of its plausibility and reasonability to Section 5.1.

Part (ii) of the anchored Concatenation Axiom describes just a restriction to the very

intuitive requirement that a belief induced by a combination of two disjoint databases

should lie in between the induced beliefs of the disjoint databases separately. Averaging

beliefs based on disjoint database are at the heart of the axiom, since there are no in-

terdependencies between the information (and their precision) in the different databases.

Furthermore, the axiom requires averaging only for very specific databases, i.e. a database

consisting only of observations of one case and a database containing (potentially differ-

ent, but) equally many observations of two other cases. The main assumption concerns the

condition on the lengths, which is again driven by the agent’s focus on the most precise

cases, in the sense that the most precise information should be captured equally in all

averaging beliefs induced by the respective databases.

4.3 Constant Similarity Axiom (for maximal anchored version)

(i) Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m, i.e. F = ◦mj 6=iD

j
i (k, Tj) and let

L ∈ N be the corresponding adjusted (maximal) length, i.e. L = L(k, (T ji )j 6=i).

If there exist some vector λ ∈ ∆m, (where λj = 0 for all j ≤ m such that Tj = 0) such

that for some Z ∈ N the following equation holds:

PZT (FZ) =

m∑
j 6=i

λjPLZ(Dj
i (k)),

then this equation holds for all Z ∈ N.

(ii) Let for three distinct i, j, l ≤ m and any V,W ∈ N F = Dj
i (1, V ) ◦ Dl

j(1/2, 2W ). If

there exist λ ∈ int(∆2) for some Z ∈ N such that the following equation holds:

PZ(V+2W )(F
Z) = λPZmax{V,W}(D

j
i (1)) + (1− λ)PZmax{2V,2W}(D

l
j(1/2)),

then this equation holds for all Z ∈ N.

The average weights λs are related to (frequency weighted) relevance or similarity weights,

which could in principle depend on the length of the database. However, the Constant

similarity axioms allows to identify the similarity function independent of the content and

the size of the databases. To require a length-independent similarity is reasonable, if the

similarity values are determined by some primitive or prior knowledge about the environ-

ment, which can not be learned, influenced or based on the information contained in the

database. Of course, the axiom is questionable, if an agent uses the databases not solely

for evaluation of the outcome distribution, but also to learn something about structural

(causal) relationship of particular features in the cases. However, the approach taken in

this work excludes such deductive reasoning in deriving and updating the similarities from

underlying databases 21.

21For deductive reasoning see also the section about the relationship to statistical methods in Section 5.4
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5 Representation Theorem

5.1 Representation with maximal anchored Concatenation Axiom

Theorem 5.1

Let there be given a function P : C∗ → ∆(R). Let PT be the restriction of P to CT for

T ∈ N. Let P satisfies the Learning Axiom and the Diversity Axiom.

Then the following are equivalent:

(i) The function P satisfies the Invariance axiom, the maximal anchored Concatenation

axiom, the Constant Similarity axiom

(ii) There exists for each (T, c) ∈ N× C a unique P cT ∈ ∆(R), and a unique -up to multi-

plication by a positive number- function s : C → R+, s. th. for all T and any D ∈ CT :

PT (D) =

∑
c∈D s(c)fD(c)P cT ∗D∑
c∈D s(c)fD(c)

(4)

where T ∗D ∈ N+ is defined by T ∗D := T ·maxc∈D fD(c).

A sketch of the crucial parts of the proof can be found in Appendix B4.

The induced belief is a frequency and similarity weighted average of the estimations based

on past observations. All estimations (P cmaxc fD(c)T )c∈D are made according to the level of

cautiousness implied by the most precise case. That means, that only the most precise

piece of information is captured objectively in its estimation. Hence, the axiomatized belief

formation process does not achieve a perfectly objective representation (as mentioned in

(2)) without any imagination effort. However such a ”perfect imagination-free representa-

tion ” is impossible for a sufficiently rich concatenation axiom (see Appendix E) and also

carries some drawbacks (see the discussion after (2)). In any case, we are not concerned

with imagining additional information to take into account objective precision.

In fact, in first place we are interested in capturing the perception of precision in form

of the induced psychological effects on cautiousness and confidence. This is essential for

small database containing relatively few information and is manifested in the way how

estimations P cT ∗D
are made. From this perspective, the seemingly undesirable imagination

in the axiomatized belief delivers the following intuitive and reasonable interpretation.

The underlying intuition is, that an agent does not adjust constantly her cautiousness and

confidence attitude in response to each differently precise information she encounters in a

database. Rather, once an agent has experienced a (extreme) cautiousness and confidence

feelings while estimating based on objectively available information, she keeps, adopts and

transmits her developed feeling to other estimation situations. A fixed level of cautious-

ness according to which all estimates are made can be interpreted as an gained attitude

regarding cautiousness or as a learned skill or ability to confidently estimate sufficiently

cautiously. In this way, it is a sustainable reference or state of mind, which does not vanish

and change for each new estimation.

For instance, an agent gained a feeling of cautiousness in the spirit of eliminating un-

reasonable estimates. Suppose she feels confident and considers herself cautious enough
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to assign only a small probability ε to non observed outcomes r̃ 6= r in estimating based

on c = (x, r)L. Separately, her estimation induced by c′ = (x′, r′)T with T > L assigns a

slightly lower likelihood ε′ < ε to the not observed outcome r̃ 6= r′ according to her lower

cautiousness and higher confidence. Assume now, that in the past she has only estimated

according to a precision level lower than L and someone tells her, that T − L pieces of

information c were lost and she should better estimate according to T many imagined

observations. Without having experienced estimating according to higher precision T (i.e.

how far she can narrow down the estimation) and being unable to imagine how she would

feel if this information would be objective, she might stick to her already made estimation

based on objective information cL. However, if the agent would have estimated based on

case (c′)T in the past, then she has experienced her feeling of estimating according to the

objective precision in (c′)T and might adopt and apply the ”learned” procedure how to

eliminate and assign the likelihoods confidently for cT without concerns about being too

in-cautious.

The most intuitive choices for adopting a specific attitude towards cautiousness are the

two extreme situations, i.e. the least and most cautious (and confident) experiences. The

most precise case might come directly to her mind, because it has been observed most

frequently in the database and induces an attitude of (least) cautiousness (and highest

confidence) that is the basis for all estimation. In some sense the most confident and

least cautious feeling outshines and distracts from any other more cautious perceptions.

In contrast, the least precise information might intimidate or scare an agent and leaves a

very cautious impression. She cannot be persuaded to leave her skeptical mood for a less

cautious attitude that might be more appropriate for the remaining more accurate infor-

mation. In our representation we focus on the optimistic view, i.e. our agent estimates

according to the confidence and cautiousness gained and experienced by estimating the

most precise information in the database.

In this way it is reasonable and natural to interpret the imagination of additional informa-

tion in the sense of estimating according to an experienced cautiousness level or as gained

skill to estimate cautiously 22.

Differences in imagined information and its imagined perception

In fact, the imagination of further additional information or more precise cases is not

the cognitive difficult or challenging part in estimating based on imagined information.

Think about our doctor, who just needs to imagine that the same patient enters her office

again and shows the same outcome after being treated identically. Hence, the difficult

part is to imagine the ”correct” feeling, which would be induced by objective precision,

but which is actually only existing in imagined precision. Put differently, usually the im-

plied perception of imagined (non existing) precision differs from the perception based on

objective precision. The beliefs (EG and ours) require that agents are able to ignore this

difference, which might be fine if agents have experienced already a situation in which

they actually estimated according to that objective precision and know her induced per-

ception of that precision (as in our work). However, if an agent has never experienced

22From that perspective, our representation is even more convincing than the perfectly objective imagination-free
representation (2), in which the cautiousness and confidence is altered for each case, putting the agent in different moods
of cautiousness and confidence for each piece of information.
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such a situation before, the requirement to imagine her feeling ”correctly” (i.e. ignore the

differences is cognitively challenging and psychologically confusing and can be interpreted

as intentionally lying to yourself, without noticing. Does our doctor judge the treatment

less cautiously after adding an imagined patient to her record?

5.2 Comparison to related belief representations

The initial motivation of EG and our paper is to modify the Concatenation axiom of BGSS

to capture variations in the precision of data. A related and implied issue concerns the

way how an agent is capable to deal with the problem of combining beliefs that might be

based on identical, but different precise information and thus contain induced differently

cautious estimates.

BGSS, EG and our work share the property that eventually the estimations involved in

the final representation of a belief are subject to an unique level of precision 23. By that,

technically speaking the aggregation of different precise information is eventually not an

issue. However, from an interpretational perspective, there are important differences in

the motivation and reasonability of the corresponding concatenation axioms.

Consider for example the database D = (c31, c
4
2, c

2
3) for which a purely objective agent

forms a belief according to P (D) ∈ conv({P (c31), P (c42), P (c23)}). In BGSS, the induced

belief is given by P (D) ∈ conv({P (c1), P (c2), P (c3)}), which neglects precision and cau-

tiousness completely. EG offers a belief P (D) ∈ conv({P (c91), P (c92), P (c93)}), where no

involved estimation is made according to its objective precision. Besides the (unproblem-

atic) imagination of additional pieces of observation for all cases, the main problematic

point is the imagination on how this imagined precision is perceived, since the estima-

tion is based on a never (not yet) experienced cautiousness level 9 (see also the discus-

sion above). In our paper, the belief would be based on the most precise information,

i.e. P (D) ∈ conv({P (c41), P (c42), P (c43)}), which also would require some (unproblematic)

imagination of additional observations with respect to objective precision. However, the

perception of this precision needs not to be imagined, since the agent estimates according

to an already experienced precision and cautiousness level 4 (experienced for c2).

Arad and Gayer (2012) analyze beliefs based on datasets containing imprecise pieces of

information in the sense that ”it is not entirely clear what occurred in them ”. Roughly

speaking, their approach models this sort of imprecision (ambiguity) by assuming subjec-

tive capacities. The rough relationship to the approaches discussed above is that these

capacities would play the role of the probabilistic estimations occurring in the axiomatized

representations of BGSS, EG and ours.

5.3 Remarks on the similarity function

One could be tempted to perceive and interpret the belief formation approaches as a trans-

lation of the question from which probability to assign to which similarity to employ. This

is not completely misleading since the axiomatizations do not provide help in choosing

the similarity function. This problem occurs in a similar spirit for the choice of a prior

in the Bayesian approach. In the axiomatizations the similarity function is derived from

23in BGSS: P c∞ for all D ∈ C∗, in EG: P cT for all D ∈ CT and here PmaxcfD(c)T for all D ∈ CT .
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presumably observable probability assignments given various databases. Fortunately, the

similarity values need not satisfy any particular properties (even no symmetry) and hence

can be derived also objectively or empirically. For example, Gilboa et al. (2006) estimate

an empirical similarity function from the data by asking which similarity function best

explains the observed data in a similarity-weighted frequency formula. Billot et al. (2004)

axiomatized an exponential similarity function. Moreover, assigning similarities appears to

be cognitively easier than stating explicit probabilities and many models in the psychology

and computer-science literature deal with determination of similarity measures (e.g. Tver-

sky (1977), Schank (1986), Heit, Heit and Rubinstein (1994), Goldstone and Son (2005)).

5.4 Remarks on relationship to statistical methods

In the introduction we mentioned already the relationship between the axiomatic ap-

proaches to belief formation in the data-based information structure and statistical ap-

proaches like inferences. In this section we want to discuss shortly similarities and differ-

ences to existing statistical methods. Obviously, the versions of the concatenation axioms

and the derived representations satisfies the following special cases of frequentism. For

s(xi, xt) = 1, our belief formation coincides with the simple average or frequentist ap-

proach, if we identify with P c a Dirac measure on the actually observed outcome. However,

the conditional frequentist cannot be covered since the corresponding s(xi, xt) = 1{xt=xi}

is not strictly positive (as required), but Bleile (2014) offers a modification that captures

it. Gilboa et al (2010, 2011) and EG show the compatibility with other statistical meth-

ods, like kernel estimation and classification (e.g. assign x to either class a or b: define

s(a, (xc, ac)) = k(xc, x)1{a=ac} using a kernel function k). As discussed in more detail in

Gilboa et al. (2010) p. 16f, the framework can be also employed in contexts, where the

observations (e.g. cases) and the prediction (e.g. possible theories) are structurally dis-

joint. For instance ranking theories by log likelihood methods s(t, c) = log(p(c|t)) is also

possible where t represent a theory and p(c|t) denotes the conditional likelihood of case c

if theory t is true.

However, the main difference to statistical inference is that the axiomatic approaches

are concerned with inductive reasoning and do not allow for deductive reasoning, which is

the issue of traditional statistical regression approaches. Let there be a database consisting

of observation D = ((xi, ri)i≤n) and a new problem xt. A regression approach would try

to learn the (empirical) similarity weights (s(xi, xt))i that best explains the database by

best fitting an estimate of rj for all j ≤ n and rsj =
∑
i6=j s(xi,xj)ri∑
i s(xi,xj)

(see also Gilboa et al.

(2006)). Hence in a statistical regression context the weights s are deduced endogenously

via the observed data and are updated with new observation, i.e. the weights would be

database dependent. Put differently, linear regression analysis (and empirical similarities)

use deductive reasoning to derive the weights and then apply them inductively to infer

the prediction. In contrast, the constant similarity (and the concatenation) axiom requires

that the weights are fixed and database independent, i.e. there is no updating or learning

of the weights.

However, the axiomatization of a belief formation (in close relationship to statistical

methods) is still meaning- and insightful, since it allows to inspect, how plausible, con-
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sistent and sensible (in the sense of normative appealing axioms) asymptotic statistical

methods are also for small database and its implied precision related concerns. From this

perspective, axiomatizations suitable for small databases (as done here) play an important

role in order to find a sound foundation of statistical methods in non-asymptotic contexts.

6 Conclusion

The paper deals with the question how agents form beliefs explicitly in an environment with

limited, heterogenous and differently precise information that cannot be condensed into a

widely used (perfect) state space a la Savage. We axiomatize a belief formation that can be

interpreted as a generalized subjective frequentist approach that incorporates subjective

perceptions regarding the relevance and precision of the information in the database. We

identify increasing precision of information by additionally observed pieces of confirming

information.

Our work is based on the axiomatization of a belief in BGSS that neglects the potential

impacts of differently precise information. Thereby, their belief formation is most suitable

for sufficiently large databases and less reasonable for small databases, which are captured

by our approach. Their belief formation implies that an agent is able to perfectly learn

from observations in a very objective and instantaneously way, without displaying any

sense of cautiousness and concerns about being potentially mistaken. Our axiomatized

cautious belief focusses on precision related cautiousness and confidence in the predictions.

The different versions of the main concatenation axiom in the approaches of BGSS, EG

and ours describe the relationships between databases and their induced beliefs.

In the context of caring for precisions in a cautious belief formation an agent following

the concatenation axiom of BGSS and EG’s version would be faced by immense cognitive

problems to handle and compare differently precise pieces of information contained in

different databases. Our modification and restriction of the axiom takes into account

these precision related cognitive problems in describing the relationships. This is achieved

by requiring that agents only need to be capable to determine the relationship between

databases and their induced beliefs for specifically structured (almost disjoint) databases

that allow an cognitively easy comparison (without precision and cautiousness concerns).

Moreover, it states that an agent controls for precision and its perceptional impacts in a

cautious belief by capturing the most precise (and hence reliable) information objectively

in its induced belief.

The resulting cautious belief is a weighted sum of cautious estimates induced by past

observed information. The weights are determined by frequencies of the observed cases

and their similarities with the problem under consideration. The induced estimates depend

on a cautiousness level implied by the most precise case, which can be interpreted as the

appropriate (gained) attitude regarding cautiousness in this database.
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A Proof of Theorem 6.1: Necessity part, i.e. (ii) ⇒ (i)

We need to show that the representation (4) satisfies the axioms, where the Invariance
axiom is obviously met.

For the Maximal Anchored Concatenation axiom, part (i),

let D ∈ CT be a chain of Dj
i (k, Tj) = (c

(1−k)Tj
j , c

kTj
i ) for all j 6= i ≤ |C| and T :=

∑
j 6=i Tj ,

i.e.
D = ◦j 6=iDi = (c

(1−k)T1
1 , c

(1−k)T2
2 , ..., c

(1−k)Ti−1

i−1 , ckTi , c
(1−k)Ti+1

i+1 , ....., c
(1−k)T|C|
|C| ).

Let L = L(k, (Tj)j 6=i) be the corresponding adjusted length. Hence, we have

fD = ( (1−k)T1T , (1−k)T2T , ...., (1−k)Ti−1

T , k, (1−k)Ti+1

T , ...,
(1−k)T|C|

T )t and
f
Dji (k,ZTj)

= (0, ..., 0, (1− k), 0, .., 0, k, 0, ..., 0)t.

Observe that f
Dji (k,Tj)

= f
Dji (k,ZTj)

and hence we will abbreviate f
Dji (k,ZTj)

by f
Dji (k)

.

We get:

PT (D) =

∑
c∈C s(c)fD(c)P cmaxc∈D fD(c)·T∑

c∈C s(c)fD(c)

=
1∑

c∈C s(c)fD(c)
·
(∑
j 6=i

s(cj)
(1− k)Tj

T
P
cj
maxc∈D fD(c)·T + s(ci)

∑
j 6=i kTj

T
P cimaxc∈C fD(c)·T

)
=

1∑
c∈C s(c)fD(c)

·
(∑
j 6=i

[
s(cj)

(1− k)Tj
T

P
cj
maxc∈C fD(c)·T + s(ci)

kTj
T
P cimaxc∈C fD(c)·T

])

=
1∑

c∈C s(c)fD(c)
·
(∑
j 6=i

Tj
T

∑
c∈C

s(c)f
Dji (k)

(c)P cmaxc∈C fD(c)·T

[∑
c∈C s(c)fDji (k)

(c)∑
c∈C s(c)fDji (k)

(c)

])
To proceed, we need to specify maxc∈C fD(c) · T , which is by definition of the adjusted
length L exactly equal to maxc∈C fDji

(c)L, hence:

PT (D) =
1∑

c∈C s(c)fD(c)
·
(∑
j 6=i

Tj
T

∑
c∈C

s(c)f
Dji (k)

(c)

∑
c∈C s(c)fDji (k)

(c)P cmaxc∈C f
D
j
i

(c)L∑
c∈C s(c)fDji (k)

)
(∗)
=

1∑
j 6=i

Tj
T

∑
c∈C s(c)fDji (k)

(c)
·
(∑
j 6=i

Tj
T

∑
c∈C

s(c)f
Dji (k)

(c)PL(Dj
i (k, L))

)
=

∑
j 6=i

λjPL(Dj
i (k, L))

where we used
∑

c∈C s(c)fD(c) =
∑

j 6=i
Tj
T

∑
c∈C s(c)fDji (k)

(c) in (∗).
From the last equation we get for all j 6= i ≤ |C|

λj =

Tj
T

∑
c∈C s(c)fDji (k)

(c)∑
j 6=i

Tj
T

∑
c∈C s(c)fDji (k)

(c)
(5)

Hence the first part of the anchored concatenation axiom is satisfied.

For the Maximal Anchored Concatenation axiom, part (ii):
let w.l.o.g. Dj

i (1, T ) = D2
1(1, T ) = (cT1 ) ∈ CT and Dl

j(1/2, 2W ) = D3
2(1/2, 2W ) =

26



(cW2 , c
W
3 ) ∈ C2W , then we need to show:

PT+2W (D2
1(1, T ) ◦D3

2(1/2, 2W )) = λPmax{T,W}(D
2
1(1,max{T,W}))

+ (1− λ)Pmax{2T,2W}(D
3
2(1/2, 2 max{T, L}))

We have Pmax{T,W}(D
2
1(1,max{T,W}) = P c1max{T,W}

Since P satisfies the maximal anchored concatenation axiom part (i) we have for
D3

2(1/2, 2 max{T,W}) = D2
1(0,max{T,W})◦D3

1(0,max{T,W}) = (c2)
max{T,W}◦(c3)max{T,W}

with the adjusted length L such that 1
22 max{T,W} = L, i.e. L(0,max{T,W},max{T,W}) =

max{T,W}, that there exist some λ ∈ (0, 1) such that

Pmax{2T,2W}(D
3
2(1/2, 2 max{T,W})) = λP c2max{T,W} + (1− λ)P c3max{T,W}

Hence, using this, we get for the maximal anchored concatenation axiom (ii) the following
representation for some λ ∈ ∆3:

PT+2W (D2
1(1, T ) ◦D3

2(1/2, 2W )) =
3∑
i=1

λiP
ci
max{T,W}

But this is obviously satisfied by the representation (4) in the Theorem 5.1, since for the
frequency vector fD2

1(1,T )◦D3
2(1/2,2W ) = ( T

T+2W , W
T+2W , W

T+2W , 0, ...., 0)t, we have

maxc∈C fD2
1(1,T )◦D3

2(1/2,2L)
(c)(T + 2W ) = max{T,W}, and hence

PT+2W (D2
1(1, T ) ◦D3

2(1/2, 2W )) =

∑3
i=1 s(ci)fD2

1(1,T )◦D3
2(1/2,2W )

(i)P
ci
max{T,W}∑3

i=1 s(ci)fD2
1(1,T )◦D3

2(1/2,2W )
(ci)

, i.e. for i = 1, 2, 3

λi =
s(c1)fD2

1(1,T )◦D3
2(1/2,2W )(ci)P

c1
max{T,W}∑3

i=1 s(ci)fD2
1(1,T )◦D3

2(1/2,2W )(ci)
(6)

Hence the (ii)-part of the maximal anchored concatenation axiom is also satisfied.

The Constant similarity axiom is also satisfied, which can be shown by adopting
the above proof for the concatenation axiom.

Replacing D = ◦|C|j 6=iD
j
i (k, Tj), where

∑|C|
j 6=i Tj = T by DZ = ◦|C|j 6=iD

j
i (k, ZTj) in the proof of

the maximal anchored concatenation axiom part (i) and transform equation (5), we get

λZj =

ZTj
ZT

∑
c∈C s(c)fDji (k,ZTj)

(c)∑
j 6=i

ZTj
ZT

∑
c∈C s(c)fDji (k,ZT )

(c)
= λj ,

where in the last equation f
Dji (k,ZT )

(c) = f
Dji (k)

(c) is used.

For part (ii), analogous reasoning using equation (6) yields the desired result.

Therefore the similarity axiom is satisfied, which completes the proof of the Theorem
5.1 direction (ii) implies (i).

�

Now we will focus on the the direction (i) implies (ii).

B Proof of Theorem 1: Sufficiency part, i.e. (i) ⇒ (ii)

The proof will exploit the fact that by the invariance axiom it is possible to rewrite the
database framework into a frequency framework. This allows to work on simplex instead
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with lists of cases or databases. In the following, we need to translate the database structure
to a frequency terminology.

B.1 Translation into frequency framework

By the Invariance axiom each database D ∈ CT can be identified by a pair (fD, T ), where
fD ∈ ∆(C) represents a frequency vector of appearances of cases in the database D and T
is the length of the database.
Note, that in the frequency setup, without knowing the corresponding database D to
which a frequency vector f ∈ ∆(C) (should) belong (in the sense of representing this spe-
cific database D), the frequency vector can be linked to infinitely many databases DZ for
all Z ∈ N+. Hence one needs to link frequency and the length of the database.

The following set represents all frequency vectors corresponding to databases D ∈ CT :

∆T (C) : = {f ∈ ∆(C) ∩QC , f(i) =
li
T
, li ∈ N+,

|C|∑
i=1

li = T and

∃D ∈ CT such that fD(i) = f(i) = li/T}

Observe that if f ∈ ∆T (C), then f ∈ ∆TZ(C) for all Z ∈ N+.
Since the set of cases C is fixed, we reduce the notational effort and will abbreviate ∆T (C)
by ∆T , i.e. ∆T denotes the set of all frequency vectors representing databases of length T
and the set of all rational frequency vectors on C is denoted by ∆.
Hence by the Invariance axiom each D ∈ CT can be represented by a f ∈ ∆T , where
again f(i) := fD(ci) denotes the frequency of case ci for all i ≤ |C|.

Definition of the belief on frequencies:
From now on we consider only probabilities P ∈ ∆(R) that satisfy the invariance axiom,
i.e. then the definition of P on databases translate to P defined on frequency vectors in
the following way:
For all f ∈ ∆ define the function P and its restriction to PT for all T ∈ N on frequency
vectors by

P : X ×∆ → ∆(R) such that P (f) := P (D) for f ∈ ∆ and D ∈ C related by f = fD.

PT : X ×∆T → ∆(R) such that PT (f) := PT (D) for f ∈ ∆T and D ∈ CT related by
f = fD.
As long as no length is fixed, f ∈ ∆ is universal and the length T of the database, which f
represents becomes visible only in the restriction of P (f) to the specific PT (f), i.e. PT pins
down the unique database the frequency vector is able to represent, namely the database
with length T. Of course, under the condition that the frequency vector allows the exis-
tence of such a database in this specific length.
Recall, we assume |C| = m.

Notation:
(i) For all j ∈ {1, 2, ...,m} denote by f j the j-th unit vector in Rm, i.e. the frequency
vector representing a database containing only cases cj ∈ C, hence an extremal point in
∆, i.e. f j = (0, ..., 0, 1︸︷︷︸

j−th

, 0, ..., 0)t

(ii) The frequency vector corresponding to the anchored database Dj
i (k, T ) = (c

(1−k)T
j , ckTi )

is given by

f
Dji (k,T )

= (0, ...0, (1− k)︸ ︷︷ ︸
j−th

, 0, .., 0, k︸︷︷︸
i−th

, 0, ..., 0)t
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Since f
Dji (k,W )

= f
Dji (k,T )

for all T and W, the length is totally immaterial for the frequency

vector and hence neglected from now on, i.e. the frequency vector corresponding to the
anchored databases Dj

i (k, T ) for all j 6= i ≤ m is denoted for all T such that kT ∈ N by

f ji (k) := f
Dji (k,T )

Note that f ji (k) is still the whole frequency vector, i.e. f ji (k) ∈ ∆, whereas f ji (k)(l)
represents the l-th component of the vector and refers to the frequency of case cl, i.e.
f ji (k)(l) ∈ [0, 1] ∩Q.

Definition

The frequency vector corresponding to a database D ◦ D∗ with corresponding frequency
vectors fD = f ∈ ∆T and fD∗ = f∗ ∈ ∆W is denoted by f ◦ f∗ and given by

f ◦ f∗ =
(f(1)T + f∗(1)W

T +W
, ....,

f(m)T + f∗(m)W

T +W

)t
∈ ∆T+W

Now we need to translate the axioms into this frequency framework.

B.2 Axioms in the frequency framework

Maximal anchored Concatenation Axiom:
(i) Let there be f ∈ ∆T , for all j 6= i ≤ m f ji (f(i)) ∈ ∆Tj and

∑m
j 6=i Tj = T such that for

(αj)j 6=i≤m ∈ [0, 1] and
∑m

j 6=i αj = 1, i.e. f =
∑m

j 6=i αjf
j
i (f(i)).

Let L = L(f(i), (Tj)j 6=i≤m) ∈ N be the corresponding adjusted length, i.e. maxi≤m f(i)T =

maxl≤m f
j
i (f(i)))l)L.

Then there exist λ ∈ ∆m−1 (where λj = 0 for all j 6= i ≤ m such that αj = 0), such that

PT (f) =
∑

j 6=i≤m
λjPL(f ji (f(i))

(ii) Let for distinct i, j, l ≤ m f ji (1) ∈ ∆T and f lj(1/2) = (0, ...0, 1/2, 0, ..., 0, 1/2, 0, .., 0)t ∈
∆2W , then there exists a λ ∈ ∆2, such that:

PT+2W (f ji (1) ◦ f lj(1/2)) = λPmax{T,W}(f
j
i (1)) + (1− λ)Pmax{2T,2W}(f

l
j(1/2))

Constant Similarity Axiom:
(i) Let there be f ∈ ∆T , for all j 6= i ≤ m f ji (f(i)) ∈ ∆Tj such that for (αj)j 6=i≤m ∈ [0, 1]

and
∑m

j 6=i αj = 1, i.e. f =
∑m

j 6=i αjf
j
i (f(i)).

Let L = L(f(i), (Tj)j 6=i≤m) ∈ N be the corresponding adjusted length.
If there exist λ ∈ ∆m−1 (where λj = 0 for all j 6= i ≤ m such that αj = 0), such that for
some Z ∈ N+

PZT (f) =
∑

j 6=i≤m
λjPZL(f ji (k)),

then the equation holds for all Z ∈ N+.

(ii) Let for distinct i, j, l ≤ m f ji (1) ∈ ∆T and f lj(1/2) = (0, ...0, 1/2, 0, ..., 0, 1/2, 0, .., 0)t ∈
∆2W , then there exists a λ ∈ ∆2, such that for for some Z ∈ N+

PZ(T+2W )(f
j
i (1) ◦ f lj(1/2)) = λPZmax{T,W}(f

j
i (1)) + (1− λ)PZmax{2T,2W}(f

l
j(1/2)),
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then the equation holds for all Z ∈ N+.

Learning Axiom:
For all i ∈ {1, 2, ..., C}: (PT (f i))T∈N+ converges to P∞(f i) = P i∞.

Diversity Axiom:
There exist some T ∗ ∈ N+, such that for all T ≥ T ∗, no three elements of {(PT (f j))j≤m}
are collinear.

Before stating the unproofed direction of Theorem 5.1 in the frequency version, we will
present some helpful remarks and lemmas.

B.3 Useful Observations

Remark B.1
Explicitly the adjusted length defined in Definition 4.2 is given by:

L(k, T1, T2, ..., Tm) =


maxj{Tj} if k ≤ maxj{Tj}

maxj{Tj}+T =: k∗ ∈ ( 1
m+1 ,

1
2)

k
1−kT if k ∈ (k∗ =

maxj{Tj}
maxj{Tj}+T ,

1
2)

T if k ≥ 1
2

Remark B.2
For all f ∈ ∆ there exist for all anchor case ci ∈ C, for i ≤ m, a decomposition
f =

∑
j 6=i α

j
if
j
i (f(i)), where for all j 6= i ≤ m, αji ∈ [0, 1] are given by f(j) = αji (1− f(i)).

Note that αji corresponds to the (relative) sizes of the databases Dj
i (f(i), ·) (corresponding

to the particular frequency vectors f ji (f(i))) in relation to the specific database D (which

is represented by the frequency vector f). For instance, assume that f ji (f(i)) ∈ ∆Vj and∑
j 6=i Vj = V , then f ∈ ∆V and αji =

Vj
V .

In general for all j 6= i ≤ m, f ji (f(i)) can represent a database with length t · T̃ ji , where

t ∈ N and T̃ ji ∈ N is the smallest length W such that f(i)W is a natural number (and
hence also (1− f(i))W ∈ N).

To specify the (smallest) length Zi ∈ N of the database D corresponding to the decom-

position of f via anchor case ci, i.e. f =
∑

j 6=i α
j
if
j
i (f(i)), we extend all T̃ ji ∈ N with

the smallest zji ∈ N such that for j 6= i ≤ m all αji s are the fractions with the smallest

common denominator Zi, i.e. αji =
zji T̃

j
i

Zi
. In this way the smallest lengths of the databases

represented by f ji (f(i)), that can be used for the decomposition of f via anchor ci, are
exactly given by

T ji := zji T̃
j
i = αjiZi ∈ N and Zi =

∑
j 6=i≤m

T ji (7)

Hence f ∈ ∆Zi and for all j 6= i ≤ m the f ji (f(i)) ∈ ∆
T ji

.

Obviously, choosing a different anchor case cl ∈ C for the decomposition of f will lead to a
different smallest denominator Zl (and induced length of database which f represents) and
different lengths of the databases Dj

l (f(l), T jl ) for all j 6= l ≤ m, which are represented by

f jl (f(l)) ∈ ∆
T jl

.

Definition B.1
For all f ∈ ∆ and i ≤ m, the decomposition f =

∑
j 6=i α

j
if
j
i (f(i)), where f ji (f(i)) ∈ ∆

T ji
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and T ji are as in (7), is called the smallest decomposition of f via anchor case ci ∈ C,

which represents a database of length Zi =
∑

j 6=i≤m T
j
i and is denoted by (f ji (f(i)), T ji )j 6=i.

The following Lemma shows consistency of the axiomatization with respect to the possible
smallest decompositions based on different anchor cases.

Lemma B.1
Let m ≥ 3. If P : X ×∆ → ∆(R) and its restriction PT to X ×∆ satisfies the maximal
anchored concatenation axiom and the constant similarity axiom. Then, P is well defined
or consistent with respect to the different possible smallest decomposition and for all T ≥ 2
and any f ∈ ∆T

PT (f) =
∑
j≤m

λjPmaxi≤mf(i)T (f j) (8)

Proof:

For all f ∈ ∆, there exists the smallest decomposition via anchor case ci ∈ C (as in Defini-

tion B.1) (f li (f(i)), T li )l 6=i, where f(l) =
T li
Zi

(1− f(i)) (which implies (1− f(i))T li = f(l)Zi).
We have to show that independent of the choice of the anchor case ci ∈ C, the induced
belief PT (f) is identical for all T ∈ N such that f ∈ ∆T .
We differentiate into the three situations of adjusted lengths given in Remark B.1, which
are based on the different frequencies of chosen anchor case c ∈ C.

(i) Let f(i) ≤ k∗, assume w.l.o.g. that maxl≤m f(l) = f(j), hence maxl≤m T
l
i = T ji :

Applying the maximal anchored concatenation axiom in a first step for k = f(i) ≤
maxj 6=i T

j
i

maxj 6=i T
j
i +Zi

with adjusted length L(f(i), (T li )l 6=i) = T ji , and in the second line for k = 0

with adjusted length L(0, f(i)T ji , (1 − f(i))T ji ) = (1 − f(i))T ji and for some a ≤ m such
that a 6= i, l, we get for some λ, γ, β ∈ ∆m:

PZi(f) =
∑
l 6=i

λlPL(f(i),(T li )l6=i)
(f li (f(i))) =

∑
l 6=i

λlPT ji
(f li (f(i)))

=
∑
l 6=i

λl(γlPL(0,f(i)T ji ,(1−f(i))T
j
i )

(f ia(0)) + (1− γl)PL(0,f(i)T ji ,(1−f(i))T ji )(f
l
a(0)))

=
∑
l 6=i

λl(γlP(1−f(i))T ji
(f i) + (1− γl)P(1−f(i))T ji

(f l))

=
∑
l

βlP(1−f(i))T ji
(f l) =

∑
l

βlPmaxl≤m f(l)Zi(f
l)

Now by the constant similarity axiom, we get also that PT (f) =
∑

l βlPmaxl≤m f(l)T (f l) for
all T such that f ∈ ∆T .

(ii) f(i) ∈ (k∗, 1/2), which implies that f(i) ≥ (1 − f(i)) maxj 6=i Tj/T = maxj 6=i jf(j),
i.e. maxl≤mf(l) = f(i):

With L(f(i), (Tj)j 6=i) = f(i)
1−f(i)Zi:

PZi(f) =
∑
l 6=i

λlPL(f(i),(Tl)l 6=i)(f
l
i (f(i))) =

∑
l 6=i

λlP f(i)
1−f(i)Zi

(f li (f(i)))

=
∑
l 6=i

λl(γlPL(0,f(i) f(i)
1−f(i)Zi,(1−f(i))

f(i)
1−f(i)Zi)

(f i) + (1− γl)PL(0,f(i) f(i)
1−f(i)Zi,(1−f(i))

f(i)
1−f(i)Zi)

(f l))

=
∑
l 6=i

λl(γlPf(i)Zi(f
i) + (1− γl)Pf(i)Zi)(f l) =

∑
l

βlPmaxl≤m f(l)Zi(f
l)
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Again by the constant similarity axiom, we get that PT (f) =
∑

l βlPmaxl≤m f(l)T (f l) for all
T such that f ∈ ∆T .

(iii) f(i) ≥ 1/2, i.e. f(i) is maximal frequency, which gives L(f(i), (Tl)l 6=i) = Zi, hence

PZi(f) =
∑
l 6=i

λlPL(f(i),(Tl)l 6=i)(f
l
i (f(i))) =

∑
l 6=i

λlPZi(f
l
i (f(i)))

=
∑
l 6=i

λl(γlPL(0,f(i)Zi,(1−f(i))Zi)(f
i) + (1− γl)PL(0,f(i)Zi,(1−f(i))Zi)(f l))

=
∑
l 6=i

λl(γlPf(i)Zi(f
i) + (1− γl)Pf(i)Zi(f l)) =

∑
l

βlPmaxl≤m f(l)Zi(f
l)

Again by the constant similarity axiom, we get that PT (f) =
∑

l βlPmaxl≤m f(l)T (f l) for all
T such that f ∈ ∆T . �

Remark B.3
In the proof above, of course, it would be sufficient to prove (i) and combine it with the fact
that for all f ∈ ∆, there exist i 6= j ≤ m, such that f(i) ≤ k∗, otherwise for l ≤ m f(l) ≥

maxj 6=i T
j
i

maxj 6=i T
j
i +Zi

and hence
∑

l≤m f(l) ≥ (n+1)
maxj 6=i T

j
i

maxj 6=i T
j
i +Zi

≥ 1 since Zi ≤ n(maxj 6=i T
j
i ). But

it would not show directly the consistency wrt. the different particular decompositions.

Remark B.4
Let f ∈ ∆ be expressed as convex combination of the set {f1, f2, f3} for some fi ∈ ∆T for
all i = 1, 2, 3, i.e. f = β1f1 + β2f2 + (1− β1 − β2)f3.
As in Remark B.2 we apply the relativ length interpretation of the weights βi ∈ (0, 1) for
all i = 1, 2, 3, to get the (potentially) smallest induced length H of the database represented
by f via the convex combination of databases Di ∈ CT , which are represented by fi ∈ ∆T .
That is, H is again the smallest possible denominator of all βi such that for all i = 1, 2, 3
βi = ziT

H for some zi ∈ N and hence we have that f ∈ ∆H can be combined by the decom-
position (fi)i≤3, where fi ∈ ∆βiH=ziT for i = 1, 2, 3.

The following Lemma mirrors Lemma A.4 in EG.

Lemma B.2
Let P satisfy the maximal anchored concatenation and constant similarity axiom. For
m ≥ 3 let (sj)j≤m be a collection of similarity weights. Define the function P s : X ×
∆(C) → ∆(R) and for any T ∈ N, T ≥ 2 and any f ∈ ∆T the restriction P sT to X ×∆T

by

P sT (f) =

∑
j≤m sjf(j)Pmaxj≤m f(j)T (f j)∑

j≤m sjf(j)

Suppose that for some T ≥ T ∗ and f ∈ ∆T it holds PT (f) = P sT (f).
Then, PW (f) = P sW (f) for all W ∈ Z such that f ∈ ∆W

Proof:

Let T (f) be the smallest T such that f ∈ ∆T (f), this implies that for all l ∈ N f ∈ ∆lT (f).
By Lemma B.1 we know that P can be represented as in representation (8) , hence we get
the following.
If there exist some λ ∈ ∆m (with λi = 0 if and only if f(i) = 0) such that it satisfies for
some l ∈ N+,

PlT (f)(f) =

m∑
j=1

λjPmaxi≤mf(i)T (f)(f
j),
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then by the constant similarity axiom it also holds for all l ∈ N+. In particular, for l such
that lT (f) = T the following holds:

PT (f) =
m∑
j=1

λjPmaxi≤mf(i)T (f)(f
j)

by ass
=

∑m
j=1 sjf(j)Pmaxi≤mf(i)T (f j)∑m

j=1 sjf(j)
= P sT (f)

By the Diversity axiom’s non-collinearity condition, we get λj =
sjf(j)∑m
j=1 sjf(j)

.

Since P slT (f) =

∑m
j=1 sjf(j)Pmaxi≤mf(i)lT (f)(f

j)∑m
j=1 sjf(j)

=
∑m

j=1 λjPmaxi≤mf(i)T (f)(f
j) = PlT (f)(f) for

all l, the proof is completed. �.

B.4 Theorem 5.1 (i) ⇒ (ii) in frequency version

Theorem B.1
Let there be given a function P : X ×∆→ ∆(R). Let PT the restriction of P to X ×∆T

and let for T ≥ 2 PT : ∆T → ∆(R) satisfy the following conditions

(i) Learning Axiom
(ii) Diversity Axiom
(iii) Maximal Anchored Concatenation Axiom
(iv) Constant Similarity Axiom

Then, for all T ≥ 2, there exist unique probability vectors (P jT )j≤C ∈ ∆(R), and unique
-up to multiplication by a strictly positive number- positive numbers (sj)j≤m ∈ R+, such
that for every f ∈ ∆T :

PT (f) =

∑
j≤qm sjf(j)P jmaxj f(j)·T∑

j≤m sjf(j)
(9)

Proof

Obviously, we have to define P jT = PT (f j) for all T ≥ 2 and j ≤ m.

For the representation, we have to show that there are positive numbers (sj)j≤C such
that the representation holds for all T ≥ 2 and for every f ∈ ∆T .

Rough sketch of the proof:

In general the proof follows the rough structure of BGSS, i.e. the idea to translate the
framework form databases to frequencies to exploit the simplex structures. To derive the
similarity values first for a set of basic cases consisting only of three cases and then use
the gained results for the generalization to any finite number of basic cases is also based
on BGSS. But except of the rough structure, the proof presented here needs different ar-
guments to complete the different parts of the proof. In particular the anchored version
version of the combination axiom requires a different way (compared to BGSS and hence
also EG, which follows a very similar approach) to show the main crucial step of the proof.
Namely, in BGSS the combination of any databases or frequency vector is allowed. Also
in EG the combination of any frequency vectors (by taking care about the lengths and
the constant similarity axiom) is basically possible. However in this paper only specific
anchored databases or frequency vectors can be combined, which requires a different ap-
proach. As in EG, the constant similarity axiom is an important ingredient to facilitate
the proof.

Rough Steps:
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In Step 1 we proof the theorem for a set of basic cases consisting only of three different
basic cases, i.e. C = {c1, c2, c2}.

Step 1.1: Determination of the similarity values s1, s2, s3

Similar to BGSS and EG, we derive the similarity weights s1, s2, s3 ∈ R+, by apply-
ing the anchored concatenation axiom, constant similarity axiom and the diversity axiom.
More specifically: The representation (8) in Lemma B.1 and the representation (9) in The-
orem B.1 applied to f := 1

3(f1 + f2 + f3) yields (with the Diversity axiom) the similarity

values, which allows the definition of P sT (f) :=

∑
j≤3 sjf(j)P

j
maxj f(j)T∑

j≤3 sjf(j)
for all f ∈ ∆(C) and

T ∈ N.

Step 1.2: Show that PT (f) = P sT (f) for all simplicial points (Figure 1 illustrates sim-
plicial partitions and points)

The main tool to show this claim is the observation that for four specifically struc-
tured frequency vectors, which fulfill the above equation, also the intersection of the lines
between two of these (specific) vectors satisfies the above equation (Lemma B.4). The
crucial step in the proof is to apply his fact in a appropriate way (different than in BGSS,
EG) inductively. In this step again the maximal anchored concatenation axiom and the
constant similarity axiom (in form of Lemma B.2) are necessary.

Step 1.3: Show that PT (f) = P sT (f) for all frequency vectors f ∈ ∆(C)

The proof is similar to a (rewritten/revised) proof of Lemma A.6 in EG, which is based
on the existence of the limit of P cT for all c ∈ C (Learning axiom). Since all frequency
vectors f ∈ ∆ can be approximated by a series of simplicical triangles/points, we can
show the claim (by using Lemma B.1 and Lemma B.2). In particular, one can show that
the beliefs P and P s induced by the sequence of simplicial points, which approximates f,
converges to the belief of P and P s induced by the limit f. Using the equivalence of P sT (g)
and PT (g) for the sequence of simplicial points g ∈ ∆ by Step 1.2 and the Diversity Axiom
will deliver the claim.

In Step 2, the result from step 1 is used inductively for a general set of basic cases
C = {c1, c2, ..., cm} with m > 3.

Step: 2.1: Defining the similarity weights s1, ..., sm

Step 1 is applied to any triple of cases {cj , ck, cl} ⊆ C for distinct j, k, l ∈ {1, 2, ...,m},
yielding similarity weights s

(j,k,l)
j , s

(j,k,l)
k , s

(j,k,l)
l . As in the proof of Proposition 3, Step

2.1 in BGSS, one can show that each similarity weight can be chosen independent of the

choice of the triple, i.e. s
(j,k,l)
j = sj . Hence as in Step 1.1. we can define P sT (f) :=∑

j≤m sjf(j)P
j
maxj f(j)T∑

j≤m sjf(j)
for all f ∈ ∆(C) and T ∈ N.

Step 2.2: Show PT (f) = P sT (f) for all f ∈ ∆(C)

This is done inductively on |M | = m for f ∈ conv({(f j)j∈M}), where we use Step
1 for m = 3 as start of the induction. Each f ∈ ∆ can be decomposed based on dif-
ferent anchors (Remark B.2). Applying the maximal anchored concatenation axiom to
these decompositions yield hyperplanes, which are spanned by (P (f ji (f(i))))j 6=i≤m, for dif-
ferent i ≤ m. All these hyperplanes contain P (f) and also include P s(f) as well, since
PT (f ji (k)) = P sT (f ji (k)) for any i 6= j ≤ m and f ji (k) ∈ ∆T . Using the constant similarity
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axiom (Lemma B.2) and Lemma B.1 to harmonize the different hyperplanes wrt. lengths,
we can show that the intersection of all these induced hyperplanes is unique, which delivers
the desired result.

B.5 Step 1: C = {c1, c2, c3}, i.e. m = 3

Step 1.1:

Define f :=
∑

j≤3 1/3f j , for f j ∈ ∆T , and T ≥ T ∗ then f ∈ ∆3T . We can choose positive

numbers s1, s2, s3 such that representation holds for f by equating the evaluation of f
using the representation (8) in Lemma B.1 , i.e. P3T (f) = λ1P

1
T + λ2P

2
T + (1− λ1− λ2)P 3

T

with representation (9) in Theorem B.1 and solving the linear system. The solution of this
linear system s1, s2, s3 exist uniquely up to multiplication by a positive number due to the
non collinearity condition of the Diversity Axiom for T ≥ T ∗, otherwise uniqueness is not
achievable.
Define for all T and f ∈ ∆T

P sT (f) :=

∑
j≤3 sjf(j)P jmaxj f(j)T∑

j≤3 sjf(j)
(10)

Obviously P sT (f j) = PT (f j) for all j = 1, 2, 3 and P sT (f) = PT (f).
The aim is to show for all T and for every f ∈ ∆T :

P sT (f) = PT (f) (11)

In the following, we will partition the simplex ∆ into so called simplicical triangles recur-
sively, as illustrated in the Figure 1 below.

Definition of Simplicical Triangles:

The 0-th simplicical partition consist of vertices qj0 ∈ ∆, which are exactly the unit vectors
f j for j = 1, 2, 3. The first simplicial partition of ∆ is a partition to four triangles separated
by the segments connecting the middle points between the two of the three unit frequency
vectors, i.e. q11 := (12f

1 + 1
2f

2), q21 := (12f
2 + 1

2f
3) and q31 := (12f

3 + 1
2f

1). The second
simplicial partition is obtained by similarly partitioning each of the four triangles to four
smaller triangles, and the l-th simplicial partition is defined recursively. The simplicial
points of the l-th simplicial partition are all the vertices of triangles of this partition. Note

f1 f2

f3

q21q31

q11
•

•

•

• •

•

Abbildung 1: a

1

f1 f2

f3

q21q31

q11
•

•

•

• •

••
q12

•
q22

•q32 •
q42

•
q52

• q62

•
q72

•q82 • q92

Abbildung 1: a

1

Figure 1: 1st and 2nd Simplicical partitions
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that for j = 1, 2, 3 the qj0 are frequency vectors representing databases consisting only of

1 case, but of any length T ∈ N, i.e. qj0 ∈ ∆T for all T ∈ N+. All vertices qvl of the l-th
simplicial partition are in ∆2lT for all T ∈ N+ for appropriate v ≤ nl as defined below.
Considering the simplicial points on the line between f1 and f2, we get for the 0-th simpli-
cical partition: 2 simplicical points, for 1-th simplicical partition: 3 simplicical points: 3,
for 2-th simplicical partition: simplicical points, for 3-th simplicical partition: 9 simplicical
points and so forth, i.e. it follows the series al = 2l + 1 for all l ∈ N. Observe that for each
parallel line to (f1, f2) between simplicial points of the l-th simplicical partition, the line
which is one ’step’ closer to f3, possesses one simplicical point less than the farther parallel
line. The number of simplicial points on these parallel lines decreases until reaching the
point f3. Hence the total number nl of simplicial points of the l-th partition is given by

nl :=

al∑
i=1

i =
2l+1∑
i=1

i = 22l−1 + 2l + 2l−1 + 1 where al = 2l + 1 (12)

(13)

Step 1.2: Equation (11) holds for all Simplicial Points

In the following, we will partition the simplex into simplicical triangles and will show
that the vertices of these triangles satisfies equation (11).

Lemma B.3
The vertices qvl with v ≤ nl of the l-th simplicial partition satisfy equation (11) for all
l ∈ N.

Proof

Main tool of the proof is the following Lemma.
Notation: In the following we will denote for a, b ∈ ∆ or a, b ∈ ∆(R) the straight line
through a and b by (a, b) (since there won’t be a confusion to the usual interval notation).

Lemma B.4
Let a, b, c, d ∈ ∆ be distinct frequency vector satisfying equation (11) and the lines (a, b)
and (c, d) are not collinear. Then the intersection y of the line (a,b) and (c,d), i.e. y =
(a, b) ∩ (c, d) satisfies equation (11) (for an appropriate length T , i.e. such that y ∈ ∆T ))
if the following conditions hold for both of the pairs a, b and c, d:
(i) both vectors a and b (respectively c and d) lie on a line (f ji (k), fhi (k)) for some k ∈ [0, 1]
and distinct i, j, h ≤ m, which represent anchored databases with identical anchor case
ci ∈ C or
(ii) a, b (respectively c, d) lie on a line between (f ji (1), fhj (1/2)) for some distinct i, j, h ≤ m.

Proof
We will show the situation, where both pairs a, b and c, d satisfy condition (i).
Assume that a, b ∈ (f ji (k), fhi (k)), hence also y ∈ (f ji (k), fhi (k)). Hence by Remark B.2

we know that there exist a decomposition of y via (f ji (k), fhi (k)), i.e. there exist some

α ∈ (0, 1) and Zy ∈ N such that y = αf ji (k) + (1 − α)fhi (k) ∈ ∆Zy with corresponding

adjusted length Ly := L(k, αZy, (1− α)Zy) such that PZy(y) ∈
(
PLy(f

j
i (k)), PLy(f

h
i (k))

)
.

Analogously, there exist some Zx and Lx for all x ∈ {a, b}. Let L := LCM(Zy, Za, Zb),
then for all v ∈ {y, a, b} the following holds

PZvL
Lv

(v) ∈
(
PL(f ji (k)), PL(fhi (k))

)
In particular PZaL

La
(a) and PZbL

Lb

(b) determine already the shape/slope of the line(
PL(f ji (k)), PL(fhi (k))

)
and hence PZyL

Ly
(y) ∈

(
PZaL

La
(a), PZbL

Lb

(b)
)

.
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The same derivation can be executed with P s and results in P sZyL
Ly

(y) ∈
(
P sZaL

La
(a), P s

ZbL

Lb

(b)
)

and since we know that a, b ∈ ∆ satisfy (11), we get:

PZyL
Ly

(y), P sZyL
Ly

(y) ∈
(
PZaL

La
(a), PZbL

Lb

(b)
)

The same procedure applied to pair c, d instead to a, b with G := LCM(Ly, Lc, Ld) yields:

PZyG
Ly

(y), P sZyG
Ly

(y) ∈
(
PZcG

Lc
(c), PZbG

Lc
(c)
)

Finding a common multiplier J = LCM(L,G) will deliver the desired result, since

PZyJ
Ly

(y), P sZyJ
Ly

(y) ∈
(
P ZaJ
LaG

(a), P ZbJ

GLb

(b)
)
∩
(
PZcJ
LLc

(c), PJZd

LLd

(d)
)

and the intersection is unique (otherwise this would be a contradiction to the diversity
axiom). Hence P s

Zy J
Ly

(y) = PZy J
Ly

(y) and by Lemma B.2 PT (y) = P sT (y) for all T such

that y ∈ ∆T .

The situation, in which one of the two pairs satisfies condition (i) and the other con-
dition (ii) or both pairs fulfill condition (ii) can be shown analogously. �

The proof of the theorem is conducted by using the observation in Lemma B.4 induc-
tively, as can be seen in the series of figures (Figures 2 and 3) below.

Proof by induction over the l-th partition:
For l = 0:
By Step 1.1, we know that for (q1 = q10, q

2 = q20, q
3 = q30) the representation holds.

Induction step:
Let the claim be true for the l-th simplicical partition. For the (l + 1)-th partition the
following procedure will capture all simplicical points qvl+1 for v ≤ nl+1.
The procedure, which can be understand easily in the series of Figures 2 to 4, is expressed
in quite extensive notational effort below.

We need some definitions:

(i) We will denote by g
(i,j)
l (d) the simplicical point in the l-th partition on the line (f i, f j)

such that it is the d closest to f i. More precisely, let for all i 6= j ∈ {1, 2, 3} and for all
l ∈ N:

g
(i,j)
l (d) ∈ {qxl ∈ (f i, f j) | there exists (d-1) many distinct qtl ∈ (f i, f j) for t, x ≤ nl

s. th. ‖f i − qtl+‖ < ‖f i − qxl ‖}

where || · || is the standard norm on R|R|.
(ii) We denote by bil+1(d) the simplical point of the (l + 1)-th partition, which lies on the

line (f i, q∗) and the d- closest line in the (l + 1)-th partition parallel to f j , fh for distinct
i,j,k.
Lines between these points are essential to cover all simplicial points through intersections.
More precisely, define for all ∈ N and all distinct i, j, h ∈ {1, 2, 3}:
bil+1(d) := (f i, 1/2(f j + fh))∩ (g

(i,j)
l (d), g

(i,h)
l (d)) (remember 1/2(f j + fh) = fhj (1/2) = qw1

for some w ∈ 1, 2, 3, i.e. 1/2(f j + fh)) satisfy equation (11)).

Procedure:
(i) For d = 1:
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Figure 2: From 2nd to 3rd Simplicical partition points
Assume that all simplicial points (bullets) of the 2-nd partition satisfy already equation (11). Here
some points are named according to the notation used in the procedure.
For example take the simplicial points of the 2nd partition that is on (f1, f2) and closest to f1, i.e.

g
(1,2)
2 (1). Analogously, take the closest to f1 on (f1, f3), i.e. g

(1,3)
2 (1). Intersecting (g

(1,2)
2 (1), g

(1,3)
2 (1))

with (f1, q21) shows that b13(1) satisfies equation (11) as well. Analogously, this can be shown for bi3(1)

(i = 2, 3) using appropriate combinations of g
(i,j)
2 (1), qm1 , f

h

W.l.o.g. take the perspective of f j = f1 for a j ∈ {1, 2, 3}. Given the l-th simplicical
partition, there exist a simplicial point of the (l+ 1)-th simplicial partition b1l+1(1), which

is the intersection of the lines (f1, f2) and (g
(1,2)
l (1), g

(1,3)
l (1))). By the induction assump-

tion these pairs of points satisfy equation (11) and the conditions of the Lemma B.4 and
hence P s

2l+1(b1l+1) = P2l+1(b1l+1), i.e. b1l+1(1) satisfies equation (11). Analogously the same

procedure applied to f j for j = 2, 3 yields that bjl+1(1) satisfies equation (11).

(ii) Draw the line between two elements of {b1l+1(1), b2l+1(1), b3l+1(1)}, w.l.o.g. take b1l+1(1)
and b3l+1(1). The line (b1l+1(1), b3l+1(1)) intersects for all 0 ≤ z ≤ al (defined above (12))

with the lines (g
(1,3)
l (z), g

(2,3)
l (z)) which are parallel to the line (f1, f2) and also with all

lines (g
(1,2)
l (z), g

(1,3)
l (z)) which are parallel to (f2, f3). By Lemma B.4 this yields, that

all simplicical points of the (l + 1)-th partition, which lie on the line (b1l+1(1), b3l+1(1)) are
satisfying equation (11).
Analogously, the procedure yields, that all simplicical points of the (l + 1)-th partition,
which lie on the lines (bil+1(1), bjl+1(1)) for all combinations of i 6= j ∈ {1, 2, 3} are satisfy-
ing equation (11), i.e. which are on the closest parallel lines to (f1, f2), (f1, f3), (f2, f3)
and in particular, the closest (l+ 1)-simplicial points to f1, f2, f3 on the rim/boundary of
conv({f1, f2, f3}).

(iii) Apply the procedure of (i) and (ii) (where d = 1) recursively for d = 2n − 1 > 1
for 2 ≤ n ≤ al+1−1

2 (from f1- view).

Derive {b1l+1(d), b2l+1(d), b3l+1(d)} by (i) using fh and (g
(i,j)
l (d) for i, j, h ∈ {1, 2, 3} appropri-

ately. Using (ii), we can show that all simplicical points of the (l + 1)-th partition, which
lie on the lines (bil+1(d), bjl+1(d)) for all combinations of i 6= j ∈ {1, 2, 3} are satisfying
equation (11).

Observe that for d = 2n with 1 ≤ n ≤ al+1−1
2 the simplicial points of the (l + 1)-th

partition, which lie on the lines (bil+1(d), bjl+1(d)) for all combinations of i 6= j ∈ {1, 2, 3}
are already satisfying the equation (11) directly, since these lines already are ’used’ for the
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Figure 3: From 2nd to 3rd Simplicical partition points
a) Using lines (bi3(1), bj3(1)) and their intersections with existing lines, will show equation (11) for all
simplicical points of the 3rd partition, which are on the closest parallel lines to the rim of the simplex.
b) Now, consider the simplicial points of the 2nd partition, which are on the lines (f i, f j) and third

(since the second closest are covered indirectly) closest to f i. For example, take g
(1,2)
2 (3) (third closest

to f1 on line (f1, f2)) and g
(1,3)
2 (3)) (third closest to f1 on (f1, f3)). Intersecting of (g

(1,2)
2 (3), g

(1,3)
2 (3))

with (f1, q21) shows that b13(3) satisfies equation (11) as well. Analogously, this can be shown for bi3(3)

(i = 2, 3) using appropriate combinations of g
(i,j)
2 (3), qm1 , f

h.

procedure in the l-th partition and the simplicial points of the (l+ 1)-th partition are just
indirectly processed via the the intersection steps in (ii).

B.5.1 Step 1.3: Completion to all f ∈ ∆

Lemma B.5
For all 2 ≤ T ∈ N and f ∈ ∆T : PT (f) = P sT (f).

Before we proof the Lemma, we mention some helpful considerations.
For each f ∈ ∆ there exists a sequence of simplicical triangles (qill , q

jl
l , q

hl
l )l∈N (remember

qvl ∈ ∆2l for all v ≤ nl) for distinct il, jl, hl ≤ nl, such that:

(i) f ∈ conv({qill , q
jl
l , q

hl
l }) for all l ∈ N, i.e. there exist βvl ∈ [0, 1] for all v ∈ {il, jl, hl}

such that f = βill q
il
l + βjll q

jl
l + βhll q

hl
l

(ii) For all v ∈ {il, jl, hl} and l ∈ N:
qvl ∈ ∆βvl Hl

, such that Hl (as in Remark B.4) is the smallest common denominator of all

βvl , i.e. there exist zvl , such that βvl =
zvl 2

l

Hl
. Hence, if f is represented by combination of an

l-th simplicical triangle, then f ∈ ∆Hl

(iii) liml→∞q
v
l = f for all v ∈ {il, jl, hl}

Clearly this construction is possible for all f ∈ ∆.

To proof the Lemma, i.e. f ∈ ∆T : PT (f) = P sT (f), we proceed with the following steps.
If we could show that liml→∞||P sHl(f)−P sHl(q

v
l )|| = 0 and lim→∞ ||PHl(f)−PHl(qvl )|| = 0

for all v ∈ {1, 2, 3}, the result would follow from PHl(q
v
l ) = P sHl(q

v
l ) (by Step 1.2) and the

Diversity and Constant similarity axiom.

Proof of Lemma B.5
Step (i):

39



f1 f2

f3

q21q31

q11
•

•

•

• •

•

•
• •

•

• •

• •

• •

• •

•

• •

• •

• •

•
b33(3)

•
b23(3) •

b13(3)

• •

•

•

•

•
•

•
•

•

•

•

•

•
•

• •

•

•

••

•

• •• ••• •

Abbildung 1: a

1

Figure 4: As before, the next step would be to intersect the lines between (bi3(1), bj3(1)) and the existing
lines, will show equation (11) for all simplicical points of the 3rd partition, which are on the third
closest parallel lines to the rim of the simplex, which completes the 3rd partition.

By the learning axiom and since P sT (f i) = PT (f i) for all T ∈ N, we know that for all
i ≤ 3, we have liml→∞P

s
Hl

(f i) = P∞(f i) = P i∞.

We want to show for all v ∈ {il, jl, hl}: liml→∞||P sHl(f)− P sHl(q
v
l )|| = 0.

Let for all r ∈ R, P iT (r) be the r-th component of the probability vector.

For all l, v ∈ {il, jl, hl} and qvl we have that liml→∞ q
v
l = f and hence liml→∞ P

j
maxj qvl (j)Hl

(r) =

P jmaxj f(j)Hl
(r) holds. This directly implies liml→∞(P sHl(f)(r)−P sHl(q

v
l )(r)) = 0 for all r ∈ R

and hence the desired result.

Step (ii):

By Lemma B.1 we know, that PH(f) =
∑3

j=1 λjPmaxi=1,2,3 f(i)H(f j) where λ ∈ ∆2 is
independent of the length of the database by the constant similarity axiom.
Hence by the learning axiom liml→∞PHl(f) = liml→∞

∑3
j=1 λjPmax{i=1,2,3} f(i)(Hl)(f

j) ex-
ists and hence with the same reasoning as above in the case of P s, we know that

liml→∞||PHl(qvl )− PHl(f)|| = 0 for all v ∈ {il, jl, hl}

Step (iii):

By Step (i) and (ii) and the triangle inequality, we get:

liml→∞||P sHl(f)− P sHl(q
v
l )− PHl(f) + PHl(q

v
l )|| = 0
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Since for all l, we know that PHl(q
v
l ) = P sHl(q

v
l ), we have liml→∞||(P sHl(f)−(PHl(f))|| = 0,

which implies for all r ∈ R:

0 = liml→∞(PHl(f)(r)− P sHl(f)(r))

= liml→∞

( 3∑
j=1

λjPmaxi f(j)Hl(f
j)(r)−

∑
j≤3 sjf(j)P jmaxj f(j)Hl

(r)∑
j≤3 sjf(j)

)

= liml→∞

3∑
j=1

Pmaxi f(j)Hl(f
j)(r)

(
λj −

sjf(j)∑
j≤3 sjf(j)

)

=

3∑
j=1

P∞(f j)(r)
(
λj −

sjf(j)∑
j≤3 sjf(j)

)
By the Diversity axiom, no three of P∞(f j) are collinear (i.e. also no P∞(f j)(r) are convex

combinations), which implies that it must hold that λj =
sjf(j)∑
j≤3 sjf(j)

for all j = 1, 2, 3, hence

PLl(f) = P sLl(f) for all l and by the constant similarity Lemma B.2 PT (f) = P sT (f) such
that f ∈ ∆T . �.
The proof for C = {c1, c2, c3} is concluded.

B.6 Step 2: m > 3:

B.6.1 Step 2.1 Defining the similarity weights:

Consider for T ≥ T ∗ and distinct j, k, l ≤ m a triple {P jT , P kT , P lT }
Using the considerations from B.5 Step 1 for {j, k, l}, i.e. f3T :=

∑
i∈{j,k,l} f

i and f i ∈ ∆T ,

we can derive the similarity weights (s
{j,k,l}
i )i∈{j,k,l} and the following representation for

all f ∈ conv({f j , fk, f l}) ∩∆T :

P
{j,k,l}
T (f) =

∑
i=j,k,l s

{j,k,l}
i f(i)P

{j,k,l}
maxif(i)T

(f i)∑
i=j,k,l s

{j,k,l}f(i)
i

Moreover for all i ∈ {j, k, l}, we have P
{j,k,l}
T (f i) = PT (f i) = P iT and (s

{j,k,l}
i )i∈{j,k,l} are

unique up to multiplication by a positive number.

Now we want to show, that the similarity values s
{j,k,l}
i are independent of the choice

of j, k and l for all i ∈ {j, k, l}. This can be shown in two steps:

1. Show that
s
{j,k,l}
j

s
{j,k,l}
k

=
s
{j,k,n}
j

s
{j,k,n}
k

,

i.e. the ratio between two similarity number is independent of the choice of a third
case/frequency. Take two different triples {j, k, l} and {j, k, n}, i.e. l 6= n. Consider
the evaluation of rational combinations of f j ∈ ∆T and fk ∈ ∆T , i.e. for α ∈ Q:
f = αf j + (1 − α)fk, where H is the smallest common denominator of α, (1 − α) and
hence f ∈ ∆H , w.l.o.g. assume α ≥ (1− α). Then,

P
{j,k,l}
H (f) =

s
{j,k,l}
j αP jαH+s

{j,k,l}
k (1−α)PkαH

s
{j,k,l}
j α+s

{j,k,l}
k (1−α)

and P
{j,k,n}
H (f) =

s
{j,k,n}
j αP jαH+s

{j,k,n}
k (1−α)PkαH

s
{j,k,n}
j α+s

{j,k,n}
k (1−α)

.

Equating these two expressions, we get:

s
{j,k,l}
j α

s
{j,k,l}
j α+s

{j,k,l}
k (1−α)

=
s
{j,k,n}
j α

s
{j,k,n}
j α+s

{j,k,n}
k (1−α)

and
s
{j,k,l}
k (1−α)

s
{j,k,l}
j α+s

{j,k,l}
k (1−α)

=
s
{j,k,n}
k (1−α)

s
{j,k,n}
j α+s

{j,k,n}
k (1−α)

,

which leads to
s
{j,k,l}
j

s
{j,k,l}
k

=
s
{j,k,n}
j

s
{j,k,n}
k
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Denote this ratio by Sj,k :=
s
{j,k,l}
j

s
{j,k,l}
k

, this ratio is defined for all distinct j, k ≤ m, since

strict positivity of the similarity numbers.
Further observe that the following holds:

Sj,kSk,lSl,j =
s
{j,k,l}
j

s
{j,k,l}
k

s
{j,k,l}
k

s
{j,k,l}
l

s
{j,k,l}
l

s
{j,k,l}
j

= 1 (14)

2. Define s1 := 1 and sj = Sj,1 for all j ≤ m.

Aim: To show that for all triple j, k, l ≤ m it holds that s
{j,k,l}
i = asi for some a ∈ R+.

If we can show that
s
{j,k,l}
i

s
{j,k,l}
m

= si
sm

for for all m 6= i ∈ {j, k, l}, then we are done, since then

s
{j,k,l}
i = si

sm
s
{j,k,l}
m = asi for all m 6= i ∈ {j, k, l}, e.g. with m = k we have a =

s
{j,k,l}
k
sk

and

hence s
{j,k,l}
j = asj , s

{j,k,l}
k =

s
{j,k,l}
k
sk

sk, s
{j,k,l}
l = asl.

hence it suffices to show w.l.o.g. that
s
{j,k,l}
j

s
{j,k,l}
k

=
sj
sk

or equivalent Sj,k =
sj
sk

.

But the latter directly follows from (14), i.e. 1 = S1,jSj,kSk,1 = 1/sjSj,ksk, hence Sj,k =
sj
sk

and hence the desired result.

The independence of the similarity values s
{j,k,l}
i on {j, k, l} allows to replace the (unique

up to multiplication by a strictly positive number) s
{j,k,l}
i by the just defined si for all

i ≤ m, i.e. given these (si)i≤m, one can define as in the consideration in B.5 Step 1.1:
For all 2 ≤ T ∈ N and any f ∈ ∆T .

P sT (f) :=

∑
i≤m sif(i)P imaxif(i)T∑

i≤m sif(i)
(15)

As in the section before the aim is to show that for all T and any f ∈ ∆T the following
equation holds: P sT (f) = PT (f).

B.6.2 Step 2.2: Completion to all f ∈ ∆

Let ∆M
T := ∆T ∩ conv({f j | j ∈M}) denote the set of all frequency vectors f ∈ ∆T , which

assign zero appearance to all cases (ci)i∈{1,2,...,m}\M , i.e. only cases (cj)j∈M appear with
positive frequency.
We will show by induction on |M | = m for 3 ≤ m ≤ m the following claim.

Lemma B.6 For every subset M ⊆ {1, 2, ....,m} with |M | = m ≥ 3, PT (f) = P sT (f),
holds for every f ∈ ∆M

T

Proof:

For m = 3 the claim has been shown in B.5 Step 1 (Step 1.3 in Lemma B.5).
Hence we assume now, that the claim holds for m ≥ 3 and we prove it for M with
|M | = m+ 1.

1) Let f ∈ ∆M
T such that f ∈ conv({f j}j∈M\l) for some l ∈ M , then by induction as-

sumption P sT (f) = PT (f).
2) Now we consider f ∈ int(conv({f l | l ∈M}))
By Remark B.2 we know that for all i ∈M and l ∈M\{i}, there exist for all l 6= i ≤ m some
αli ∈ (0, 1) and

∑
l∈M\{i} α

l
i = 1 such that f =

∑
l∈M\{i} α

l
if
l
i (f(i)) with f li (f(i)) ∈ ∆T li

and then f ∈ ∆Zl (where T ji = αjiZi). W.l.o.g. (due to constant similarity axiom, Lemma
B.2) assume that for all l 6= i ≤ m there exist T li such that max{f(i), (1 − f(i))}T li ≥ T ∗
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(to overcome potential collinearity problems). For each i ∈M the corresponding adjusted
lengths L(f(i), (T ji )j 6=i∈M ) are abbreviated by Li in the following.
Now, the maximal anchored concatenation axiom induces that PZl(f) lies on the follow-
ing induced (m + 1)-many hyper-planes Am+1

l (Zl) for all l ∈ M , w.l.o.g. assume that
M = {1, 2, ...,m+ 1}:

PZ1(f) ∈ int(conv({PL1(f21 (f(1))), PL1(f31 (f(1))), ..., PL1(fm+1
1 (f(1)))})) =: Am+1

1 (Z1)

PZ2(f) ∈ int(conv({PL2(f12 (f(2))), PL2(f32 (f(2))), ..., PL2(fm+1
2 (f(2)))})) =: Am+1

2 (Z2)

∈ · · ··
PZm+1(f) ∈ int(conv({PLm+1(f1m+1(f(m+ 1))), PLm+1(f2m+1(f(m+ 1))), .....

....., PLm+1(fmm+1(f(m+ 1)))})) =: Am+1
m+1(Zm+1)

Since for all l 6= j ≤ m, P sT (f jl (f(l))) = PT (f jl (f(l))) for all T such that f jl (fl) ∈ ∆T , we
have also P sZl(f) ∈ Am+1

l (Zl) for all l ∈M .
For Z = LCM(Z1, ...Zm+1), the constant similarity axiom (Lemma B.2) implies that
PZ(f), P sZ(f) ∈ Am+1

l (Z) for all l ∈M , i.e. PZ(f), P sZ(f) ∈ ⋂l∈M Am+1
l (Z). By Lemma B.1

we have that for all l ∈ M the sets Am+1
l (Z) consist of identical (P jmaxl∈Mf(l)Z)j∈M (with

different positive weights after evaluation of PZ(f ji (f(i)) = λjP
j
max{f(i),(1−f(i))}Z + (1 −

λj)P
i
max{f(i),(1−f(i))}Z for particular λj ∈ (0, 1)) .

This implies that determining
⋂
l∈M Am+1

l (Z) means solving the (m+1)×(m+1) system of
linear equations. We know that |⋂l∈M Am+1

l (Z)| ≥ 1, since P sZ(f) and PZ(f) are included
in the intersection. The claim of PZ(f) = P sZ(f) would be proofed if we can show that⋂
l∈M Am+1

l (Z) is a singleton.
We will proof this by contradiction:
Assume that PZ(f) 6= P sZ(f), then the line g := (PZ(f), P sZ(f)) has to be contained
in Am+1

l (Z) for all l ∈ M . Hence this line g must intersect two of the faces Hj (of

dim(conv({P jmaxi≤m f(i)Z}{j∈M}))− 1), defined for all j ∈M by

Hj := conv({(P kmaxi≤m f(i)Z)k∈M\{j}}). W.l.o.g. let these two faces be named Hu, Hv for

some distinct u, v ∈ M . But then for all l ∈ M Am+1
l (Z) has to intersect with these two

faces Hu, Hv. We will show that this is not true. Observe that each Am+1
l (Z) intersects

with all (Hj)j 6=l∈M . Further, observe that applying the successive intersection, we get for
t ≤ m + 1 ∩tj=1A

m+1
j (Z) = {Ht+1, ...Hm+1}, which implies ∩m+1

j=1 A
m+1
j (Z) = ∅, i.e. there

exist no dim(conv({P jmaxi≤m f(i)Z}{j∈M}))−1)-faces such that all Am+1
l (Z) intersect them.

Hence there cannot exist g such that g ∈ Ak+1
l (Z) for all l ∈ M , which implies that

there cannot be more than one unique element in the intersection of all Am+1
l (Z), i.e.

∩l∈MAm+1
l (Z) = P sZ(f) = PZ(f). By Lemma B.2 we get PT (f) = P sT (f) for all T such

that f ∈ ∆T , which completes the proof of the Theorem B.1 and hence also Theorem 5.1.
�

C Incompatible objective belief formation

An objective belief without any imagination effort for each case reads

PT (D) =

∑
j≤C s(cj)fD(cj)P

cj
fD(cj)·T∑

j≤C s(cj)fD(cj)

Is there a modification of the concatenation axiom (as stated in equation (3)), that is
necessary for an objective representation and which database are admissible?
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Modified Version of the Concatenation axiom in the sense of:
For two databases D ∈ DT1 and E ∈ DT2 , T := T1 + T2 and two numbers L,H ∈ N+

such that fD · L ∈ Nm and fE ·H ∈ Nm, there exists a λ ∈ (0, 1) such that

PT (D ◦ E) = λPL(DL/T1) + (1− λ)PH(EH/T2).

W.l.o.g. we will restrict the analysis to a set of three basic cases, i.e. C = {c1, c2, c3}.
Applying the objective belief to the modified concatenation axiom yields:∑

j≤3 s(cj)fD◦E(cj)P
cj
fD(cj)T1+fE(cj)T2∑

j≤3 s(cj)fD◦E(cj)
= λ

∑
j≤3 s(cj)fD(cj)P

cj
fD(cj)L∑

j≤3 s(cj)fD(cj)

+(1− λ)

∑
j≤3 s(cj)fE(cj)P

cj
fE(cj)H∑

j≤3 s(cj)fE(cj)

We are not allowing to have a law of dynamics for the probabilities P
cj
T (which is also not

reasonable), i.e. like some function Y of P
cj
T = Y (P

cj
L , P

cj
H ). Thus, we directly need to

equalize the precision level for the estimations for each single case, i.e. for all j ≤ m

1{fD(cj)>0}fD(cj)L = 1{fE(cj)>0}fE(cj)H and fD(cj)L ∈ {0, fD(cj)T1 + fE(cj)T2} (16)

Let i, j, l ∈ {1, 2, 3, } be mutually distinct.

In Situation 1 let there exist some i ≤ m such that fD(ci) = 0. Consequently, we

have fD◦E(ci)T = fE(ci)T2
T T , which must be equal to fE(c1)H and implies H = T2. Only

disjoint D and E can satisfy (16) with H = T2. Thus databases D with fD(c) = 0 for some
c ∈ D allow only concatenations of disjoint databases.

Hence in Situation 2 we consider only databases that share the same support, i.e.
fD(c) > 0 iff fE(c) > 0. For m = i, j equations (16) can be rewritten to

L =
fD(cm)T1 + fE(cm)T2

fD(cm)
= T1 +

fE(cm)T2
fD(cm)

and H = T2 +
fD(cm)T1
fE(cm)

.

The first equation implies that L = T1 + fE(ci)T2
fD(ci)

= T1 +
fE(cj)T2
fD(cj)

, which results in

fE(ci)
fD(ci)

=
fE(cj)
fD(cj)

, which is only feasible if fE(c)
fD(c) = 1 for all c ∈ D. Hence fD = fE represent

different replications of the same database and the above equations yield L = T1+T2 = H.
Thus, the only non-disjoint concatenating database a modified concatenation axiom al-
lows for are replicated identical databases, which is naturally true for all λ ∈ (0, 1), i.e.
PT1+T2(A) = λPT1+T2(A) + (1− λ)PT1+T2(A).

In sum, a objective belief satisfies a modified concatenation axiom only for combinations
of disjoint databases or replicated identical databases. However, as seen in the proof a
restriction to disjoint combining databases offers not sufficient structure to combine all
frequency vectors in the simplex, i.e. the axiom allows only for combination of some lower
dimensional hyper-planes, and hence will not allow to derive the desired objective belief.

D Relationship to EG’s Axiom ”Concatenation restricted
to databases of equal length”

As mentioned at the end of Section 4.2.2, for a general concatenation axiom, the immense
compromising considerations between different cautious estimations can only be avoided by
assuming a common arbitrary level of precision according to which all cases are estimated,
independent of the objective precision of the information. For each piece of information,
literally agents need to imagine (or forget) sufficiently many observation of cases to reach
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an assumed artificial common level of precision. This ensures that no considerations and
compromising regarding different precisions is required and allows an easy averaging based
only on relative relevances of the concatenating databases. However, thereby an agent
also needs to know a priori that she evaluates all information in an imagined precision
and the beliefs contains only (imagined) equally precise and cautious estimations. Conse-
quently, this means that a version of a concatenation axiom that cares for precision and also
applies to arbitrary non-disjoint concatenations accomplishes the averaging of differently
precise information by explicitly assuming away the differences in the sense of employing
consciously estimations induced by imagined (forgotten) equally precise information.

Nevertheless, this discussion delivers an explanation and intuition for the (unexplained)
statement in EG: ” ... we modify the concatenation axiom of BGSS by restricting it to
databases of equal length, i.e. thus controlling for the ambiguity resulting from insufficient
amount of data ”. Their restriction to equal lengths is ad hoc. However, technically
one could argue for the equal length assumption by referring to the discussion above.
An aggregation of differently precise information is only feasible if estimations are based
on a common precision level, which is a consequence of the restrictions in their axiom.
More detailed, their axiom demands, that for a set of n databases of the same length
T, that can be concatenated to a n-times replication of a database, a belief induced by
this database (not the n-th replication) is a average of the beliefs induced by each of
the n databases separately. Obviously, this implies for a appropriate set of concatenating
databases (consisting only of a single case) 24 that the belief induced by the database
- which underlie the n-th replication- is formed by an average of the beliefs induced by
T-times observed cases, i.e. for some appropriate (λc)c∈D ∈ (0, 1)

P (D) =
∑
c∈D

λcP (cT )

Thus, the restriction to equal lengths implies directly that all contained estimation are
based on this common level as well. In this way EG is indirectly exploiting the above
mechanism to overcome the immense compromising considerations.

However as already discussed, from our perspective and motivation, equal lengths of
database are not sufficient to control for precision of its contained information. Moreover,
in the spirit of the above discussion, EG’s restriction to equal lengths cannot be meaningful
interpreted as controlling for imprecision, but more as an (implicit) proposal to employ
the length of the entire databases as the common (imagined) precision level according to
which all estimations are made.

E Minimal Anchored Axiomatization

Instead of focussing on the most precise case in a database to determine the precision
of its induced belief, we can also take the least precise case as the key determinant for
the precision of a belief. This modification results in a minimal version of an anchored
Concatenation and Constant Similarity Axiom and a corresponding extremely cautious
belief formation.

Definition E.1
Let F ∈ CT be an anchored chain of (Dj

i (k, Tj))j 6=i≤m.
A length M ∈ N is called the adjusted (minimal) length and denoted by M(k, (Tj)j 6=i≤m)
if it is such that the number of observations of the least frequent case in an anchored chain
F ∈ CT is identical to the number of observations of the least frequent case in the anchored
databases Dj

i (k, L) (for all j 6= i), (i.e. minc∈C fF (c)T = minc∈C fDji (k,M)
(c)M)

24This is always possible, for example consider D = (c21, c2, c
3
3) ∈ C6, then D6 = (c61) ◦ (c61) ◦ (c62) ◦ (c63) ◦ (c63) ◦ (c63),

which implies P (D) = λ1P (c61) + λ2P (c62) + (1− λ1 − λ2)P (c63)
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Minimal Anchored Concatenation Axiom:

(i) Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m, i.e. F = ◦mj 6=iD

j
i (k, Tj) and

let M ∈ N be the corresponding adjusted (minimal) length, i.e. M = M(k, (T ji )j 6=i), then
there exists λ ∈ ∆m (where λj = 0 for all j ≤ m s. th. Tj = 0), s. th.

PT (F ) =
∑

j 6=i≤m
λjPM (Dj

i (k))

(ii) Let for three distinct i, j, l ≤ m and any V,W ∈ N F = Dj
i (1, V ) ◦Dl

j(1/2, 2W ) then

there exist λ ∈ int(∆2):

PV+2W (F ) = λPmin{V,W}(D
j
i (1)) + (1− λ)Pmin{2V,2W}(D

l
j(1/2))

For an analogously adjusted Constant Similarity Axiom the resulting theorem reads:

Theorem E.1
Let there be given a function P : C∗ → ∆(R). Let PT be the restriction of P to CT for
T ∈ N+. Let P satisfies the Learning Axiom and the Diversity Axiom.
Then the following are equivalent:

(i) The function P satisfies the Invariance axiom, the minimal anchored Concatenation
axiom, the ( minimal) Constant Similarity axiom
(ii) There exists for each (T, c) ∈ N× C a unique P cT ∈ ∆(R), and a unique -up to multi-
plication by a positive number- function s : C → R+, s. th. for all T and any D ∈ CT :

PT (D) =

∑
c∈D s(c)fD(c)P c

TD∗∑
c∈D s(c)fD(c)

(17)

where T ∗D ∈ N+ is defined by TD∗ := T ·minc∈D fD(c).

Interpretational, this means that all estimations are based on the least precise infor-
mation contained in the database and no information needs to be imagined. However,
the focus on the least precise information results in neglecting and discarding many more
precise pieces of information, by processing only until the level of least precision.

A detailed interpretation in terms of perception of precision and an adoption of an
implied attitude of extreme cautiousness can be found in the discussion after Theorem 5.1.
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