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We propose a new approach for performing detailed decompositions of average
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1 Introduction

Decomposition methods are frequently employed to analyze differences in average eco-
nomic outcomes between groups of individuals. The most prominent example is the
decomposition in the linear model by Oaxaca (1973) and Blinder (1973) which splits the
gap into a structural effect (due to differences in coefficients) and a composition effect
(due to differences in covariates). Since it is usually of interest how strongly individual
explanatory variables drive the differential, these aggregate effects must be further broken
down by a so-called detailed decomposition.

While detailed decompositions are straightforward in the linear Oaxaca-Blinder frame-
work, they are more complicated in nonlinear models. A major drawback of some ap-
proaches suggested in the literature is that the detailed decomposition is path-dependent,
i.e. sensitive to the order of computation (e.g. Fairlie, 2005). Another approach, which
does not suffer from path-dependence, is proposed by Yun (2004, 2008), who approxi-
mates the nonlinear decomposition terms at the sample means of the covariates with a
first-order Taylor approximation. However, the linear approximation has the disadvan-
tage that the decomposition neglects the effects of covariate distributions on the nonlinear
outcome models.

In this paper, we propose a new approach for performing detailed decompositions
which takes into account the effects of all higher-order moments of covariates on the
outcome model. The method is path-independent and the contributions of individual
covariates add up to the aggregate decomposition, both of which are desirable properties.
Moreover, our detailed decomposition generalizes to the Oaxaca-Blinder case in the linear
model. The method we suggest can be applied to any generalized linear model (GLM),
a framework which encompasses numerous limited dependent variable models as well as
the linear model.

A small simulation study demonstrates that our procedure produces more appropriate
results than Yun’s method if covariates differ in higher-order moments. Furthermore, we
provide an empirical application to the native-immigrant mean wage gap in Switzerland.

The remainder of this paper is organized as follows: Section 2 develops the framework
for the detailed decomposition proposed in this paper. Section 3 provides the simulation
exercise and Section 4 the empirical application. Finally, Section 5 concludes.

2 Decomposition Framework

The framework is based on potential-outcomes notation (Rubin, 1974) as is standard
in the modern approach to decomposition analysis (Firpo et al., 2011). We consider a
population of two non-overlapping groups denoted groups A and B, which for example,
could represent male and female workers. If individual i ∈ A, we have Di = A and if
i ∈ B, we have Di = B. Denote yiB the potential outcome of individual i if she belongs to
group B and yiA the potential outcome if she belongs to group A. The observed outcome
of person i is thus yi = I(Di = B)yiB + I(Di = A)yiA. Hence, yiB for units in group A
and yiA for units in group B are counterfactual.

As for any decomposition problem, a counterfactual outcome of interest must be
defined.1 As in Firpo et al. (2011), we focus on the “simple” counterfactual E[yiA|Di = B],

1 In the classic example of Oaxaca-Blinder decomposition of wages, the counterfactual outcome of
interest is implicitly set by the choice of the reference wage structure (Cotton, 1988; Neumark, 1988;
Jann, 2008).
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which corresponds to the mean outcome in group B that would prevail if their outcome
distribution were generated by the data generating process of group A.2 Given this
counterfactual, the aggregate decomposition of average outcomes can be written as

Δ = (E[yi|Di = B] − E[yiA|Di = B]
︸ ︷︷ ︸

=ΔS

) + (E[yiA|Di = B] − E[yi|Di = A]
︸ ︷︷ ︸

=ΔX

),
(1)

where E[yiA|Di = A] and E[yiB|Di = B] have been replaced by the corresponding ob-
served outcomes. The term ΔS is the structural effect (also: coefficients effect), which
corresponds to the average treatment effect on the treated (Imbens and Wooldridge,
2009). The term ΔX is the composition effect (also: characteristics effect) and cap-
tures the part of the gap due to differences in covariates across groups.

The aggregate decomposition in (1) is nonparametrically identified under the well-
known ignorability assumptions, but additional assumptions are necessary to identify the
contributions of individual covariates in a detailed decomposition (Firpo et al., 2011). 3

To allow for practical and feasible estimation, we consider a fully parametric framework.
That is, we assume that the conditional expectation functions (CEF) take the form of a
generalized linear model (GLM)

E[yi|Xi, Di = g] = G(Xiβ
g) for g = {A,B}, (2)

where βg ∈ Rk is a unique column vector of population coefficients and Xi is a (1×K) row
vector of covariates with the first element being a constant. We assume that Xi contains
at least one continuous covariate for reasons explained below. The central element of
any GLM is the function G(∙), which is a monotonic and differentiable link function that
maps the linear index Xiβ

g one-to-one into the support of the outcome. By the law of
iterated expectations, the aggregate decomposition in (1) can now be written as

Δ = E[G(Xiβ
B)|Di = B] − E[G(Xiβ

A)|Di = B]
︸ ︷︷ ︸

ΔS

+ E[G(Xiβ
A)|Di = B] − E[G(Xiβ

A)|Di = A]
︸ ︷︷ ︸

ΔX

(3)

The aim of a detailed decomposition is to further break down the terms ΔX and ΔS into
the contributions of individual covariates.

2.1 Detailed Decomposition

In both linear and nonlinear models, detailed decompositions of the structural effect do
not have a meaningful interpretation for covariates without a natural zero point (Oaxaca
and Ransom, 1999; Jann, 2008; Firpo et al., 2011).4 Due to these practical limitations,
we will confine the discussion to the decomposition of the composition effect, which does

2Note that our decomposition approach does not depend on the choice of counterfactual. We merely
choose it because it is easy to interpret and has a meaningful treatment-effects equivalent.

3 Ignorability states that (i) potential outcomes are independent of group assignment given covariates
and (ii) the covariate support of group B is contained within the covariate support of group A. Ignorability
implies E[yiA|Di = B] = EX{E[yi|Xi, Di = A]|Di = B}.

4Yun (2005) proposes a solution to the problem consisting of an ex-post normalization on the coeffi-
cients. However, as Firpo et al. (2011) note, such normalizations come at the cost of interpretability.
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not suffer from this problem. Appendix A briefly sketches how the structural effect can
be decomposed with our method.

While detailed decompositions in nonlinear models are less straightforward than in
linear models (because contributions of covariates are not additively separable), several
approaches have been suggested in the literature. First, Fairlie (2005) applies a simulation
procedure to binary probability models, but the resulting decomposition is sensitive to the
order of computation (path-dependent). Second, Yun (2004) proposes a path-independent
procedure which is derived from two approximation steps. First, he approximates the
aggregate decomposition terms at the sample means, and second, he performs a first-
order Taylor approximation. The resulting expressions are covariate “weights” in which
all terms containing G(∙) cancel out. The drawback of this detailed decomposition is that
it neglects the impact of higher-order moments of Xi on the nonlinear model and only
takes into account differences in means. This is relevant because, unlike in linear models,
average outcomes in nonlinear model are affected, for example, by different covariate
variances across groups. In what follows, we present an alternative approach that does
not have this limitation.

The main difference to Yun’s approach is that we start by defining the detailed de-
composition terms conditional on covariates. In this way, there is no need to approximate
the aggregate decomposition terms at the sample means in the first place. To decompose
the composition effect in a meaningful way, the contributions of individual covariates can
be related to a counterfactual experiment. Given i ∈ A, an arbitrary observation from
group A, we want to measure the importance of covariate k in the change of the CEF
value when covariates are switched from the observed values Xi to some counterfactual
values, denoted by Xc

i . After having defined the conditional decomposition terms from
this experiment, we will then be able to obtain unconditional decomposition terms in a
second step.

The main idea of our conditional detailed decomposition is to decompose the distance
between the two points on the CEF, i.e. between G(Xc

i β
A) and G(Xiβ

A). But in order
to ensure path independence, the conditional decomposition we suggest is based on the
line segment between the two points in the two dimensional space of the CEF and the
linear index. The contribution of an individual covariate k is then defined by the slope
of this line segment times (Xc

ik − Xik)β
A
k . More formally, we define the contribution of

covariate k when we move from the observed outcome to the counterfactual outcome as

ΔX
k (Xi, X

c
i ) =

G(Xc
i β

A) − G(Xiβ
A)

(Xc
i − Xi)βA

(Xc
ik − Xik)β

A
k (4)

where the first term is the slope of the line segment and the second term is the horizontal
distance in the linear index attributable to covariate k. Figure 1 provides a graphical
illustration of the approach for a simple example with two covariates and a convex CEF.
It is clear from Figure 1 that the order in which we compute the decomposition terms
does not matter (path-independence) and that the two detailed decomposition terms,
ΔX

1 (Xi, X
c
i ) and ΔX

2 (Xi, X
c
i ), add up to the total difference ΔX(Xi, X

c
i ) = G(Xc

i β
A) −

G(Xiβ
A).

Note that P [(Xc
i − Xi)β

A = 0] = 0 due to the presence of continuous covariates such
that (4) is always well-defined. In the case where (Xc

i − Xi)β
A gets arbitrarily close to

zero, it follows immediately that
G(Xc

i βA)−G(Xiβ
A)

(Xc
i −Xi)βA → G′(Xiβ

A). Thus, (4) remains well-

defined because G(∙) is a differentiable function. In the special case where all covariates
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Figure 1: Conditional Detailed Decomposition

 

       

  
       

   

  
       

   

   

    
  

       
  

    
        

      
        

  

    
     

     
   

are discrete, (4) can be slightly modified.5

Now we turn to the choice of Xc
i . Given our decomposition framework, it is natural

that the counterfactual covariate distribution of interest is the covariate distribution of
group B. That is, we are interested in an experiment in which we set Xc

i = Xj where
j ∈ B. The term ΔX

k (Xi, Xj) then measures the importance of covariate k in the change
of the CEF when observation i from group A is assigned the characteristics of observation
j from group B.

Now the issue remains to go from a conditional detailed decomposition (ΔX
k (Xi, Xj))

to an unconditional detailed decomposition (ΔX
k ). We obtain the latter in two steps. In

the first step, we obtain ΔX
k (Xi, Xj) for a given unit i ∈ A and the entire population B.

These terms are appropriately averaged, such that we obtain the average contribution
of covariate k conditional on Xi, i.e. ΔX

k (Xi). This exercise is performed for the entire
population A. In the second step, the conditional contributions obtained in step one are
then simply averaged across population A, which yields the unconditional contribution of
covariate k to the composition effect, i.e. ΔX

k . Putting it more formally, the unconditional
contribution can be obtained by integrating ΔX

k (Xi, Xj) over the covariate distributions

5If all covariates are discrete, it may be that P [(Xc
i − Xi)βA = 0] 6= 0. In this case we define the

contribution of covariate k as

ΔX
k (Xi, X

c
i ) =

{
G(Xc

i βA)−G(Xiβ
A)

(Xc
i −Xi)βA (Xc

ik − Xik)βA
k if (Xi − Xc

i )βA 6= 0

G′(Xiβ
A)(Xc

ik − Xik)βA
k if (Xi − Xc

i )βA = 0
(5)
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in the two sub-populations:

ΔX
k =

∫

u

∫

v

ΔX
k (u, v)dFX|D=B(v)dFX|D=A(u) (6)

Due to the linearity of the operator, it follows immediately that the unconditional con-
tributions of all covariates sum up to the aggregate composition effect, ΔX =

∑K
k=1 ΔX

k .
Given a finite sample with NA units in group A and NB units in group B, the corre-
sponding estimator is given by the sample analogue:

Δ̂X
k =

1

NA

∑

i:Di=A

1

NB

∑

j:Dj=B

ΔX
k (Xi, Xj). (7)

This estimator belongs to the class of two-sample U-statistics (as for example the Mann-
Whitney-Wilcoxian rank sum test) and is shown to be consistent and asymptotically
normal under standard regularity conditions and given that NA/(NA + NB) is bounded
away from zero and infinity (see e.g. Lee and Dehling, 2005, for a formal proof).

The proposed procedure for the detailed decomposition has some attractive properties.
First, as shown, the individual contributions add up to the aggregate decomposition
terms. Second, the decomposition is path-independent, i.e. does not depend on the order
of computation (as opposed to Fairlie’s (2005) method). Third, it is easy to see that if
CEFs are linear, the decomposition terms reduce to the standard detailed decomposition
in the linear model. In other words, if G(∙) is the identity function (∙), (7) reduces to

Δ̂X
k = (X̄B

k − X̄A
k )β̂A

k , where X̄B
k and X̄A

k are group-specific sample means. Thus, our
method can be regarded as a natural extension of the standard detailed decomposition
to nonlinear settings.

Finally, we compare our approach to Yun’s (2004) from a statistical viewpoint. He
performs two approximations directly to the unconditional composition effect, which
yields the following detailed decomposition terms:

ΔX
k,approx = ΔX ∙

(E[Xjk|Dj = B] − E[Xik|Di = A])βA
k

(E[Xj|Dj = B] − E[Xi|Di = A])βA
. (8)

Yun’s (2004) approach therefore amounts to integrating all terms containing Xi separately
as a result of the approximation. In contrast, our method integrates all terms in (4) jointly
across the relevant populations. In this way, our method accounts for group-specific
differences in the higher-order moments of Xi and not only for differences in means as in
(8).

2.2 Estimation

In practice, of course, the GLM must be estimated in a first step to obtain estimates of
the parameters (βA, βB). A GLM assumes that the dependent variable is generated from
a probability distribution in the exponential family (normal, Poisson, gamma, Bernoulli,
binomial, categorical, multinomial, etc.). However, a well-known result from Gourieroux
et al. (1984) states that consistent estimation of the parameters only requires correct
specification of the CEF and no further distributional assumptions. These estimators
are called quasi-maximum-likelihood estimators because they are consistent even if the
underlying density is misspecified.6

6The most famous example for a QML estimator is OLS: it corresponds to the ML estimator derived
under normality and is consistent even if errors are not normal.
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Due to the two-step nature of the estimation of the detailed decomposition, the boot-
strap can be used to compute standard errors and conduct inference. In this context, one
drawback of our method is that estimation of ΔX

k can become computationally demanding
if the sample size is large.7

3 Simulation Exercise

We conduct a small simulation study to compare the detailed decomposition proposed in
this paper with the method of Yun (2004). For the purpose of illustration, we consider
a very simple setup with only two covariates and zero structural effect (i.e. Δ = ΔX).
Both covariates are normally distributed. The outcome is nonlinear in the covariates and
generated by an exponential CEF, i.e. y = exp(α0 + α1x1 + α2x2), where we set α0 = 0
and α1 = α2 = 1. We keep the model deterministic because we are only interested in
the detailed decomposition and not in the estimation of the parameters.8 We generate
random samples of size 2000, with NA = NB = 1000.

In the first experiment, we generate a gap by differences in means only. In group B,
the means of both covariates are larger than the means in group A, but variances are
equal, i.e. xk|D = A ∼ N(1, 1) and xk|D = B ∼ N(2, 1) for k ∈ {1, 2}. In this example,
the “correct” detailed decomposition is unambiguous; we expect that the contributions
of the two covariates to the composition effect are equal. Table 1 shows the results
from this first experiment and clearly confirms our expectations. As we can see, both

Table 1: Monte-Carlo Simulation Results, Experiment 1

configuration of simulation results
covariates our method Yun’s method

group A group B mean st.dev. mean st.dev.
x1 N(1, 1) N(2, 1) ΔX

1 64.60 5.12 63.90 5.45
x2 N(1, 1) N(2, 1) ΔX

2 61.73 6.08 62.43 6.08
total gap (ΔX) 126.32 10.65 126.32 10.65

Notes: 10 replications of samples with NA = 1000 and NB = 1000.

decompositions attribute the same amount of the total gap to either covariate because
there are only differences in first moments and these differences are the same for both
covariates. Note also that by construction, individual contributions of covariates add up
to the total composition effect in both methods.

In the second experiment, x2 is the same as before but we add a mean-preserving
spread to x1 in that we increase the variance of x1 in group B by a factor of 4, i.e.
x1|D = B ∼ N(2, 4), while keeping everything else unchanged. Due to the convexity of
the outcome model, the large dispersion of x1 in group B sizably increases the average
outcome of this group. As a result of the increased variance, the total gap increases by
a factor of about 5. Thus, covariate x1 is now much more important in explaining the

7Appendix B demonstrates how the detailed decomposition proposed above can be computed effi-
ciently using matrix algebra. The decomposition method is implemented in the STATA package glmdeco
which is available on the author’s homepage at http://staff.vwi.unibe.ch/kaiser/research.html

8Note that adding an error term does not affect the simulation results in a meaningful way because
it only adds noise to the outcome model.
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composition effect which should be reflected in a larger contribution of x1 relative to the
contribution of x2. Table 2 shows the simulation results from the second experiment. On

Table 2: Monte-Carlo Simulation Results, Experiment 2

configuration of simulation results
covariates our method Yun’s method

group A group B mean st.dev. mean st.dev.
x1 N(1, 1) N(2, 4) ΔX

1 455.72 71.80 320.94 50.89
x2 N(1, 1) N(2, 1) ΔX

2 189.25 30.80 324.03 47.76
total gap (ΔX) 644.97 96.96 644.97 96.96

Notes: 10 replications of samples with NA = 1000 and NB = 1000.

average, Yun’s method still attributes about half of the gap to x1 and x2, respectively,
because the effects of differences in variances are not taken into account. In contrast, our
decomposition method produces results that are in line with the reasoning above: ΔX

1 is
considerably larger than ΔX

2 , i.e. the biggest share of the gap is attributed to x1. This
is because the differences in the variance are taken into account by our decomposition
method. Note that ΔX

2 is also larger in absolute value relative to the first experiment in
Table 1. The reason is that the joint distribution of (x1, x2), which is different in the two
experiments, affects the detailed decomposition, as is evident from equation (6).

We conduct a third simulation experiment, in which we want to assess the precision of
the two estimators when differences in group-specific covariate distributions become small.
For this purpose, we modify the first experiment by reducing differences in covariate
means to 0.05, while leaving everything else the same. Simulation results are presented
in Table 3. Most notably, we find that the estimator of Yun’s decomposition behaves

Table 3: Monte-Carlo Simulation Results, Experiment 3

configuration of simulation results
covariates our method Yun’s method

group A group B mean st.dev. mean st.dev.
x1 N(1, 1) N(1.05, 1) ΔX

1 0.576 1.590 0.744 1.274
x2 N(1, 1) N(1.05, 1) ΔX

2 0.666 1.430 0.498 1.698
total gap (ΔX) 1.242 2.633 1.242 2.633

Notes: 10 replications of samples with NA = 1000 and NB = 1000.

extremely erratically as reflected in the very large standard deviations. A density plot of
the distribution of Monte Carlo estimates (not shown) reveals that the estimator follows
a non-normal, degenerate distribution with fat tails. In contrast, the estimator of our
decomposition method remains well-behaved; the distribution of Monte Carlo estimates
(not shown) is approximately normal as implied by the theoretical results of Lee and
Dehling (2005).
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4 Application

To illustrate the detailed decomposition method, we provide an empirical application on
the arithmetic mean wage gap between native and immigrant workers. While researchers
commonly decompose the approximate geometric mean wage gap (i.e. the log-wage gap
E[ln yi|Di = B] − E[ln yi|Di = A]) using a log-linear regression model, the arithmetic
mean wage gap, E[yi|Di = B] − E[yi|Di = A], might be the more appropriate quantity
(Leslie and Murphy, 1997; Blackburn, 2008). This argument suggests that one should
model the original dependent variable (raw wage) directly. The standard functional form
assumption then implies that the wage should be specified as an exponential function of
the covariates. This model can be estimated with quasi-maximum-likelihood techniques
(Gourieroux et al., 1984).

The data is drawn from the Swiss Earnings Structure Survey in 2008. This data is of
higher quality than comparable survey data because it is elicited directly from employers’
records. Moreover, the large sample size ensures that sampling bias is not a concern. For
the purpose of illustration, we confine the analysis to male full-time workers in German-
speaking Switzerland.9 Omitting observations with missing values and those aged under
20 or above 65, the sample contains more than 400,000 observations. Immigrant workers
are defined as those without Swiss citizenship. The outcome of interest is full-time equiv-
alent gross monthly earnings10 and the set of controls consists of educational attainment
(9 categories), potential work experience in years (quadratic), tenure in years (quadratic)
and marital status (3 categories).

Table 4 presents descriptive statistics. Immigrants constitute about 30% of adult
male employment in German-speaking Switzerland and earn considerably lower wages
on average. Comparing covariates, we see, for example, that natives have more work
experience and tenure and the dispersion of these covariates is also larger. Given the
convexity of the assumed CEF, we would therefore expect that Yun’s decomposition
attributes too small a share of the composition effect to these variables.

For the decomposition analysis, we define natives as group A and immigrants as group
B, such that the the counterfactual of interest in the mean wage immigrants would be
paid if their wages had been generated by the wage structure of natives. Table 5 presents
the results from the detailed decomposition across the two decomposition methods. 11 As
we can see, about half of the observed differential is explained by different covariate dis-
tributions. The detailed decomposition explores the extent to which individual covariates
contribute to the mean wage gap. We observe some differences between the two methods
compared. For example, while the method of Yun (2004) suggests that work experience
does not significantly affect the gap, our method suggests that it widens the gap signifi-
cantly on a 0.1% level. Conversely, the importance of educational attainment and marital
status are smaller when our method is used. To summarize, we find that it matters in
practice for a detailed decomposition in a nonlinear model whether we allow the entire
covariate distributions (or only their means) to affect the detailed decomposition terms.
In our application, we find that both the quantitative and qualitative results are different.

9“Full-time” are those whose hours worked are at least 90% of a full-time equivalent.
10Including monetary benefits, extra pay for night-shifts or weekend-shifts and, where applicable, one

twelfth of the 13th monthly salary.
11We report the decomposition of the structural effect for the sake of completeness, but results are

only presented for continuous covariates for the reasons mentioned previously.

9



Table 4: Descriptive Statistics

natives immigrants
mean mean diff.

monthly gross wage (in CHF) 7277.015 6421.693 -855.322
(4845.426) (4949.802)

log(wage) 8.788 8.652 -0.136
(0.411) (0.420)

education level
university 0.058 0.083 0.026
college 0.069 0.046 -0.024
higher vocational training 0.149 0.065 -0.084
teaching diploma 0.003 0.002 -0.001
secondary school 0.016 0.013 -0.002
vocational training 0.619 0.419 -0.200
firm-specific vocational training 0.020 0.071 0.051
primary school 0.047 0.209 0.162
other education 0.021 0.093 0.072

marital status
single 0.380 0.309 -0.071
married 0.540 0.625 0.084
divorced, widowed 0.080 0.067 -0.013

work experience (years) 22.467 20.946 -1.521
(11.733) (10.513)

tenure (years) 9.772 6.982 -2.790
(9.852) (7.902)

# observations 315192 134293

Notes: The sample consists of male full-time workers from German-speaking Switzerland in
2008. Standard deviations are in parentheses. Sampling weights are used. Source: Swiss
Wage Structure Survey, Swiss Federal Statistical Office.

5 Conclusions

This paper has presented a new approach for performing detailed decompositions to
differences in means when the outcome model is nonlinear and belongs to the calls of
generalized linear models (GLM). As opposed to Yun’s (2004) method, we derive a con-
ditional detailed decomposition which takes into account that differences in higher-order
moments of covariates affect average outcomes through the nonlinearity of the model. A
simulation exercise has demonstrated that our method produces more convincing results
when the dispersion of covariates differs across groups. Furthermore, the analysis of the
immigrant-native wage gap exemplifies that these effects can be relevant in empirical
applications.

A potential area of future research could be to exploit the proposed procedure for de-
compositions of more general distributional statistics such as variances, quantiles, etc. To
do this, our method could be combined with the distribution regression approach recently

10



Table 5: Detailed Decomposition of Immigrant-Native Wage Gap

our method Yun’s method
est. st.err. in % est. st.err. in %

total differential −855.3∗∗∗ (21.0) 100.0 −855.3∗∗∗ (19.5) 100.0

aggregate composition effect −414.7∗∗∗ (14.3) 48.5 −414.7∗∗∗ (14.6) 48.5
education level −329.6∗∗∗ (12.6) 38.5 −376.3∗∗∗ (12.6) 44.0
work experience (years) 45.8∗∗∗ (2.1) -5.4 53.4∗∗∗ (2.2) -6.2
tenure (years) −27.7∗∗∗ (4.9) 3.2 −1.3 (4.8) 0.1
marital status −103.2∗∗∗ (3.8) 12.1 −90.6∗∗∗ (3.4) 10.6

aggregate structural effect −440.6∗∗∗ (19.1) 51.5 −440.6∗∗∗ (19.3) 51.5
work experience (years) −28.8 (17.9) 3.4 −17.2 (16.9) 2.0
tenure (years) −155.5∗ (69.5) 18.2 −135.4∗ (55.2) 15.8

# observations Di = 1 (immigrants): 134293
# observations Di = 0 (natives): 315192

Notes: Estimation of outcome model is based on Poisson Quasi-Maximum-Likelihood. The sample
consists of male full-time workers from German-speaking Switzerland in 2008. Standard errors are
bootstrapped using 1000 draws of 10%-subsamples. Sampling weights are used. Significance levels:
*** p < 0.001, ** p < 0.01, * p < 0.05.

studied by Chernozhukov et al. (2013, forthcoming), which is based on the estimation of
binary probability models such as logit or probit.
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Appendix
A Decomposition of the Structural Effect

If researchers are willing to decompose the structural effect despite the interpretational dif-
ficulties (Oaxaca and Ransom, 1999), the contribution of covariate k to the structural effect
conditional on Xj , where j ∈ B, is given by

ΔS
k (Xj) =

G(Xjβ
B) − G(Xjβ

A)
Xj(βB − βA)

Xjk(β
B
k − βA

k )

In the case where all covariates are discrete, a similar modification as the one for the composition
effect is made (see Section 2). Integrating this expression over the covariate distribution of group
B, we obtain the unconditional contribution of covariate k to the structural effect

ΔS
k =

∫

u
ΔS

k (u)dFX|D=B(u)

The corresponding estimator is the following sample analogue:

Δ̂S
k =

1
NB

∑

j:Dj=B

Δ̂S
k (Xj)

B Computation

The compute the detailed decomposition proposed in this paper, matrix formulation is rec-
ommended for reasons of efficiency. In what follows, ⊗ denotes the Kronecker product, ◦ the
Hadamard product (element-by-element multiplication), /◦ the Hadamard division (element-
by-element division), and Im is a column vector of ones of length m. Furthermore, XA and
XB are the data matrices that contain the covariates of the subsamples of groups A and B,
respectively. For the detailed structural effects, we first define:

A = G(XBβB) − G(XBβA)

B = XB ◦ (INB
⊗ (βB − βA)′)

C = XB(βB − βA)

Then, the (1 × K)−vector of detailed structural effects is given by

Δ̂S =
1

NB
I ′NB

[
(I ′K ⊗ A) ◦ B / ◦ (I ′K ⊗ C)

]
,

where the k-th element of Δ̂S is the contribution of covariate k to the structural effect.
For the composition effect, computational efficiency can be increased considerably by ex-

pressing the inner summation with matrices. For each unit i in group A, define the following
terms:

Ai = G(XBβA) − G(Xiβ
A) ⊗ INB

Bi = (XB − Xi ⊗ INB
) ◦ ((βA)′ ⊗ INB

)

Ci = [XB − Xi ⊗ INB
]βA

13



In matrix notation, the inner summation can then be written as the (1 × K)−vector

Δ̂X(Xi) =
1

NB
I ′NB

[(I ′K ⊗ Ai) ◦ Bi/ ◦ (I ′K ⊗ Ci)].

The unconditional contribution of covariate k to the composition effect is the k-th element of
the (1 × K)-vector

Δ̂X =
1

NA

∑

i:Di=A

Δ̂X(Xi).

Acknowledgements

I am grateful to three anonymous referees, Michael Gerfin, Blaise Melly, Stefan Boes, Kaspar
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