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Abstract

When decomposing differences in average economic outcome between two groups of indi-

viduals, it is common practice to base the analysis on logarithms if the dependent variable is

nonnegative. This paper argues that this approach raises a number of undesired statistical

and conceptual issues because decomposition terms have the interpretation of approximate

percentage differences in geometric means. Instead, we suggest that the analysis should be

based on the arithmetic means of the original dependent variable. We present a flexible

parametric decomposition framework that can be used for all types of continuous (or count)

nonnegative dependent variables. In particular, we derive a propensity-score-weighted estimator

for the aggregate decomposition that is “doubly robust”, that is, consistent under two separate

sets of assumptions. A comparative Monte Carlo study illustrates that the proposed estimator

performs well in a many situations. An application to the union wage gap in the United

States finds that the importance of the unexplained union wage premium is much smaller than

suggested by the standard log-wage decomposition.
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1 Introduction

Decomposition methods are very useful tools to analyze differences in average economic

outcomes between groups of individuals. Although a strand of the recent literature em-

phasizes the importance of decomposing the entire distribution (e.g. Machado and Mata,

2005; Melly, 2005), the mean differential remains an important summary statistic in de-

composition analysis as it is simple (“one number”), easily understood and sometimes the

direct object of interest of policy analysis (e.g. health care expenditures). Differences in

means are usually decomposed with the Oaxaca-Blinder method (Oaxaca, 1973; Blinder,

1973) which splits the gap into a structural effect (due to differences in coefficients) and a

composition effect (due to differences in covariates). In many empirical applications where

outcomes are continuous and nonnegative, the dependent variable is log-transformed be-

fore performing the decomposition. While the log-transformation is usually done to allow

for convenient estimation, it changes the interpretation of the outcome gap in an impor-

tant way: in effect, the quantity to be decomposed when outcomes are in logs corresponds

to a first-order approximation to the percentage difference in geometric means (GM). This

quantity cannot be re-transformed to the first moments of the original dependent variable,

the arithmetic means (AM).

This paper argues that a decomposition based on the original dependent variable

may be preferable to a decomposition based on logarithms on statistical and conceptual

grounds. Foremost, if the support includes zero, the GM is theoretically undefined. In

applications, the dependent variable is sometimes artificially re-scaled in order to be able

to take logarithms, but this distorts the distribution at the lower bound of the support

(Santos Silva and Tenreyro, 2006). Furthermore, even if there are no zeros in the data, a

decomposition of AMs can be preferable for several reasons. First, the log outcome gap is

not invariant to changes in the higher-order moments of the distributions even if arithmetic

means remain constant (Leslie and Murphy, 1997). If for example dispersion increases,

the log outcome gap will change as well. This is clearly an undesired property for a

measure of the difference in average outcomes. Second, the log outcome gap only offers an

approximate interpretation, whereas the raw outcome gap offers an exact interpretation.

Finally, the AM is the more common and intuitive summary statistic.

In this paper, we suggest modelling the untransformed outcome variable directly to

decompose differences in arithmetic means. Important examples, in which decompositions

of such outcome variables are of interest, include wages and earnings (Firpo et al., 2011,

for an overview), health care expenditures (Vargas Bustamante and Chen, 2011), finan-

cial wealth (Barsky et al., 2002), firm-level productivity (Mueller, 2012), revenues (Munn

and Hussain, 2010), students’ test scores (Krieg and Storer, 2006), or counts, such as the

number of cigarettes smoked (Bauer et al., 2007). Since in most of these examples, the

conditional expectation function is thought to be convex, as reflected in the widespread
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use of log-transformations, a linear outcome model is inappropriate (see e.g. Barsky et

al., 2002). Instead, we propose a flexible nonlinear parametric framework based on an

exponential regression model. An important difference to previous papers on nonlinear

decompositions (Fairlie, 2005; Bauer and Sinning, 2008) is that we show how the coun-

terfactual of interest can be identified by invoking the results from the treatment effects

literature (Rubin, 1974).

As our methodological contribution to the literature, we suggest a new estimation

strategy for decomposing differences in average outcomes when outcomes are nonnegative.

We propose a “doubly robust” weighted Poisson quasi-maximum-likelihood (WPQML) es-

timator. The existence of this estimator is briefly mentioned in Wooldridge (2007), but to

the best of our knowledge, it has not been studied in detail nor has it been used in empiri-

cal work. Quasi-maximum-likelihood (QML) estimators in general are attractive because

they only require correct specification of the conditional mean function for consistency

and no further distributional assumptions (Gourieroux et al., 1984). The Poisson QML

estimator achieves some additional robustness if augmented with appropriate propensity-

score weights. We show formally that the decomposition can be consistently estimated if

either the outcome model or the propensity score model is correctly specified. Therefore,

double robustness is a useful property to guard against misspecification.

To illustrate how the proposed estimator of the nonlinear decomposition performs

in practice, we undertake a small Monte Carlo exercise. We compare the performance of

weighted and unweighted QML estimators, linear and quadratic regression and reweighted

regression (Firpo et al., 2007) under various scenarios with regard to functional form, over-

lap of covariate distributions and heteroskedasticity. We find that the weighted Poisson

QML estimator produces convincing results in many situations. It should therefore prove

to be an attractive estimation strategy for applied researchers who wish to perform de-

compositions of nonnegative outcomes.

In an empirical application to the union wage gap in the United States, we compare

the approach of decomposing arithmetic means with the standard Oaxaca-Blinder de-

composition based on the log-wage gap (geometric means). The former suggests that the

union wage premium is much less important in explaining the wage differential between

union and nonunion workers than the latter. The exact same finding emerges from a

decomposition of the native-immigrant wage gap in Switzerland. In other words, the con-

cept of the mean can have striking implications for the analysis of differences in economic

outcomes and therefore requires more careful consideration than it usually receives in

empirical research.

The remainder of this paper is organized as follows: Section 2 deals with the conceptual

and statistical issues of decomposing differences in either AMs or GMs. In Section 3,

we define the general decomposition framework and present the identification result for

the counterfactual of interest. In Section 4, we discuss model specification and derive
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the doubly robust estimator for the decomposition. Section 5 contains the Monte Carlo

exercise and Section 6 the empirical applications. Section 7 briefly covers some extensions

to detailed decompositions, endogeneity and sample selection and Section 8 contains some

concluding remarks.

2 Arithmetic and Geometric Mean Differentials

2.1 Analytical Framework

The analytical framework used in this paper will be based on the potential-outcomes

notation popularized by Rubin (1974). While questions of identification have mostly been

ignored in the more traditional decomposition literature, the treatment effects framework

clarifies the assumptions needed to identify the decomposition terms (Firpo et al., 2011).

We begin by defining a large population indexed by i = 1, 2, ..., N that contains two

mutually exclusive and non-empty groups of individuals. Let Di = 1 if person i belongs

to group 1 and Di = 0 if she belongs to group 0. The potential outcome of person i if she

belongs to group g is yig , where yig ∈ R+
0 ∀i and g ∈ {0, 1}. The potential outcomes and

the realized outcome are linked by yi = Diyi1 + (1 − Di)yi0. Hence, we do not observe

yi1 for units in group 0 and yi0 for units in group 1, which is why these quantities are

“counterfactual”. The notation introduced above will be used throughout this paper.

2.2 Measures of Mean Differentials

Before dealing with the technicalities of decomposition analysis, it is sensible to first clearly

define the object under study, i.e. the quantity to be decomposed. In most situations we

are interested (among other statistics) in the average gap in economic outcomes between

two groups, a prominent example being the average wage gap between male and female

workers. It seems natural to consider the difference in expected outcomes which is based

on population arithmetic means (AM):

ΔAM = E[yi|Di = 1] − E[yi|Di = 0] (1)

Of course, the outcome gap may also be expressed in terms of a percentage differential,

e.g. %ΔAM = (E[yi|Di = 1] − E[yi|Di = 0])/E[yi|Di = 0], which requires the choice of a

reference group (in this case group 0), but it is free from the underlying units in which

outcomes are measured. Alternatively, if the decomposition is based on log outcomes, we

have

%Δapprox
GM ≈ E[ln yi|Di = 1] − E[ln yi|Di = 0], (2)
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which is the approximate percentage differential in the population geometric means

(GM). An exact percentage differential in terms of GMs is given by %ΔGM =

[exp(E[ln yi|Di = 1]) − exp(E[ln yi|Di = 0])]/ exp(E[ln yi|Di = 0]) and the absolute dif-

ferential in terms of GMs is ΔGM = exp(E[ln yi|Di = 1]) − exp(E[ln yi|Di = 0]). The

approximate nature of (2) comes from a first-order Taylor expansion of %ΔGM around

E[ln yi|Di = 1] − E[ln yi|Di = 0] = 0 that becomes more accurate as %ΔGM approaches

zero.1

Is is notable that in many applications of nonnegative dependent variables, researchers

prefer to decompose (2) instead of (1). In particular, this is often the case in studies of

wages, where log-linear wage models are estimated by OLS to perform Oaxaca-Blinder-

type decompositions. This is the dominant procedure because wages and covariates are

usually assumed to have a log-link relationship, but also because it is standard practice to

estimate linear models instead of nonlinear models. While the geometric-mean interpre-

tation of (2) was noted by Oaxaca (1973), it is not explicitly mentioned in most empirical

applications.

The question obviously arises as to how the concepts of AM and GM are related.

Due to Jensen’s inequality, we always have that AM > GM . However, the relationship

between ΔAM and ΔGM is ambiguous without distributional assumptions and will depend

on the properties of the distributions under study.

2.3 Statistical and Conceptual Issues

Left aside issues of modelling and estimation, which measure of the mean differential

should be chosen when performing decompositions? There are several arguments to be

made. Foremost, if the support of yi includes zero, the GM is not defined. Thus, the

decomposition of means must be based on AMs for outcomes that may be zero, such as

individual health care expenditure, wealth, or count variables. Using ad hoc manipula-

tions such as ln(1 + yi) to accommodate zeros is inappropriate as it may severely distort

the distribution if the fraction of zeros is non-negligible (cf. Santos Silva and Tenreyro,

2006).

Furthermore, even if the support of the dependent variable excludes zero (as is the

case with wages) there are a number of arguments why a decomposition of means should

be based on AMs instead GMs, or equivalently, on raw outcomes instead of log outcomes.

First, as Leslie and Murphy (1997) note, the decomposition based on log outcomes is not

invariant to changes in the higher-order moments of the distribution. As a result, even

if the AMs of two distributions are the same, the difference in average log outcomes is

1Of course, the approximation in (2) could be made more exact if higher-order terms are included in the
Taylor expansion. For simplicity, write zg ≡ E[ln yi|Di = g] for g = {0, 1}, then %ΔGM = exp(z1−z0)−1.
A Taylor expansion around z1 − z0 = 0 yields (z1 − z0) + 1

2! (z1 − z0)2 + 1
3! (z1 − z0)3 + ...
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non-zero if, for example, the dispersion differs across distributions. We illustrate this by

two simple examples:

Example 1. (Leslie and Murphy, 1997) Let there be two samples with only two obser-

vations each: S0 = {2, 4} and S1 = {1, 5}. Then we have ȳ0 = ȳ1 = 3 and Δ̂AM = 0, but

the log gap equals %Δ̂approx
GM = 0.47.

Example 2. Suppose y0 and y1 are log-normally distributed with E[y0] = E[y1] = 1, but

variances are unequal: V [y0] = 0.5 < V [y1] = 1. In this case ΔAM = 0, but there is a gap

in log means given by %Δapprox
GM = E[ln y1] − E[ln y0] = (−.203) − (−.347) = .144.2

As demonstrated above, if two distributions are identical up to a mean-preserving spread,

the log-wage gap picks up the difference in dispersion. For a measure of the difference in

means, this is a rather undesired property.

Second, the approximation in (2) becomes inaccurate for large differences in outcomes

due to the concavity of the logarithm: for exact GM differentials of 5, 10, 20, and 50 per-

cent, the “approximation bias” is 0.12, 0.47, 1.77 and 9.45 percentage points, respectively.

This is clearly important in practice, since many differentials (e.g. male-female wage gap)

are quite substantial in magnitude. In fact, the approximative nature of (2) is only seldom

pointed out in empirical studies and sometimes no reference to the GM interpretation is

made (e.g. Darity et al., 1995; Jürges, 2002). As a consequence, interpreting log-points

as percentage differentials can be misleading.3

Third, apart from time-series contexts, it is customary to report arithmetic means

rather than geometric means when summary statistics are presented. Although this does

not represent a strong argument in favour of the AM decomposition per se, it nonetheless

implies that the AM is usually the statistic of interest.

Finally, a potential weakness of the AM relative to the GM as a measure of central

tendency is that it is more strongly affected by the presence of outliers in small samples. 4

Although the GM is indeed more robust, the argument only applies if the two distribu-

tions under study are adversely affected by outliers. This is because we are interested in

differences in means and not in means per se.

The discussion above provides the motivation for developing a decomposition frame-

work for differences in AMs that can be broadly applied to nonnegative dependent vari-

ables.

2Of course, examples of the converse case, where %ΔGM = 0 and %ΔAM 6= 0, can also be given.
3To avoid the problem described above, the log gap is often interpreted in terms of log-points or

“log-dollars” (Black et al., 2006; Edin and Richardson, 2002; Kim, 2010). While this is formally correct
and exact, talking about log-points arguably conveys little meaning in policy analysis.

4The most robust measure of central tendency is the median. It is unfortunate, however, that a direct
extension of OB-type decompositions to the median wage gap is not possible since the law of iterated
expectations does not hold for quantiles. See Firpo et al. (2011, Section 4) for a discussion of the various
approaches to quantile decompositions.
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3 Decomposition Framework and Identification

As for any decomposition problem, we must define a meaningful counterfactual. In the

classic Oaxaca-Blinder decomposition of wages, the counterfactual is implicitly implied

by the reference wage structure (Cotton, 1988; Neumark, 1988; Jann, 2008). We follow

the approach of Firpo et al. (2011) and choose the “simple” counterfactual outcome μC ≡

E[yi0|Di = 1]. This term corresponds to the mean outcome in group 1 that would prevail if

their distribution were generated by the conditional expectation function (CEF) of group

0. Since the labelling of group 0 and 1 is arbitrary, the choice of the counterfactual largely

depends on the question of interest. However, we find this particular counterfactual useful

because it offers a simple interpretation and has a meaningful treatment-effect equivalent. 5

As opposed to the counterfactual, the group-specific means are directly observable, i.e.

E[yi|Di = g] = E[yig|Di = g]. As a result, the aggregate AM decomposition is

ΔAM = (E[yi|Di = 1] − E[yi0|Di = 1])
︸ ︷︷ ︸

≡ΔS

+ (E[yi0|Di = 1] − E[yi|Di = 0])
︸ ︷︷ ︸

≡ΔX

,
(3)

The first term on the right-hand side is the structural effect (also: coefficients effect). In

treatment effects terminology, it corresponds to the population average treatment effect

on the treated (PATT), see e.g. Imbens and Wooldridge (2009). The second term is the

composition effect (also: characteristics effect) and captures the part of the gap due to

differences in covariate distributions across groups.

A prominent result from the treatment effects literature (see e.g. Imbens, 2004) states

that identification of μC is ensured under the following set of assumptions:

yi0 ⊥⊥ Di|Xi (4)

p(Xi) < 1 (5)

where p(Xi) ≡ P (Di = 1|Xi) is the propensity score and Xi is a row vector of covariates

with support X ⊆ Rk. The conditions in (4) and (5) are referred to as the conditional in-

dependence assumption (CIA) and the common support assumption (CSA), respectively.

5In the traditional literature on OB wage decompositions, a number of alternative reference structures
(i.e. counterfactuals) have been suggested (Jann, 2008), but these alternative measures sometimes imply
undesired assumptions on the underlying structural effect. First, if the counterfactual is based on Neu-
mark (1988), the coefficient estimates are likely to suffer from an omitted variable bias (see Jann, 2008).
Second, if the counterfactual is based on the coefficients from the (population) regression in the pooled
sample on the covariates and a dummy for the treated group, the wage structure effect is restricted to
be the same for every individual (see Firpo et al., 2011). Third, if the counterfactual is a sample-size
weighted average of the two wage structures as in Cotton (1988), the wage structure effect can be shown
to equal P (Di = 0)PATT +P (Di = 1)PATU under a set of baseline assumptions, with PATU being the
population average treatment effect on the untreated (see S loczyński, 2012). Clearly, this quantity differs
from the population average treatment effect (PATE) unless P (Di = 0) = P (Di = 1), and has therefore
no interesting analogue in the treatment effects framework.

7



Henceforth, we will collectively refer to them as ignorability.6 The former states that,

once we control for Xi, the distribution of unobserved characteristics is the same across

groups in the absence of treatment. The latter states that the support of the covariate

distribution in group 1 (the treated) must be contained within the support of the covari-

ate distribution in group 0 (the controls). Since these assumptions are well known in the

literature, we refer to Imbens and Wooldridge (2009) for more discussion. Given these

ignorability assumptions, identification of the counterfactual outcome can be stated as

follows (see Imbens, 2004):

E[yi0|Di = 1] = EX{E[yi|Xi, Di = 0]|Di = 1} (6)

To decompose differences in arithmetic means, the main issue that must be addressed is

to specify and estimate an appropriate model for E[yi|Xi, Di = 0], which we turn to in

the next section.

4 Model Specification and Estimation

Since researchers are usually also interested in detailed decompositions, parametric models

are more practical tools such that will not discuss nonparametric methods. For the ensuing

discussion, we assume that the CEFs can be represented by E[yi|Xi, Di = g] = μ(Xi, β
g)

for g = {0, 1} and all Xi ∈ X , where βg ∈ Rk is a unique column vector of population co-

efficients.7 As a useful starting point for modelling, consider the “generalized” functional

form (Wooldridge, 1992):

μ(Xi, β
g) = (1 + λXiβ

g)1/λ , for g = {0, 1}, (7)

which encompasses the linear regression model (λ = 1) and the exponential regression

model (λ → 0) as special cases.8 We discuss these two specifications for modelling the

dependent variable in the next two subsections.

4.1 A Note on the Linear Model

If the CEF of the outcome is assumed to be linear (λ = 1), then by the law of iterated

expectations, the AM decomposition takes the familiar Oaxaca-Blinder form. Why should

we not use a linear model that can be conveniently estimated with OLS? In the case of

6Assumptions (4) and (5) are weaker versions of the assumptions necessary to identify the population
average treatment effect (PATE).

7The uniqueness or identifiability of βg rules out perfect multicollinearity among the covariates.
8In the language of generalized linear models, the first assumes an identity-link between outcomes and

covariates and the second assumes a log-link relationship (equivalent to the functional form assumption
of the log-linear model).
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nonnegative dependent variables, the linear model appears unnatural because it does

not restrict the support of the CEF in any way. Given nonnegative outcomes, the true

CEF is likely to be nonlinear. While OLS offers the best linear approximation to the

CEF, the approximation may still be very poor if the true CEF is, for example, highly

convex (Barsky et al., 2002). To see this, consider the stylized example in Figure 1, where

outcomes in both groups are generated by the same CEF (ΔS = 0), but the covariate

distributions in the treated group and the control group are different, N(0.5, 1) and N(1, 1)

respectively, which means (ΔX 6= 0). The two group-specific regressions of yi on Xi yield

Figure 1: Linear Approximation

0
1

2
3

4
5

y

-2 0 2 4
x1

 treated  controls

different parameters, meaning that the misspecified model leads to a spurious structural

effect (Δ̂S 6= 0). This inconsistency persists if ignorability holds. Moreover, Barsky et al.

(2002) point out that the performance of the linear estimator becomes particularly poor

if there is missing overlap in the covariate distributions due to the linear extrapolation of

the misspecified CEF outside the common support.

There are several ways as to how the above described problems can be alleviated. First,

one can try to improve the approximation to the CEF by adding higher-order terms of

the covariates. In the case of high dimensional Xi, however, this may be cumbersome

and lead to very noisy estimates. Furthermore, it complicates matters if one is interested

in performing detailed decompositions. Second, another alternative is to use reweighted

regression as suggested by Firpo et al. (2007). Their estimator is doubly robust (in the

spirit of Robins et al., 2007) in that it consistently estimates the counterfactual if either the
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CEF of the outcome model is linear or if the assumed propensity score model is correct.

Intuitively, the propensity-score adjustment reduces the imbalance between the group-

specific covariate distributions and thus reduces the contamination of the structural effect

stemming from these imbalances. While reweighting generally increases the robustness

of regression with respect to departures from linearity, it may be problematic to rely

on the correct specification of the propensity score alone because any misspecification

immediately leads to biased estimates.

4.2 Nonlinear Outcome Model

Due to the described weaknesses of the linear model in the case of nonlinear CEFs, a

nonlinear specification that is consistent with the dependent variable being nonnegative for

arbitrary values of βg is generally preferable. This property is satisfied by the exponential

model, which follows from (7) when λ → 0. The model can be written as

yig = exp(Xiβ
g) + εig for g = {0, 1} (8)

where εig is an error term,9 and the assumed CEF is μ(Xi, β
g) = exp(Xiβ

g).10 The ex-

ponential CEF is used in many different models of nonnegative dependent variables. In

the case of count data outcomes, it emerges from the Poisson model. In the case of con-

tinuous nonnegative outcomes, it follows from the gamma and exponential distributions.

The exponential model is also very widely used in practice. In models of health care

expenditure, for example, it is the standard functional form assumption (Mullahy, 2009).

In wage models, the dependent variable used for estimation is usually in logarithmic form

which implies the functional form assumed in (8). It is justified theoretically (Mincer,

1974) and empirically (Heckman and Polachek, 1974; Blackburn, 2007). Therefore, the

exponential model seems a suitable choice for many contexts.

9In (8), we may use a multiplicative or additive error term because we will only need to impose
mean-independence (Wooldridge, 1992).

10 Note that for the aggregate decomposition, regressors may be correlated with unobservables, as
long as the conditional distribution of these unobservables is the same across group (i.e. as long as
ignorability holds). Thus, βg may have a “reduced-form” interpretation if we are only interested in the
aggregate decomposition. For the detailed decomposition, however, regressors must be exogenous such
that parameters have a “structural” interpretation.
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4.2.1 Aggregate Decomposition

If the outcome model is (8), the law of iterated expectations implies that the aggregate

decomposition defined in (3) can be written as

ΔAM = E[exp(Xiβ
1)|Di = 1] − E[exp(Xiβ

0)|Di = 1]
︸ ︷︷ ︸

ΔS

+ E[exp(Xiβ
0)|Di = 1] − E[exp(Xiβ

0)|Di = 0]
︸ ︷︷ ︸

ΔX

(9)

The only critical expression is the counterfactual, μC = E[exp(Xiβ
0)|Di = 1], which is

identified if ignorability holds.

4.2.2 Doubly Robust Estimation

To estimate the decomposition in (9), expectations are replaced by sample analogues

and population coefficients by β̂1 and β̂0, which are estimated coefficients from the two

group-specific samples. Estimation can be based on quasi-maximum likelihood (QML)

techniques, also referred to as estimation of generalized linear models (GLM) in the statis-

tics literature. It is a well known result by Gourieroux et al. (1984) that QML estimators

are consistent regardless of the underlying distribution of the data, as long as the CEF

is correctly specified. In other words, these models can be estimated consistently with

minimal distributional assumptions. The difference between the various QML estimators

is simply how observations are weighted in the first-order conditions of the maximiza-

tion problem, leading to different requirements for asymptotic efficiency. Several authors

(Manning and Mullahy, 2001; Santos Silva and Tenreyro, 2006) find that Poisson and

gamma QML estimators perform well in many situations, while Gaussian QML (nonlin-

ear least squares) leads to more erratic results, especially in heteroskedastic environments.

A major advantage of the QML framework with regard to the decomposition in (9) is

that a so-called “doubly robust” estimator for the counterfactual mean can be derived.

Double robustness refers to an estimator that is consistent if either the CEF of the outcome

model or the propensity score model (or both) is correctly specified. As Wooldridge (2007)

briefly mentions in his discussion on average treatment effects, Poisson QML can be made

doubly robust if augmented with the appropriate propensity-score weighting function. We

will refer to this estimator as the WPQML estimator. Denote the probability limit of the

WPQML estimator by βg∗ = plim(β̂g), where we allow for the possibility that the CEF

may be misspecified, i.e. E[yig|Xi, Di = g] 6= exp(Xiβ
g∗) for some Xi ∈ X . However, the

defining property of the WPQML estimator is that E[yig|Di = g] = E[exp(Xiβ
g∗)|Di = g]

will always hold by construction. As shown below, this property arises from the first-order

conditions associated with this estimator. For the sub-population of interest (group 0), the

WPQML estimator solves the sample analogue of the following population maximization

11



problem:

max
b0

E[ω(Xi)(yiXib
0 − exp(Xib

0) − yi!)|Di = 0],

where ω(Xi) is the propensity-score weighting function defined below. The corresponding

population first-order conditions (FOCs) are:

E[ω(Xi)(yi − exp(Xiβ
0∗))X ′

i|Di = 0] = 0. (10)

Since Wooldridge (2007) does not touch upon the WPQML and confines the discussion to

the population average treatment effect (PATE), Theorem 1 below shows that WPQML

with appropriate weights yields a doubly robust estimator for our counterfactual of in-

terest, and thus also for the structural effect ΔS and the characteristics effect ΔX of the

decomposition.

Theorem 1. Define the weighting function by ω(Xi) ≡ Λ(Xi)
1−Λ(Xi)

1−p
p

, where Λ(Xi) is a

model for p(Xi) ≡ P (Di = 1|Xi) and p ≡ P (Di = 1) > 0. Assume that (i) we have a

random sample from an i.i.d. population (ii) all relevant moments of yi and Xi exist and

are finite and (iii) ignorability (assumptions (4) and (5)) holds.

Then, the WPQML estimator is doubly robust in the sense that it identifies the coun-

terfactual of interest through E[yi0|Di = 1] = E[exp(Xiβ
0∗)|Di = 1], if either the out-

come model or the propensity score model is correctly specified (or both, of course). The

counterfactual mean can be consistently estimated by the appropriate sample analogue
1

N1

∑N1

i:Di=1 exp(Xiβ̂
0
WPQML).

The proof is given in Appendix A.

The central implication of Proposition 1 is the second part of the double robustness

property (shown in Part III of the proof): the counterfactual is identified even if the

WPQML estimator does not converge to the parameter vector of the true CEF (β0∗ 6= β0)

provided that the propensity score model is correctly specified. This is the main idea

of the double robustness property because identification and consistent estimation are

ensured under two separate sets of assumptions. Therefore, double robustness guards

better against misspecification than relying on correct specification of the outcome model

alone or the propensity score model alone. Although the double robustness property

is very appealing, it is important to remember that the result does not automatically

extend to the detailed decomposition; if we fail to identify the parameters of the CEF,

a detailed decomposition into the contributions of individual covariates to the gap is no

longer guaranteed to be consistent.

Due to the nonlinear model and the two-step nature of the estimator, bootstrapping

the entire procedure is the more practical alternative to conduct inference than deriving

analytical standard errors via nonlinear GMM. Note that propensity score weighting may

also come at the cost of an efficiency loss if the CEF is correctly specified, but our Monte
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Carlo exercise suggests that the opposite can also happen in the case of heteroskedasticity

where the conditional variance of the error is proportional to the conditional mean.

5 Monte-Carlo Simulation

To assess and compare the various estimators of the proposed decomposition, we conduct

a small simulation study. Specifically, the objective is to test how various estimation meth-

ods perform in estimating the decomposition under different data-generating CEFs of the

outcome model, different scenarios for the common support of the covariate distributions,

as well as heteroskedasticity in the outcome model.

5.1 Set-Up

The simulation design mimics a potential-outcomes framework in which the CEF of group

0 has larger coefficients than the CEF of group 1 (negative structural effect) and group

0 has higher average values of the covariates than group 1 (negative composition effect).

We generate the covariates X1, X2 ∼ N(0, 1) with Corr(X1, X2) = 0.2. The assignment

of observations to the two groups is based on the following latent variable model:

D∗ = δ1X1 + δ2X2 + ξ, with ξ ∼ N(0, 1) and δ1, δ2 > 0

D = 1[D∗ < Med(D∗)]
(11)

The threshold in the indicator function is equal to the median of the latent variable such

that the two groups are of equal size. The group indicator variable is D = 1 for group 1

(the treatment group) and D = 0 for group 0 (the control group). The random assignment

error ξ is stochastically independent of the processes determining outcomes, which means

that the CIA is satisfied in our set-up. The parameters (δ1, δ2) determine how strongly

group membership is correlated with covariates, in other words, how strongly the group-

specific covariate distributions differ from one another. We consider two specifications for

the latent-variable equation. In the first one, there is perfect common support. In the

second one, common support is small and the overlapping support assumption is violated

for a subset of the population, see Appendix B for more details.

To illustrate the consequences of departures from the standard log-link assumption

of exponential models, we consider two separate cases for the functional form. Starting

from the generalized functional form, E[yg|X] = (1 + λXβg)1/λ for g = {0, 1}, in the

first case (the baseline specification) we assume λ → 0 which reduces to the exponential

model. In the second case, we set λ = 0.5. This is a quadratic specification and thus

also ensures that outcomes are always nonnegative. The curvature of this specification
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lies in-between the linear and exponential model.11 It is important to note that we do not

consider the linear model as a possible data generating process because, unlike the two

functional forms above, it does not restrict the support of the dependent variable to be

nonnegative. Since the outcome distribution is affected by the functional form, we choose

different values for βg such that mean outcomes are of comparable size. See Appendix B

for more details on the parameterization of the CEFs.

Finally, the potential outcomes are generated by multiplying the CEF with an error

term that is drawn from the log-normal distribution with E[εg|x] = E[εg] = 1. To test

whether the estimators are sensitive to heteroskedasticity, we consider two cases for the

conditional variance of the error term. The first is the benchmark case of homoskedasticity

and the second is heteroskedastic, where the conditional variance of the error is positively

related to the CEF, see Appendix B for more details.

The quantity associated with uncertainty is the counterfactual mean, which is why

the focus lies on estimating μC = E[y0|D = 1] in this Monte Carlo exercise. The goal

is to have an estimator based on the observed outcomes that is close as possible to the

estimates from the “true” estimator μ̂C
true = 1

N 1

∑N1

i:D=1 yi0. We compare the performance

of the following estimators for μC :

i. WPQML: The estimation method is Poisson QML augmented with propensity-score

weights as described in section 4.2.2. The propensity score is estimated by a logit

model.

ii. PQML: unweighted counterpart of WPQML.

iii. GQML: The estimation method is gamma QML, see e.g. Blackburn (2008).

iv. OLS1: linear regression. The CEF is assumed to be linear in Xi.

v. OLS2: quadratic regression. The vector of covariates includes a second-order poly-

nomial of Xi.

vi. WLS: reweighted linear regression estimator proposed by Firpo et al. (2007). The

propensity score is estimated by a logit model.

We generate samples of size 2,000 such that the estimation of the counterfactual is based

on 1,000 observations. The entire procedure is repeated 10,000 times.

5.2 Results

The results are presented in Table 1. To assess both bias and precision, we report the

mean bias in percentage terms relative to the true estimates, as well as the root mean

11Of course, one could also assume that λ be group-specific. But we do not do that for tractability of
the results.
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squared deviation from the true estimates (referred to as RMSD). For better readability,

RMSD is expressed relative to the RMSD of our benchmark, the WPQML estimator.

Table 1: Monte Carlo Results for Aggregate Decomposition

Panel A. Exponential CEF

Perfect Common Support Small Common Support

Hom. Het. Hom. Het.

BIAS RMSD BIAS RMSD BIAS RMSD BIAS RMSD
i. WPQML 0.0002 1.000 -0.0080 1.000 -0.0283 1.000 -0.0185 1.000
ii. PQML 0.0171 1.010 0.0424 1.007 0.0745 0.953 0.5203 1.774
iii. GQML 0.0011 1.000 -0.0198 0.997 -0.0040 0.817 0.1905 1.054
iv. OLS1 -5.2929 1.120 -5.2543 1.106 -63.7008 2.501 -63.2967 5.721
v. OLS2 0.6296 1.047 0.6096 1.088 24.1469 3.817 23.1846 10.298
vi. WLS -0.0548 1.064 -0.0282 1.039 -3.8622 1.181 -3.8381 1.218

Panel B. Quadratic CEF

Perfect Common Support Small Common Support

Hom. Het. Hom. Het.

BIAS RMSD BIAS RMSD BIAS RMSD BIAS RMSD
i. WPQML -0.2862 1.000 -0.2066 1.000 -24.0096 1.000 -21.0950 1.000
ii. PQML -11.5516 0.785 -11.2407 0.827 -53.5176 0.281 -53.0108 0.085
iii. GQML -1.2452 0.941 -1.4599 0.905 -46.0314 0.363 -46.1981 0.094
iv. OLS1 -18.9098 1.047 -18.7359 0.957 -197.1998 0.900 -196.6338 0.345
v. OLS2 0.0591 0.650 0.2124 0.901 0.1895 1.019 -0.4942 0.565
vi. WLS -0.3566 1.025 -0.2030 1.054 -24.9757 0.989 -25.2470 0.260

Notes : BIAS refers to the mean percentage deviation from the experimental estimate multiplied by 100.
RMSD refers to the root mean squared deviation from the experimental estimate and is normalized by
the RMSD of the WPQML estimator for ease of comparison. Results are based on 10,000 iterations.

We first turn to the results from the exponential specification in Panel A of Table

1. Under perfect common support, performance of the QML estimators and WLS is

generally good, but WPQML stands out with the smallest bias. Only OLS1 is clearly

biased, which demonstrates that the best linear approximation to the CEF performs

poorly in estimating μC when the true CEF is nonlinear. In contrast, OLS2 has both

smaller bias, since the higher-order terms of the covariates capture the non-linearities.

These findings emphasize the importance of correctly specifying the CEF. Moreover, the

reweighted regression (WLS) considerably improves upon unweighted linear regression

(OLS1). Overall, all estimators, except OLS1 and OLS2, perform quite well irrespective

of the heteroskedasticity in the data.

If the common support is reduced, we notice a number of changes. First, the per-

formance of OLS1 (and to a lesser extent OLS2) deteriorates considerably. This result

is not surprising, since the estimator linearly extrapolates the misspecified CEF to the

covariate space of missing overlap. Second, WLS is now biased and imprecise relative to
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the QML estimators. Third, the WPQML estimator becomes more precise than PQML

(and GQML) under heteroskedasticity because observations with large conditional mean

are both more noisy and more likely to be outside the common support. In other words,

propensity-score weights tend to assign less weight to noisy observations, thus increasing

precision. This result is interesting because heteroskedasticity of the form modelled here

is often present in real data.

Panel B reports the results where the CEF takes the quadratic form such that the

QML estimators are now misspecified and OLS2 is correctly specified. WPQML (and

WLS) continues to perform well alongside OLS2 as long as common support is satisfied.

It is only after the overlapping support assumption is violated (small common support)

that the weighted estimators also become biased because ignorability no longer holds here.

We summarize the main findings from this simulation study as follows. First, as ex-

pected, linear OLS1 performs poorly given a nonlinear CEF. Second, it can be improved

upon if higher-order terms are included but this comes at the expense of more noisy es-

timates in finite samples. Third, the propensity-score weighted estimators both produce

good results and are usually better than their unweighted counterparts. Finally, compar-

ing results across various scenarios, we find that WPQML produces the most convincing

results, as long as the common support assumption is satisfied.

6 Empirical Application

6.1 Union Wage Gap in the United States

We apply the decomposition methods to the union wage gap in the United States. The

dataset is constructed from the Current Population Survey (CPS) in the year 2012 and

contains workers aged between 18 and 64. We define nonunion workers to be the reference

group or “controls” (Di = 0) and union workers to be the “treatment group” (Di = 1).

The dependent variable of interest is hourly wages. Therefore, the counterfactual mean of

interest is the average hourly wage union workers would earn if they were paid according

to the wage structure of nonunion workers. The set of explanatory variables includes

years of education, years of experience (quadratic), dummies for ethnicity, region, marital

status, immigration and gender.

The descriptive statistics in Table 2 show a considerable average wage differential

between the two groups. Union workers earn 4 dollars more than nonunion workers as

measured in terms of AM. The log-wage gap is 0.23 and the corresponding GM wage

gap in levels is 4.5 dollars and thus quite smaller than the AM wage gap. Comparing

covariates, we see that union workers have more experience and are less likely to live in

Southern states but are more likely to be married. For the other explanatory variables,

differences seem more modest.

16



Table 2: Descriptive Statistics

nonunion union
mean mean difference

(st.dev.) (st.dev.)

arithmetic mean wage 21.00 24.97 3.97
(15.95) (20.26)

log of arithmetic mean wage 2.843 3.075 0.232
(0.658) (0.559)

geometric mean wage 17.16 21.64 4.48
(0.658) (0.559)

experience 21.15 24.50 3.35
(12.69) (11.72)

years of education 13.73 14.22 0.49
(2.61) (2.49)

black 0.116 0.141 0.025
other ethnic minority 0.089 0.074 −0.014
Midwest U.S. 0.220 0.242 0.022
Southern U.S. 0.392 0.189 −0.203
Western U.S. 0.215 0.285 0.069
married 0.543 0.624 0.081
divorced or widowed 0.142 0.156 0.014
foreign-born 0.181 0.142 −0.039
female 0.492 0.454 −0.038

# observations 128166 17330

Notes: Standard deviations are in parentheses. Sampling weights
are used. Source: Current Population Survey

An important lesson from our Monte Carlo exercise is that the decomposition is only

sensible for those observations in the common support. We therefore inspect the overlap

of the covariate distributions across the two groups. A straightforward way of doing this

is to compare propensity score distributions across groups. Figure 2 shows kernel density

Figure 2: Density Estimate of the Propensity Score
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estimates where the propensity score has been estimated with a logit model using the

same set of covariates. We see immediately that estimated propensity scores are bounded

well away from unity such that there are no observations in the data that violate the

common support assumption in (5).

Table 3 presents the results of the decomposition of average wage differentials. We do

Table 3: Decomposition of the Union Wage Gap in the U.S. (2012)

Arithmetic mean (AM) decomposition (dependent variable: wage)

Δ̂ (SE) Δ̂X (SE) % Δ̂S (SE) %

i. WPQML 3.977 (0.185) 2.604 (0.080) 65.49 1.372 (0.184) 34.51
ii. PQML 3.967 (0.169) 2.601 (0.080) 65.56 1.366 (0.162) 34.44
iii. GQML 4.061 (0.146) 2.486 (0.068) 61.23 1.574 (0.145) 38.77
iv. OLS1 3.967 (0.172) 2.747 (0.068) 69.23 1.221 (0.166) 30.77
v. OLS2 3.967 (0.164) 2.764 (0.077) 69.67 1.203 (0.155) 30.33
vi. WLS 4.093 (0.162) 3.088 (0.084) 75.45 1.005 (0.158) 24.55

Geometric mean (GM) decomposition (dependent variable: log-wage)

Δ̂ (SE) Δ̂X (SE) % Δ̂S (SE) %

OLS (%Δ̂GM,approx) 0.232 (0.005) 0.129 (0.003) 55.46 0.103 (0.005) 44.54
OLS (Δ̂GM ) 4.483 (0.109) 2.357 (0.064) 52.58 2.126 (0.103) 47.42

Notes : Bootstrap standard errors (1000 iterations) in parentheses.

not compute detailed decompositions in order to focus on the essential task of estimating

the aggregate decomposition. The top panel shows AM decompositions using various

estimators and the bottom panels shows GM decompositions, i.e. decompositions of the

log-wage gap. The QML estimates suggest that about 61-65% of the AM gap is due to

different characteristics (Δ̂X). The remainder is due to different wage structures (Δ̂S)

and often referred to as the average “union wage premium”. If we regard union status

as a treatment, Δ̂S can also be interpreted as the average treatment effect on the treated

(ATT) (Firpo et al., 2011). In the data studied here, the OLS estimators (especially WLS)

yield smaller union wage premiums than the QML estimators. We therefore argue that

the choice of the estimator is important. The fact that all QML estimates are very similar

lends support to the notion that the exponential model provides a good description of the

CEF.

For the GM decomposition based on log-wage regressions, we report results both in

logs (%Δ̂GM,approx) and in levels (Δ̂GM ). The former corresponds to the standard Oaxaca-

Blinder decomposition of log-wages and the latter is obtained by exponentiating means

measured in logs. Of course, the absolute values of AM and GM decompositions cannot

be compared directly due to the different concepts of the mean. However, we can compare

the shares of the composition effect and the structural effect in the total differential. The

GM decomposition suggests that the union wage premium explains about 47% of the
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average wage gap, while the AM decomposition suggests that it explains only about 35%

(WPQML estimate). We therefore reach quite different conclusions when we base the

decomposition on either AMs or GMs.

It is important to note that the discrepancy does not necessarily mean that one of the

two decompositions is inconsistently estimated. It may entirely come from the fact that we

apply the decomposition to different distributions, with one being a nonlinear (monotone)

transformation of the other. Unfortunately, the size of the discrepancy depends on the

properties of the distribution and is hard to investigate further. However, it may be

instructive to point out that the configuration above, where the relative size of the union

wage premium is larger in the log-wage decomposition, for example, also arises in the

case where outcomes are log-normally distributed and the inequalities E[ln yi|Di = 0] <

E[ln yi0|Di = 1] < E[ln yi|Di = 1] and V [ln yi1] < V [ln yi0] hold.

Thus, choosing between the two concepts of the mean can matter in practice because

we reach different conclusions when we evaluate the relative importance of the union wage

premium in explaining the average wage differential.

6.2 Native-Immigrant Wage Gap in Switzerland

This section applies the various estimators of the AM decomposition introduced above

to the native-immigrant wage gap in Switzerland. The data is drawn from the Swiss

Earnings Structure Survey 2008. There are two main advantages of this dataset. First,

the data are generally considered to be of higher quality than comparable survey data,

since it is elicited directly from employers’ records. Second, the large size of the dataset

ensures that sampling bias is not a concern.

For the purpose of illustration, we confine the analysis to male full-time workers in

German-speaking Switzerland.12 In addition, individuals with missing information on

education, foreigners with unknown residence status, and those aged under 20 or above

65 are excluded. These sample selection criteria still leave us with a very large sample

size of more than 400,000 observations. The dependent variable of interest is full-time

equivalent gross monthly earnings.13 The following set of controls is used: educational

attainment (9 categories), potential work experience (quadratic), tenure (quadratic), skill

requirement level (4 categories) and marital status (3 categories). Swiss and foreign

workers are taken to be group 0 and group 1, respectively. That is, Di = 1 if person i has

no Swiss citizenship and Di = 0 if person i is native. As a result, we regard immigrants

as the observational analogue of the treatment group and natives as the control group.

As a consequence, the counterfactual outcome of interest is the mean wage of immigrants

that would prevail if they were paid according to the wage structure of natives.

12”Full-time” are those who work at least 90% of a full-time equivalent.
13Including monetary benefits, extra pay for night-shifts or weekend-shifts and, where applicable, one

twelfth of the 13th monthly salary
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Table 4 summarizes descriptive statistics for wages and covariates across native and

foreign workers. As we can see, immigrants constitute about a quarter of adult male

Table 4: Descriptive Statistics

natives immigrants
mean mean difference

(st.dev.) (st.dev.)

arithmetic mean wage (CHF) 7277 6422 −855
(4845) (4950)

log wage 8.788 8.652 −0.136
(0.411) (0.420)

geometric mean wage (CHF) 6557 5724 −834
(0.411) (0.420)

work experience (years) 22.467 20.946 −1.521
(11.733) (10.513)

tenure (years) 9.772 6.982 −2.790
(9.852) (7.902)

education level
university 0.058 0.083 0.026
college 0.069 0.046 −0.024
higher vocational training 0.149 0.065 −0.084
teaching diploma 0.003 0.002 −0.001
secondary school 0.016 0.013 −0.002
vocational training 0.619 0.419 −0.200
firm-specific vocational training 0.020 0.071 0.051
primary school 0.047 0.209 0.162
other education 0.021 0.093 0.072

skill requirement level
very high 0.133 0.076 −0.057
high 0.380 0.256 −0.123
medium 0.405 0.409 0.004
low 0.082 0.258 0.176

marital status
single 0.380 0.309 −0.071
married 0.540 0.625 0.084
divorced, widowed 0.080 0.067 −0.013

# observations 315192 134293

Notes: The sample consists of male full-time workers from German-speaking
Switzerland in 2008. Standard deviations are in parentheses. Sampling weights
are used. Source: Swiss Wage Structure Survey, Swiss Federal Statistical Office.

employment. While AM and GM wage differentials are similar, AM and GM wages differ

considerably across groups.

Before performing decompositions, it makes sense to investigate first the common
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Figure 3: Density Estimate of the Propensity Score
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support of the group-specific covariate distributions. We estimate the propensity score

with a binary logit model using the same specification as in the outcome model. Kernel

density estimates of the estimated propensity scores are depicted in Figure 3. We see

that p̂(xi) is bounded away from unity as there are no observations with values exceeding

0.9. Since only the upper threshold is relevant when estimating the counterfactual, we

conclude that the common support assumption in (5) is satisfied.

The results of the mean wage decomposition between native and immigrant workers

are shown in Table 5. Overall, the estimates of the AM wage decomposition suggest that

Table 5: Decomposition of the Wage Gap

Arithmetic mean (AM) decomposition (dependent variable: wage)

Δ̂ (SE) Δ̂X (SE) % Δ̂S (SE) %

i. WPQML -846.12 (22.39) -667.43 (15.84) 78.88 -178.69 (17.49) 21.12
ii. PQML -852.91 (20.66) -624.12 (14.97) 73.18 -228.79 (16.89) 26.82
iii. GQML -849.97 (19.69) -622.63 (13.41) 73.25 -227.34 (15.60) 26.75
iv. OLS1 -852.91 (20.82) -587.07 (15.25) 68.83 -265.83 (17.35) 31.17
v. OLS2 -852.91 (20.53) -665.96 (15.02) 78.08 -186.95 (17.10) 21.92
vi. WLS -860.20 (21.68) -660.56 (15.51) 76.79 -199.64 (16.64) 23.21

Geometric mean (GM) decomposition (dependent variable: log-wage)

Δ̂ (SE) Δ̂X (SE) % Δ̂S (SE) %

OLS (%Δ̂GM,approx) -0.136 (0.002) -0.087 (0.002) 63.942 -0.049 (0.002) 36.058
OLS (Δ̂GM ) -831.52 (11.56) -544.60 (9.53) 65.49 -286.92 (8.86) 34.51

Notes : Bootstrap standard errors (1000 iterations) in parentheses.

the largest part of the gap (about 70-80%) is explained by differences in characteristics

(ΔX) between natives and immigrants. The remaining part is the amount that the average

immigrant earns less in monthly wages than the average native due to differences in the

wage structure (ΔS), which can be caused, for instance, by different returns to human
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capital and/or discrimination. Comparing estimates, we note that the results from OLS1

are quite different from the rest. Generally, OLS2 and WLS are considered more reliable

than OLS1 because the former leads to a better approximation of the unknown CEF and

the latter achieves some additional robustness through weighting. As we can see, the

WLS estimate is also closer to the WPQML estimate.

For the GM decomposition based on log-wage regressions, we report results both in

logs and levels. Comparing results across the two concepts of mean decompositions,

we notice an important quantitative difference: the GM estimates imply a considerably

larger wage structure effect relative to the total gap. In fact, the wage structure effect in

the log-wage decomposition accounts for some 36% of the total gap, which exceeds the

WPQML estimate (21%) by about 15 percentage points. Only 1.4 percentage points of

the discrepancy can be attributed to the approximation bias of the log-specification.

To summarize, the analysis on the immigrant-native wage gap in Switzerland produces

the same qualitative findings as the analysis of the union wage gap in the United States.

This reinforces the notion that the measure of the mean crucially affects the conclusions

we draw with respect to the shares of ΔX and ΔS in the total wage gap.

7 Extentions

We briefly discuss how detailed decompositions can be performed in our framework and

how issues of endogenous regressors (that violate ignorability) and sample selection can

be addressed.

7.1 Detailed Decomposition

An important issue in decomposition analysis is to measure how much individual covari-

ates contribute to the differential in mean outcomes. For example, in wage decompositions,

it is interesting to examine how much differences in, say, education contribute to the wage

gap. This type of question can be answered by performing detailed decompositions.

Generally, a detailed decomposition of the structural effect is difficult regardless of

the dependent variable and the specified outcome model. The reason is that the the

separate contributions of variables without a natural zero point are not interpretable (see

Oaxaca and Ransom, 1999).14 For this reason, detailed decompositions mainly focus on

the composition effect.

In general, the detailed decomposition is less straightforward in nonlinear models than

in linear models because the individual contributions of covariates are not additively

14 Yun (2005) proposes a solution to the problem consisting of an ex-post normalization on the coeffi-
cients. However, as Firpo et al. (2011) note, such normalizations clearly come at the cost of interpretabil-
ity.
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separable. However, several approaches are available to perform detailed decompositions

in nonlinear models, as the one discussed in Section 4.2. First, Yun (2004) uses a first-

order Taylor approximation around the means of the covariates. The advantage is that

the decomposition is path independent and satisfies the adding-up property (see Firpo et

al., 2011, Chapter 2.2). The drawback is that it does not take into account that differences

in higher-order moments (e.g. variances) affect outcomes through the nonlinearity of the

CEF. Kaiser (2013) offers a method which is similar in spirit but takes into account the

effects of such differences in covariate distributions. Second, Rothe (2012) offers a novel

approach based on specifying copula functions to decompose the composition effect. The

advantage of this method is that it can be applied to any type of outcome model included

the one discussed in this paper. However, the flexibility of the approach comes at the

expense of a more complex interpretation of the detailed decomposition terms.

7.2 Endogeneity of the Covariates

As discussed in Section 3, the structural effect and the composition effect are identified

even if some of the regressors in Xi are correlated with unobservables, provided that

ignorability still holds. (In contrast, the individual contributions of endogenous covariates

are not identified in a detailed decomposition.)

Now consider the case where ignorability is violated due to endogenous covariates.

In the exponential model, this problem can generally be addressed with instrumental

variables as in the linear model. If an appropriate instrument is available, the parameters

of the exponential models in (9) can be consistently estimated by the two-step control

function approach described in Wooldridge (2010, Ch. 18), given that the CEF of the

outcome model is correctly specified. Consider the case of a single endogenous variable,

y2, and instrument(s), Zi, satisfying the usual exclusion restriction. In the first step,

the reduced form y2i = Xiα1 + Ziα2 + v2 is estimated by OLS. In the second step, the

parameters of the exponential outcome model can be consistently estimated by PQML

with the first-stage residuals v̂2 included as an additional regressor.15

7.3 Sample Selection

In the example of wage decompositions, there are often concerns that group 0 and 1

select differently into the labor market. This is innocuous as long as selection is explained

by differences in Xi, but if selection is due to unobservables, some type of correction

procedure is required.

In the log-linear model, a popular choice is the two-step approach due to Heckman

(1976), which requires a joint normality assumption between the errors in the selection

15Technically, it is conceivable to use this IV method in combination with WPQML as well, but pursuing
this further is beyond the scope of this paper.
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model and the outcome model. Terza (1998) shows how this two-step approach can be

extended to the exponential outcome model. The weakness of this procedure is the same

as in the linear model; the coefficient estimates are inconsistent if the joint normality

assumption is violated. In addition, credible identification usually requires an exclusion

restriction.

Less restrictive methods can be used when panel data are available and confound-

ing unobservables are thought to be time-invariant. For individuals where outcomes are

observed at least once, missing outcomes in the other periods can be imputed. For ex-

ample, Melly and Santangelo (2013) assume that individuals’ position in the conditional

outcome distribution is time-invariant. The advantage of such nonparametric imputation

procedures is that distributional assumptions on outcome and selection models are not

required.

8 Conclusions

This paper has argued that the standard Oaxaca-Blinder decomposition (Oaxaca, 1973;

Blinder, 1973) based on logarithms brings about statistical problems because it is invalid if

the data includes zero and because the log differential is not invariant to changes in higher-

order moments of the distribution. Furthermore, the approach also raises conceptual issues

because the log differential is an approximate percentage difference in geometric means,

which is not an intuitive quantity and thus difficult to interpret.

We have therefore suggested modelling the original dependent variable directly to base

the analysis on differences in arithmetic means. At the core of our study, we have proposed

a new doubly-robust estimation strategy based on a propensity-score weighted Poisson

quasi-maximum-likelihood (WPQML) estimator. This flexible parametric framework is

suitable in many contexts of nonnegative outcomes and easy to implement in practice.

Our Monte Carlo study has shown that the proposed estimator performs well in many

circumstances when compared to a range of competing estimators. The WPQML estima-

tor produces good results even under a misspecified outcome model or missing overlap in

covariate distributions.

In our empirical application to the union wage gap in the United States, we find that

quite different conclusions are reached depending on the decomposition approach taken.

The arithmetic mean decomposition suggests that the union wage premium is much less

important in explaining the union wage gap than the geometric mean decomposition,

which is usually used in empirical studies. This finding is also reported in the analysis

of the native-immigrant wage gap in Switzerland. We conclude that the measure of

the mean can have important implications for decomposition analysis and deserves more

careful consideration than it usually receives in empirical research.
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Appendix

A Proof of Proposition 1

Part I. Consistency. The uniform law of large numbers implies β̂0
WPQML

p
→ β0∗ such that

1
N1

∑N1
i:Di=1 exp(Xiβ̂

0
WPQML)

p
→ E[exp(Xiβ

0∗)|Di = 1].
Part II: Assume the CEF of the outcome model implied by WPQML is correct, i.e.

E[yi|Xi, Di = 0] = exp(Xiβ
0) ∀Xi ∈ X , where β0 ∈ Rk is the vector of “true” coefficients.

By applying the law of iterated expectations to the first-order conditions in (10), it follows
immediately that β0∗ = β0. Assumptions (i)-(iii) then imply E[yi|Xi, D = 0] = E[yi0|Xi, D =
0] = E[yi0|Xi, Di = 1] = exp(Xiβ

∗) ∀Xi ∈ X . By the law of iterated expectations, we have
E[yi0|Di = 1] = E[exp(Xiβ

0∗)|Di = 1].
Part III: Assume the model for the propensity score is correct in the sense that

plim[Λ̂(Xi)] = p(Xi). Since Xi includes a constant the first order-conditions in (10) imply
E[ω(Xi)(E[yi|Xi, Di = 0] − exp(Xiβ

0∗))|Di = 0] = 0. Manipulating this expression, we obtain

E[ω(Xi)E[yi0|Xi, Di = 0]|Di = 0] = E[ω(Xi) exp(Xiβ
0∗)|Di = 0]

∫
E[yi0|Xi = z]ω(z)dFX|D=0(z) =

∫
exp(zβ0∗)ω(z)dFX|D=0(z)

∫
E[yi0|Xi = z]dFX|D=1(z) =

∫
exp(zβ0∗)dFX|D=1(z)

E[yi0|Di = 1] = E[exp(Xiβ
0∗)|Di = 1]

(12)

On the LHS, the second line follows from assumption (iii). On both sides, the third line follows

from assumption (iii) and Bayes’ rule which implies that ω(Xi) = p(Xi)
1−p(Xi)

1−p
p =

dFx|D=1(Xi)

dFx|D=0(Xi)
.

The fourth line follows from the law of iterated expectations. �

Note that for Part II of the proof, the weighting function is irrelevant because the same result
follows for the unweighted PQML estimator.

B Monte Carlo Simulation

In the case of perfect common support, we set δ1 = δ2 = 0.2 such that the covariate distributions
are very similar across groups. If we estimate a logit model for the propensity score, p(Xi), the
predicted values all lie between 0.1 and 0.9. Hence there is perfect common support. (We
appeal to these particular threshold values because the findings of Crump et al. (2009) suggest
that discarding observations outside this interval is a good approximation to the optimal cut-off
rule.) In the second specification, we set δ1 = δ2 = 0.85 to induce large differences in the group-
specific covariate-distributions. The values are chosen such that roughly 20% of the predicted
propensity score values (as estimated from a logit model) are outside the interval [0 .1, 0.9].
Hence, this represents a scenario in which the common-support assumption is severely violated.
For illustration, Figure 4 shows kernel densities of the estimated propensity scores for the two
assignment rules based on a random Monte Carlo sample. Comparing counterfactual estimates
from these two assignment rules will allow us to assess the impact of the common-support
assumption on the performance of the estimators.

The CEFs in the simulation exercise are parameterized as shown in Table A.1 below. The
slope coefficients in β0 are larger than the coefficients in β1 to induce a structural effect between
group 0 and group 1. The coefficients in the quadratic CEF model are larger than in the
exponential CEF model because the curvature in the former is less pronounced. The coefficients
are chosen such that mean outcomes are of similar size across the two specifications.
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Figure 4: Kernel Densities of Estimated Propensity Scores
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Table A.1: Parameterization for Monte Carlo

exponential CEF quadratic CEF
coefficients β1 β0 β1 β0

constant 5 5 23 23
X1 0.3 0.36 3.5 4.55
X2 0.2 0.24 3.5 4.55

In the homoskedastic case, we set V [εg|x] = V [εg] = 0.5, which implies V [yg|x] ∝ E[yg|x]2.
Note that this is equivalent to assuming homoskedasticity in the log-linear regression model
(Santos Silva and Tenreyro, 2006). In the heteroskedastic case, the error variance is proportional
to the CEF, V [εg|x] ∝ E[yg|x], which implies V [yg|x] ∝ E[yg|x]3. In the latter case, we scale
the distribution of the error term such that V [εg] = 0.5. This enables us to analyse the impact
of heteroskedasticity while holding the overall dispersion of the error distribution fixed.
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