Adam, Klaus; Billi, Roberto M.

Working Paper
Distortionary fiscal policy and monetary policy goals

Sveriges Riksbank Working Paper Series, No. 278

Provided in Cooperation with:
Central Bank of Sweden, Stockholm

Suggested Citation: Adam, Klaus; Billi, Roberto M. (2013) : Distortionary fiscal policy and monetary policy goals, Sveriges Riksbank Working Paper Series, No. 278, Sveriges Riksbank, Stockholm

This Version is available at:
http://hdl.handle.net/10419/103830

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Distortionary Fiscal Policy and Monetary Policy Goals

Klaus Adam and Roberto M. Billi

October 2013
The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public.
The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments.

The views expressed in Working Papers are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
Distortionary Fiscal Policy and Monetary Policy Goals*

Klaus Adam† and Roberto M. Billi‡

Sveriges Riksbank Working Paper Series No. 278

October 2013

Abstract

We reconsider the role of an inflation conservative central banker in a setting with distortionary taxation. To do so, we assume monetary and fiscal policy are decided by independent authorities that do not abide to past commitments. If the two authorities make policy decisions simultaneously, inflation conservatism causes fiscal overspending. But if fiscal policy is determined before monetary policy, inflation conservatism imposes fiscal discipline. These results clarify that in our setting the value of inflation conservatism depends crucially on the timing of policy decisions.

Keywords: optimal policy, lack of commitment, conservative monetary policy

JEL: E52, E62, E63

*We thank seminar participants at the Federal Reserve Bank of Kansas City, the Midwest Macroeconomics Meeting and the SED meeting for helpful comments and discussions. The views expressed herein are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.

†Mannheim University, Germany and CEPR, United Kingdom (e-mail: adam@uni-mannheim.de)

‡Sveriges Riksbank, Research Division, Sweden (e-mail: Roberto.Billi@riksbank.se)
1 Introduction

The problem of designing institutional frameworks that cope best with discretionary behavior of policymakers has received much attention following the seminal work of Kydland and Prescott (1977) and Barro and Gordon (1983). In particular, to overcome the inflationary bias caused by discretionary conduct of monetary policy, Rogoff (1985) proposed appointing a conservative central banker, who dislikes inflation more than society does. Recently in Adam and Billi (2008) we have shown inflation conservatism à la Rogoff also to be desirable when fiscal policy is endogenous and equally subject to a commitment problem. By introducing distortionary taxation into the setting, in this paper we show that the desirability of inflation conservatism depends crucially on the timing of policy decisions.

We consider, in particular, two policy regimes under discretion. In one, the two authorities decide policy at the same time (simultaneous policy regime). In the other, fiscal policy is determined before monetary policy (fiscal leadership regime). The main result is that inflation conservatism pays off overall, even though excessive concern about inflation may be harmful, depending on the policy regime. In particular, full conservatism, which implies zero inflation in equilibrium, is optimal only in the case of fiscal leadership, arguably the most plausible assumption. Instead, the optimal degree of conservatism in the case of simultaneous policy, though substantially high, is less than full.

The intuition is the following. In the simultaneous policy regime, the fiscal instruments are not observed when the monetary instrument is set. In contrast, under fiscal leadership, the central bank can condition the nominal interest rate on fiscal policy and she does so in a way that depends on her preferences for inflation. Under full conservatism, inflation is completely stabilized at zero. Therefore, a surge in public spending is followed by a strong monetary policy tightening and, as a consequence, the fiscal policy maker correctly perceives the trade-off between public consumption and private consumption, implied by the production function and
the resource constraint. Then, the Ramsey plan is implemented even if the fiscal policy maker lacks the ability to commit to future policies. The whole mechanism breaks when the central bank moves at the same time as the fiscal authority, since the nominal interest rate cannot be contingent on public expenditure. Rather, the low inflation rate implied by conservatism can be harmful, because it reduces the marginal cost of a further increase of government expenditure, in terms of inflation. It follows that the optimal degree of conservatism under a simultaneous policy regime has to solve a trade-off between high inflation and high public expenditure. The solution to the trade-off is less than full conservatism.

Relative to the existing literature, the paper shows that the presence of distortionary taxation significantly worsens the trade-off between inflation and government expenditure in the simultaneous policy regime. As a consequence, full conservatism is not necessarily optimal in such case. This conclusion partially overturns the result in Adam and Billi (2008). When the government expenditure is financed with lump-sum taxation, as in that paper, full conservatism is always optimal, irrespective of the policy regime. Adam (2011) studies how the level of government debt affects optimal policies under commitment. Finally, Niemann (2011) studies how different levels of government debt affect the desirability of monetary conservatism under discretion in a flexible price economy. If the government issues nominal debt, as in his setting, the high debt tolerance implied by full conservatism can be harmful.

Section 2 describes the model. Section 3 explains the policy regimes. Section 4 presents the policy evaluation. And Section 5 concludes. The Appendix contains technical details.

2 The model

We generalize the setting of Adam and Billi (2008) to a case in which public spending is financed with a distortionary income tax.
There is a continuum of identical households with preferences given by

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, h_t, g_t),$$ \hspace{1cm} (1)$$

where β denotes the discount factor. c_t denotes consumption of an aggregate good, $h_t \in (0, 1)$ is labor supply, and g_t is public goods provision by the government in the form of an aggregate good. Each household produces a differentiated intermediate good with a technology linear in h_t. Demand for that good is $y_t d(\tilde{P}_t / P_t)$, where y_t is demand for the aggregate good and \tilde{P}_t / P_t is the relative price. $d(\cdot)$ satisfies $d(1) = 1$ and $d'(1) = \eta_t$, where $\eta_t < -1$ is the price elasticity of demand for the different goods. Thus, η_t represents a mark-up shock.

The household chooses \tilde{P}_t and then hires labor \tilde{h}_t so satisfy product demand,

$$z_t \tilde{h}_t = y_t d \left(\frac{\tilde{P}_t}{P_t} \right),$$ \hspace{1cm} (2)$$

where z_t is an aggregate technology shock. The shocks η_t and z_t evolve according to independent AR(1) stochastic processes with autocorrelation coefficients ρ_η and ρ_z and steady state values $z = 1$ and $\eta < -1$. Following Rotemberg (1982), we assume quadratic resource costs of adjusting prices, where $\theta > 0$ indexes the degree of price stickiness.

The budget constraint of the household is then

$$P_t c_t + B_t = R_{t-1} B_{t-1} + P_t \left[\frac{\tilde{P}_t}{P_t} y_t d \left(\frac{\tilde{P}_t}{P_t} \right) - w_t \tilde{h}_t - \frac{\theta}{2} \left(\frac{\tilde{P}_t}{P_{t-1}} - 1 \right)^2 \right] + P_t w_t h_t (1 - \tau_t),$$ \hspace{1cm} (3)$$

where R_t denotes the gross nominal interest rate, B_t are nominal bonds paying $R_t B_t$ in period $t + 1$, w_t is the real wage paid in a competitive labor market, and τ_t is a labor income tax. We assume bonds are in zero aggregate net supply. And we rule out Ponzi schemes.

Thus, the household’s problem consists of choosing $\{c_t, h_t, \tilde{h}_t, \tilde{P}_t, B_t\}_{t=0}^{\infty}$ to maximize (1)

1 We assume $u(\cdot)$ is separable and increasing in c and g but decreasing in h.
subject to (2) and (3) taking as given \(\{y_t, P_t, w_t, R_t, g_t, \tau_t\}_{t=0}^{\infty} \). The first-order conditions of this problem are (2) and (3) and

\[
\begin{align*}
 u_{ht} &= - u_{ct} w_t (1 - \tau_t) \\
 u_{ct} &= \beta E_t \frac{R_t u_{ct+1}}{\Pi_{t+1}} \\
 0 &= u_{ct} \left[y_t d(r_t) + r_t y_t d'(r_t) - \frac{w_t}{z_t} y_t d'(r_t) - \theta \left(\frac{\Pi_t r_t}{r_t-1} \right) \frac{\Pi_t}{r_t-1} \right] \\
 &+ \beta \theta E_t u_{ct+1} \left(\frac{r_{t+1}}{r_t} \Pi_{t+1} - 1 \right) \frac{r_{t+1}}{r_t^2} \Pi_{t+1},
\end{align*}
\]

where \(r_t = \tilde{P}_t / P_t \) denotes the relative price and \(\Pi_t = P_t / P_{t-1} \) is the gross inflation rate. In addition, the usual transversality condition holds.

The government consists of two independent authorities, namely a monetary authority setting \(R_t \) and a fiscal authority choosing \(g_t \) in each period \(t \). The government is assumed to operate under a balanced budget

\[
\tau_t w_t h_t = g_t. \tag{5}
\]

We consider a symmetric price-setting equilibrium in which \(r_t = 1 \) for all \(t \). The first-order conditions of the household’s problem can then be condensed into two equilibrium conditions, i.e., a Phillips curve

\[
\begin{align*}
 u_{ct} (\Pi_t - 1) \Pi_t &= \frac{u_{ct} z_t h_t}{\theta} \left(1 + \eta_t + \frac{\eta_t}{z_t} \left(\frac{u_{ht}}{u_{ct}} - \frac{g_t}{h_t} \right) \right) + \beta E_t u_{ct+1} \left(\Pi_{t+1} - 1 \right) \Pi_{t+1},
\end{align*}
\]

and a consumption Euler equation

\[
\frac{u_{ct}}{R_t} = \beta E_t \frac{u_{ct+1}}{\Pi_{t+1}}. \tag{7}
\]

Conveniently, these two equilibrium conditions do not make reference to \(\tau_t \) and \(w_t \).\(^2\) Thus,

\(^2\)Equations (4) and (5) imply \(\tau_t = g_t \left(g_t - h_t \frac{u_{ht}}{u_{ct}} \right)^{-1} \) and \(w_t = \frac{g_t}{h_t} - \frac{u_{ht}}{u_{ct}} \).
an equilibrium in the private sector consists of a plan \(\{c_t, h_t, \Pi_t, R_t, g_t\}_{t=0}^{\infty} \) satisfying (5)-(7) and the market-clearing condition

\[z_t h_t = c_t + \frac{\theta}{2} (\Pi_t - 1)^2 + g_t. \]

(8)

3 The policy regimes

As a benchmark in the policy evaluation, we use the optimal Ramsey plan, i.e., the optimal commitment policy determined at time zero. The Ramsey planner chooses \(\{c_t, h_t, \Pi_t, R_t, g_t\}_{t=0}^{\infty} \) to maximize (1) subject to (6)-(8). We assume that the government authorities cannot abide to the Ramsey plan and instead re-optimize in each period. In such a setting, we consider two policy regimes.\(^3\)

Simultaneous policy. In the first regime, the authorities make decisions at the same time in each period. The government in period \(t \) has to choose \((c_t, h_t, \Pi_t, g_t, R_t) \) to maximize (1) subject to (6)-(8), a fiscal reaction function, a monetary reaction function, and taking as given \(\{c_{t+j}, h_{t+j}, \Pi_{t+j}, R_{t+j}, g_{t+j}\} \) for \(j \geq 1 \).

In particular, the fiscal reaction function represents the optimal strategy from the point of view of the fiscal authority in period \(t \), who takes \(R_t \) as given. The fiscal authority has to choose \((c_t, h_t, \Pi_t, g_t) \) to maximize (1) subject to (6)-(8) taking as given \(\{c_{t+j}, h_{t+j}, \Pi_{t+j}, R_{t+j-1}, g_{t+j}\} \) for \(j \geq 1 \).\(^4\) Instead, the monetary reaction function represents the optimal strategy from the vantage point of the monetary authority in period \(t \), who takes \(g_t \) as given. The objective of the monetary authority is assumed to take the form:

\[E_t \sum_{j=0}^{\infty} \beta^j \left[(1 - \alpha) u(c_{t+j}, h_{t+j}, g_{t+j}) - \alpha \frac{(\Pi_{t+j} - 1)^2}{2} \right] \]

(9)

\(^3\)The regimes correspond to the notion of a Markov-perfect equilibrium.

\(^4\)See Appendix A.1 for the calculations.
where $\alpha \in [0, 1]$ denotes the degree of inflation conservatism. When $\alpha = 1$ the monetary authority cares only about inflation. The monetary authority chooses (c_t, h_t, Π_t, R_t) to maximize (9) subject to (6)-(8) taking as given $\{c_{t+j}, h_{t+j}, \Pi_{t+j}, R_{t+j}, g_{t+j-1}\}$ for $j \geq 1$.

Fiscal leadership. In the second regime, the fiscal authority decides before the monetary authority in each period. The government in period t has to choose $(c_t, h_t, \Pi_t, g_t, R_t)$ to maximize (1) subject to (6)-(8), the monetary reaction function, and taking as given $\{c_{t+j}, h_{t+j}, \Pi_{t+j}, R_{t+j}, g_{t+j}\}$ for $j \geq 1$. The monetary reaction function, of course, is the same as in the first regime, because the monetary authority faces the same economic environment in the two regimes.

4 Policy evaluation

After calibrating the model, we provide an assessment of the implications of inflation conservatism. We assess the implications on both the steady state and the response to shocks.

4.1 Calibration

As in Adam and Billi (2008) household preferences are assumed to take the form:

$$u(c_t, h_t, g_t) = \log (c_t) - \omega_h \frac{h_t^{1+\varphi}}{1 + \varphi} + \omega_g \log (g_t),$$

where $\omega_h > 0$, $\omega_g \geq 0$ and $\varphi \geq 0$ denotes the inverse of the Frisch labor supply elasticity. We set β equal to 0.9913 quarterly, to imply a steady-state real interest rate of 3.5 percent annual. η is equal to -6, so that the mark-up over marginal costs is 20 percent. θ is equal to 17.5, making Phillips curve (6) consistent with Schmitt-Grohé and Uribe (2004). And φ^{-1} is equal to 1. The weights ω_h and ω_g are chosen such that households in the Ramsey plan work 20

\(^5\)See Appendix A.2 for the calculations.
percent of the time and spend 20 percent of output on public goods. The technology shock has ρ_z equal to 0.95 and σ_z equal to 0.6 percent quarterly, while the mark-up shock has ρ_η equal to 0.96 and σ_η equal to 2.1 percent quarterly.

4.2 The implications of inflation conservatism

Based on the calibrated model, figure 1 shows the effects of inflation conservatism on welfare, measured as the welfare equivalent consumption loss relative to the Ramsey plan. In the figure, lack of inflation conservatism ($\alpha = 0$) results in a welfare loss of more than 8 percentage points in the two policy regimes. But if we consider inflation conservatism, welfare differs greatly across the two regimes. With simultaneous policy, a value of α slightly below 1 reduces the welfare loss to less than 5 percentage points. However, if α rises to 1, the welfare loss rises back to about 8 percentage points. With fiscal leadership, by contrast, the welfare loss falls all the way to zero when α rises to 1. The reason is that, in the fiscal leadership regime, inflation conservatism imposes discipline on public spending.

[Figure 1 about here]

To illustrate the fiscal discipline, figure 2 shows the effects of inflation conservatism on the equilibrium allocation in the two policy regimes and in the Ramsey plan. If the level of inflation conservatism is moderate ($\alpha = 0.7$), inflation and output (GDP) are high, compared to the Ramsey plan. The high output is achieved via excessive public spending. And public spending crowds out private consumption. With simultaneous policy, raising α results in further crowding out of private consumption. But with fiscal leadership, raising α to 1 eliminates

6 The calculation of the weights can be found in the appendix of Adam (2011), after imposing bonds are in zero aggregate net supply.

7 Let $u(c, h, g)$ denote the period utility in the Ramsey steady state and $u(c^A, h^A, g^A)$ the period utility in the steady state of an alternative policy regime. The figure shows the percent fall in consumption ν making the Ramsey steady state welfare equivalent to the alternative policy regime, i.e., $u(c(1 - \nu), h, g) = u(c^A, h^A, g^A)$.

8 In the Ramsey steady state $c = 0.16$, $h = 0.2$, $\Pi = 1$, $g = 0.04$ and $\tau = 0.24$.

8
the crowding out. Thus, in the fiscal leadership regime, full inflation conservatism recovers the Ramsey allocation.

[Figure 2 about here]

Regarding the dynamics of the economy, figure 3 shows the response after a negative technology shock. The shock size is one standard deviation. On impact, private consumption, public spending and output all fall about 2 percentage points below steady state, while inflation remains at steady state. The response is the same both for the Ramsey plan and for the fiscal leadership regime with full inflation conservatism. At the same time, the response to a mark-up shock is minimal, as figure 4 shows. In fact, the deviation from steady state is less than 0.2 percent and is in the first few quarters only. Overall, in the fiscal leadership regime, full inflation conservatism practically eliminates any volatility in the economy due to technology shocks and mark-up shocks.

[Figure 3 and 4 about here]

5 Conclusion

In this paper, we reconsider the role of inflation conservatism in a setting with endogenous fiscal policy and distortionary taxation. The analysis clarifies that the desirability of inflation conservatism depends crucially on the timing of policy decisions. In particular, full conservatism, which implies zero inflation in equilibrium, is optimal only in the case of fiscal leadership, arguably the most plausible case. Still, we do not take into account government debt accumulation. As a consequence, fiscal policy is not allowed to smooth taxes, and the associated distortions, over time. Incorporating these features into the analysis seems an interesting task for future research.
Appendix

This appendix derives the fiscal reaction function and the monetary reaction function. In doing so, let γ_j^t for $j = 1$ to 3 denote the Lagrange multipliers on (6)-(8), respectively.

A.1 Fiscal reaction function

The first-order conditions of the fiscal authority’s problem are

$$
\begin{align*}
c_t & : \quad 0 = u_{ct} + \gamma^1_t \left(u_{ctt}(\Pi_t - 1)\Pi_t - \frac{u_{ct} z_t h_t}{\theta} \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t}\right)\right) + \gamma^2_t \frac{u_{ct}}{R_t} - \gamma^3_t \\
h_t & : \quad 0 = u_{ht} - \gamma^1_t \frac{u_{ct} z_t}{\theta} \left(1 + \eta_t + \frac{\eta_t g_t}{z_t u_{ct} + h_t u_{ht}}\right) + \gamma^3_t z_t \\
\Pi_t & : \quad 0 = \gamma^1_t u_{ct}(2\Pi_t - 1) - \gamma^3_t \theta(\Pi_t - 1) \\
g_t & : \quad 0 = u_{gt} + \gamma^1_t \frac{u_{ct}}{\theta} \eta_t - \gamma^3_t.
\end{align*}
$$

Equations (13) and (14) imply

$$
\gamma^1_t = \frac{u_{gt} \theta (\Pi_t - 1)}{u_{ct} (2\Pi_t - 1 - \eta_t(\Pi_t - 1))}.
$$

Using this result and (14) to eliminate γ^3_t in (12) gives the fiscal reaction function

$$
u_{gt} = -\frac{u_{ht}}{z_t} \frac{2\Pi_t - 1 - \eta_t(\Pi_t - 1)}{2\Pi_t - 1 - (\Pi_t - 1) \left(1 + \eta_t + \frac{\eta_t}{z_t u_{ct}} + h_t \frac{u_{ht}}{u_{ct}}\right)}.$$

10
A.2 Monetary reaction function

The first-order conditions of the monetary authority’s problem are

\[c_t : \quad 0 = (1 - \alpha) u_{ct} + \gamma_t^1 \left(u_{ct}(\Pi_t - 1)\Pi_t - \frac{u_{ct}z_t h_t}{\theta} \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) + \gamma_t^2 \frac{u_{ct}}{R_t} - \gamma_t^3 \quad (15) \]

\[h_t : \quad 0 = (1 - \alpha) u_{ht} - \gamma_t^1 \frac{u_{ct}z_t}{\theta} \left(1 + \eta_t + \frac{\eta_t}{z_t} \left(\frac{u_{ht}}{u_{ct}} + h_t \frac{u_{hht}}{u_{ct}} \right) \right) + \gamma_t^3 z_t \quad (16) \]

\[\Pi_t : \quad 0 = \gamma_t^1 u_{ct}(2\Pi_t - 1) - \gamma_t^3 \theta(\Pi_t - 1) - \alpha (\Pi_t - 1) \quad (17) \]

\[R_t : \quad 0 = -\gamma_t^2 \frac{u_{ct}}{R_t^2}. \quad (18) \]

Equation (18) implies \(\gamma_t^2 = 0 \). While (15)-(17) give, respectively,

\[\gamma_t^3 = (1 - \alpha) u_{ct} + \gamma_t^1 \left(u_{ct}(\Pi_t - 1)\Pi_t - \frac{u_{ct}z_t h_t}{\theta} \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) \quad (19) \]

\[\gamma_t^3 = - (1 - \alpha) \frac{u_{ht}}{z_t} + \gamma_t^1 \frac{u_{ct}}{\theta} \left(1 + \eta_t + \frac{\eta_t}{z_t} \left(\frac{u_{ht}}{u_{ct}} + h_t \frac{u_{hht}}{u_{ct}} \right) \right) \quad (20) \]

\[\gamma_t^3 = \gamma_t^1 \frac{u_{ct}(2\Pi_t - 1)}{\theta(\Pi_t - 1)} - \frac{\alpha}{\theta}. \quad (21) \]

Then (19) and (21) imply

\[\gamma_t^1 = \frac{\theta \left(1 - \alpha + \frac{1}{u_{ct} \theta} \right) \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) u_{ct}}{2\Pi_t - 1 - \frac{u_{ct}}{u_{ct}} \left(\theta(\Pi_t - 1)\Pi_t - z_t h_t \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right)}. \quad (22) \]

While (20) and (21) imply

\[\gamma_t^1 = \frac{\theta \left(1 - \alpha - \frac{z_t}{u_{ht} \theta} \right) \left(1 + \eta_t - \frac{2\Pi_t - 1 - \frac{u_{ct}}{u_{ct}} \left(\theta(\Pi_t - 1)\Pi_t - z_t h_t \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right)} {z_t u_{ct} \left(1 + \eta_t - \frac{2\Pi_t - 1 - \frac{u_{ct}}{u_{ct}} \left(\theta(\Pi_t - 1)\Pi_t - z_t h_t \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right) \right) \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right)} \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t} \right)}. \quad (23) \]

Equating (22) and (23) gives the monetary reaction function
\[-\frac{z_t u_{ct}}{u_{ht}} (\eta_t (\Pi_t - 1) - \Pi_t) - (\Pi_t - 1) \eta_t \left(1 + h_t \frac{u_{ht}}{u_{ht}}\right) + \left[2\Pi_t - 1 - \frac{u_{ct}}{u_{ct}} (\Pi_t - 1) \left(\theta (\Pi_t - 1) \Pi_t - z_t h_t \left(1 + \eta_t - \frac{\eta_t g_t}{z_t h_t}\right)\right)\right] \left(1 - \alpha\right) \theta - \alpha \frac{z_t}{u_{ct}} = 0.\]

References

Figure 1: Effect of inflation conservatism on welfare

Note: Welfare equivalent consumption loss relative to the Ramsey plan
Figure 2: Effects of inflation conservatism on the equilibrium allocation

Note: GDP scaled to be 100 in the Ramsey plan
Figure 3: Response to a technology shock

Note: Deviation from steady state after a -1 standard deviation technology shock
Figure 4: Response to a mark-up shock

Note: Deviation from steady state after a 1 standard deviation mark-up shock
Earlier Working Papers:

For a complete list of Working Papers published by Sveriges Riksbank, see www.riksbank.se

Estimation of an Adaptive Stock Market Model with Heterogeneous Agents
by Henrik Amilon
2005:177

Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap
by Mikael Apel and Per Jansson
2005:178

Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through
by Malin Adolfsson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:179

Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy
DSGE Model of the Euro Area
by Malin Adolfsson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:180

Inference in Vector Autoregressive Models with an Informative Prior on the Steady State
by Mattias Villani
2005:181

Bank Mergers, Competition and Liquidity
by Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo
2005:182

Testing Near-Rationality using Detailed Survey Data
by Michael F. Bryan and Stefan Palmqvist
2005:183

Exploring Interactions between Real Activity and the Financial Stance
by Tor Jacobson, Jesper Lindé and Kasper Roszbach
2005:184

Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs
by Mats A. Bergman
2005:185

Trade Deficits in the Baltic States: How Long Will the Party Last?
by Rudolfs Bems and Kristian Jönsson
2005:186

Real Exchange Rate and Consumption Fluctuations following Trade Liberalization
by Kristian Jönsson
2005:187

Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks
by Malin Adolfsson, Michael K. Andersson, Jesper Lindé, Mattias Villani and Anders Vredin
2005:188

Bayesian Inference of General Linear Restrictions on the Cointegration Space
by Mattias Villani
2005:189

Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model
by Malin Adolfsson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:190

Forecast Combination and Model Averaging using Predictive Measures
by Jana Eklund and Sune Karlsson
2005:191

Swedish Intervention and the Krona Float, 1993-2002
by Owen F. Humpage and Javiera Ragnartz
2006:192

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
by Hans Lindblad and Peter Sellin
2006:193

Testing Theories of Job Creation: Does Supply Create Its Own Demand?
by Mikael Carlsson, Stefan Eriksson and Nils Gottfries
2006:194

Down or Out: Assessing The Welfare Costs of Household Investment Mistakes
by Laurent E. Calvet, John Y. Campbell and Paolo Sodini
2006:195

Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models
by Paolo Giordani and Robert Kohn
2006:196

Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy
by Karolina Holmberg
2006:197

Technology Shocks and the Labour-Input Response: Evidence from Firm-Level Data
by Mikael Carlsson and Jon Smedsaas
2006:198

Monetary Policy and Staggered Wage Bargaining when Prices are Sticky
by Mikael Carlsson and Andreas Westermark
2006:199

The Swedish External Position and the Krona
by Philip R. Lane
2006:200
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>The geography of asset holdings: Evidence from Sweden</td>
<td>Nicolas Coeurdacier and Philippe Martin</td>
<td>2007</td>
</tr>
<tr>
<td>Evaluating An Estimated New Keynesian Small Open Economy Model</td>
<td>Malin Adolfsson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2007</td>
</tr>
<tr>
<td>The Use of Cash and the Size of the Shadow Economy in Sweden</td>
<td>Gabriela Guibourg and Björn Segendorf</td>
<td>2007</td>
</tr>
<tr>
<td>Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns</td>
<td>Sophie Claeyys and Koen Schoors</td>
<td>2007</td>
</tr>
<tr>
<td>Optimal Monetary Policy under Downward Nominal Wage Rigidity</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2007</td>
</tr>
<tr>
<td>Financial Structure, Managerial Compensation and Monitoring</td>
<td>Vittoria Cerasi and Sonja Daltung</td>
<td>2007</td>
</tr>
<tr>
<td>Financial Frictions, Investment and Tobin's q</td>
<td>Guido Lorenzoni and Karl Walentin</td>
<td>2007</td>
</tr>
<tr>
<td>Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework</td>
<td>Mathias Trabandt</td>
<td>2007</td>
</tr>
<tr>
<td>Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank lending rates</td>
<td>Sophie Claeyys and Christa Hainz</td>
<td>2007</td>
</tr>
<tr>
<td>The Costs of Paying – Private and Social Costs of Cash and Card</td>
<td>Mats Bergman, Gabriella Guibourg and Björn Segendorf</td>
<td>2007</td>
</tr>
<tr>
<td>Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts</td>
<td>Peter Sellin</td>
<td>2007</td>
</tr>
<tr>
<td>Introducing Financial Frictions and Unemployment into a Small Open Economy Model</td>
<td>Lawrence J. Christiano, Mathias Trabandt and Karl Walentin</td>
<td>2007</td>
</tr>
<tr>
<td>Earnings Inequality and the Equity Premium</td>
<td>Karl Walentin</td>
<td>2007</td>
</tr>
<tr>
<td>Bayesian forecast combination for VAR models</td>
<td>Michael K. Andersson and Sune Karlsson</td>
<td>2007</td>
</tr>
<tr>
<td>Do Central Banks React to House Prices?</td>
<td>Daria Finocchiaro and Virginia Queijo von Heideken</td>
<td>2007</td>
</tr>
<tr>
<td>The Riksbank's Forecasting Performance</td>
<td>Michael K. Andersson, Gustav Karlsson and Josef Svensson</td>
<td>2007</td>
</tr>
<tr>
<td>Macroeconomic Impact on Expected Default Frequency</td>
<td>Per Asberg and Hovick Shahnazarian</td>
<td>2008</td>
</tr>
<tr>
<td>Monetary Policy Regimes and the Volatility of Long-Term Interest Rates</td>
<td>Virginia Queijo von Heideken</td>
<td>2008</td>
</tr>
<tr>
<td>Governing the Governors: A Clinical Study of Central Banks</td>
<td>Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo</td>
<td>2008</td>
</tr>
<tr>
<td>The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates</td>
<td>Hans Dillén</td>
<td>2008</td>
</tr>
<tr>
<td>How Important are Financial Frictions in the U S and the Euro Area</td>
<td>Virginia Queijo von Heideken</td>
<td>2008</td>
</tr>
<tr>
<td>Block Kalman filtering for large-scale DSGE models</td>
<td>Ingvar Strid and Karl Walentin</td>
<td>2008</td>
</tr>
<tr>
<td>Optimal Monetary Policy in an Operational Medium-Sized DSGE Model</td>
<td>Malin Adolfsson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson</td>
<td>2008</td>
</tr>
<tr>
<td>Firm Default and Aggregate Fluctuations</td>
<td>Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach</td>
<td>2008</td>
</tr>
<tr>
<td>Title</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Re-Evaluating Swedish Membership in EMU: Evidence from an Estimated Model by Ulf Söderström</td>
<td>2008:227</td>
<td></td>
</tr>
<tr>
<td>The Effect of Cash Flow on Investment: An Empirical Test of the Balance Sheet Channel by Ola Melander</td>
<td>2009:228</td>
<td></td>
</tr>
<tr>
<td>Expectation Driven Business Cycles with Limited Enforcement by Karl Walentin</td>
<td>2009:229</td>
<td></td>
</tr>
<tr>
<td>Effects of Organizational Change on Firm Productivity by Christina Håkanson</td>
<td>2009:230</td>
<td></td>
</tr>
<tr>
<td>Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student T Densities by Feng Li, Mattias Villani and Robert Kohn</td>
<td>2009:233</td>
<td></td>
</tr>
<tr>
<td>Forecasting Macroeconomic Time Series with Locally Adaptive Signal Extraction by Paolo Giordani and Mattias Villani</td>
<td>2009:234</td>
<td></td>
</tr>
<tr>
<td>Evaluating Monetary Policy by Lars E. O. Svensson</td>
<td>2009:235</td>
<td></td>
</tr>
<tr>
<td>Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model by Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens and Raf Wouters</td>
<td>2010:236</td>
<td></td>
</tr>
<tr>
<td>Picking the Brains of MPC Members by Mikael Apel, Carl Andreas Clausen and Petra Lennartsdotter</td>
<td>2010:237</td>
<td></td>
</tr>
<tr>
<td>Involuntary Unemployment and the Business Cycle by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin</td>
<td>2010:238</td>
<td></td>
</tr>
<tr>
<td>Housing collateral and the monetary transmission mechanism by Karl Walentin and Peter Sellin</td>
<td>2010:239</td>
<td></td>
</tr>
<tr>
<td>The Discursive Dilemma in Monetary Policy by Carl Andreas Clausen and Øistein Røisland</td>
<td>2010:240</td>
<td></td>
</tr>
<tr>
<td>Monetary Regime Change and Business Cycles by Vasco Cúrdia and Daria Finocchiaro</td>
<td>2010:241</td>
<td></td>
</tr>
<tr>
<td>Bayesian Inference in Structural Second-Price common Value Auctions by Bertil Wegmann and Mattias Villani</td>
<td>2010:242</td>
<td></td>
</tr>
<tr>
<td>Equilibrium asset prices and the wealth distribution with inattentive consumers by Daria Finocchiaro</td>
<td>2010:243</td>
<td></td>
</tr>
<tr>
<td>Identifying VARs through Heterogeneity: An Application to Bank Runs by Ferre De Graeve and Alexei Karas</td>
<td>2010:244</td>
<td></td>
</tr>
<tr>
<td>Modeling Conditional Densities Using Finite Smooth Mixtures by Feng Li, Mattias Villani and Robert Kohn</td>
<td>2010:245</td>
<td></td>
</tr>
<tr>
<td>The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours by Luca Sala, Ulf Söderström and Antonella Trigari</td>
<td>2010:246</td>
<td></td>
</tr>
<tr>
<td>Anticipated Alternative Policy-Rate Paths in Policy Simulations by Stefan Laséen and Lars E. O. Svensson</td>
<td>2010:248</td>
<td></td>
</tr>
<tr>
<td>The Effects of Endogenous Firm Exit on Business Cycle Dynamics and Optimal Fiscal Policy by Lauri Vilmi</td>
<td>2011:250</td>
<td></td>
</tr>
<tr>
<td>Parameter Identification in a Estimated New Keynesian Open Economy Model by Malin Adolfson and Jesper Lindé</td>
<td>2011:251</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Wage Adjustment and Productivity Shocks</td>
<td>Mikael Carlsson, Julián Messina and Oskar Nordström Skans</td>
<td>2011</td>
</tr>
<tr>
<td>Stylized (Arte) Facts on Sectoral Inflation</td>
<td>Ferre De Graeve and Karl Valentin</td>
<td>2011</td>
</tr>
<tr>
<td>Hedging Labor Income Risk</td>
<td>Sebastien Betermier, Thomas Jansson, Christine A. Parlour and Johan Walden</td>
<td>2011</td>
</tr>
<tr>
<td>Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios</td>
<td>Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani</td>
<td>2011</td>
</tr>
<tr>
<td>Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment</td>
<td>Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach</td>
<td>2012</td>
</tr>
<tr>
<td>Labor-Market Frictions and Optimal Inflation</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2012</td>
</tr>
<tr>
<td>Output Gaps and Robust Monetary Policy Rules</td>
<td>Roberto M. Billi</td>
<td>2012</td>
</tr>
<tr>
<td>The Information Content of Central Bank Minutes</td>
<td>Mikael Apel and Marianna Blix Grimaldi</td>
<td>2012</td>
</tr>
<tr>
<td>The Cost of Consumer Payments in Sweden</td>
<td>Björn Segendorf and Thomas Jansson</td>
<td>2012</td>
</tr>
<tr>
<td>Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis</td>
<td>Tor Jacobson and Erik von Schedvin</td>
<td>2012</td>
</tr>
<tr>
<td>Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence</td>
<td>Luca Sala, Ulf Söderström and Antonella Trigari</td>
<td>2012</td>
</tr>
<tr>
<td>Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE</td>
<td>Rob Alessie, Viola Angelini and Peter van Santen</td>
<td>2013</td>
</tr>
<tr>
<td>Long-Term Relationship Bargaining</td>
<td>Andreas Westermark</td>
<td>2013</td>
</tr>
<tr>
<td>Using Financial Markets To Estimate the Macro Effects of Monetary Policy: An Impact-Identified FAVAR*</td>
<td>Stefan Pitschner</td>
<td>2013</td>
</tr>
<tr>
<td>DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL AND DISCRETE-TIME SURVIVAL DATA</td>
<td>Matias Quiroz and Mattias Villani</td>
<td>2013</td>
</tr>
<tr>
<td>Conditional euro area sovereign default risk</td>
<td>André Lucas, Bernd Schwaab and Xin Zhang</td>
<td>2013</td>
</tr>
<tr>
<td>Nominal GDP Targeting and the Zero Lower Bound: Should We Abandon Inflation Targeting?*</td>
<td>Roberto M. Billi</td>
<td>2013</td>
</tr>
<tr>
<td>Un-truncating VARS*</td>
<td>Ferre De Graeve and Andreas Westermark</td>
<td>2013</td>
</tr>
<tr>
<td>Housing Choices and Labor Income Risk</td>
<td>Thomas Jansson</td>
<td>2013</td>
</tr>
<tr>
<td>Identifying Fiscal Inflation*</td>
<td>Ferre De Graeve and Virginia Queijo von Heideken</td>
<td>2013</td>
</tr>
<tr>
<td>On the Redistributive Effects of Inflation: an International Perspective*</td>
<td>Paola Boel</td>
<td>2013</td>
</tr>
<tr>
<td>Business Cycle Implications of Mortgage Spreads*</td>
<td>Karl Valentin</td>
<td>2013</td>
</tr>
<tr>
<td>Approximate dynamic programming with post-decision states as a solution method for dynamic economic models</td>
<td>Isaiah Hull</td>
<td>2013</td>
</tr>
<tr>
<td>A detrimental feedback loop: deleveraging and adverse selection</td>
<td>Christoph Bertsch</td>
<td>2013</td>
</tr>
</tbody>
</table>