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Beyond dimension two: A test for higher-order tail risk
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VU University Amsterdam and Tinbergen Institute, The Netherlands

Abstract

In practice, multivariate dependencies between extreme risks are often only assessed in a pairwise way. We

propose a test to detect when tail dependence is truly high–dimensional and bivariate simplifications would

produce misleading results. This occurs when a significant portion of the multivariate dependence structure

in the tails is of higher dimension than two. Our test statistic is based on a decomposition of the stable tail

dependence function, which is standard in extreme value theory for describing multivariate tail dependence.

The asymptotic properties of the test are provided and a bootstrap based finite sample version of the test

is suggested. A simulation study documents the good performance of the test for standard sample sizes. In

an application to international government bonds, we detect a high tail–risk and low return situation during

the last decade which can essentially be attributed to increased higher–order tail risk. We also illustrate the

empirical consequences from ignoring higher-dimensional tail risk.

Keywords: decomposition of tail dependence, multivariate extreme values, stable tail dependence function,

subsample bootstrap, tail correlation
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1 Introduction

Studying extreme co-movements in multidimensional systems is a key concern in finance and insurance. However,

tail dependence structures of multivariate distributions are often only treated in bivariate setups, see for instance

Poon et al. (2004) and Klugman & Parsa (1999), and also de Haan & de Ronde (1998) and Ghosh (2010) for

cases of extreme environmental and weather risks. This is due to the fact that in practice, bivariate models

are easier tractable and computationally more appealing. But also from a theoretical point of view, statistical

properties of a large group of estimators are only known up to dimension two (Coles et al. (1991), Joe et al.

(1991), de Haan et al. (2008), Guillotte et al. (2011)). Though, for a variety of empirical settings, there are

periods of time where a pairwise approach is too restrictive and produces misleading results. In particular, the

recent financial crisis has shown that dramatic drops in the stock return of a single bank directly impact other
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banks building up cascading effects which can pose a threat to the stability of the entire system. Sovereign

bonds too have become increasingly interconnected with governments intervening with unprecedented bail-out

measures impacting their own financial standing. In such situations, the most common bivariate measures for tail

dependence, such as the tail dependence coefficient (see Straetmans et al. (2008), Poon et al. (2004), Hartmann

et al. (2004)), bivariate copulas (see, e.g. Li (2013), Rodriguez (2007), and references therein), or simple product

moment correlation coefficients and correlation matrices, fail to explicitly account for a large amount of the

complex dependence structure among extreme risks in the system, leading to severe underestimations of the

effects of extreme comovements (see also Embrechts (2009) and Mikosch (2006)). We therefore propose a test

that indicates if the pairwise approach significantly underdiagnoses tail dependence in a d–dimensional random

vector X = (X(1), ..., X(d))′, d > 2. The test is based on the stable tail dependence function (STDF) (Huang

(1992), Einmahl et al. (2012), de Haan & Ferreira (2006), Resnick (1987)), which allows for a general and

flexible semiparametric model of tail dependence and straightforward nonparametric estimation with a smaller

risk of model misspecification than alternative parametric models, e.g. of copula type. Furthermore, its statistical

properties are well understood beyond dimension two for all X whose distribution function lies in the domain of

attraction of a multivariate extreme value distribution (Einmahl et al. (2012)). And its conservative definition

of multivariate extreme events fits the needs of (financial) risk management (Segers (2012)).

The main idea of the test is to decompose the STDF for X into probabilities of univariate extreme events,

STDF’s of all possible bivariate pairs within X, and a remainder term capturing extreme events in dimensions

three to d. We refer to the latter as higher order tail dependencies (HOTD’s). If the remainder term is not

significantly different from zero, we conclude that tail dependence in X is purely bivariate, since tail dependence

in dimension d can be captured by bivariate tails. However, if we reject the null hypothesis that HOTD’s have

no influence, ignoring high–dimensional joint extreme events leads to an underestimation of the risks implied by

joint extremes in dimension three and higher. The asymptotic properties of the test statistic are derived and a

bootstrap implementation scheme for finite samples is proposed. A simulation study with standard multivariate

risk structures documents the test’s good finite sample properties. In a detailed empirical application, we discuss

the multivariate tail properties of daily return data of government bond index prices of the United States, the

United Kingdom, Germany, and France. Figure 1 shows bivariate, two– and four–dimensional joint extreme

events of the four international government bond index returns.
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Figure 1: Two–dimensional versus higher–dimensional extremes of international government bond index price
returns. For a sample size of 2026 observations the figure displays occurrences of two–dimensional (grey lines)
and higher–dimensional (black lines) extremal co–exceedances of marginal empirical 97.03% quantiles. Different
extremal quantiles as a extremal threshold can be chosen as well. The sample exhibits 94 bivariate joint extremes.
Within the set of bivariate extremes, there are 28 joint three– and four joint four–dimensional extremes.

(a) Joint pairwise extremes
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(b) Joint three-dimensional extremes
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(c) Joint four-dimensional extremes
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Figure 1 illustrates that a pairwise analysis of a multivariate tail can only lead to a partial assessment of

the likeliness of higher–dimensional extreme events, missing out on the contribution of joint extremes of three

or more marginals in 28 of 94 cases. Thus in almost 30% of the events detected as extreme by the six bivariate

tails, the true level of riskiness would be underestimated if it was not accounted for the fact that the six bivariate

tails can also constitute higher–dimensional joint extremes. Hence, portfolio holders that solely balance their

portfolios based on bivariate tail measures would neglect the hazardous threats of potential high–dimensional

extremes. We illustrate that they could therefore face substantially higher risks than intended or allowed, e.g.

by solvency regulations for large bond holding insurance companies. Using the new test, we show in a rolling

window analysis that HOTD’s have built up during the last decade in both the left (losses) as well as the right

(gains) tail of international bond index returns. Thus, a significant portion of total multivariate tail dependence

is due to HOTD’s. Considering the steady decrease of bond yields, we find a high tail risk and low return

situation on international bond markets. Furthermore, disregarding HOTD’s when estimating extreme quantile



4

regions produces estimates up to 60% smaller in terms of volumes compared to estimated quantile regions that

do account for HOTD’s. Neglecting the potential for joint extreme events in dimension three or higher can thus

amount to a severe underestimation of multivariate tail behavior.

The rest of the paper is organized as follows. Section 2.1 discusses necessary concepts from multivariate

extreme value theory. Section 2.2 introduces and formalizes test idea, test asymptotics and finite sample

implementation. Finite sample properties are studied in section 3. Section 4 studies HOTD’s in international

bond indices. Section 4.3 illustrates, using an extreme quantile region approach, how severely multivariate tail

risk is underestimated by a purely bivariate approach. Section 5 concludes. The appendix contains supplementary

simulation and theoretical results.

2 Econometric methodology

2.1 Multivariate dependence in extreme tails

For our analysis of extreme risks, we use techniques from multivariate extreme value theory which we introduce

and motivate in the following.

Denote by X := (X(1), ..., X(d))′ a d–dimensional random vector with continuous joint cumulative distri-

bution function (cdf) FX(x),x := (x(1), ..., x(d))′. Its univariate marginals are denoted by Fj(x
(j)), j = 1, ..., d.

Suppose we observe a sample of n i.i.d. draws from the random vector X, collected in the (n× d) sample

matrix X = (X
(1)
n , ...,X

(d)
n ) with X

(j)
n = (X

(j)
1 , ..., X

(j)
n )′, j = 1, ..., d. We write max(X

(j)
n ) = max(X

(j)
1 , ..., X

(j)
n )

for the sample maximum of margin j. For each marginal, we assume that there exist normalizing constants

a
(j)
n ∈ R+, b

(j)
n ∈ R, j = 1, ..., d, and a limiting distribution GX(x), such that

lim
n→∞

P

(
max(X

(1)
n )− b(1)

n

a
(1)
n

≤ x(1), ...,
max(X

(d)
n )− b(d)

n

a
(d)
n

≤ x(d)

)
= GX(x), (1)

for all continuity points of GX(x). Then GX(x) is a multivariate extreme value distribution, and FX(x) is said to

be in the domain of attraction of GX(x), which is denoted by FX ∈ D(GX), see de Haan & Ferreira (2006) and

Resnick (1987). Necessary and sufficient conditions for FX ∈ D(GX) can be found in Haan & Resnick (1977),

Beirlant et al. (2004, p. 287), de Haan & Ferreira (2006), and Resnick (1987). For this theoretical section, we

assume that they are fulfilled. In the application, we will illustrate that the assumptions are met. In general,

closed-form expressions for GX(x) do not exist. Equation 1 can be written as

lim
n→∞

FnX (a(1)
n x(1) + b(1)

n , ..., a(d)
n x(d) + b(d)

n ) = GX(x), (2)

implying that the univariate marginals converge individually to one–dimensional extreme value distributions

Gj(x
(j)), which have the standard Fisher–Tippett form (Fréchet (1927), Fisher & Tippett (1928), Gnedenko

(1943))

lim
n→∞

Fnj (a(j)
n x(j) + b(j)n ) = Gj(x

(j)) = exp
(
−(1 + γjx

(j))−1/γj
)
, j = 1, ..., d, (3)

where γj denotes the tail index of margin j. An equivalent formulation of relation 2 amounts to the concept

of the stable tail dependence function (STDF) of X, denoted by `X(x) (Huang (1992), Einmahl et al. (2012)).

Equivalent characterizations of GX(x) can also be obtained via the spectral measure and the exponent measure

(de Haan & Ferreira 2006, chapter 6) but are less intuitive in interpretation and decomposition. The STDF

`(x) : Rd 7→ R+ is defined as

`X(x) = − logGX

(
x(1)−γ1 − 1

γ1
, ...,

x(d)−γd − 1

γd

)
.
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The STDF maps univariate tails to their joint limit distribution, and therefore describes the complete dependence

structure of the tails of the univariate marginals. As one can express `X(x) as

`X(x) = lim
t→0

t−1P
( d⋃
i=1

{F−1
i (1− tx(i)) ≤ X(i)}

)
, t ∈ R+, (4)

the STDF is an asymptotic measure which can be interpreted as the scaled asymptotic probability that at

least one element of X exceeds an extreme quantile, that is, X(i) exceeds F−1
i (1− tx(i)), as t→ 0. From

this representation a direct nonparametric estimate of the STDF can be derived. It is also immediate how

to decompose `X(x) into component STDF’s of dimensions lower than d.

There is a rich statistical literature on general properties of the STDF and its estimators (e.g. Huang (1992),

Einmahl et al. (2012), Einmahl et al. (2006), Dietrich et al. (2003), Drees et al. (2006)). It is thus a standard

result that the STDF is a convex function, and homogeneous of degree one, i.e. `X(λx) = λ`X(x) for λ ∈ R.

Importantly, `X(x) ∈ [max(x),x1 :=
∑d

i=1 x
(i)], where the lower (upper) bound is attained if X is perfectly

tail dependent (independent), that is, extremes of univariate marginals always (never) occur simultaneously

(de Haan & Ferreira (2006), Beirlant et al. (2004)). Tail (in)dependent is often also denoted as asymptotically

(in)dependent. Numerical values of `X(x) close to max(x) indicate that tails of X are strongly interconnected.

Values of `X(x) close to x1 mark the opposite. In practice, perfect tail dependence is rare.

It is important to see the relation but also the difference of the STDF to the so–called tail copula (TC) which

is another closely related metric for tail dependence. The TC is defined as

RX(x) = lim
t→0

t−1P
( d⋂
i=1

{F−1
i (1− tx(i)) ≤ X(i)}

)
,

which considers joint exceedances to characterize tail dependence, see Schmidt & Stadtmüller (2006). Sibuya

(1960), Joe (1997) and Coles et al. (1998) introduce the concept of bivariate tail dependence in terms of the

tail dependence coefficient, which corresponds to the bivariate TC at the point x = (1, 1). Roughly speaking, it

describes the tendency of two random variables to jointly exceed a high threshold. In two dimensions, there is a

one-to-one mapping between the TC and the STDF. Due to the lack of natural ordering in higher dimensions,

the definition of a multivariate extreme event depends on the research objective. There are several reasons why

we prefer the concept of a STDF and to the one of a TC for our purpose: Firstly, the TC captures only (the most

extreme) part of the multivariate tail dependence in dimensions d > 2, while the STDF completely describes

it (see subsection 2.2 for the relationship between the two). Secondly, a practical issue for large d is that joint

d–dimensional exceedances are rarely observed in finite samples. Unless a sample contains an observation with all

marginals being extreme, the TC indicates tail independence. That is, the TC only considers the most extreme

event when all marginals are simultaneously extreme, and disregards more likely tail events. On the other hand,

the STDF incorporates events in which a single component of X becomes extreme, and hence finite samples

provide more relevant observations. Segers (2012) paraphrase the interpretation of `X(x) as ”trouble in the air”,

whereas RX(x) only considers events extreme when ”the sky is falling”. The STDF is therefore an important

ingredient for a conservative risk monitoring approach, in the sense of leading to tight univariate thresholds for

a given level of multivariate joint risk in a multivariate value-at-risk setting. See subsection 4.3 for details.

2.2 A new test for higher-order extreme tail dependence

We aim to reveal the share which HOTD’s contribute to overall tail dependence. Hence, we decompose the STDF

for dimension d into TC’s for dimensions two to d. In dimension d = 2, from equation 4 we have that `X(x) is

the limiting probability of a union of two events; since P(A ∪B) = P(A) + P(B)− P(A ∩B) for some events A

and B. Therefore, we have `X(x(1), x(2)) = x(1) + x(2) −RX(x(1), x(2)). For similar decompositions in arbitrary

dimension 2 < d <∞, additional notation is required. Define I(d)
(r) as the combination set of all

(d
r

)
combinations
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of r elements of the index set I := {1, 2, ..., d} and let b ∈ I(d)
(r) . Furthermore, x(b) := (x(j), j ∈ b ⊂ I), and let

Rb(x
(b)) and `b(x

(b)) be the TC and the STDF, respectively, of subvector X(b). For example, if d = 3, then

I(d=3)
(r=2) = {{1, 2}, {1, 3}, {2, 3}}, i = {1, 2}, {1, 3} or {2, 3}, and if b = {1, 2}, it is x(b) = (x(1), x(2)).

In R2<d<∞, using the inclusion–exclusion principle,

`X(x) =

d∑
i=1

x(i) −
∑
i∈I(d)

(2)

Ri(x
(i)) +

∑
i∈I(d)

(3)

Ri(x
(i))− ...+ (−1)d+1RX(x)

︸ ︷︷ ︸
=:A

, (5)

where A denotes the portion HOTD’s contribute to ”global” tail dependence in X. Provided global tail

dependence is only caused by bivariate extreme events, i.e. by the first two terms of equation 5, A equals

zero. In this case, higher dimensional joint extremes are irrelevant. When substituting R(x(i), x(j)) = x(i) +

x(j) − `(x(i), x(j)), i 6= j, i, j ∈ I, equation 5 yields

`X(x) = (2− d)

d∑
i=1

x(i) +
∑
i∈I(d)

(2)

`i(x
(i)) +A, (6)

which decomposes global tail dependence into asymptotic probabilities for univariate extremes and STDF’s for

any bivariate combination and HOTD’s.

With equation 6 we can test whether extreme events in dimensions larger than two have a statistically significant

impact, that is, if two–dimensional tails explain tail dependence in dimension d > 2 sufficiently well. Formally,

if A = 0, then

∆ := `X(x)− (2− d)

d∑
i=1

x(i) −
∑
i∈I(d)

(2)

`i(x
(i)) = 0. (7)

Thus in this case, bivariate extreme relations are sufficient for capturing the full global tail dependence as

the impact of higher–order tail dependencies is negligible. Hence, the null hypothesis that bivariate tails “are

enough”, is

H0 : ∆ = 0. (8)

For ∆ substantially deviating from zero, the null is rejected. With x = 1, one can show that ∆ ∈ [0,
∑d−2

i=1 i], d >

2. The following corollary clarifies that testing for ∆ = 0 is not equivalent to testing whether X is tail independent

as proposed e.g. in Draisma et al. (2004). Thus, there exist multivariate distributions which are globally tail

dependent, but have ∆ = 0. Hence their global tail dependence is exclusively caused by bivariate tails.

Corollary 2.1 a

If X is tail independent, that is if all bivariate tails of X are tail independent, then ∆ = 0. The reverse does not

hold.

This can be easily shown constructively from the the family of distributions which we use in the simulation

setting.

In order to apply the test, one has to estimate the STDF for X, `X(x), and the STDF’s for all possible

bivariate pairs, `b(x
(b)), b ∈ I(d)

(2) . Let X
(i)
n:m denote the m–th largest order statistic of margin X(i), and let 1(C)

be the indicator function for event C. In equation 4, replacing the running variable t by k/n and the extreme

quantiles F−1
i (1− tx(i)) by X

(i)

n:n+0.5−kx(i) we use the following nonparametric estimator for the STDF (see
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Huang (1992) and Einmahl et al. (2012))

ˆ̀X(x) =
1

k

n∑
i=1

1
{ d⋃
j=1

{X(j)
i ≥ X(j)

n:n+0.5−kx(j)}
}
, n→∞, k →∞, k

n
→ 0. (9)

Assuming that X is in the domain of attraction of a multivariate extreme value distribution, that some technical

conditions on k are fulfilled, and that continuous partial derivatives of ` with respect to x(j) > 0, j = 1, ..., d,

exist, they show that the empirical process
√
k(ˆ̀X(x)− `X(x)) converges weakly to a sum of zero mean Brownian

motions with given covariance structure. If X is asymptotically independent, ˆ̀X(x) is still asymptotically normal

but with zero variance (Hüsler & Li 2009).

Without loss of generality, we fix x = 1 ∈ Rd, which is standard in the applied MEVT literature, see e.g.

Hartmann et al. (2004). In this case for each marginal, the threshold equals X
(i)
n:n+1/2−k, and one observes k

exceedances for each margin. Asymptotics of ˆ̀(x = 1) simplify to

√
k
(

ˆ̀X(x = 1)− `X(x = 1)
)

d→ N(0, σ2
ˆ̀X

),

where closed forms of σ2
ˆ̀X

can be reconstructed from theorem 4.6 in Einmahl et al. (2012). Plugging ˆ̀X into ∆

yields the empirical test statistic

∆̂ := ˆ̀X(x = 1)− 2d+ d2 −
∑
i∈I(d)

(2)

ˆ̀
i

(
x

(i) = (1, 1)
)
. (10)

These considerations lead us to the distribution of the test statistic, which is given next.

Proposition 2.2 Let the Assumptions 1 as listed in detail in section 6.4 hold. Moreover, assume that within X
at least one pair (X(i), X(j)), i 6= j, is asymptotically dependent. Then,

√
k(∆̂−∆)

d→ N(0, σ2
∆̂

),

where σ2
∆̂

is the sum of all entries of the covariance matrix of

(
ˆ̀X(x = 1), {ˆ̀i(x(i) = (1, 1))}

i∈I(d)

(2)

)
.

The exact derivation can be found in section 6.4. Assumptions 1 consist of three components: A1(i) requires

β-regular varying tails of the underlying distribution, which is a standard assumption in the extreme value

literature. The parameter β can be estimated in practice e.g. via a Hill-type estimator as we illustrate in the

empirical study for bonds, see section 4. A1(ii) provides a restriction on the choice of k dependent on n and

β. The smoothness assumptions A1(iii) are only necessary for a simplified form of the obtained variance. In

practice, it can be very restrictive in particular if there is asymptotic tail dependence. For the finite sample

adjusted version of the test below, it is therefore important that A1(iii) is not necessary.

From proposition 2.2, it follows the asymptotic size of the test decreases when X becomes very high–

dimensional. This follows from the nonparametric nature of ˆ̀(x) which causes the variance of ∆̂ to increase

with growing dimension. Larger sample sizes can antagonize this effect. Our simulation study illustrates that

the test and its finite sample version still perform well in the empirical size for dimension d = 7 and standard

sample sizes. In contrast, if X exhibits tail dependence in dimension d, it necessarily exhibits tail dependence in

dimensions 3 ≤ g < d. Thus, the asymptotic power of the test can increase with larger dimensions. See subsection

3.2 for details together with results on the empirical power in the simulation settings.
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If is of practical interest, the test can be readily adapted to dimensions greater or equal than d = 3. It can

thus detect if joint extremes in dimensions larger than three are of importance as the test statistic increases in

d as long as joint extremes occur in dimension d.

2.3 Finite sample refinements of the test

Although it is possible to derive the explicit form and calculate empirical versions of the asymptotic variance of

the test statistic, we prefer to bootstrap it. The reason is that direct estimation of σ2
∆̂

requires the estimation

of partial derivatives of the STDF and of covariances between STDF’s. In principle, a weighted least squares

based estimator for such partial derivatives of the STDF exists, but its statistical properties have only been

established for dimension d = 2 so far (see Peng & Qi 2006). Moreover, in our asymptotic dependent case of

interest, smoothness assumptions for the simplified partial derivative form of the variance can often not be met

by construction, thus estimating from it is actually not admissible (Bücher & Dette 2013). But bootstrapping

σ2
∆̂

works under milder conditions, in particular if X exhibits asymptotic dependence (Bücher & Dette 2013).

As we want to bootstrap extremal observations, we do not resample from the full sample, but only from a

subsample (Politis & Romano (1994)). Otherwise an asymptotically vanishing bias term of ∆̂, inherited by an

asymptotically vanishing bias term of ˆ̀X (Huang (1992)), might distort the bootstrap distribution. Peng (2010)

propose a similar approach and successfully employ a subsample size of n0.95. Qi (2008), El-Nouty & Guillou

(2000), Danielsson et al. (2001), Geluk & de Haan (2002) generally document the benefits of subsampling for

pointwise extreme value statistics.

We construct rejection regions for the test from the asymptotically normal distribution of ∆̂ with the

resampled form of the variance. In summarizing, we proceed in six steps for obtaining the test decision:

(1) Determine k∗ for ∆̂ from the sample of X.

(2) Estimate `X(k∗), and any `i(k
∗), i ∈ I(d)

(2) , to determine the full sample test statistic ∆̂(k∗) from X.

(3) Draw at least B = 500 bootstrap samples with replacement from X with sample size n∗ = n0.95 and denote

the resulting bootstrap sample by X∗1, ...,X
∗
B .

(4) For j = 1, ..., B, estimate ∆̂(k∗) from the bootstrap sample X∗1, ...,X
∗
B , yielding B bootstrapped estimates

∆̂(k∗)1, ..., ∆̂(k∗)B .

(5) Estimate σ2
∆̂

from the bootstrapped estimates in the previous step by its empirical analogue.

(6) On a 1− α confidence level reject H0 : ∆ = 0 if 0 < ∆̂(k∗) + zασ̂∆̂, where zα denotes the α quantile of the

standard normal distribution.

A theoretically optimal, data-driven choice of the tuning parameter k should balance the bias–variance trade–off

that is immanent to the estimation of `X(x). Finding such a solution and deriving its optimality properties is

highly non-standard even in the univariate case and is thus beyond the scope of this paper. In our simulations

we choose k randomly from a suitable interval in order to minimize possible distortions from a poorly chosen

k. In the application, we estimate ∆ over a grid of different value for k and calculate the median over this

grid of estimates. Details can be found in the respective sections. For alternative, univariate, purely data-driven

procedures for determining k, we refer to Frahm et al. (2005) and Schmidt & Stadtmüller (2006).

For time-series data, serial dependence in the mean, volatility and higher moments can be addressed by

implementing blocked version of the bootstrap, see, for instance, Straetmans et al. (2008). According to Hall

et al. (1995), a suitable choice of block size is n1/3. Applying a GARCH filter to the data before analyzing its

tail dependence is also an alternative to handle conditionally heteroskedastic data, as it is done in Poon et al.

(2004).
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3 Simulation study

3.1 Size and power

In this subsection, we evaluate the empirical size and power of the test in finite samples.

We simulate from two types of distribution families with various subspecifications for which we know whether

the null is true. We choose the multivariate t-distribution and (max) factor models which are commonly used

in financial risk management (McNeil et al. (2006), Fama & French (1992)). Note that the multivariate t-

distribution exhibits the same tail dependence structure as the t-copula (Nikoloulopoulos et al. (2009)). For

testing we employ the test calibration routine introduced in subsection 2.3. Simulations are repeated S = 1000

times.

The exact different model specifications are listed in tables 1 and 2 in section 6.1. Model dimensions range

from d = 3 to d = 7. For the test decision, considering larger dimensions is often not necessary, as higher order

tail dependencies of moderate order up to seven are sufficient for concluding that bivariate methods ignore a

significant portion of multivariate tail dependence. Our results indicate, however, that is crucial to consider the

test not only for three or four dimensional submodels but also in moderately large dimensions up to d = 7 in

order to check whether absent high-dimensional joint extremes affect test size and power.

A d–dimensional random vector X is multivariate t distributed with ν degrees of freedom, mean vector µ, and

correlation matrix C if its probability density function is

fX(x) =
Γ ((ν + d)/2)

(πν)d/2 Γ(ν/2) |C|1/2

(
1 +

1

ν
(x− µ)′C−1(x− µ)

)− ν+d
2

,

e.g. Kotz & Nadarajah (2004). We set any off–diagonal elements of C equal to ρ, and µ = (0, ..., 0). Exploiting

results from Nikoloulopoulos et al. (2009, theorem 2.3), one can show, for all multivariate t distributions

considered here, that the theoretical values of ∆ are larger than zero. ∆ increases both when the degrees

of freedom parameter decreases, and when pairwise correlation increases. It is zero if the correlation parameter

equals −1.

Generally in finance, factor models are applied when assets returns X(j) depend on common factors in a linear

fashion. Max factor models assume X(j) can be modeled as the maximum of the factors times a parameter amj ,

the so called factor loadings. Both models have the same tail dependence structure (Einmahl et al. (2012)). Let

Z := (Z(1), ..., Z(r)) be a random vector of independent Fréchet(ν :=1) random variables. A max factor model

for X = (X(1), ..., X(d))′ is then defined by

X(j) := max(a1jZ
(1)
i , ..., arjZ

(r)
i ), j = 1, ..., d,

with
∑d

j=1 amj = 1, amj ≥ 0. The loading matrix A := (amj) governs the dependence between the tails of X. If

at most two entries within a row of A are larger than zero, tail dependence is only caused by pairs, i.e. the null

is true. However, X exhibits global tail dependence. In case of

A =
(

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

)
the STDF for bivariate pairs are `12(1, 1) = `13(1, 1) = `23(1, 1) = 1.5 since

P(X(1) and X(2) extreme) = P(X(1) and X(3) extreme) = P(X(2) and X(3) extreme) = 0.5

while P(X(1) and X(2) and X(3) extreme) = 0. Einmahl et al. (2012) show that `X(x) =∑r
i=1 maxj=1,...,d(aij/(

∑r
i=1 aij))x

(j), and thus `123(1, 1, 1) = 1.5 and ∆ = 0. If more than two elements

within a row are not zero, tail dependence is also caused by higher–dimensional joint extremes, thus the null

would be false. Employed calibrations of and notation for A can be found in section 6.1. For example, loading
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matrix A3a leads to a max–factor model with a five–dimensional X where global tail dependence is solely

caused by pairwise tail dependence, and thus the null is true. In contrast, in case of A3b global tail dependence

is caused by all possible bivariate pairs and, additionally, by tail dependence between X(1), X(2) and X(3) (first

row). Thus, the null is false.

In extreme value statistics, simulation results are usually sensitive to the choice of the tuning parameter

k. Large values of k cause a systematic bias of ∆̂, whereas small k’s induce a large variance. We strive to

minimize the effect of threshold choice on simulation results which is achieved by modeling k as a random

variable that is uniformly distributed on the interval [0.01n, cn1/2], c ∈ [1, 2]. We found the best choices for c

concerning test size are 1.7 in d = 3, 1.5 in d = 4, 1.4 in d = 5, 1.2 in d = 6, 1.1 in d = 7. Intuitively, since
ˆ̀X(x) incorporates union–wise exceedances, a large d causes the asymptotic bias of ∆̂ to increase as ˆ̀X(x) more

likely includes non–extreme data points when d is high. Thus, we let c decrease in d at the cost of a higher

variance. We find that the power of the test is hardly affected by c. Without the proposed calibration of c,

however, the test’s size tends to be too small, i.e. the test is too conservative. The lower bound 0.01n prevents

the variance of ∆̂ to become too large. Sample sizes are given by ni = exp(j), j = 5 + 0.5i, i = 1, ..., 7. Thus for

the upper limit of the domain of ki, log(ni/ki) ∈ O(j), j →∞, and ki →∞ as ni →∞. Hence, ˆ̀X(x) builds

upon an intermediate sequence of the sample such that the assumptions for the asymptotics of ˆ̀X(x) are not

violated. The resulting sample sizes are of reasonable size when interest is in analyzing daily financial data

(n1 = 149, n2 = 245, n3 = 404, n4 = 666, n5 = 1097, n6 = 1809, n7 = 2981).

Figures 2 and 3 illustrate the empirical rejection rates of the test at a nominal level of 5% in each of the model

classes. The exact rejection rates are reported in tables 5 and 4 in the appendix. For max-factor models, we

find that the empirical power of the test is generally high independent of the dimension. For small amounts of

deviations from the null, however, the test requires sample sizes greater than 1000 in order to yield satisfactory

power, which appears adequate given the difficulty of the problem. Generally, empirical power converges to

one for larger sample sizes. And empirical sizes appear close to the nominal level and plateaus at 5% for n

sufficiently large. Depending on the exact model specification, this can occur already for the smallest sample size

of 150. While empirical power is robust against the choice of k, we found that empirical sizes vary substantially

with altering the domain of k. Generally, the test rejects too often if k tends to be small, thus empirical sizes

are substantially smaller than nominal levels. In financial risk management, however, one would prefer a test

with a larger false positive rate over a test that tends to falsely overlook prevalent HOTD’s. Still, as we model

k as a uniform random variable defined over an interval of reasonable possible values, reported sizes can be

considered as valid.

As expected, for the multivariate t distribution, high dimension and a strong linear dependence, fatness of

univariate tails cause rejection rates to be high. For all specifications empirical power monotonously converges

to one as n increases. In high dimensions, the test successfully detects that low linear dependence and

moderately fat tails add up to larger HOTD’s; also in such cases power is close to one (e.g. T1,df16, T2,df16).

For perfectly tail dependent DGP’s (A1b, A2c, A4d), and strongly linear dependent and fat–tailed DGP’s (e.g

T4,df4, T5,df4, T4,df8, T5,df8), power is nearly always one, irrespective of dimension. Conditional on the choice

of k, empirical sizes oscillate around α (A1a, A2a, A3a, A4a, A5a) independent of dimension which contradicts

intuition as in higher dimension one expects nonparametric methods’ performance to worsen as efficiency

suffers; for small sample sizes, empirical size is slightly larger than α. Also, if ∆ appears to be close to zero (e.g.

T1,df16 with d = 3), sample size does play a major role since the test exhibits a good power only for at least

n5 = 1097. We assume that test size in particular might be improved by a refined determination of k.

Thus our simulation results underline that bivariate tail measures would severely underestimate multivariate

tail dependence if potential HOTD’s were ignored. In case of the multivariate t distribution rejection rates are

high even if the degrees of freedom are above 20, and even when linear dependence is not too far from zero.
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Figure 2: Empirical rejection rates for max factor model specifications at nominal significance level of 5%.
Depicted values correspond to empirical test size in figure (a) and to test power elsewhere. The dimension of X
increases from A1 (d = 3) to A5 (d = 7). See Appendix 6.1 for details.
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1
2Figure 3: Rejection rates of the test at nominal level of 5% for model specifications from multivariate t distributions. Linear dependence increases from top to

bottom. Fatness of univariate tails decreases from left to right. Sample size increases within each figure from left to right. For each sample size dimension ranges
from d = 3 to d = 7 . See Appendix 6.1 for details.
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3.2 Local power analysis

In this subsection, we study the performance of the test under a series of local alternatives from the null. In

contrast to the fixed alternatives of the subsection before, alternatives here are very close to the null and their

distance to the null can shrink with increasing sample size revealing the power optimality properties of the

consistent test. Thus, we evaluate the ability of the test to detect a violation of the null if the nature of the

underlying distribution of X is such that only a few joint extremes in dimension ≥ 3 occur in finite samples.

Following Berg & Quessy (2009) and Kojadinovic & Yan (2010), such distributions are generated by mixing

distributions that violate the null, denoted by FX,H1
, with distributions that comply with the null, denoted by

FX,H0
. We define the mixture distribution by

FX,λn(x) := (1− λn)FX,H0
(x) + λnFX,H1

(x), (11)

where λn decreases to zero for increasing sample size n and FX,H0
(x) satisfying ∆ = 0, FX,H1

(x) satisfying

∆ > 0, and FX,H0
(x) ≤ FX,H1

(x),∀x, ensuring realizations from FX,H1
enter the extreme part of the sample.

Denote the test statistic resulting from the mixture distribution FX,λn(x) by ∆n. For λn = O((
√
k(n))−1), we

can show that, asymptotically, √
k(∆̂n −∆n)

d→ N(0, σ2
∆̂n,λn

),

where the asymptotic variance can again be obtained analytically from theorem 4.3 in Einmahl et al. (2012).

Thus the test has power against any local alternatives if and only if they are at least of order (
√
k(n))−1 apart

from the null.

In the following simulations, we illustrate this result. Hence, we are interested in rejection rates of ∆ = 0 from

mixture distributions defined in equation 11 for λn := λk(n)−1/2, with 0 < λ ≤ k(n)−1/2. We determine k

in the same way as in the simulations before. In order to calculate local powers pn, we generate S = 1000

times a DGP of mixture distribution kind with fixed sample size and increasing λ. Local power is estimated

by p̂n = 1/S
∑S

i=1 1{∆̂n > zασ̂∆̂n,λn
k−1/2} for every λn. The asymptotic variance σ2

∆̂n,λn
is estimated by the

bootstrap procedure presented in section 2.3. Berg & Quessy (2009), Kojadinovic & Yan (2010) carry out similar

analyses for goodness–of–fit tests of parametric (extreme value) copulas.

For the sake of brevity, we concentrate on dimensions d = 3, 4, sample size n = 2000, and we let λ increase. For

d = 3,

FX,λn(x) = (1− λn)FY(y) + λnFW(w), (12)

where FY(y) and FW(w) are the cdf’s of the max factor model A1a and A1b, respectively. To ensure realizations

of A1b actually enter the extremal part of the sample, factors Z are first used to generate data from FY(y) and

then multiplied by a constant larger than one when generating data from FW(w). For d = 4, we mix the cdf

of A2a and A2c. If, for example, λ = 2, it holds λn ≈ 0.045. Thus 4.5% of the extreme part of the sample is

generated by the FW which violates the null. This share increases in λ.

Figure 4 shows estimated local powers with α = 0.05. The test successfully detects minor violations from the

null. Even for small λ, when the impact of the perturbating DGP is small, rejection rates quickly converge

to one. Also, an increasing dimension d appears not to have a significant effect on the convergence speed of

empirical power.
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Figure 4: Empirical test power for the mixture distributions defined in equation 12 with sample size n = 2000
at level 5%.
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4 Higher order tail dependencies in bond markets

4.1 Data

We test for HOTD’s in a multivariate sample of government bond index price returns, consisting of 10–year

government bonds of the United States (US), Germany (GER), United Kingdom (UK) and France (FRA).

Government bonds are issued by governments in order to finance public spending. Buyers are private investors,

hedge funds, private banks, and central banks. Government bonds of developed countries enjoy a reputation of

a safe investment with moderate returns. Hence, government bonds can be used as hedging tools in order to

narrow overall portfolio risk. Diminishing bond prices indicate rising bond yields and decreasing demand in the

bond market. Governments have interest in a high demand for bonds in order to plan and maintain the financing

of public spending. Private investors prefer high yields, ceteris paribus. Thus, for both governments and investors

it is critical to know about the interdependencies of extreme return drops between different government bonds.

As analyzing the left tail, i.e. losses, of bond price returns is analogue to analyzing the right tail, i.e. gains, of

bond yields (and vice versa), we assess (tail) dependence in both tails of price returns separately.

Data stem from Datastream and run under the mnomics BMUS10Y, BMBD10Y, BMUK10Y and BMFR10Y.

The sample period ranges from 31/01/1985 to 09/10/2013. See figure 9 for plots of the price-level data. We

transform all marginal daily return series yt, t = 1, ..., T, to a filtered series

i = 1, ..., T/3 :

ỹt = 1/3(yt + yt−1 + yt−2), t = 3i, (13)

which levels out intercontinental time zone effects. Before applying the test, we check if extremes are independent

over time. Clusters of extremes are not in line with the assumption of a random sample, which is needed for the

limit law in equation 1 to hold. The degree of autocorrelation in extremes can be measured by the extremal index

(Embrechts et al. (1997)), which describes the tendency of extremes to cluster. Values close to one indicate that

the series can be treated as if it originated from a white noise sequence. We estimate the extremal indices for

each filtered bond return series with the runs estimator, which is standard in the literature (see, e.g., Embrechts

et al. (1997), Chapter 8). Figure 10 shows that the estimates for all four marginals are close to one. Therefore,

we proceed by analyzing the filtered series without further accounting for time dependences.

4.2 Empirical results

We test for HOTD’s between filtered daily return gains and losses by repeatedly estimating 95% confidence

intervals for ∆ using a rolling window scheme. Sample size corresponds to a window length of roughly 10 years
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with n = 710 observations per window. Results for smaller windows are similar and available upon request.

Sample days with missing data or constant bond prices are discarded. We use a grid of threshold parameters k

for ∆̂: ∆̂ is calculated for every k ∈ [0.01n, 1.5n1/2], where n denotes the length of the rolling window. The final

∆̂ is then determined as the median thereof. In contrast to automatic data–driven procedures for finding k, in

every iteration the same extremal part of the sample tail is evaluated as k is fixed. Variances are estimated by

the block bootstrap routine outlined in section 2.2, with B = 500 and block size n1/3.

A univariate tail analysis would solely involve estimating tail indices γj for each margin j, see equation 3. A

widely used estimator for the tail index is the Hill estimator,

γ̂ =
1

k

k−1∑
i=0

(logX(n−i):n − logX(n−k):n)j . (14)

Figure 11 shows plots of the tail index estimates γ̂ for the four government bond return series. All marginal

distributions appear to be fat–tailed, since the estimates are decisively larger than zero. Thus, the marginals

lie in the domain of max–attraction of the Fréchet distribution. Interestingly, the estimated tail indices do not

alter substantially over time. The univariate tails therefore indicate that tail risk remains constant, despite the

presence of economic shocks such as the dot–com crisis, 9\11\01, the subprime crisis and the Euro crisis.

Figure 5 displays the dynamics of the estimated test statistic ∆ and according confidence intervals (α = 0.05)

for return gains and return losses. For gains, we only observe no HOTD’s before 2002. During 2002–2013,

HOTD’s have significantly inflated for both gains and losses. Plateaus of ∆̂ far away from zero for both tails

indicate HOTD’s persist until today. Thus, the likelihood for three or four price returns to become jointly

extreme cannot not be dismissed without a loss of information about the joint tail of all four bond returns.

Notably, after 2010, ∆̂ has slightly decreased for losses. In both cases, the portion of global tail dependence

HOTD’s rises during or peaks at financial crises on the stock markets. Thus, the tail dependence structure

within bond markets is not immune against extreme events on stock markets.

Figure 5: Dynamics of the test statistic ∆̂ (see equation 10), together with 95% confidence intervals, for 10–years
government bond returns of US, Germany, United Kingdom and France, using a rolling window of 10 years.
Figure (a) shows test decisions of a rolling window with length 10 years for return gains while figure (b) displays
test decisions for return losses. Gray confidence intervals correspond to rejections of the null that tail dependence
is purely bivariate.
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As figure 9 indicates bond yields have gradually dwindled during the past fifteen years. In addition, as

seen during the Euro crisis and the government shutdowns in the US in 2013 and 2013, the default probability

of government bond issuers is most likely not zero – which might have been the case before the 2000’s. Thus

for government bonds we identify a period of high tail risk and low returns: A pronounced market risk due
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to an increase in HOTD’s, an increased credit risk and diminishing bond yields can be interpreted as general

mispricing on international bond markets. Consequently, government bonds of highly developed countries

should not be considered safe haven per se.

Keeping in mind that, despite the crash in 2008 on stock and real estate markets, Western stock and real

estate markets reached record levels after 2010, this situation resembles the prelude of the bubble burst in

1987. During the 1980’s Japan suffered from weak economic growth, a bond market with low yields and high

risk, causing investors seek high yields investments other than bonds. This excess liquidity flowed to stock and

real estate markets, and increased demand escalated both markets. The central bank’s sudden announcement

to increase interest rates thus amounted to the stock market bubble to burst.

4.3 Impact of disregarding higher order tail dependencies

The impact of disregarding HOTD’s may be measured by comparing quantile regions (QR’s). In a risk monitoring

context, QR’s give rise to a conservative multivariate extension of the widely used Value-at-Risk (VaR), which

is directly linked to the STDF. We define a QR according to Einmahl et al. (2009) as vector of univariate

thresholds x̃
(j)
1−p, j = 1, ..., d, such that for any small fixed probability p,

P(X(1) > x̃
(j)
1−p1

∪ . . . ∪X(d) > x̃
(d)
1−p4

) = p, (15)

with returns X(j), j = 1, ..., 4. Thus the probability that at least one return exceeds an extreme quantile is p.

The vector Q := {(−∞, x̃(j)
1−pj ), j = 1, ..., d} spans a subspace in Rd satisfying P(X ∈ Q) = 1− p.

In order to illustrate how neglecting HOTD’s leads to substantial underestimation of overall risk in the case of

the four government bonds, we first estimate a QR that copes for HOTD’s. Second, we estimate a QR that only

copes for bivariate tail dependencies. According to its definition in 15, the (1− p)–QR in our case is the vector

of marginal quantiles x̃
(i)
1−p, i = 1, ..., 4, fulfilling

Q1−p := {(x̃(1)
1−p∗ , ..., x̃

(4)
1−p∗) : P(∪4

i=1{X(i) > x̃
(i)
1−p∗}) = p}.

Note, the individual exceedance probability (p∗) is the same for all margins such that the thresholds are

uniquely identified. A QR is termed extreme if p < 1/n. Extreme QR’s can be consistently estimated as

Q̂∆>0
1−p = (̂̃x(1)

1−p∆>0 , ..., ̂̃x(4)

1−p∆>0) with estimated thresholds

̂̃x(i)

1−p∆>0 =
k/(np∆>0)γ̂ − 1

γ̂
â+ b̂,

with

M [j] = 1/k

k−1∑
i=0

(
log

Xn−i:n

Xn−k:n

)j
,

ξ̂+ = M [1], ξ̂− = 1− 0.5
(
1− (M [1])2

M [2]

)−1
,

γ̂ = γ̂+ + γ̂−,

â = Xn−k:nM
[1](1− γ̂−), b̂ = Xn−k:n,

p∆>0 =
p

`(1, 1, 1, 1)
, i = 1, ..., 4.

Rewriting the exceedance probability p in terms of the STDF for the entire vector respects bivariate, three–

dimensional and four–dimensional tail dependencies within the return vector. To mimic a purely bivariate

approach we rewrite the exceedance probability only in terms of bivariate STDF’s. If tail dependence was solely
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bivariate, p must only be expressed in terms of bivariate tail dependencies, i.e.

p∆=0 =
p

4−
∑

i 6=j(2− `ij(1, 1))
.

The purely bivariate approach constitutes Q̂∆=0
1−p = (̂̃x(1)

1−p∆=0 , ..., ̂̃x(4)

1−p∆=0). A comparison between Q̂∆>0
1−p and

Q̂∆=0
1−p , for example in terms of volumes V (Q̂1−p) =

∏4
i=1
̂̃x(i)

1−p, then quantifies the impact of disregarding

HOTD’s.

Figure 6 maps the time index against the estimates of all four quantile thresholds for both types of QR’s and

an extremal exceedance probability of p = 0.0014. Figure 7 compares both QR’s for both tails of all marginals

in terms of the volume ratio between both QR’s, i.e. V (Q̂∆=0
1−p )/V (Q̂∆>0

1−p ), and of ratios between the marginal

thresholds, i.e. ̂̃x(i)

1−p∆=0/̂̃x(i)

1−p∆>0 , i = 1, ..., 4. Alternatively, in order to compare both QR’s, we also contrast the

realized exceedance probability of a (1− p)–QR accounting for HOTD’s against a fixed exceedance probability

of a same sized (1− p)–QR that ignores HOTD’s. This corresponds to the estimation of a portfolio VaR with a

given admissible risk level p based on bivariate tail-risks, though the truly underlying risk level p in fact differs.

Here we fix p for Q∆=0
1−p and subsequently determine the realized exceedance probability p for Q∆>0

1−p such that

univariate thresholds of both QR’s are identical, i.e. both QR’s are identical by construction. Analytically, we

get

p∆>0 !
= p∆=0 ⇔ ṗ

`(1, 1, 1, 1)
=

p

4−
∑

i6=j(2− `ij(1, 1))

⇔

ṗ =
`(1, 1, 1, 1)p

4−
∑

i 6=j(2− `ij(1, 1))
.

Figure 8 shows the dynamics of the realized exceedance probability of the HOTD approach with respect to the

bivariate approach.

Until 2002, the difference between both QR’s is very small as both volumes are roughly the same, and also no

evident difference between marginal thresholds is found. Note, the test for HOTD’s indicates HOTD’s also exist

before 2002 but they have only minor impact on global tail dependence. Thus, as seen in section 4, HOTD’s

kick in after 2002, and consequently the differential between both QR’s steadily escalates over time for all bonds

and for both tails. By the end of 2008, the volume of the bivariate tail based QR for return losses collapses to

47% of the QR accounting for HOTD’s, but recovers to 73% in 2013. Underestimation is in general more severe

for return losses, while also pronounced for return gains. Interestingly, figure 6 allows to track the driver of the

increase in HOTD’s. While thresholds for UK, GER and FRA remain constant or even decrease until 2008, the

US thresholds bounce in the beginning of 2008. Although HOTD’s have relinquished importance since 2008,

they still cause a major underestimation of extreme QR’s.

Comparing the nominal exceedance probability p of the bivariate approach with the realized exceedance

probability ṗ of the HOTD approach in figure 8, reveals that ṗ > p. Thus the bivariate approach generally

underestimates the true QR given HOTD’s are present. Put differently, the bivariate QR approach consistently

undervalues the true exceedance probability p, which we approximate by the realized exceedance probability

of the HOTD QR. Especially in 2009, the exceedance probability of the bivariate QR is less than one half of

the true p, both for gains and losses. Therefore, if one intends to estimate a, say, multivariate 99% VaR, the

estimated QR without HOTD’s has in fact a chance of 2% to be exceeded. Although a bivariate approach is a

noticeable advancement from a univariate analysis, it still underestimates a large portion of multivariate tail risk

already in this simplistic illustrative setting, and might lull financial institutions into a false sense of security.
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Figure 6: Dynamics of 99.86%–quantile regions accounting for HOTD’s and 99.86%–quantile regions not
accounting for HOTD’s.
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Figure 7: Dynamics of the differential between 99.86%–quantile regions accounting for HOTD’s and 99.86%–
quantile regions disregarding HOTD’s.

(a) Volume ratio

0.
2
0.
4
0.
6
0.
8
1.
0

1996 2002 2008 2013

losses
gains

(b) Ratio of marginal thresholds of US bonds

0.
6

0.
8

1.
0

1996 2002 2008 2013

losses
gains

(c) Ratio of marginal thresholds of UK bonds
0.
6

0.
8

1.
0

1996 2002 2008 2013

losses
gains

(d) Ratio of marginal thresholds of German bonds

0.
6

0.
8

1.
0

1996 2002 2008 2013

losses
gains

(e) Ratio of marginal thresholds of French bonds

0.
6

0.
8

1.
0

1996 2002 2008 2013

losses
gains



20

Figure 8: Dynamics of the ratio of realized exceedance probability for Q̂∆>0
1−p and nominal exceedance probability

for Q̂∆=0
1−p : ṗ/p.

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

1996 1999 2002 2005 2008 2011 2013

losses
gains



21

5 Summary

This paper proposes a test that indicates situations in which common bivariate measures for tail dependence

underdiagnose the potential for higher-dimensional extreme events. Test asymptotics are derived and simulations

show the bootstrap implementation routine features attractive finite sample properties although the problematic

threshold choice, immanent to EVT, affects test size distinctly. Simulations show that even for standard models

for multivariate risk management traditional pairwise methods to measure tail dependence tend to ignore

dependence between a multiple of extremes. In higher dimensions, higher order tail dependencies critically

add up even if linear dependence and fatness of univariate tails are moderate.

On international bond markets, we identify a high tail risk and low return situation. Furthermore, we find

that dismissing HOTD’s in a quantile region framework can lead to an underestimation of the tail dependence

between international bond returns by up to 40%.
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6 Appendix

6.1 Model specifications

Table 1: Specifications for multivariate t distributions.

ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

degrees of freedom

df = 4 T1,df4 T2,df4 T3,df4 T4,df4 T5,df4

df = 8 T1,df8 T2,df8 T3,df8 T4,df8 T5,df8

df = 12 T1,df12 T2,df12 T3,df12 T4,df12 T5,df12

df = 16 T1,df16 T2,df16 T3,df16 T4,df16 T5,df16

df = 20 T1,df20 T2,df4 T3,df20 T4,df20 T5,df20

df = 24 T1,df24 T2,df4 T3,df24 T4,df24 T5,df24

Table 2: Notation for max factor models.

dimension H0 true H0 false

d = 3 A1a A1b

d = 4 A2a A2b,A2c

d = 5 A3a A3b,A3c,A3,d

d = 6 A4a A4b,A4c,A4,d

d = 7 A5a A5b,A5c,A5,d
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Table 3: Calibration of the max factor models.

A1a =
(

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

)
,A1b = ( 0.3 0.3 0.3 )

A2a =

 0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0 0.5
0 0 0.5 0.5

,A2b =

(
0.3 0.3 0.3 0
0.5 0 0 0.5
0 0.5 0 0.5
0 0 0.5 0.5

)
,A2c = ( 0.25 0.25 0.25 0.25 )

A3a =


0.5 0.5 0 0 0
0.5 0 0.5 0 0
0.5 0 0 0.5 0
0.5 0 0 0 0.5
0 0.5 0.5 0 0
0 0.5 0 0.5 0
0 0.5 0 0 0.5
0 0 0.5 0 0.5
0 0 0.5 0 0.5
0 0 0 0.5 0.5

,A3b =

 0.3 0.3 0.3 0 0
0.5 0 0 0.5 0
0.5 0 0 0 0.5
0 0.5 0 0.5 0
0 0.5 0 0 0.5
0 0 0.5 0.5 0
0 0 0.5 0 0.5



A3c =

(
0.25 0.25 0.25 0.25 0
0.5 0 0 0 0.5
0 0.5 0 0 0.5
0 0 0.5 0 0.5
0 0 0 0.5 0.5

)
,A3d =

(
0.3 0.3 0.3 0 0
0 0 0 0.5 0.5

)

A4a =



0.5 0.5 0 0 0 0
0.5 0 0.5 0 0 0
0.5 0 0 0.5 0 0
0.5 0 0 0 0.5 0
0.5 0 0 0 0 0.5
0 0.5 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0.5 0 0 0.5 0
0 0.5 0 0 0 0.5
0 0 0.5 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0.5 0 0 0.5
0 0 0.5 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0.5 0
0 0 0 0.5 0 0.5
0 0 0 0 0 0.5


,A4b =

(
0.3 0.3 0.3 0 0 0
0 0 0 0.3 0.3 0.3

0.5 0 0 0.5 0 0
0 0.5 0 0 0.5 0
0 0 0.5 0 0 0.5

)

A4c =

 0.25 0.25 0.25 0.25 0 0
0.5 0 0 0 0.5 0
0 0.5 0 0 0.5 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0.5 0
0 0 0 0 0.5 0.5

,A4d = ( 0.16 0.16 0.16 0.16 0.16 0.16 )

A5a =



0.5 0.5 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0.5 0 0 0.5 0 0 0
0.5 0 0 0 0.5 0 0
0.5 0 0 0 0 0.5 0
0.5 0 0 0 0 0 0.5
0 0.5 0.5 0 0 0 0
0 0.5 0 0.5 0 0 0
0 0.5 0 0 0.5 0 0
0 0.5 0 0 0 0.5 0
0 0.5 0 0 0 0 0.5
0 0 0.5 0.5 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0.5 0 0 0.5 0
0 0 0.5 0 0 0 0.5
0 0 0 0.5 0.5 0 0
0 0 0 0.5 0 0.5 0
0 0 0 0.5 0 0 0.5
0 0 0 0 0.5 0.5 0
0 0 0 0 0.5 0 0.5
0 0 0 0 0 0.5 0.5


,A5b =

(
0.3 0.3 0.3 0 0 0 0
0 0 0.5 0.5 0 0 0
0 0 0 0.25 0.25 0.25 0.25

)

A5c =

(
0.3 0.3 0.3 0 0 0 0
0.3 0 0 0.3 0.3 0 0
0 0.3 0 0 0 0.3 0.3

)
,A5d =

(
0.16 0.16 0.16 0.16 0.16 0.16 0
0.5 0 0 0 0 0 0.5
0 0.5 0 0 0 0 0.5
0 0 0.5 0 0 0 0.5

)
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6.2 Simulation results

Table 4: Rejection rates: Max factor models.

Model n1 n2 n3 n4 n5 n6 n7

A1a 5.4 4.6 6.8 5.2 4.4 4.2 4.8

A2a 7.8 6.0 5.2 3.8 4.6 5.0 5.6

A3a 9.0 7.0 12.8 6.6 7.6 6.8 5.4

A4a 8.6 5.4 4.6 5.6 4.8 5.6 6.6

A5a 6.2 5.4 4.8 4.2 4.2 4.6 4.7

A1b 100 100 100 100 100 100 100

A2b 35.4 41.4 58.0 67.0 86.4 96.0 99.6

A2c 100 100 100 100 100 100 100

A3b 14.6 17.2 21.8 26.6 37.0 54.8 79.6

A3c 44.2 55.6 68.0 79.0 90.2 98.2 100

A3d 100 100 100 100 100 100 100

A4b 40.4 46.2 59.6 71.8 92.4 99.4 100

A4c 38.0 49.8 62.4 76.6 94.2 98.8 100

A4d 100 100 100 100 100 100 100

A5b 40.6 52.9 67.3 82.2 98.0 100 100

A5c 38.5 49.8 62.4 76.6 94.2 99.8 100

A5d 70.8 81.0 92.0 98.4 100 100 100
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Table 5: Rejection rates: Multivariate t distributions.

n1 n2 n3 n4 n5 n6 n7

d 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

T1

df4 9.6 28.4 37.6 53.6 59.2 15.6 34.8 58.0 62.4 71.6 26.4 49.2 73.2 80.8 87.6 37.2 68.4 85.6 93.2 94.4 54.4 86.0 96.8 99.6 100 72.8 94.0 99.6 100 100 82.8 99.2 100 100 100

df8 9.6 28.8 46.0 50.8 61.2 12.4 42.0 49.2 67.2 73.2 26.4 57.6 74.8 76.8 88.4 36.0 68.4 84.8 91.2 94.4 58.8 85.2 93.6 98.4 100 69.6 96.0 99.6 100 100 87.2 100 100 100 100

df12 14.8 23.6 40.0 56.4 58.8 15.2 41.6 48.4 61.6 71.6 32.0 55.6 70.8 81.2 88.0 40.0 64.8 80.4 92.4 94.8 52.0 84.4 95.6 98.8 99.2 72.4 97.2 98.8 100 100 82.8 100 100 100 100

df16 9.6 32.4 49.6 53.2 56.4 17.2 40.8 54.0 67.2 71.2 21.2 57.6 72.4 81.2 86.8 42.8 64.4 89.6 92.0 98.0 53.2 85.6 94.0 97.6 100 69.6 96.8 100 100 100 86.0 99.2 100 100 100

df20 10.0 30.8 42.0 54.0 62.0 16.4 33.2 61.6 63.2 74.4 23.6 54.4 78.8 86.0 86.8 38.8 71.6 85.2 88.8 96.0 55.2 80.8 93.6 98.4 99.6 69.6 96.0 99.6 100 100 88.0 100 100 100 100

df24 7.2 26.0 42.0 47.2 54.4 16.0 44.4 57.6 64.4 72.0 32.4 53.2 76.4 85.2 92.0 37.6 66.0 86.8 92.4 96.0 56.0 84.8 96.8 98.8 99.6 73.2 96.4 99.6 100 100 84.0 99.6 100 100 100

T2

df4 28.0 48.0 66.0 77.2 72.0 36.4 62.4 75.6 82.4 85.6 53.2 79.2 86.4 93.2 94.8 74.8 86.4 93.2 97.2 100 78.8 96.4 99.6 99.6 100 90.0 100 100 100 100 97.2 100 100 100 100

df8 27.6 54.8 63.6 72.4 71.2 39.2 62.0 72.8 80.8 82.4 48.0 80.8 84.0 93.2 94.8 73.6 87.2 94.8 96.8 99.2 80.8 94.8 98.8 100 100 92.8 99.2 100 100 100 96.4 100 100 100 100

df12 25.6 52.0 66.4 70.4 68.0 42.4 65.2 79.2 84.0 86.8 50.4 73.2 90.4 93.6 96.4 65.2 87.6 96.4 95.6 99.2 79.2 95.6 97.6 99.6 99.6 91.2 99.6 100 100 100 98.4 100 100 100 100

df16 25.6 48.0 62.8 68.4 72.8 37.6 60.0 77.6 79.6 80.8 54.0 82.0 86.0 93.6 94.8 68.8 89.2 96.4 98.8 97.6 77.2 93.6 98.4 99.6 100 90.8 100 100 100 100 98.8 100 100 100 100

df20 33.6 48.8 67.2 72.0 71.6 36.4 62.0 76.8 81.6 86.4 51.6 75.2 86.8 92.0 95.6 68.8 87.6 97.6 98.0 100 78.8 95.2 99.2 99.6 100 91.6 98.8 100 100 100 98.4 100 100 100 100

df24 27.6 55.2 66.0 68.4 74.4 41.2 65.6 80.0 77.2 82.0 56.4 78.8 92.0 94.0 94.8 63.2 90.0 96.8 100 100 85.6 97.2 99.6 100 100 94.0 99.2 100 100 100 95.6 100 100 100 100

T3

df4 52.4 66.0 75.2 82.4 86.0 62.0 74.8 90.8 91.2 92.0 80.8 90.4 95.2 97.6 98.4 87.6 95.2 100 100 100 95.2 100 100 100 100 99.2 100 100 100 100 100 100 100 100 100

df8 54.4 75.2 78.4 86.0 82.0 66.4 78.0 87.6 91.6 93.2 74.4 90.0 96.8 97.2 98.8 86.8 96.0 98.8 100 100 94.4 100 100 100 100 98.0 100 100 100 100 100 100 100 100 100

df12 54.0 74.4 76.8 77.2 80.0 67.6 82.4 86.0 88.4 90.8 77.6 88.8 95.6 97.6 98.8 88.8 93.6 99.2 99.6 99.6 96.4 98.8 100 100 100 98.4 100 100 100 100 99.6 100 100 100 100

df16 50.0 72.0 77.6 77.2 82.4 61.2 85.2 84.4 87.6 93.6 76.8 89.6 96.4 97.6 98.8 85.2 95.6 99.2 99.6 100 93.2 99.2 100 100 100 97.6 100 100 100 100 100 100 100 100 100

df20 52.0 71.6 74.0 80.0 84.4 64.4 77.6 84.4 92.4 92.8 75.6 91.6 95.2 96.4 99.2 88.8 96.8 98.4 100 100 94.4 98.8 100 100 100 98.0 100 100 100 100 100 100 100 100 100

df24 51.6 72.8 76.8 78.8 79.2 58.8 80.8 86.8 87.6 89.6 78.4 92.0 99.2 98.4 99.2 89.6 96.4 98.4 99.2 100 95.2 99.6 100 100 100 98.0 100 100 100 100 100 100 100 100 100

T4

df4 72.8 87.6 86.0 91.6 89.6 82.4 88.8 94.4 94.0 97.2 90.0 98.0 99.2 100 100 96.4 99.6 100 100 100 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df8 71.6 82.8 89.6 90.8 90.0 80.0 90.4 93.6 96.8 97.2 89.6 98.8 98.8 99.6 99.6 96.0 99.6 100 100 100 98.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df12 75.2 82.8 88.8 86.0 92.8 79.6 92.8 94.0 93.6 98.0 94.4 98.4 99.6 99.6 100 95.6 99.6 100 100 100 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df16 71.6 82.0 89.6 88.8 90.4 83.6 88.8 97.2 97.2 98.8 90.8 96.8 99.6 100 100 96.8 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df20 74.4 85.2 88.0 86.4 90.8 85.2 87.6 94.4 97.2 98.4 92.8 97.6 98.8 100 99.6 94.0 99.6 99.6 100 100 98.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df24 76.8 86.8 87.2 90.8 90.0 78.4 90.8 94.0 95.2 98.4 92.8 96.4 100 100 100 93.2 99.2 99.6 100 100 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100

T5

df4 88.4 94.0 95.6 97.6 97.6 94.4 97.2 98.4 99.6 100 99.6 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df8 89.2 94.0 95.2 96.8 95.6 94.4 98.8 100 99.2 99.6 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df12 89.6 94.0 96.4 98.0 97.6 95.2 99.2 98.8 100 100 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df16 89.6 93.2 96.8 94.0 96.0 96.0 97.2 99.6 98.8 100 98.4 99.6 100 100 100 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df20 92.4 93.2 95.2 96.8 98.0 95.2 98.4 98.8 99.2 100 98.4 99.6 100 100 100 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

df24 88.8 94.4 95.6 96.4 96.0 94.4 95.6 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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6.3 Auxiliary results for government bonds

Figure 9: Dynamics of government bond indices in price levels.
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Figure 10: Dynamics of the runs estimator for the extremal indices of government bond returns, using a rolling
window scheme.
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Figure 11: Dynamics of rolling-window estimates of the tail indices of four government bond index returns (see
equation 14), together with 95% confidence intervals.
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6.4 Proofs and Assumptions

Assumption 1 Let

(i) t−1P(
⋃d
i=1 F

−1
i (1− tx(i)) ≤ X(i)) = `X(x) +O(tβ) uniformly on the unit simplex in Rd, and t ↓ 0, with a

constant β > 0,

(ii) k = o(n2β/(1 + 2β)), k →∞, n→∞,

(iii) The first order derivatives of `X(x) with respect to x(j), j = 1, ..., d, exist and are continuous.

Proof of proposition 2.2 According to Einmahl et al. (2012), theorem 4.6,
√
k(ˆ̀X(x)− `X(x),x ∈ [0, 1]d,

is normal with zero mean and covariance matrix equal to a sum of partial derivatives of `X(x) and Brownian

bridges. It is assumed that `X(x) < x
′1 to ensure the asymptotic variance of ˆ̀X(x) is non–zero. This holds if at

least one bivariate pair (X(i), X(j)) is asymptotic dependent. In R2, where x = (x(1), x(2)), it holds that

√
k ˆ̀X(x(1), x(2))

d→ N(`X(x(1), x(2)), σ2
` ), x(1), x(2) > 0,

where

σ2
` = `X(x(1), x(2))− 2x(1)`∂1(x(1), x(2))− 2x(2)`∂2(x(1), x(2)) + x(1)`2∂1(x(1), x(2))

+ x(2)`2(x(1), x(2)) + 2`∂1(x(1), x(2))`∂2(x(1), x(2))(x(1) + x(2) − `X(x(1), x(2)),

with `∂j(x) := (∂`X/∂x
(j))(x) denoting the partial derivative of the STDF with respect to argument x(j).

According to equations 5 and 6, and setting x = 1, R̂X(x) is also asymptotic normal. Asymptotic normality

of ∆̂ directly follows from equation 7. Thus,

∆̂
d→ N(∆, σ2

∆),

with

σ2
∆ = k−1σ2

ˆ̀X
+ k−1

∑
i∈I(d)

(2)

σ2
ˆ̀
i

+ 2
( ∑
i∈I(d)

(2)

Cov(ˆ̀
i, ˆ̀X) +

∑
i,j∈I(d)

(2)
,i6=j

Cov(ˆ̀
i, ˆ̀

j)
)
∈ (0,∞).

Proof of corollary 2.1

If X is tail independent, `X(x) = x1⇔ `i(x
(i)) = x

(i)1, for all possible bivariate combinations i. Plugging this

into the general form of ∆, and realizing that in this case
∑

i∈I(d)

(2)

`i(x
(i)) = (d− 1)

∑d
i=1 x

(i), it follows that

∆ = `X(x)− 2

d∑
i=1

x(i) + d

d∑
i=1

x(i) −
∑
i∈I(d)

(2)

`i(x
(i))

=

d∑
i=1

x(i) − 2

d∑
i=1

x(i) + d

d∑
i=1

x(i) −
∑
i∈I(d)

(2)

`i(x
(i))

=

d∑
i=1

x(i) − 2

d∑
i=1

x(i) + d

d∑
i=1

x(i) − (d− 1)

d∑
i=1

x(i)

= 0.

Furthermore, σ2
ˆ̀X

= 0. The test would not reject the null, although the distribution is degenerated.

The reverse does not hold true. E.g. let X := (X(1), X(2), X(3)), with X(3) being independent of X(1), and
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let X(1) a.s.= X(2), i.e. X(1) and X(2) are perfectly tail dependent. Thus, `12(x(1), x(2)) ≡ `11(x(1), x(1)) =

x(1), `13(x(1), x(3)) = x(1) + x(3), and

`123(x(1), x(1), x(3)) = lim
t↓0

tP
( ⋃
i∈{1,2,3}

{X(i) ≥ F−1
i (1− tx(i))}

)
= lim

t↓0
tP
(
{X(1) ≥ F−1

1 (1− tx(1))} ∪ {X(3) ≥ F−1
3 (1− tx(3))}

)
= x(1) + x(3).

Rewriting ∆ yields

∆ = `123(x(1), x(1), x(3))− 2(2x(1) + x(3)) + 3(2x(1) + x(3))

− 2`11(x(1), x(1))− `13(x(1), x(3))

= x(1) + x(3) − 2(2x(1) + x(3)) + 3(2x(1) + x(3))− x(1) − 2(x(1) + x(3))

= 0.

Hence, we have tail dependence in X and ∆ is zero as extreme events in dimension three do not matter.
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