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IMPROVED VOLATILITY ESTIMATION BASED ON
LIMIT ORDER BOOKS ∗

By Markus Bibinger, Moritz Jirak, Markus Reiß

Humboldt-Universität zu Berlin

For a semi-martingale Xt, which forms a stochastic boundary,
a rate-optimal estimator for its quadratic variation 〈X,X〉t is con-
structed based on observations in the vicinity of Xt. The problem
is embedded in a Poisson point process framework, which reveals
an interesting connection to the theory of Brownian excursion ar-
eas. A major application is the estimation of the integrated squared
volatility of an efficient price process Xt from intra-day order book
quotes. We derive n−1/3 as optimal convergence rate of integrated
squared volatility estimation in a high-frequency framework with n
observations (in mean). This considerably improves upon the classi-
cal n−1/4-rate obtained from transaction prices under microstructure
noise.

1. Introduction. Consider observations (Yi) above a stochastic bound-
ary (Xt, t ∈ [0, 1]), which is formed by the graph of a continuous semi-
martingale. The objective is to optimally recover the driving characteristic
〈X,X〉t of the boundary Xt, given the observations (Yi). Such (stochastic)
frontier models naturally arise in many applications and a quantification
of the information content in these observations is non-trivial. We formu-
late the problem with an emphasis on the financial context of limit order
books. From a microeconomic point of view ask prices will always lie above
the efficient market price. Here the underlying latent efficient log-price of
a stock (Xt, t ∈ [0, 1]), observed over a trading period like a day, serves as
the boundary, whereas ask prices form the observations (Yi). Bid prices can
be handled symmetrically and independently, which can be used to validate
the model.

Let the continuous Itô semi-martingale

Xt = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs , t ∈ [0, 1],(1.1)

∗Financial support from the Deutsche Forschungsgemeinschaft via SFB 649
Ökonomisches Risiko and FOR 1735 Structural Inference in Statistics: Adaptation and
Efficiency is gratefully acknowledged.
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Fig 1. Left: Microstructure noise model Yi = Xi/n + εi, i = 0, . . . , n = 1000, with εi
iid∼

Exp(50). Right: Poisson point process model with intensity λt,y = 50n1(y≥Xt) with Xt an
Itô process.

be defined on a filtered probability space (Ω,F , (Ft),P), which satisfies the
usual conditions, with W denoting a standard (Ft)-Brownian motion. Its
total quadratic variation 〈X,X〉1 =

∫ 1
0 σ

2
s ds is also called integrated squared

volatility and forms a central object for risk and portfolio management. A
natural continuous-time embedding of the boundary problem is in terms of
a Poisson point process (PPP). Conditional on (Xt, t ∈ [0, 1]) we observe a
PPP on [0, 1]×R with intensity measure

Λ(A) =

∫ 1

0

∫
R
1A(t, y)λt,y dt dy, where λt,y = nλ1(y ≥ Xt).(1.2)

We denote by (Tj ,Yj) the observations of that point process, which are
homogeneously dispersed above the graph of (Xt, t ∈ [0, 1]). Theoretically
and also intuitively, information on the stochastic boundary can only be
recovered from the lowest observation points and a homogeneous intensity
away from the boundary is assumed for convenience only.

An associated discrete-time regression-type model, which explains well
the difference to regular microstructure noise models, is defined by

Yi = Xtni
+ εi , i = 0, . . . , n, εi ≥ 0, εi

iid∼ Fλ ,(1.3)

with observation times tni and an error distribution function Fλ satisfying

Fλ(x) = λx
�
1 + O(1)

�
, as x ↓ 0.(1.4)

One natural parametric specification is εi ∼ Exp(λ). The noise is assumed
to be independent of the signal part X. In microstructure noise models for
transaction prices it is usually assumed that E[εi] = 0 holds, while here Xtni
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defines the boundary of the support measure for Yi, which we may interpret
as best ask price at time tni . In fact, if the boundary function was piecewise
constant, then by standard PPP properties we would obtain the regression-
type model (1.3) with exponential noise from the PPP-model (1.2) by taking
local minima (on those pieces). Here we show that under so called high-
frequency asymptotics, the fundamental quantities in both models exhibit
the same asymptotic behaviour, see Proposition 3.2 below. Compare also [17]
for the stronger Le Cam – equivalence in the case of smoother boundaries.
Both observation models are illustrated in Figure 1.

Mostly, we shall concentrate on the more universal PPP model which also
allows for simpler scaling and geometric interpretation. Local minima mn,k

of Yj for Tj in some small interval [khn, (k + 1)hn) ⊆ [0, 1] will form the
basic quantities to recover the boundary, which by PPP properties leads to
the study of

P(mn,k > x) = E
�
exp

(
−
∫ (k+1)hn

khn

(Xt + x)+ dt
)�
, x ∈ R,

where A+ = max(A, 0), and its associated moments. For the fundamental
case Xt = σWt, this opens an interesting connection to the theory of Brow-
nian excursion areas and also reveals the difficulty of this problem. It is well
documented in the literature, see e.g. [16], that no explicit form of the expec-
tation in the expression above is available. Essentially only (double) Laplace
transforms and related quantities are known, cf. Proposition 3.3 below and
the attached discussion. This makes the recovery of 〈X,X〉1 an intricate
probabilistic question. Still, we are able to prove that our estimator attains
the improved rate n−1/3, compared to regular microstructure noise models.
What is more, by information-theoretic arguments we are able to derive
a lower bound showing that the n−1/3-rate is indeed minimax optimal. A
more direct proof seems out of reach because the Poisson part from the
noise intertwines with the Gaussian martingale part in a way which renders
the likelihood and respective Hellinger distances difficult to control, even
asymptotically.

The growing finance literature on limit order books so far focusses on
modeling and empirical studies. Empirical contributions as [4], [6] and [18]
have investigated price and volume distribution, inter-event durations as well
as the structure of the order-flow. Probabilistic models proposed for a limit
order book include point process models, see [9], [2] and [15], with mutually
exciting processes. Other models come from queuing theory, for instance [11],
[24] and [10], or stochastic optimal control theory as [7]. The main objective
of most modeling approaches is to explain how market prices arise from the
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Fig 2. Order price levels for Facebook asset (NASDAQ) from 12:00 to 12:30 on June 2nd
2014. Colored areas highlight spreads between different bid and ask levels from level 1 up
to level 5, bid-ask spread is colored in dark red.2

book. For the financial application, this papers adopts a new course. It is
the first work, to the best of our knowledge, with the focus on statistical
inference for the volatility based on observations from a limit order book.
We have already highlighted the relationship of the suggested model to the
regular microstructure noise model which constitutes the standard setup for
developing volatility estimators. Let us mention the work by [1], [27], taken
up by [3] and [14], among many others, who describe high-frequency intra-
day trading prices as convolution of discretized observations of the efficient
log-price with additive observation noise ascribed to market microstructure.
The optimal convergence rate for volatility estimation in this model with
Gaussian noise and n observations on an equidistant grid is n−1/4, see [13].
Recently, as information from order books become more and more available,
researchers and practitioners have sparked the discussion to which kind of
observed prices estimation methods should be applied. [12] discuss this point
and the possibilities of mid-quotes, executed traded prices or micro-prices
which are volume-weighted combinations of bid and ask order levels. None
of these observed time series, however, is free from market microstructure
corruptions and the idea of an underlying efficient price remains untouched.
Figure 2 visualizes the information about the evolution of prices provided
by a limit order book for one specific data set. The colored areas highlight
differences between the five best bid and five best ask levels, the dark area
in the center marking the bid-ask spread between best bid and best ask.

2Data provided by LOBSTER academic data – powered by NASDAQ OMX.
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The idea is that an efficient price must always lie below the best ask (and
symmetrically above the best bid) and that its distance to this stochastic
frontier is homogeneous.

The remainder of the paper is organized as follows. In Section 2 we present
an estimation approach based on local order statistics whose asymptotic
properties are explored in Section 3. In Section 4 we prove the lower bound
for the minimax estimation rate. Section 5 concludes. Proofs are provided
in the Appendix.

2. Volatility estimation based on local minima. We construct the
integrated volatility estimator in both models (1.2) and (1.3). We partition
the unit interval into h−1

n ∈ N equi-spaced bins T nk = [khn, (k + 1)hn), k =
0, . . . , h−1

n −1, with bin-widths hn. For simplicity suppose that nhn ∈ N. As
n→∞ the bin-width gets smaller hn → 0, whereas the number of observed
values on each bin gets large, nhn → ∞. If we think of a constant signal
locally on a bin observed with one-sided positive errors, classical parametric
estimation theory motivates to use the bin-wise minimum as an estimator of
the local signal (it then forms a sufficient statistic under exponential noise
or equivalently in the PPP model). In the regression-type model (1.3) with
equidistant observation times tni = i/n, we therefore set

mn,k = min
i∈In

k

Yi , Ink = {khnn, khnn+ 1, . . . , (k + 1)hnn− 1} .(2.1)

Equally, in the PPP model (1.2) the local minima are given by

mn,k = min
Tj∈T n

k

Yj , T nk = [khn, (k + 1)hn) .(2.2)

The same symbol mn,k is used in both models because the following con-
struction only depends on the mn,k. All results and proofs will refer to the
concrete model under consideration.

Since Var(mn,k | (Xt)) ∝ (nλhn)−2 holds in both models, the variance is
much smaller than for an estimator based on a local mean. Nevertheless,
we may continue in the spirit of the pre-averaging paradigm, cf. [14], and
interpret mn,k as a proxy for Xt on T nk , which in a second step is inserted in

the realized variance expression
∑h−1

n
i=1 (Xkhn−X(k−1)hn)2 without noise. The

use of a locally constant signal approximation Xt = Xkhn +OP(h
1/2
n ) on T nk

is only admissible, however, if hn is chosen so small that h
1/2
n = o((nλhn)−1),

which would result in a sub-optimal procedure.
Rate-optimality can be attained if we balance the magnitude (nλhn)−1

of bin-wise minimal errors due to noise with the range h
1/2
n of the motion of
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Fig 3. The points indicate the function Ψ(σ2) with K = 31.6 for small (left) and moderate
(right) values of σ2. The calculation is based on accurate Monte Carlo simulations. The
lines show close linear functions for comparison.

X on the bin. This gives the order

hn ∝ (nλ)−
2
3 , nhn ∝ n

1
3λ−

2
3 .(2.3)

In the PPP model (1.2) this natural choice of the bin-width also follows

nicely by a scaling argument: W̄t = h
−1/2
n Whnt defines a standard Brownian

motion for t ∈ [0, 1] based on the values of W on [0, hn]; the correspondingly

scaled PPP observations (T̄j , Ȳj) with T̄j = h−1
n Tj , Ȳj = h

−1/2
n Yj have an

intensity with density λ̄t,y = nλh
3/2
n 1(y ≥ W̄t), which becomes independent

of n exactly for hn = (nλ)−2/3.
In this balanced setup the law of the statistics mn,k depends on the motion

of X as well as the error distribution in a non-trivial way. Still, the natural
statistics to assess the quadratic variation of the boundary process X are
the squared differences (mn,k−mn,k−1)2 between consecutive local minima.
In the PPP model and with the choice

(2.4) hn = K
2
3 (nλ)−

2
3 for some constant K > 0

the law of h
−1/2
n mn,k is independent of n, hn and λ and for Xt = X(k−1)hn +

σ
∫ t

(k−1)hn
dWs on T nk−1 ∪ T nk , we may introduce

Ψ
�
σ2
�

= h−1
n E

��
mn,k −mn,k−1

�2�
, k = 1, . . . , h−1

n − 1.(2.5)

Below we shall derive theoretical properties of Ψ and in particular we shall
see that it is invertible as soon as K > 0 is chosen sufficiently large. Numer-
ically, the function Ψ can be determined by standard Monte Carlo simula-
tions, see Figure 3, and is thus available. This paves the way for a moment-
estimator approach. In fact,

∑
k(mn,2k −mn,2k−1)2 approximates

∫
Ψ(σ2

t )dt
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with corresponding summation and integration intervals. Under regularity
assumptions on t 7→ σ2

t and by the smoothness of Ψ shown below, we have

Ψ−1

( lr−1
n /2∑

k=(l−1)r−1
n /2+1

�
mn,2k−mn,2k−1

�2
2h−1

n rn

)
≈ σ2

lr−1
n hn

,

where r−1
n hn is a coarse grid size with rnh

−1
n , r−1

n ∈ 2N. This gives rise to
the following estimator of integrated volatility IV =

∫ 1
0 σ

2
t dt in the PPP

model (1.2) with bin-width (2.4):

ĨV
hn,rn
n =

rnh
−1
n∑

l=1

Ψ−1

( lr−1
n /2∑

k=(l−1)r−1
n /2+1

�
mn,2k−mn,2k−1

�2
2h−1

n rn

)
hnr

−1
n .(2.6)

In the regression-type model (1.3) the corresponding second moments still
depend on n and we write explicitly

Ψn

�
σ2
�

= h−1
n E

��
mn,k −mn,k−1

�2�
, k = 1, . . . , h−1

n − 1.(2.7)

We shall see below that Ψn → Ψ holds, but a non-asymptotic form of the
volatility estimator from regression-type observations is given by

ÎV
hn,rn
n =

rnh
−1
n∑

l=1

Ψ−1
n

( lr−1
n /2∑

k=(l−1)r−1
n /2+1

�
mn,2k−mn,2k−1

�2
2h−1

n rn

)
hnr

−1
n .(2.8)

For a parametric estimation of σt = σ = const., we employ an estimator

ÎV
hn,hn
n . This means inversion of the whole sum of squared differences is

conducted. In the nonparametric case of varying σt instead an estimator

ÎV
hn,rn
n , with rn → 0, r−1

n hn → 0, is applied. A balance between a second
order term on each coarse interval of order rn and an approximation error
controlled by a Lipschitz assumption on σt of order r−1

n hn will lead to the

choice rn ∝ h1/2
n ∝ (nλ)−1/3.

3. The law of local minima and the convergence rate of the
estimator. In order to centralise the local minima, we write

mn,k −mn,k−1 = Rn,k − Ln,k , k = 1, . . . , h−1
n − 1 ,(3.1)

where Rn,k = mn,k − Xkhn and Ln,k = mn,k−1 − Xkhn measure the dis-
tances between the minima on bin T nk and T nk−1, respectively, to the cen-
tral true value Xkhn between both bins. In our high-frequency framework
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Fig 4. Distributions of bin-wise minima of the signal process, noise and the convolution.
Based on 100000 simulated bins with σ = 1, εi ∼ Exp(5), nhn = 100.

the drift is asymptotically negligible and a regular volatility function will
be approximated by a piecewise constant function on blocks of the coarse
grid. In this setting, where Xt = Xkhn + σ(Wt − Wkhn), we may invoke
time-reversibility of Brownian motion to see that Xt −Xkhn , t ∈ T nk−1, and
Xt−Xkhn , t ∈ T nk , form independent Brownian motions of variance σ2 such
that Rn,k,Ln,k, k = (l − 1)r−1

n + 1, . . . , lr−1
n , are all identically distributed

and there is independence whenever different bins are considered (but Rn,k
and Ln,k+1 are dependent). From (2.5) and (3.1) we infer

Ψ(σ2
khn)hn = E[R2

n,k] + E[L2
n,k]− 2E[Rn,k]E[Ln,k] = 2Var(Rn,k),

and similarly for Ψn. The histogram in Figure 4 shows the distribution of
Rn,k (equivalently Ln,k) in the regression model jointly with the associated
histograms for mini∈In

k
Xtni
−Xkhn and mini∈In

k
εi. In this situation the law of

Rn,k is given as the convolution between an exponential distribution and the
law of the minimum of Brownian motion on the discrete grid Ink . The latter
converges to the law of the minimum of W on [0, 1], but the simulations
confirm the known feature that the laws deviate rather strongly around zero
for moderate discretisations. Let us state and prove a slightly more general
result.

Proposition 3.1. Choose hn according to (2.4). Consider t ∈ T nk for
fixed k and suppose that Xt = Xkhn +

∫ t
khn

σ dWs, t ∈ T nk . Then in the PPP
model (1.2) for all x ∈ R

P
(
h−1/2
n Rn,k > xσ

)
= E

[
exp

(
−Kσ

∫ 1

0
(x+Wt)+ dt

)]
.(3.2)



9

Proof. By conditioning on the Brownian motion we infer from the PPP
properties of (Tj ,Yj):

P
(
h−1/2
n Rn,k > xσ

∣∣∣W)
= exp

(
−
∫
T n
k

∫ xσh
1/2
n +Xkhn

−∞
λt,y

)

= exp

(
− nλσ

∫
T n
k

�
xh1/2

n − (Wt −Wkhn)
�

+
dt

)
.

Noting that W̄s = h
−1/2
n (W(k+s)hn −Wkhn), s ∈ [0, 1], is again a Brownian

motion, the result follows by rescaling and taking expectations.

For the regression-type model the survival function is asymptotically of
the same form.

Proposition 3.2. Choose hn according to (2.4). Suppose that Xt =
Xkhn +

∫ t
khn

σ dWs, t ∈ T nk , for a fixed bin number k. Then in the regression-
type model (1.3) for all x ∈ R

lim
n→∞

P
(
h−1/2
n Rn,k > xσ

)
= E

[
exp

(
−Kσ

∫ 1

0
(x+Wt)+ dt

)]
.(3.3)

The approximation error due to non-constant σ and drift is considered
in detail in Appendix A.1 and proved to be asymptotically negligible. This
way, the asymptotic analysis of our estimation problem leads into the theory
of Brownian excursion areas. Let Rt be a real random variable distributed
as limn→∞ h

−1/2
n Rn,bth−1

n c. The law of Rt determines Ψ(σ2
t ) via

Var(Rt) =
1

2
Ψ(σ2

t ) .(3.4)

The Feynman–Kac formula gives a connection of the right-hand side in
Proposition (3.1) to a parabolic PDE based on the heat semigroup for Brow-
nian motion. We can prove the following explicit result on the Laplace trans-
form which determines the distribution of (Rt), t ∈ [0, 1].

Proposition 3.3. The Laplace transform (in t) of

E
[

exp
(
−
√

2ϑ

∫ t

0
(x+Ws)+ ds

)]
with ϑ ∈ R satisfies the following identity:

E
�∫ ∞

0
exp

(
− st−

√
2ϑ

∫ t

0
(x+Ws)+ ds

)
dt

�
= ϑ−

2
3 ζs(x, ϑ),
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with ζs(x, ϑ) = ζs,−(x, ϑ)1(−∞,0)(x)+ζs,+(x, ϑ)1[0,∞)(x) defined by the func-
tions

ζs,+(x, ϑ) =
π
�
ϑ1/3Gi ′

�
ϑ−2/3s

�
−
√
sGi

�
ϑ−2/3s

��
+ ϑ2/3s−1/2

√
sAi

�
ϑ−2/3s

�
− ϑ1/3Ai ′

�
ϑ−2/3s

�
×Ai

�√
2ϑ1/3x+ ϑ−2/3s

�
+ πGi

�√
2ϑ1/3x+ ϑ−2/3s

�
,

ζs,−(x, ϑ) =

�
ϑ2/3s−1/2Ai

�
ϑ−2/3s

�
+ ϑ1/3AI

�
ϑ−2/3s

�
√
sAi

�
ϑ−2/3s

�
− ϑ1/3Ai ′

�
ϑ−2/3s

� − s−1ϑ2/3

�

× exp
�√

2sx) + s−1ϑ2/3 ,

where Ai is the Airy function which is bounded on the positive half axis,

Ai(x) = π−1
∫ ∞

0
cos (t3/3 + xt) dt ,

and Gi is the Scorer function bounded on the positive half axis

Gi(x) = π−1
∫ ∞

0
sin (t3/3 + xt) dt ,

and we define AI(x) =
∫∞
x Ai(y)dy.

This result generalizes the Laplace transform of the exponential integrated
positive part of a Brownian motion derived by [22]. Inserting x = 0 and set-
ting ϑ = 1 renders the result by [22]. An inversion of the Laplace transform
in Proposition 3.3 in order to obtain an explicit form of the distribution
function and then Ψ appears unfeasible as several experts vainly attempted
to solve related problems, see [22] and [16]. Exploiting the strong Markov
property of Brownian motion together with hitting times, we are able to
circumvent this problem in our study of Ψ(σ2), for details we refer to the
Appendix.

We formulate now the main convergence results whose proofs are given in
the Appendix. For that we impose some regularity on the drift and diffusion
coefficient which are also assumed to be deterministic or more generally
independent of the driving Brownian motion W . Moreover, we need that the
function Ψ is invertible and sufficiently regular, which by Proposition A.2
below is ensured by a sufficiently large choice of K, but at least numerically
seems to be the case for much smaller choices, cf. Figure 3 and [5].

Assumption 3.4. The drift as in (1.1) is bounded and Borel-measurable,
the volatility σt in (1.1) is a Lipschitz function that does not vanish, σt > 0.
The constant K in the definition (2.4) of hn is chosen large enough that
Proposition A.2 below applies.
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Theorem 3.5. Grant Assumption 3.4, choose hn according to (2.4) and
rn = κn−1/3 for some κ > 0. Then the estimator (2.6) based on observations
from the PPP-model satisfies

(
ĨV

hn,rn
n −

∫ 1

0
σ2
s ds

)
= OP

�
n−

1
3

�
.(3.5)

Based on the same strategy of proof we can obtain an analogous result
for the regression-type model.

Corollary 3.6. Grant Assumption 3.4, choose hn according to (2.4)
and rn = κn−1/3 for some κ > 0. Then the estimator (2.8) based on obser-
vations from the regression-type model satisfies

(
ÎV

hn,rn
n −

∫ 1

0
σ2
s ds

)
= OP

�
n−

1
3

�
.(3.6)

4. Lower bound for the rate of convergence. Consider our PPP-
model (1.2). We show that even in the simpler parametric statistical exper-
iment where Xt = σWt, t ∈ [0, 1], and σ > 0 is unknown the optimal rate of
convergence is n−1/3 in a minimax sense. This lower bound for the paramet-
ric case then serves a fortiori as a lower bound for the general nonparametric
case. A lower bound for the discrete regression-type model is obtained in a
similar way; in fact the proof is even simpler, replacing the Poisson sampling
(T sj ) below by a deterministic design of distance n−2/3.

Theorem 4.1. We have for any sequence of estimators σ̂2
n of σ2 ∈

(0,∞) from the parametric PPP-model for each σ2
0 > 0, the local minimax

lower bound

∃δ > 0 : lim inf
n→∞

inf
σ̂n

max
σ2∈{σ2

0 ,σ
2
0+δn−1/3}

Pσ2(|σ̂2
n − σ2| ≥ δn−1/3) > 0,

where the infimum extends over all estimators σ̂n based on the PPP-model
(1.2) with λ = 1 and Xt = σWt. The law of the latter is denoted by Pσ2.

The proof falls into three main parts. We first simplify the problem by
considering more informative experiments. These reductions are given in
the two steps below. Then, in the third step we use bounds for the Hellinger
distance. The more technical step 3 is worked out in Appendix B.

1. A PPP with intensity Λ is obtained as the sum of two independent
PPPs with intensities Λr and Λs, respectively, satisfying Λ = Λr + Λs,
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see e.g. [20]. Hence, for b > 0 the experiment of observing (T ri ,Yri )i≥1

from a PPP with regularised intensity density

λr(t, y) = n
(�

(y −Xt)+/b
�2 ∧ 1

)
and independently (T sj ,Ysj )j≥1 from a PPP with discontinuous inten-
sity density λs = λ − λr is more informative. We now provide even
more information by replacing (T sj ,Ysj )j≥1 by (T sj , XT s

j
)j≥1, the di-

rect observation of the martingale values at the random times (T sj ). A
lower bound proved for observing (T ri ,Yri )i≥1 and (T sj , XT s

j
)j≥1 inde-

pendently thus also applies to the original (less informative) observa-
tions.

2. Due to
∫ ∫

λs(t, y)dt dy = (2/3)nb, we conclude that the times (T sj ) are
given by a Poisson sampling of intensity (2/3)nb on [0, 1] and there are
a.s. only finitely many times (T sj )j=1,...,J . Let us first work conditionally
on (T sj ) and put T s0 = 0, T sJ+1 = 1. All observations of (T ri ,Yri )i≥1 with
T ri ∈ [T sj−1, T

s
j ) are transformed via

(T ri ,Yri ) 7→
(
T ri − T sj−1,Yri −

(
XT s

j−1

T ri − T sj−1

T sj − T sj−1

+XT s
j

T sj − T ri
T sj − T sj−1

))
.

Noting that (Bt− (t/T )BT , t ∈ [0, T ]) defines a Brownian bridge B0,T

on [0, T ], we thus obtain conditionally on (T sj ) for each j = 1, . . . , J+1

observations of a PPP on
�
0, T sj − T sj−1

�
with intensity density

λj(t, y) = n
(
b−1

�
y − σB

0,T s
j −T

s
j−1

t

�
+
∧ 1
)
.

The transformation has rendered the family of PPPs with intensity
densities (λj)j=1,...,J+1 independent by reducing the Brownian motion
to piecewise Brownian bridges. Conditionally on (T sj ) we thus have
independent observations of (T sj , XT s

j
)j=1,...,J and independent PPPs

with intensity densities (λj)j=1,...,J+1.

By using the latter more informative experiment and by choosing b ∝
n−1/3 we show below that for a Poisson sampling (T sj )j=1,...,J on [0, 1] of in-

tensity (2/3)nb ∝ n2/3 of direct observations XT s
j

as well as for independent
observations of PPPs, generated by σ times a Brownian bridge in-between
the sampling points (T sj )j , we cannot estimate at a better rate than n−1/3.
This is accomplished by bounding the Hellinger distance between the exper-
iments for σ2 = σ2

0 and σ2 = σ2
0 + δn−1/3.
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5. Conclusion. We have modeled the relationship between limit order
book bid and ask quotes and an efficient price process by a stochastic fron-
tier model. The model does not attempt to describe the fine structure of
order book dynamics, but is only based on the natural ordering between
quotes and prices. This agnostic point of view seems attractive for statisti-
cal purposes. Still, we find n−1/3 as optimal convergence rate of integrated
squared volatility estimators which improves upon the n−1/4-rate, known for
transaction price models with regular microstructure noise.

The estimation approach uses local order statistics and a coarse-fine grid
approximation whose analysis is connected to a Brownian excursion prob-
lem. Owing to the nonlinear and implicit definition, finer properties of the
estimator like its asymptotic distribution remain open. First numerical re-
sults in [5] are in any case promising. An empirical validation, using the
three data sets of bid and ask quotes and transaction prices independently,
is feasible.

APPENDIX A: PROOFS OF SECTION 3

Proposition 3.2 considers the simplified model where Xt, t ∈ T nk , is ap-
proximated by Xkhn +

∫ t
khn

σkhn dWt. The resulting approximation error
is bounded within Proposition A.1 for the PPP-model and an analogous
proof carries over to the regression-type model. From here on An . Bn
expresses shortly that An ≤ K · Bn for two sequences An, Bn and some
real constant K < ∞. We write A+ = A1(A ≥ 0), A− = |A|1(A ≤ 0) and
‖Z‖p = E[|Z|p]1/p, p ≥ 1.

Proof of Proposition 3.2. By law invariance of Rn,k with respect to
k for Xt = X0 + σWt, we can simplify

P(h−1/2
n Rn,k > xσ) = P

(
h−1/2
n min

i=0,...,nhn−1
(Xi/n −X0 + εi) > xσ

)
= P

(
min

i=0,...,nhn−1
(Wi/(nhn) + σ−1h−1/2

n εi) > x
)
,

where we used that h
1/2
n Wt/hn is another Brownian motion. We condition

on the driving Brownian motion W = (Wt, t ∈ [0, 1]) and obtain in terms of
the distribution function Fλ of εi:

P(h−1/2
n Rn,k > xσ) = E

[
nhn−1∏
i=0

P
�
εi > σh1/2

n (x−Wi/(nhn))
∣∣∣W�]

= E
[

exp
( nhn−1∑

i=0

log
(
1− Fλ(σh1/2

n (x−Wi/(nhn)))
))]

.
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The expansion (1.4) of Fλ together with expanding the logarithm therefore
yields

P(h−1/2
n Rn,k > xσ) = E

[
exp

(
− σh1/2

n λ
nhn−1∑
i=0

(x−Wi/(nhn))+(1 + O(1))
)]
,

where O(1) is to be understood ω-wise and holds uniformly over i and n
whenever maxt∈[0,1](x −Wt(ω))+ is bounded. By the choice of hn we have

h
1/2
n λ = K(nhn)−1 and the integrand is a Riemann sum tending almost

surely to exp(−σK
∫ 1

0 (x−Wt)+dt). Noting that a conditional probability is
always bounded by 1, the assertion follows by dominated convergence and

use of −W d
= W .

Proof of Proposition 3.3. Throughout the proof, we drop the depen-
dence on ϑ in ζs(x, ϑ), ζs,−(x, ϑ) and ζs,+(x, ϑ) to lighten the notation. We
shall apply the Kac formula in the version as in formulae (4.13) and (4.14)
of [19]. It connects the considered Laplace transform with the solution of a
differential equation which becomes in our case:

d2ζ

dx2
= 2sζ − 2ϑ2/3 , x < 0,(A.1a)

d2ζ

dx2
= 2(
√

2ϑx+ s)ζ − 2ϑ2/3 , x > 0.(A.1b)

Since all assertions necessary to apply the Kac formula are fulfilled, the
Laplace transform from above multiplied with a constant Lagrangian ϑ2/3

satisfies

E
�∫ ∞

0
ϑ2/3 exp

(
− st−

√
2ϑ

∫ t

0
(x+Ws)+ ds

)
dt

�
= ζs(x) .

The general solution of (A.1a) is given by

ζs,−(x) = A exp
�√

2sx
�

+ ϑ2/3s−1 ,(A.2a)

with a constant A (depending on s but not on x). Airy’s function Ai solves
the homogenous differential equation of the type (A.1b), whereas the Scorer
function Gi is a particular solution of the inhomogenous equation ζ ′′−xζ =
π−1, both being bounded on the positive real line. Hence, a solution ansatz
for (A.1b) is given by

ζs,+(x) = BAi
�√

2ϑ1/3x+ ϑ−2/3s
�

+ πGi
�√

2ϑ1/3x+ ϑ−2/3s
�
,(A.2b)
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with a constant B. Continuity conditions on ζ and dζ/dx at x = 0 give rise
to

B =
π
�
ϑ1/3Gi ′

�
ϑ−2/3s

�
−
√
sGi

�
ϑ−2/3s

��
+ ϑ2/3s−1/2

√
sAi

�
ϑ−2/3s

�
− ϑ1/3Ai ′

�
ϑ−2/3s

� .

In order to express A in a more concise and simple manner, we exploit the
following relation for the Wronskian of Ai and Gi:

π
(
Gi ′(x)Ai(x)−Ai ′(x)Gi(x)

)
= AI(x) =

∫ ∞
x

Ai(y) dy .(A.3)

A proof of the latter equality can be found in [26]. Thereby, we obtain

A =

�
ϑ2/3s−1/2Ai

�
ϑ−2/3s

�
+ ϑ1/3AI

�
ϑ−2/3s

�
√
sAi

�
ϑ−2/3s

�
− ϑ1/3Ai ′

�
ϑ−2/3s

� − s−1ϑ2/3

�
.

This result concludes the proof.

A.1. Asymptotic analysis of the estimator. As a first step, we ex-
tend Proposition 3.1 by analysing the approximation error due to neglecting
the drift and assuming a locally constant volatility. Then we prove Theorem
3.5 exploiting properties of Ψ which are established in Appendix A.2.

Proposition A.1. Consider hn in (2.4) and t ∈ T nk for fixed k. Then

P
�

min
j∈T n

k

Yj −Xkhn > xσkhn
√
hn

�
= E

[
exp

(
−Kσkhn

∫ 1

0
(x+Wt)+dt

)]
+ nλh5/2

n G(x),

where |G(x)| ≤ CP
�
|W1| ≥ C2xσkhn/2

�
, with C1, C2 > 0.

If σt is constant and at = 0 for t ∈ T nk , then G(x) = 0.

Proof. Proposition 3.1 already gives the last statement. Let Az = T nk ×
(−∞, z] and z = xσkhn

√
hn. Let ∆Xt(k) =

∫ t
khn

σs dWs and ∆At(k) =∫ t
khn

as ds. Then, using basic properties of a PPP, it follows that

P
�

min
j∈T n

k

Yj −Xkhn > z

�
= E

[
P
(
Λ
�
Az
�

= 0
∣∣∣X)] = E

[
exp

(
− Λ(Az)

)]
= E

[
exp

(
− nλ

∫
Az

1{∆Xt(k)+∆At(k)≤y} dt dy
)]

= E
[

exp
(
− nλ

∫
T n
k

(z −∆Xt(k)−∆At(k))+ dt
)]
.(A.4)
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Introduce

Tk = nλ

∫
T n
k

(z −∆Xt(k)−∆At(k))+dt ,

Vk = nλ

∫ (k+1)hn

khn

�
z − σkhn(W(k+1)hn −Wkhn)

�
+
dt ,

Uk = nλ

∫ (k+1)hn

khn

∣∣∣∣∣
∫ t

khn

(σs − σkhn)dWs

∣∣∣∣∣dt and Ak = nλh2
n max
t∈T n

k

∣∣∣akhn − at∣∣∣.
Then we have the upper and lower bounds

Vk − Uk −Ak ≤ Tk ≤ Vk + Uk +Ak.

By scaling and symmetry properties of Brownian motion, we have that

Vk
d
= nλσkhnh

3/2
n

∫ 1

0
(x+Wt)+dt = Kσkhn

∫ 1

0
(Wt + x)+ dt.

As a first objective, we derive an upper bound for E
[

exp
(
− yTk

)]
, y > 0.

To this end, note that by the Dambis-Dubins-Schwarz Theorem (Thm. 4.6
in [19])

∆Xt(k)
d
= W〈∆X(k),∆X(k)〉t .

Since 〈∆X(k),∆X(k)〉t =
∫ t
khn

σ2
s ds for t ≥ khn, we deduce

P
(

sup
t∈T n

k

|∆Xt(k)| ≥ z/2
)
≤ P

(
sup

0≤t≤1
|Wt| ≥ Cσkhnx

)
≤ 2P

�
|W1| ≥ Cxσkhn/2

�
,

with some C > 0. By the boundedness of at, it follows that

Ak . nλh2
n max
t∈[0,1]

|at| . n−1/3.(A.5)

We thus obtain for y > 0 the upper bound

E
[

exp
(
− yTk

)]
≤ 2P

�
|W1| ≥ C1xσkhn/2

�
(A.6)

+ exp
(
− C1xynhnσkhn/2 + C2yn

−1/3
)
,

where C1, C2 > 0 are finite constants. This also supplies a bound for
E[exp(−yVk)]. Next, observe that

Uk ≤ nhnλ sup
khn≤t≤(k+1)hn

∣∣∣∣∣
∫ t

khn

(σs − σkhn)dWs

∣∣∣∣∣ def= U+
k .
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Using the law of the maximum of (time-transformed) Brownian motion, we
see

U+
k

d
= nhnλ

√∫ (k+1)hn

khn

(σs − σkhn)2ds|Z| with Z ∼ N(0, 1).

By the Lipschitz property of σt, the integral is of order h3
n. We obtain by

Cauchy-Schwarz inequality

E
[

exp
(
− Tk

)]
≤ E

[
exp

(
− Vk

)]
+
∥∥∥exp

(
− Vk

)∥∥∥
2

∥∥∥�exp(U+
k )− 1

�∥∥∥
2

≤ E
[

exp
(
− Vk

)]
+
∥∥∥exp

(
− Vk

)∥∥∥
2

É
exp

(
C(nh

5/2
n λ)2

)
− 1

≤ E
[

exp
(
− Vk

)]
+ E

[
exp

(
− 2Vk

)]1/2
C ′nh5/2

n λ,

with some constants C,C ′, noting nh
5/2
n λ → 0. Combining the above with

K > 1, we thus conclude for some constant C:

E
[

exp
(
−Tk

)]
≤ E

[
exp

(
−Vk

)]
+C

∥∥∥exp
(
−Vk

)∥∥∥
2
nλh5/2

n

≤ E
[

exp
(
−Vk

)]
+Cnλh5/2

n P
�
|W1| ≥Cxσkhn/2

�
.

In the same manner, one obtains a lower bound, and the claim follows.

Proof of Theorem 3.5 and Corollary 3.6. Let Mk,n =
�
mn,2k −

mn,2k−1

�2
2h−1

n rn and an,l = lr−1
n /2, sn,l = lhnr

−1
n = 2an,lhn. It follows with

(A.14) that∣∣∣∣∣
an,l∑

k=an,l−1+1

�
E[Mk,n]− 2rnΨ(σ2

sn,l−1
)
�∣∣∣∣∣ . hn + sup

sn,l−1≤t≤sn,l

∣∣∣Ψ(σ2
t )−Ψ(σ2

sn,l
)
∣∣∣.

Proposition A.2 and the Lipschitz continuity of σt yield that

sup
sn,l−1≤t≤sn,l

∣∣∣Ψ(σ2
t )−Ψ(σ2

sn,l−1
)
∣∣∣ . sup

sn,l−1≤t≤sn,l

∣∣∣σt − σsn,l

∣∣∣ . rn.

We thus conclude

∣∣∣∆k,n

∣∣∣ . hn + rn for ∆k,n=

an,l∑
k=an,l−1+1

�
E[Mk,n]− 2rnΨ(σ2

sn,l−1
)
�
.(A.7)

Next, we have that M̄k,n = Mk,n − E
�
Mk,n

�
is a sequence of independent

random variables. Proposition A.1 yields that all moments of M̄k,n exist.
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Hence for any index set J ⊆
¦

0, . . . , h−1
n −1

©
, Rosenthal’s inequality ensures

that for any p ≥ 1 ∥∥∥∥∥∑
k∈J

M̄k,n

∥∥∥∥∥
p

. rn

É∣∣∣J ∣∣∣,(A.8)

where
∣∣∣J ∣∣∣ is the cardinality of the set J . Let

Ml =

¨ an,l∑
k=an,l−1+1

M̄k,n + Ψ
�
σ2
sn,l−1

�
/2 > 0

«
, and M =

h−1
n −1⋂
l=1

Ml.

Note that Proposition A.2 yields that Ψ
�
x2
�
> 0 for x > 0. Then we obtain

from the Markov inequality and (A.8) that

P
�h−1

n −1⋃
l=0

Mc
l

�
≤

h−1
n −1∑
l=0

P
�
Mc

l

�
. 2p

h−1
n −1∑
l=0

Ψ
�
σ2
sn,l−1

�−p∥∥∥∥∥
an,l∑

k=an,l−1+1

M̄k,n

∥∥∥∥∥
p

p

.
h−1
n −1∑
l=0

rp/2n = O
�
1
�
,(A.9)

for p > 4. We are now ready to proceed to the main proof. From (2.6) it
follows that

ĨV
hn,rn −

∫ 1

0
σ2
t dt =

rnh
−1
n∑

l=1

σ2
sn,l−1

hnr
−1
n −

∫ 1

0
σ2
t dt

+
rnh

−1
n∑

l=1

(
Ψ−1

( an,l∑
k=an,l−1+1

(mn,2k −mn,2k−1)22h−1
n rn

)
− σ2

sn,l−1

)
hnr

−1
n .

Consider first the approximation error in the quadratic variation by set-
ting the volatility locally constant on the blocks of the coarse grid. By the
boundedness and Lipschitz continuity of σt we can estimate the approxima-
tion error:

rnh
−1
n∑

l=1

∣∣∣∣ ∫ sn,l

sn,l−1

�
σ2
sn,l−1

− σ2
t

�
dt

∣∣∣∣ ≤ 2‖σt‖∞
rnh

−1
n∑

l=1

∫ sn,l

sn,l−1

∣∣∣σsn,l−1
− σt

∣∣∣ dt
= O

(
hnr

−1
n

)
= O

(
n−1/3

)
.
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In order to bound the remaining estimation error

rnh
−1
n∑

l=1

(
Ψ−1

( an,l∑
k=an,l−1+1

Mk,n

)
− σ2

sn,l−1

)
hnr

−1
n ,

we use a Taylor expansion and that the first two derivatives of Ψ−1 exist and
are bounded according to Proposition A.2 below. More precisely, it follows
that

Ψ−1

� an,l∑
k=an,l−1+1

Mk,n −Ψ
�
σ2
sn,l−1

�
+ Ψ

�
σ2
sn,l−1

��

= σ2
sn,l−1

+
�
Ψ−1

�′�
Ψ(σ2

sn,l−1
)
�� an,l∑

k=an,l−1+1

�
Mk,n − E[Mk,n] + ∆k,n

��

+
1

2

�
Ψ−1

�′′�
ξl
�� an,l∑

k=an,l−1+1

�
Mk,n − E[Mk,n] + ∆k,n

��2

def
= σ2

sn,l−1
+ ∆

�
Ψ
�
l,1

+ ∆
�
Ψ
�
l,2
,

where ξl ≥ Ψ
�
σ2
sn,l−1

�
/2 > 0 on the set Ml. We first deal with ∆

�
Ψ
�
l,1

and set Zl =
∑an,l

k=an,l−1+1

�
Mk,n − E[Mk,n]

�
. Using the independence of Zl,

it follows from (A.8) that∥∥∥∥∥
rnh

−1
n∑

l=1

�
Ψ−1

�′�
Ψ(σ2

sn,l−1
)
�
Zl

∥∥∥∥∥
2

2

.
rnh

−1
n∑

l=1

∥∥∥Zl∥∥∥2

2
. r2

nh
−1
n = O

�
1
�
.(A.10)

On the other hand, we obtain from (A.7) that∣∣∣∣∣
rnh

−1
n∑

l=1

�
Ψ−1

�′�
Ψ(σ2

sn,l−1
)
� an,l∑
k=an,l−1+1

∆k,n

∣∣∣∣∣ . r2
nh
−1
n = O

�
1
�
.(A.11)

Combining (A.10) and (A.11), we find∥∥∥∥∥
rnh

−1
n∑

l=1

∆
�
Ψ
�
l,1
1M

∥∥∥∥∥
2

= O
�
1
�
.(A.12)

In the same manner, but using additionally ‖(Ψ−1)′′(ξl)1Ml
‖∞ < ∞ by

Proposition A.2 below, we obtain∥∥∥∥∥
rnh

−1
n∑

l=1

∆
�
Ψ
�
l,2
1M

∥∥∥∥∥
1

.
rnh

−1
n∑

l=1

(∥∥∥Zl∥∥∥2

2
+
( an,l∑
k=an,l−1+1

∆k,n

)2)
= O(1).
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Since P
�
Mc

�
= O

�
1
�

by (A.9), this suffices to guarantee that

ĨV
hn,rn −

∫ 1

0
σ2
t dt = OP

�
n−1/3

�
.

Based on a Taylor expansion for Ψ−1
n and using analogous bounds and

Proposition A.3, we obtain likewise

ÎV
hn,rn −

∫ 1

0
σ2
t dt = OP

�
n−1/3

�
.

and conclude Corollary 3.6.

A.2. Properties of Ψ. We shall use the following identities for mo-
ments of real random variables:

E
�
X
�

=

∫ ∞
0

P
�
X > x

�
dx−

∫ ∞
0

P
�
−X > x

�
dx ,(A.13a)

E
�
X2

�
= 2

∫ ∞
0

xP
�
X > x

�
dx+ 2

∫ ∞
0

xP
�
−X > x

�
dx .(A.13b)

It follows from Proposition A.1 and (A.13a), (A.13b) that for Ψ̃(σ) = Ψ(σ2)

h−1
n E

�
(mn,k −mn,k−1)2

�
= Ψ̃(σ) +O

�
nh5/2

n

�
.(A.14)

Having understood the behaviour of Ψ̃(σ), analogue properties of Ψ(σ2)
readily follow. Let

H(x) =

∫ 1

0
(Wt + x)+ dt.(A.15)

Then by (A.13a), (A.13b), we derive

Ψ̃
�
σ
�

= 4σ2
∫ ∞

0
x

�
E
�
e−KσH(x)

�
+ 1− E

�
e−KσH(−x)

��
dx

− 2σ2

�∫ ∞
0

�
E
�
e−KσH(x)

�
− 1 + E

�
e−KσH(−x)

��
dx

�2

.(A.16)

Next, consider the distribution on the negative half axis. With x < 0, we
make the decomposition

E
�
e−σK

∫ 1

0
(Wt−x)−dt

�

= E
�
e−σK

∫ 1

0
(Wt−x)−dt

1

�
inf

0≤t≤1
Wt ≤ x

�
+ 1

�
inf

0≤t≤1
Wt ≥ x

��
def
= U1(x) + U2(x).



21

Let Tx be the first passage time of W to level x with density

fTx(t) =
|x|√
2πt3

e−x
2/2t , t ≥ 0 ,

see (6.3) in Section 2.6 of [19]. From
¦
Tx ≤ 1

©
=
¦

inf0≤t≤1Wt ≤ x
©

it
follows from the strong Markov property of W that

U1(x) =

∫ 1

0
E
�
e−σK

∫ 1

s
(Wt−x)−dt

∣∣∣∣∣Tx = s

�
fTx(s)ds

=

∫ 1

0
E
�
e−σK

∫ 1−s

0
(Wt)−dt

�
fTx(s)ds.

Using a time shift yields

U1(x) =

∫ 1

0
E
�
e−σK(1−s)3/2

∫ 1

0
(Wt)−dt

�
fTx(s)ds.

We then obtain that

E
�
e−σK

∫ 1

0
(Wt−x)−dt

�
= P

�
inf

0≤t≤1
Wt ≥ x

�
+

∫ 1

0
E
�
e−σK(1−s)3/2

∫ 1

0
(Wt)−dt

�
fTx(s)ds

def
= P

�
inf

0≤t≤1
Wt ≥ x

�
+A−(x), for x < 0.(A.17)

Let I(Kσ, s) = E
�
e−Kσ(1−s)3/2

∫ 1

0
(Wt)−dt

�
. Then by (A.17)

∫ ∞
0

x
�
1− E

�
e−KσH(−x)

��
dx =

∫ ∞
0

x
�
P
�

inf
0≤t≤1

Wt < −x
�
−A−(−x)

�
dx

=

∫ ∞
0

xP( inf
0≤t≤1

Wt < −x)dx−
∫ 1

0
I(Kσ, s)

∫ ∞
0

xfTx(s)dxds

=
1

2
− 1

2

∫ 1

0
I(Kσ, s)ds,

since
∫∞

0 xP(inf0≤t≤1Wt < −x)dx = 1
2 . Likewise, it follows that

∫ ∞
0

�
1− E

�
e−KσH(−x)

��
dx =

∫ ∞
0

P
�

inf
0≤t≤1

Wt < −x
�
dx−

Ê
2

π

∫ 1

0
I(Kσ, s)ds

=

Ê
2

π
−
Ê

2

π

∫ 1

0
I(Kσ, s)ds.(A.18)
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We thus obtain

Ψ̃
�
σ
�

= 4σ2

�∫ ∞
0

xE
�
e−KσH(x)

�
dx+

1

2
− 1

2

∫ 1

0
I(Kσ, s)ds

�

− 2σ2

�∫ ∞
0

E
�
e−KσH(x)

�
dx−

Ê
2

π
+

Ê
2

π

∫ 1

0
I(Kσ, s)ds

�2

= 2σ2
�
2Λ1(σ)− Λ2

2(σ)
�
,(A.19)

with functionals Λ1,Λ2. In the sequel, we write ∂kf(x) = ∂kf(x)/∂kx. The
further analysis of properties of Ψ̃ is structured in several lemmas which
combined imply the following key proposition.

Proposition A.2. Suppose that σ ≥ σ0 > 0, K ≥ C(σ0) for C(σ0)
sufficiently large (the exact value of C(σ0) follows from (A.24)). Then we
have uniformly for σ ≥ σ0

∂Ψ̃
�
σ
�

= 4σ

�
1− 2

π

�
+O

(
σ

2
3

K
1
3

)
> 0 and

Ψ̃
�
σ
�

= 2σ2
�

1− 2

π

�
+O

(
σ

2
3

K
1
3

)
> 0.(A.20)

Moreover, it holds that

sup
σ≥σ0

∣∣∣∣∣∂kΨ̃(σ)

∣∣∣∣∣ <∞ for k = 1, 2.(A.21)

Using the relation

∂Ψ̃−1(%) =
1

∂Ψ̃(σ)
, Ψ̃(σ) = %,(A.22)

we get that the second derivative is uniformly bounded for σ ≥ σ0 =
Ψ̃−1(%0), i.e.

sup
%≥%0

∣∣∣∂2Ψ̃−1(%)
∣∣∣ = sup

σ≥σ0

∣∣∣∣∣ ∂2Ψ̃(σ)�
∂Ψ̃(σ)

�3

∣∣∣∣∣ <∞.(A.23)

So far we have focused on results for Ψ̃(σ) = Ψ(σ2). Essentially the same
results are valid for Ψn(σ2), which we state now.
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Proposition A.3. Introduce

Bn,1 =

∫ ∞
0

xP
�

max
0≤i≤nhn−1

Wi/(nhn) ≥ x
�
dx and

Bn,2 =

∫ ∞
0

P
�

max
0≤i≤nhn−1

Wi/(nhn) ≥ x
�
dx,

which satisfy Bn,1 → 1
2 , Bn,2 →

È
2
π . Then (A.20) and (A.21) in Proposition

A.2 remain valid if we replace Ψ̃
�
σ
�

with Ψn

�
σ2
�

and 1− 2
π with 2Bn,1−B2

n,2.
Likewise, (A.23) also holds.

Proof of Proposition A.2. We write shortly Λ1 = Λ1(σ), Λ2 =
Λ2(σ). We have that

∂Ψ̃
�
σ
�

= 4σ
�
2Λ1 − Λ2

2

�
+ 2σ2 (2∂Λ1 − 2Λ2∂Λ2) .

Using Lemmas A.4 and A.7 from below, we obtain with (A.19)

∣∣∣Λ1 −
1

2

∣∣∣ ≤ 6(Kσ)−
2
3 +

3

2

�
Kσ

log(Kσ)

�− 2
5 def

= RΛ1

∣∣∣Λ2 −
Ê

2

π

∣∣∣ ≤ 2
(Ê 2

π
+ 1

)
(Kσ)−

1
3 + 3

Ê
2

π

�
Kσ

log(Kσ)

�− 2
5 def

= RΛ2 .

Moreover, applying Lemmas A.5, A.6 and A.7 yields

∣∣∣∂Λ1

∣∣∣ ≤ 6
�
Kσ3

�− 1
2 +

3

2σ

�
Kσ

log(Kσ)

�− 2
5 def

= R∂Λ1 , Λ2
2 ≤

2

π
,

∣∣∣Λ2∂Λ2

∣∣∣ ≤ �RΛ2 +

Ê
2

π

��
4
�
1 + (2π)−

1
2

�
K−

1
3σ−

4
3 +

Ê
2

π

3

σ

�
Kσ

log(Kσ)

�− 2
5
�

def
= R∂Λ2 .

We thus obtain from the above that∣∣∣∂Ψ̃− 4σ
�
1− 2

π

�∣∣∣ ≤ 4σ

�
2RΛ1 +RΛ2

(
RΛ2 + 2

Ê
2

π

)�
+ 4σ2

�
R∂Λ1 +R∂Λ2

�
= O

(
K−

1
3σ

2
3

)
,

∣∣∣Ψ̃− 2σ2
(
1−

Ê
2

π

)∣∣∣ ≤ 2σ2

�
RΛ1 +RΛ2

(
RΛ2 + 2

Ê
2

π

)�
= O

(
K−

1
3σ

2
3

)
.
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An explicit sufficient lower bound for K in terms of σ0 can be computed
from the two conditions

1− 2

π
>

(
2RΛ1 +RΛ2

(
RΛ2 + 2

Ê
2

π

))
+ σ

�
R∂Λ1 +R∂Λ2

�
,

1−
Ê

2

π
> RΛ1 +RΛ2

(
RΛ2 + 2

Ê
2

π

)
.(A.24)

It remains to show the boundedness property for the first two derivatives of
Ψ̃. By Lemma A.8, we have∣∣∣∣∣∂kJ�σ�

∣∣∣∣∣ ≤ C �1 + σ−k
�
, k = 1, 2,(A.25)

where J
�
σ
�

= 2Λ1(σ) − Λ2
2(σ) and C is a constant not depending on σ.

Observe that

∂2Ψ̃ = 4J + 6σ∂J + σ2∂2J,

hence the claim follows.

Proof of Proposition A.3. The proof can be redirected to Proposi-
tion A.2 using Proposition 3.2 and a truncation argument for the integrals
over x. The corresponding computations are very similar to those above and
the Lemmas given below. We therefore omit the details.

Lemma A.4. For K > 0, p ∈ N0, we obtain the following decay behaviour
of the moment integrals:

∫ ∞
0

xpE
�
e−KσH(x)

�
dx ≤ 2p+1

(
E[|Z|p+1]

p+ 1
+ Γ(p+ 1)

)
(Kσ)−(p+1)/3

with Z ∼ N(0, 1).

Proof of Lemma A.4. The following useful relation in terms of the
N(0, 1)-distribution function Φ is derived from the law of the minimum
of Brownian motion:

P
�
Tx ≤ l

�
= 2(1− Φ(|x|/

√
l)).(A.26)
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Then for 0 < l < 1∫ ∞
0

xpE
�
e−KσH(x)

�
dx ≤

∫ ∞
0

xpE
�
1

�
T−x/2 ≤ l

��
dx

+

∫ ∞
0

xpE
�
e−KσH(x)

1

�
T−x/2 > l

��
dx

def
= R1 +R2 .

By (A.26) we have

R1 = 2

∫ ∞
0

xp(1− Φ(x/
√

4l)) dx

= (4l)(p+1)/2
∫ ∞

0
2zp(1− Φ(z)) dz = (4l)(p+1)/2E[|Z|p+1]

p+ 1
.

We further note that T−x/2 > l implies H(x) ≥
∫ l

0(−x/2 + x)+dt = lx/2,
such that

R2 ≤
∫ ∞

0
xpe−Kσlx/2dx =

�
2

Kσl

�p+1

Γ
�
p+ 1

�
.

Choosing l = (Kσ)−2/3, we obtain

∫ ∞
0

xpE
�
e−KσH(x)

�
dx ≤

(
2p+1E[|Z|p+1]

p+ 1
+ 2p+1Γ

�
p+ 1

�)
(Kσ)−(p+1)/3,

as asserted.

Lemma A.5. Let K > 0. Then∫ ∞
0

E
�
KH(x)e−KσH(x)

�
dx ≤ 4

�
1 + 1/

√
2π
�
K−1/3σ−4/3.

Proof of Lemma A.5. We make the decomposition∫ ∞
0

E
�
KσH(x)e−KσH(x)

�
dx =

∫ ∞
0

E
�
1(T−x/2 ≤ l)KσH(x)e−KσH(x)

�
dx

+

∫ ∞
0

E
�
1(T−x/2 > l)KσH(x)e−KσH(x)

�
dx ,

with some l > 0. Using ye−y ≤ 1 and (A.26), we obtain∫ ∞
0

E
�
1(T−x/2 ≤ l)KσH(x)e−KσH(x)

�
dx ≤ 2

∫ ∞
0

(1− Φ(x/
√

4l)) dx

=
È

8l/π.



26 M. BIBINGER, M. JIRAK & M. REISS

Now, using ye−y ≤ e−y/2 and T−x/2 > l ⇒ H(x) ≥ lx/2, we bound the
other term by∫ ∞

0
E
�
1(T−x/2 > l)KσH(x)e−KσH(x)

�
dx ≤

∫ ∞
0

e−Kσlx/4dx =
4

Kσl
.

The choice l = (Kσ)−2/3 and division by σ yield the claim.

Lemma A.6. Let K > 0. Then∫ ∞
0

xE
�
KH(x)e−KσH(x)

�
dx ≤ 6

K1/2σ3/2
.

Proof of Lemma A.6. We proceed as in the proof of Lemma A.5 and
obtain for any l > 0∫ ∞

0
xE

�
KσH(x)e−KσH(x)

�
dx ≤

∫ ∞
0

x
(
2(1− Φ(x/

√
4l)) + e−Kσlx/4

)
dx

= 2l + (Kσl/4)−1.

The result follows with l = (Kσ)−1/2.

Lemma A.7. Let K ≥ σ−1. Then∫ 1

0
I(Kσ, s)ds ≤ 3

( Kσ
log(Kσ)

)−2/5
,

∣∣∣∣∣∂
∫ 1
0 I(Kσ, s)ds

∂σ

∣∣∣∣∣ ≤ 3

σ

( Kσ
log(Kσ)

)−2/5
.

Proof of Lemma A.7. With λ(s) = K(1−s)3/2 we obtain for any T > 0∫ 1

0
I(Kσ, s)ds =

∫ 1

0
E
[
e−λ(s)σ

∫ 1

0
(Wt)−dt

]
ds

≤
∫ 1

0

(
P
(
λ(s)σ

∫ 1

0
(Wt)−dt ≤ T

)
+ e−T

)
ds.

From
∫ 1
0 (Wt)−dt ≥ |Z| with Z =

∫ 1
0 Wt dt ∼ N(0, 1/3), we deduce

P(
∫ 1

0 (Wt)−dt ≤ ε) ≤ ε, ε > 0, and thus

∣∣∣∣∂
∫ 1
0 I(Kσ, s)ds

∂σ

∣∣∣∣ ≤ ∫ 1

0

((
Tσ−1λ(s)−1

)
∧ 1
)
ds+ e−T .

Using (σλ(s))−1 ≤ (Kσ/T )3/5 for s ≤ 1 − (Kσ/T )−2/5 the last integral is
bounded by 2(Kσ/T )−2/5. The choice T = log(Kσ) yields the first inequality.
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Then using ye−y ≤ e−y/2 we also obtain∣∣∣∣∂
∫ 1

0 I(Kσ, s)ds
∂σ

∣∣∣∣ =

∫ 1

0
E
[
λ(s)

∫ 1

0
(Wt)−dt e

−λ(s)σ
∫ 1

0
(Wt)−dt

]
ds

≤ σ−1
∫ 1

0

(
P
(
λ(s)σ

∫ 1

0
(Wt)−dt ≤ T

)
+ e−T/2

)
ds.

The previous bounds now apply in the same way.

Lemma A.8. Consider J
�
σ
�

= 2Λ1(σ) − Λ2
2(σ). Then there exists a

constant B = B(K) > 0 only depending on K such that∣∣∣∣∣∂kJ�σ�
∣∣∣∣∣ ≤ B(1 + σ−k), k = 1, 2.(A.27)

Proof of Lemma A.8. Without loss of generality, we may assume that
K = 1. From the considerations below, existence of the k’th derivative of
J
�
σ
�

with respect to σ follows. We thus focus on establishing (A.27). First

consider
∫∞
0 xE

�
e−σH(x)

�
dx. An application of the Cauchy-Schwarz inequal-

ity gives∣∣∣∣∣∂
k
∫∞

0 xE
�
e−σH(x)

�
dx

∂kσ

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞

0
xE
[�
−H(x)

�k
e−σH(x)

]
dx

∣∣∣∣∣
≤
∫ ∞

0
xE

�
H(x)2k

�1/2 E �e−2σH(x)
�1/2

dx.(A.28)

Applying the triangle and Cauchy-Schwarz inequality further yields

E
�
H(x)2k

�1/2 ≤ E
[�∫ 1

0
|Ws|ds+ |x|

�2k
]1/2

. 1 ∨ xk.(A.29)

The calculations in the proof of Lemma A.4 with l =
È
x/σ/2 yield

(A.30) E[exp(−2σH(x))] . exp(−x3/2σ1/2/2).

Combining (A.29) and (A.30), we deduce that∫ ∞
0

xE
�
H(x)2k

�1/2 E �e−2σH(x)
�1/2

dx

.
∫ ∞

0

�
x ∨ xk+1

�
exp(−x3/2σ1/2/2) dx . σ−2/3(1 + σ−k/3).
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This implies that for some C > 0∣∣∣∣∣∂
k
∫∞
0 xE

�
e−σH(x)

�
dx

∂kσ

∣∣∣∣∣ ≤ Cσ−2/3(1 + σ−k/3) .(A.31)

Arguing in the same manner, one also establishes that∣∣∣∣∣∂
k
∫∞

0 E
�
e−σH(x)

�
dx

∂kσ

∣∣∣∣∣ ≤ Cσ−1/3(1 + σ−k/3) .(A.32)

Moreover, such bounds are also valid for the derivatives of
∫ 1
0 I(σ, s)ds.

APPENDIX B: PROOF OF THEOREM 2

After the reductions of the problem to a simpler and more informative
experiment, we now prove Theorem 4.1 using properties of the Hellinger
distance H(P,Q) between probability measures, in particular H2(P1 ⊗
P2, Q1⊗Q2) ≤ H2(P1, Q1)+H2(P2, Q2) (subadditivity under independence),
H2(P,Q) = E[H2(P,Q|T )] (Hellinger distance conditional on a statistic T )
and

H2(PPP (λ1), PPP (λ2)) ≤
∫

(
√
λ1 −

√
λ2)2

(Hellinger bound for PPP measures with intensity densities λi, cf. [21]).

Put δn = δσ
5/3
0 n−1/3. From H2(N(0, σ2

0), N(0, σ2
0 + δn)) ≤ 2(δnσ

−2
0 )2,

cf. Appendix in [23], and the independent increments of Brownian motion
we infer for the Hellinger distance of the laws of (XT s

j
)j=1,...,J under σ2

0 and

σ2
0 + δn

H2

(
P

(XTs
j

)

σ2
0

, P
(XTs

j
)

σ2
0+δn

∣∣∣ (T sj )

)
≤

J∑
j=1

2δ2
nσ
−4
0 = 2Jδ2

nσ
−4
0 .

For each PPP with intensity density λj we obtain by integral calculations,
in terms of η = (σ2

0 + δn)1/2 − σ0:

H2
(
PPP (λj(σ2

0)), PPP (λj(σ2
0 + δn))

∣∣∣ (T sj ), B0,T s
j −T

s
j−1

)
≤ n

∫ T s
j −T

s
j−1

0

∫
R

((
b−1

�
y − σ0B

0,T s
j −T

s
j−1

t

�
+

)
∧ 1

−
(
b−1

�
y − (σ2

0 + δn)1/2B
0,T s

j −T
s
j−1

t

�
+

)
∧ 1
)2
dy dt

= nb

∫ T s
j −T

s
j−1

0

∫
R

(
u+ ∧ 1−

�
u− b−1ηB

0,T s
j −T

s
j−1

t

�
+
∧ 1
)2
dy dt

≤ nb
∫ T s

j −T
s
j−1

0
b−2η2(B

0,T s
j −T

s
j−1

t )2dt.
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Hence, by using the variance of a Brownian bridge we arrive at

H2
(
PPP (λj(σ2

0)), PPP (λj(σ2
0 + δn))

∣∣∣ (T sj )
)

≤ nb−1η2
∫ T s

j −T
s
j−1

0
t(1− (T sj − T sj−1)−1t) dt =

nη2

6b
(T sj − T sj−1)2.

Since conditional on (T sj ) all observations are independent, the total squared
Hellinger distance conditional on (T sj ) is bounded by

2Jδ2
nσ
−4
0 +

nη2

6b

J+1∑
j=1

(T sj − T sj−1)2.

Taking expectations and using J ∼ Poiss(2nb/3), T sj −T sj−1 ∼ Exp(2nb/3) to
apply the Wald identity to the second sum, the unconditional total Hellinger
distance is bounded by

H2 ≤ 4nbδ2
n

3σ4
0

+
nη2

6b
(2nb/3)−1(1 + o(1)).

We have η2 ≤ 1
2δ

2
nσ
−2
0 due to

√
1 + x ≤ 1 + x/2 for x > 0 and thus by

choosing b ∝ (σ2
0/n)1/3 optimally and plugging in δn

H2 ≤ δ2n1/3σ
4/3
0 inf

b>0

( 2b

3σ2
0

+
C

12b2n

)
≤ C ′δ2.

From the general lower bound Theorem 2.2(ii) in [25] we thus obtain the
result if δ is chosen smaller than 2/C ′.
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[27] Zhang, L., Mykland, P. A. and Äıt-Sahalia, Y. (2005). A tale of two time



31

scales: Determining integrated volatility with noisy high-frequency data. Journal of
the American Statistical Association 100 (472), 1394–1411.

Markus Bibinger,
Moritz Jirak,
Markus Reiß,
Institut für Mathematik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany



 

 

 

 

SFB 649 Discussion Paper Series 2014 

 
For a complete list of Discussion Papers published by the SFB 649, 

please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
001 "Principal Component Analysis in an Asymmetric Norm" by Ngoc Mai 

Tran, Maria Osipenko and Wolfgang Karl Härdle, January 2014. 

002 "A Simultaneous Confidence Corridor for Varying Coefficient Regression 

with Sparse Functional Data" by Lijie Gu, Li Wang, Wolfgang Karl Härdle 

and Lijian Yang, January 2014. 

003 "An Extended Single Index Model with Missing Response at Random" by 

Qihua Wang, Tao Zhang, Wolfgang Karl Härdle, January 2014. 

004 "Structural Vector Autoregressive Analysis in a Data Rich Environment: 

A Survey" by Helmut Lütkepohl, January 2014. 

005 "Functional stable limit theorems for efficient spectral covolatility 

estimators" by Randolf Altmeyer and Markus Bibinger, January 2014. 

006 "A consistent two-factor model for pricing temperature derivatives" by 

Andreas Groll, Brenda López-Cabrera and Thilo Meyer-Brandis, January 

2014. 

007 "Confidence Bands for Impulse Responses: Bonferroni versus Wald" by 

Helmut Lütkepohl, Anna Staszewska-Bystrova and Peter Winker, January 

2014. 

008 "Simultaneous Confidence Corridors and Variable Selection for 

Generalized Additive Models" by Shuzhuan Zheng, Rong Liu, Lijian Yang 

and Wolfgang Karl Härdle, January 2014. 

009 "Structural Vector Autoregressions: Checking Identifying Long-run 

Restrictions via Heteroskedasticity" by Helmut Lütkepohl and Anton 

Velinov, January 2014. 

010 "Efficient Iterative Maximum Likelihood Estimation of High-

Parameterized Time Series Models" by Nikolaus Hautsch, Ostap Okhrin 

and Alexander Ristig, January 2014. 

011 "Fiscal Devaluation in a Monetary Union" by Philipp Engler, Giovanni 

Ganelli, Juha Tervala and Simon Voigts, January 2014. 

012 "Nonparametric Estimates for Conditional Quantiles of Time Series" by 

Jürgen Franke, Peter Mwita and Weining Wang, January 2014. 

013 "Product Market Deregulation and Employment Outcomes: Evidence 

from the German Retail Sector" by Charlotte Senftleben-König, January 

2014. 

014 "Estimation procedures for exchangeable Marshall copulas with 

hydrological application" by Fabrizio Durante and Ostap Okhrin, January 

2014. 

015 "Ladislaus von Bortkiewicz - statistician, economist, and a European 

intellectual" by Wolfgang Karl Härdle and Annette B. Vogt, February 

2014. 

016 "An Application of Principal Component Analysis on Multivariate Time-

Stationary Spatio-Temporal Data" by Stephan Stahlschmidt, Wolfgang 

Karl Härdle and Helmut Thome, February 2014. 

017 "The composition of government spending and the multiplier at the Zero 

Lower Bound" by Julien Albertini, Arthur Poirier and Jordan Roulleau-

Pasdeloup, February 2014. 

018 "Interacting Product and Labor Market Regulation and the Impact of 

Immigration on Native Wages" by Susanne Prantl and Alexandra Spitz-

Oener, February 2014. 

 
 

 
 

 

SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 



  SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649 Discussion Paper Series 2014 

 

For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
019 "Unemployment benefits extensions at the zero lower bound on nominal 

interest rate" by Julien Albertini and Arthur Poirier, February 2014. 

020 "Modelling spatio-temporal variability of temperature" by Xiaofeng Cao, 

Ostap Okhrin, Martin Odening and Matthias Ritter, February 2014. 

021 "Do Maternal Health Problems Influence Child's Worrying Status? 

Evidence from British Cohort Study" by Xianhua Dai, Wolfgang Karl 

Härdle and Keming Yu, February 2014. 

022 "Nonparametric Test for a Constant Beta over a Fixed Time Interval" by 

Markus Reiß, Viktor Todorov and George Tauchen, February 2014. 

023 "Inflation Expectations Spillovers between the United States and Euro 

Area" by Aleksei Netšunajev and Lars Winkelmann, March 2014. 

024 "Peer Effects and Students’ Self-Control" by Berno Buechel, Lydia 

Mechtenberg and Julia Petersen, April 2014. 

025 "Is there a demand for multi-year crop insurance?" by Maria Osipenko, 

Zhiwei Shen and Martin Odening, April 2014. 

026 "Credit Risk Calibration based on CDS Spreads" by Shih-Kang Chao, 

Wolfgang Karl Härdle and Hien Pham-Thu, May 2014. 

027 "Stale Forward Guidance" by Gunda-Alexandra Detmers and Dieter 

Nautz, May 2014. 

028 "Confidence Corridors for Multivariate Generalized Quantile Regression" 

by Shih-Kang Chao, Katharina Proksch, Holger Dette and Wolfgang 

Härdle, May 2014. 

029 "Information Risk, Market Stress and Institutional Herding in Financial 

Markets: New Evidence Through the Lens of a Simulated Model" by 

Christopher Boortz, Stephanie Kremer, Simon Jurkatis and Dieter Nautz, 

May 2014. 

030 "Forecasting Generalized Quantiles of Electricity Demand: A Functional 

Data Approach" by Brenda López Cabrera and Franziska Schulz, May 

2014. 

031 "Structural Vector Autoregressions with Smooth Transition in Variances – 

The Interaction Between U.S. Monetary Policy and the Stock Market" by  

Helmut Lütkepohl and Aleksei Netsunajev, June 2014. 

032 "TEDAS - Tail Event Driven ASset Allocation" by Wolfgang Karl Härdle, 

Sergey Nasekin, David Lee Kuo Chuen and Phoon Kok Fai, June 2014. 

033 "Discount Factor Shocks and Labor Market Dynamics" by Julien Albertini 

and Arthur Poirier, June 2014. 

034 "Risky Linear Approximations" by Alexander Meyer-Gohde, July 2014 

035 "Adaptive Order Flow Forecasting with Multiplicative Error Models" by 

Wolfgang Karl Härdle, Andrija Mihoci and Christopher Hian-Ann Ting, 

July 2014 

036 "Portfolio Decisions and Brain Reactions via the CEAD method" by Piotr 

Majer, Peter N.C. Mohr, Hauke R. Heekeren and Wolfgang K. Härdle, July 

2014 

037 "Common price and volatility jumps in noisy high-frequency data" by 

Markus Bibinger and Lars Winkelmann, July 2014 

038 "Spatial Wage Inequality and Technological Change" by Charlotte 

Senftleben-König and Hanna Wielandt, August 2014 

039 "The integration of credit default swap markets in the pre and post-

subprime crisis in common stochastic trends" by Cathy Yi-Hsuan Chen, 

Wolfgang Karl Härdle, Hien Pham-Thu, August 2014 

 

 

 



  SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649 Discussion Paper Series 2014 

 

For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
040 "Localising Forward Intensities for Multiperiod Corporate Default" by 

Dedy Dwi Prastyo and Wolfgang Karl Härdle, August 2014. 

041 "Certification and Market Transparency" by Konrad Stahl and Roland 

Strausz, September 2014. 

042 "Beyond dimension two: A test for higher-order tail risk" by Carsten 

Bormann, Melanie Schienle and Julia Schaumburg, September 2014. 

043 "Semiparametric Estimation with Generated Covariates" by Enno 

Mammen, Christoph Rothe and Melanie Schienle, September 2014. 

044 "On the Timing of Climate Agreements" by Robert C. Schmidt and 

Roland Strausz, September 2014. 

045 "Optimal Sales Contracts with Withdrawal Rights" by Daniel Krähmer and 

Roland Strausz, September 2014. 

046 "Ex post information rents in sequential screening" by Daniel Krähmer 

and Roland Strausz, September 2014. 

047 "Similarities and Differences between U.S. and German Regulation of the 

Use of Derivatives and Leverage by Mutual Funds – What Can Regulators 

Learn from Each Other?" by Dominika Paula Gałkiewicz, September 

2014. 

048 "That's how we roll: an experiment on rollover risk" by Ciril Bosch-Rosa, 

September 2014. 

049 "Comparing Solution Methods for DSGE Models with Labor Market 

Search" by Hong Lan, September 2014. 

050 "Volatility Modelling of CO2 Emission Allowance Spot Prices with Regime-

Switching GARCH Models" by Thijs Benschopa, Brenda López Cabrera, 

September 2014. 

051 "Corporate Cash Hoarding in a Model with Liquidity Constraints" by Falk 

Mazelis, September 2014. 

052 "Designing an Index for Assessing Wind Energy Potential" by Matthias 

Ritter, Zhiwei Shen, Brenda López Cabrera, Martin Odening, Lars 

Deckert, September 2014. 

053 "Improved Volatility Estimation Based On Limit Order Books" by Markus 

Bibinger, Moritz Jirak, Markus Reiss, September 2014. 

 
 


	AA_Frontpage 052
	VolaEstfinalcrc160914
	Introduction
	Volatility estimation based on local minima
	The law of local minima and the convergence rate of the estimator
	Lower bound for the rate of convergence
	Conclusion
	Proofs of Section 3
	Asymptotic analysis of the estimator
	Properties of  

	Proof of Theorem 2
	References
	Author's addresses

	ZZ_Endpage 052

