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Abstract

| construct risk-corrected approximations of the poliaydtions of DSGE models around the stochas-
tic steady state and ergodic mean that are linear in thesatbles. The resulting approximations
are uniformly more accurate than standard linear appraxamsand capture the dynamics of asset
pricing variables such as the expected risk premium misgetidmdard linear approximations. The
algorithm is fast and reliable, requiring only the solutmfilinear equations using standard pertur-
bation output. | examine the joint macroeconomic and agsghpg implications of a real business
cycle model with stochastic trends and recursive prefagndhe method is able to estimate risk
aversion under these preferences using the Kalman filtegreva standard linear approximation
provides no information and alternative methods requimamatationally intensive particle filters

subject to sampling variation.
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1 Introduction

What are the fects of small shock realizations in economies subject t&@riShere is a growing
consensus that standard linear approximations arouncetieendinistic steady state are ifiscient
to address this question satisfactorily in a variety ofisg#t, such as for conditional asset pricing,
under recursive utility, for welfare comparisons, etc.,enéhprecautionary motives play a signif-
icant role in economic decision makifgAt fault is the certainty equivalence of standard linear
approximations around the deterministic steady statentfaies them invariant to the moments of
the distribution of exogenous shocks (i.e., to risk).

| reconcile the linear framework with risk by constructingpaoximations of the policy functions
of DSGE models that are linear in states but that accountigkrim the points and slopes used to
construct the linear approximation; | call these risky éinapproximation$.I construct two difer-
ent approximations, one around the stochastic steadyatatene around the ergodic mean. The
method can be used profitably in estimation. Due to the lihe@rstates and under the assumption
of normally distributed shocks, the Kalman filter is opevaél for the risky linear approximation. |
find the risky linear approximation using the Kalman filteagsequally successful as standard per-
turbation particle filtet estimation—both with the state space and nonlinear mowegpge policy
function representatiofis-in identifying parameters outside the reach of standahli approxima-

tions. The advantage, then, is that the risky linear appmakion, by employing the Kalman filter, is

Kim and Kim (2003) provide an insightful example, where Hlapplication of linear approximations leads to the
spurious results that autarky is to be preferred over riskish given risk averse utility.

2] construct only risky linear approximations and not segdhitd, or higher order risky approximations as standard
DSGE perturbations, see, e.g., Jin and Judd (2002), prahel@ppropriate, in the sense of Taylor's theorem, local
polynomial approximation of the policy function using dextives calculated at the deterministic steady state. iBkg r
linear approximation | derive uses some derivatives fronvargorder and discards others. This price is worth paying
for maintaining linearity in states, which resuscitates linear toolbox of DSGE analysis including the Kalman filter
for estimation, while incorporating the nonlinearities@asated with risk. It is less clear what the gain over a stathd
perturbation would be for higher order risky approximasion

3See Fernandez-Villaverde and Rubio-Ramirez (2007) amahdadez-Villaverde, Guerron-Quintana, Rubio-
Ramirez, and Uribe (2011) for details on particle filterindpSGE models as well as applications to risk.

4See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004, Kim, Schaumburg, and Sims (2008), Lombardo
(2010) and Lan and Meyer-Gohde (2013c)



several orders of magnitude faster and is not subject toaimpkng variation that the particle filter
faces when identification is weak.

| apply the method to a real business cycle model with rislsisieity, using Epstein and Zin
(1989) and Weil (1990) recursive preferences, and longiskfollowing Bansal and Yaron (2004).
The risky linear approximations match the stochastic stesdate, ergodic mean, and impulse re-
sponses reported in previous nonlinear stuélieassess the accuracy of the risky linear approxima-
tion using Euler equation errors and find a uniform improvenhwer the standard linear approxi-
mation. As risk aversion is increased, allowing risk to pdagreater role in the utility maximiza-
tion problem, the risky linear approximation demonstraesuracy in the vicinity of the stochastic
steady state and ergodic mean that is comparable to secdrtiethorder perturbations. | find that
US post war data on consumption, output, and the risk prentéaats the likelihood function to
favor higher levels of risk aversion with the posterior mateabout 30. The likelihood function,
however, is rather flat in this dimension and fully nonlinapproximations employing the particle
filter suffer from sampling variation that impedes reliable inferesuce are four orders of magnitude
slower; for standard linear approximations, the likeliddonction is entirely flat in the dimension
of risk aversion and the posterior is identical to the prior.

The method | propose here is not the first method to employkacosrection as opposed to a
standard nonlinear method (higher order perturbationaiyajisolution method such as projectién),
but it is different in two important respects. First, it is the first methmavork solely with deriva-

tive information from a standard perturbation and known reots of the exogenous process—no

SThe stochastic steady state derived here is identical toofhizan and Meyer-Gohde (2013b), the ergodic mean
identical to that of Lan and Meyer-Gohde (2013a) and AndmeaBernandez-Villaverde, and Rubio-Ramirez (2013),
and the impulse responses to those that would result frommétkod of Lan and Meyer-Gohde (2013c)

6Kim and Kim (2003) as well as Collard and Juillard (2001b) &udlard and Juillard (2001a) are early DSGE bias
reduction or risk correction techniques. Coeurdacier, Begt Winant (2011) uses a second order approximation to the
equilibrium conditions to solve for the stochastic steatdyesin a portfolio problem, de Groot (2013) extends this to
general settings as a matrix quadratic problem. Juillaéd 12 and Kliem and Uhlig (2013) use iterative techniques,
solving for implied stochastic steady states given an apprated solution and then recalculating the approximadion
the new implied stochastic steady state. Evers (2012) sébvehe stochastic steady state implied by a risk pertiobat
of the equilibrium conditions and then solves for a perttidrain the states of these perturbed equilibrium condgion



reevaluation of derivatives or recalculation of policyasilare required to construct the approxima-
tion. The resulting equations are linear in the unknowrffo@ents of my approximation, entirely
avoiding fixed point or other recursive algorithms with uokm convergence properties. Second,
my approximation allows for the approximation around thgoéic mean as well as around the
stochastic steady state—competing methods can provigdlomlatter. Both of these two features
are accomplished by working implicitly with the unknown gl function instead of the model
equilibrium conditions.

The remainder of the paper is organized as follows. In se@jd lay out the model class
and assumptions underlying the local, risk corrected mhoebehind risky linear approximations
before | derive the approximations in secti®inn sectiord, | present the real business cycle model
with recursive preferences and long run risk. | analyze taltbcated versions of the real business
cycle model in terms of accuracy in sectidnin section6, | assess the likelihood properties of the
risky linear approximation relative to particle filters asthndard linearizations and estimate risk

aversion and long run risk using post war US data. Sedtiooncludes.

2 DSGE Model: Assumptions and Local Approximation

| begin by introducing a general class of models, a systenonfimear second order expectational

difference equations.
2.1 Model Class

| will analyze a family of discrete-time rational expectats models given by

(1) 0 = E[f (Ve Yo Vi1, 0E0)]
f i RYxRYxRvxR"™ — R" is an,-dimensional vector-valued function collecting the eipilm

conditions that describe the modglie R" is the vector ofy, endogenous and exogenous variaBles;

“As well as subsidiary definitions to bring a model into theniaf (1). Nonlinearity or serial correlation in exoge-
nous processes can be captured by including the processasdlves in the vectgr and including functions irf that
specify the nonlinearity or correlation pattern. For thedelof sectiord, the subsidiary definitiond¢ = E; [U.1] and

3



ande; € R™ the vector oin, exogenous shoclf‘slvhereny andn, are positive integersyf, n. € N).
The auxiliary parameter € R scales the risk in the mod&lThe stochastic model version of
(1) corresponds tor = 1 ando = O represents the deterministic version of the model. Inugxi
solutions byo yields
(2) Ve = 01,08, 0), Y RYXR™ xR — RY
Thato scales risk can be by writing out the integral and probahidlénsity function behind the

expectations operator in the moddl),(giving

(3) 0= f f (Vir1, Yoo Vi1, 0€1) @ (E141) derer = f f (Y1, Vo, Vi1, &) @ ( ) déts1

whereQ is the support and the probability density function ef,; and the second equality follows
upon definings; = 0. Lettingo go to zero collapses the entire distributig), and this can be

rewritten as

4) = ||m f f (Ves1, Yoo Vi 1,8t)¢( )d8t+1 = f (Y1, Yoo Yi-1, 0)

the deterministic counterpart af)(

2.2 Local Approximations and Points of Expansion

The starting point and point of expansion for local appradions to the solution of DSGE models

is the deterministic steady state, defined as follows

Definition 2.1. Deterministic Steady State

Letydet € R define a fixed point o) given by

(5) y*' = 9(7*.0,0)
Mg = E; [M¢1] are required to capture the nonlinearities over the camtil expectations while conforming to the class
in (2).

8This model class encompasses competitive equilibria andmjc programming problems, as well as models with
finitely many heterogenous agents, see Judd and Merteng)(2Rbnlinearity or serial correlation in exogenous pro-
cesses can be captured by including the processes thessethe vector; and including functions irf that specify
the nonlinearity or correlation pattern.

SMy formulation follows Adjemian, Bastani, Juillard, Mihby Perendia, Pfeifer, Ratto, and Villemot's (2011)
Dynare, Anderson, Levin, and Swanson’s (2006) PerturbAtid and Juillard (2011). Jin and Judd’s (2002) or Schmitt-
Grohé and Uribe’s (2004) model classes can be rearrandéd1p. Furthermore, my scaling of ad, future, past, and
present, follows Lombardo (2010).



i.e., a fixed point of2) in the absence of both rigk- = 0) and shocks«; = 0).

The deterministic steady statés recovered by solving the for a fixed point d) (the determin-
istic version of () in the absence of risk and shocksz( (Y, Y, Y, 0).
Standard DSGE perturbation then constructs a Taylor sexkpansion of the policy function,

(2), up to some, sai’th, order around the deterministic steady state, givefi by

Mg Mg . .
(6) x5 [Z SGieo | (-2
ji=0 1" [i=0
where
(7 Uiioi = D' {y(o, 7)) € R”yxni, with n, = n, +n,

4o
is the partial derivative of the vector functigrwith respect to the state vectar= [yt_l o-s{]' ]
times and the perturbation parametertimes! evaluated at the deterministic steady state using the
notation outlined in appendik.2.
The deterministic steady state is the fixed point for the rdetastic, - = 0, model but not

the stochasticy = 1, model. This manifests itself in the Taylor serié} s the constant terms

M %gai o' that move the Taylor series away from the deterministicdstestate. The deterministic
steady state is neither a fixed point of the stochastic madkhar of the Taylor series approximation
of the stochastiar = 1, model forM > 2, wheno corrects for the second moment of risk.

The stochastic steady state is the steady state of the stachmdel, incorporating risk into its

definition in the following

Definition 2.2. Stochastic Steady State

Lety*°" e R define a fixed point o2 given by

(8) ystoch — g(ystoch’ O, 1)

i.e., a fixed point of2) in the presence of risfo- = 1) but in the absence of shocks € 0).

10The assumptions that validate this expansion will be intoedi in sectior2.3. See Lan and Meyer-Gohde (Forth-
coming) for a derivation of this multivariate Taylor sergggproximation.

HAs the perturbation parameter also scatgsl should say this is the partial derivative with respecthe third
argument and writ@); ,yiz € R™<™, but | choose not to do so as not to overload the notation. Bheptete, direct
and indirect, derivative of; with respect tar, Z,{y:}, in my notation is given bYZ,{yi} = Y&t + Yo

5



That is, the fixed point in the state space in the absence akshbut while expecting future
shocks with a known probability distribution. Solving far approximation of the stochastic steady
state is not trivial using the state space formulation ofbkcy function, see Coeurdacier, Rey,
and Winant (2011), Juillard (2011), and de Groot (2013), tneddefinition in 8) is not directly
useful. The diiculty arises a§>°"is defined only implicitly in 8) and the method of solving 8
f (V,V.V, 0) to recover the deterministic steady state is not availabll@ presence of risk requires
the integral over the probability distribution of futureosliks embodied by the expectations operator
be maintained in%). Alternatively, one could examine an alternative nordinmoving average
representation of the policy function that results uporertimg or recursively substitution the state
space policy function2).}> Approximated out to some, saw’th, order around the deterministic

steady state &%

(o)

M 00 o M-m

1 1

9 Yr = Z = Z Z e Z [Z ﬁya"i1i2-~-im0'ﬂ (etiy ® &1, ® -+ ® Etiy,)
m=0 : i]_:O i2:0 imZO n=0 :

wherey,,..i " is the derivative of; with respect to then'th fold Kronecker products of exogenous

innovationd, i,, ... andi,, periods ago and with respect to the perturbation parametertimes.

The stochastic steady state now follows by letting the hystd shocks be equal to zero at all dates

(i.e., lettingy; converge to its fixed point), but letting = 1 to correct for risk taV'th order, yielding

M
1
ostoch -
(10) FOx Y e
n=0
as an approximation of the stochastic steady state.
Although not a fixed point, the ergodic meanypfwill be a useful point to construct a local

approximation around for estimation, defined as

Definition 2.3. Ergodic Mean

12See Lan and Meyer-Gohde (2013c) for solving and analyzinGB$odels with nonlinear moving averages and
Aruoba, Bocola, and Schorfheide (2013) for an empiricaliapfion of \Volterra series to macroeconomic time series.
Again the the assumptions that validate this expansionbeiihtroduced in sectioR.3.

13See Lan and Meyer-Gohde (2013b) for the mapping betweerettialpderivativesy,i,i andy,mi,..i.,-



Lety"®*" e R" be a vector such that

(12) Y= E [yi] = E[9(Yi-1. &1, 1)]

being the unconditional expectation @) {n the presence of uncertainfy = 1) and shocks«).

This point is particulary advantageous in empirical aglans as it is likely to be associated
with a high probability density. Again, the definition ih1) is not directly useful, as calculating the
mean requires integration over the endogenous variabieggh the unknown policy function. The
nonlinear moving average formulation proves advantagagas, requiring only knowledge of the

moments of exogenous variables to give an approximatioheoétgodic mean

M ) M-m
_ 1 1
(12) y = Elyd & Z;) ml Z Z e O[Zo HyO'”iliZ"'imo-n] E 6w, ® &i, ® - ® &y |
m= n=

i1=0 i2=0 im=

(o)

to calculate the mean.

In section3, | will calculate risky linear approximations around thedtastic steady state and
the ergodic mean, approximating these points and the deeagaof the policy function at these
points through implicit dferentiation of the policy function2j at the deterministic steady state.
That is, | will derive the points and slopes for the risky Bin@pproximation jointly using a new
method and | will compare the results with those presentee ine(10) and (L2). Before | derive

these risky linear approximations, | will layout the asstions necessary to validate the procedure.

2.3 Assumptions and Validity of Risky Linear Approximation

| will present assumptions for the local approximation af thodel in () around the deterministic
steady state and for this approximation to be valid at thehststic steady state and ergodic mean.
Then I will show how these assumptions validate the methaggolhat | will use in the next section
of constructing a local approximation of the stochasticr@Ky” model around the stochastic steady
state or ergodic mean by using derivative information fromdeterministic model evaluated at the

deterministic steady state.



Assumption 2.4. Assumptions

| impose the following assumptions in my analysis

1. Local Analyticity: the functions f inlj and g in @) are locally analytic around the deter-
ministic steady state (\ =V, & = 0, o = 0) with a domain of convergence that contains the

stochastic steady state and ergodic mean

2. Local Stability: the eigenvalues of gvaluated at the deterministic steady statei(y Y,

g = 0, o = 0) are all inside the unit circle.

3. Exogenous Moments: the elements; afre i.i.d. with E[&] = 0 and E[st®[m]] finiteYm < M,

whereg®™ is the m'th fold Kronecker product ef with itself: s, @ &; - - - ® &
—————

m times

The first assumption ensures that the functions involvedsareoth at least in the region of
interest and that the true policy function has an infinitesoithylor series representation that remains
valid as the state space moves to the stochastic steadyasthtrgodic mean. The second that the
solution is locally stable at the deterministic steadyestdihe third that that the exogenous process
is defined at least out to the order of approximatibn.

From the assumption of local analyticity fgry; has the Taylor series representation

0 1 (5] 1 . _ , /®[j]
(13) Yo = Z(; fl ; ﬁgziaio'll [%—1 -y O'St]
i= i=
Thus, increasing the approximation order in the standartugiation brings the approximation

closer to the true policy function in the sense that an irdioitder perturbation will recover the
true policy function. Local analyticity of andg and of the existence of finite moments validates
the standard DSGE perturbation practice of successivégrdntiatingf deliver equations that the

codficients,g,i,, in (13) solve®®

14Jin and Judd (2002) would additionally require bounded sugior the exogenous process. Kim, Kim, Schaum-
burg, and Sims (2008)ter skepticism regarding the necessity of a boundednessatisn.

15Additionally, Lan and Meyer-Gohde (Forthcoming) provettassumption®.4 are stificient to guarantee the solv-
ability of DSGE perturbations; that is, that successivefjedentiatingf delivers equations that can be uniquely solved
to deliver the cofficients,g,i, in (13).



The assumption of local stability in addition to that of Ibeaalyticity for g ensures that the

policy function can be inverted, at least locally, as

(14) =y =3y

m=0 " i1=0  im=0

delivering a infinite nonlinear moving average or Voltereaias representatiof.

Z — YotiseinG (Ceri, ® - ® oeiy,)
n=0

The assumption that analyticity holds over a domain largantthe deterministic steady state
ensures that the Taylor series representatiorl8) emains valid beyond the immediate vicinity
of the deterministic steady state. This assumption is afudinalyticity in o from zero to one
connects the deterministic and stochastic models, ertpblin use of the derivatives gfato = 0
to approximate the stochastie, = 1, model. In this stochastic model, both the fixed point—the
stochastic steady stat®){—and average value—the ergodic medri){—of the policy function are
generically diferent from the deterministic steady state. As such, vistady policy experiment or
simulation will leave the vicinity of the deterministic sigy state. Hence, for standard perturbations
to be applicable in settings useful for analysis, they musniain their validity in a region of the
state space that contains the deterministic steady stathastic steady state, and ergodic mean, as
well as in the perturbation parametet,over the deterministic and stochastic models.

In this case, both the stochastic steady state

(15) ystoch — i J_l' [i %gzjgi] [;,Stocﬁ_y o']’®[j]

j=0 i=0
and the ergodic mean

(16) Ely] = i % i T i [i %ycrnil---im] Eleti, ® - ® &t |
n=0

m=0 = i1=0  im=0

are recoverable from the implicit function theorem, reopgronly derivatives ofj evaluated at the
deterministic steady state as enter the Taylor seligsgnd the moments af;. Furthermore, due
to the analyticity assumed in a domain containing both tgedic mean and the stochastic steady
state, the policy function is analytic at these points as,wakuring its infinite dierentiability there

as well. If the function is infinitely dferentiable at a point, it is certainly oncefdrentiable there

16See Lan and Meyer-Gohde (2013c) and Sandberg (1983).



as well.

Thus, the stochastic steady state and the ergodic mean arfitghderivative of the policy
function at these points can be recovered using derivatifggmation at the deterministic steady
state and the moments of the exogenous shocks of the modell §@ll proceed to do exactly that

and assemble the points and slopes into linear approxingatio

3 Risky Linear Approximations

Now | will define a risky linear approximation, that is, an apgmation that is linear in the states,
Vi1 andey, but corrected to arbitrary order for risk, i.e., out to tlesided moments of the distribution
of the exogenous shocksin (1). The correction for risk is accomplished by expanding tbkcy
function nonlinearly ino-, the index that scales risk. Expanding to first ordes-inorrects for the
first moment ofs;,'’” to second order inr corrects for the second momentsf and so forth.

| will write such ac- dependent or risky linear approximation as

17) Y = V(o) + %(0) (Yee1 = ¥(0)) + V(o)

wherey(o) is ac dependent or risky point for andyy (o) andy;(c) are theo dependent or risky
first derivatives ofy; at this risky point. | shall consider two risky points, thedtastic steady state
and the ergodic mean.

From standard DSGE perturbation, | have derivative infaiomeat the deterministic steady state.
| will now show that the first derivative§, (o) andy, (o), will depend on the risky poin§j(c), and
that my two choices for the risky point, the stochastic syesidte and the ergodic mean, along with
these first derivatives at these points can be obtained frenwadive information obtained at the

deterministic steady state.

17As the shock is assumed mean zero, this correction doesteotla policy functions compared with their deter-
ministic counterparts. See Schmitt-Grohé and Uribe (2604 Lan and Meyer-Gohde (Forthcoming).

10



3.1 Risky Points of Approxiamtion
3.1.1 Stochastic Steady State

The first point around which | will construct a linear approstion is the stochastic steady state.
The stochastic and deterministic steady states can be elethaaiplicitly in ac-dependent steady

State

(18) y(o) =9(¥(0).0,0)
Here,o = 1 gives the stochastic and = 0 the deterministic steady state. A Taylor expansion of

y (o) around ther = 0 deterministic steady state can be written as

(o)

_ 1_ i
(19) y(0) = ZO Vo1 (0"
1=
Using the Taylor expansion i, the stochastic steady state can be approximated by sagisg
of linear equations with inhomogeneous constants cofigdtiwer order terms and standard DSGE

perturbation output, as | summarize in the following

Proposition 3.1. o- Approximation of the Stochastic Steady State
Let assumptior2.4 hold, the stochastic steady state B) @s represented byl@) can be approxi-
mated ino- using only derivative information from standard perturioais—g;i in (6)—around the

deterministic steady state.
Proof. See appendiA.3. |

To capture the féect of the first two moments of the exogenous processestfiat.of the vari-
ance of the mean zero growth shocks in the model of sedjian the stochastic steady state, a
second order approximation inevaluated at- = 1 is needed.

(20) T(@) =5+, (0) + 55,2 (0) + )
This second order in- approximation of the stochastic steady state is given iseddorm by the

following

11



Corollary 3.2. Second Ordeo- Approximation of the Stochastic Steady State

The stochastic steady state B) Can be approximated to second ordeiwtras
_ _ 1 -1
(21) Vg4 5 (In - 9) o
Proof. See appendiA.4. |

The value reported in2Q) is identical to the value reported in Lan and Meyer-Gohd¥Lgb)

derived using a second-order nonlinear moving average.

3.1.2 Ergodic Mean

The second point around which | would like to be able to camtsta linear approximation is the
ergodic mean. The ergodic mean and the deterministic s&athycan be embedded implicitly in a

o-dependent point

(22) Y (o) = E[g(Ye-1, &1, 0)]

Here,o = 1 gives the ergodic mean and= 0 the deterministic steady state. Due to the singularity
induced byo = 0, which turns @ the stochastics in the model, the steady state coincidéstinat
mean in this deterministic setting, which | exploit to epméate from the deterministic steady state

to the ergodic mean. A Taylor expansionydtr) around ther = 0 deterministic steady state is

(o)

_ 1_ i
(23) wwzgﬁw@w
1=
Using the Taylor expansion ior, the ergodic can be approximated by solving sets of linear
eguations with inhomogeneous constants collecting lowsgraerms, standard DSGE perturbation

output, and the given moments of the exogenous driving f@asé¢ summarize in the following

Proposition 3.3. o- Approximation of the Ergodic Mean
Let assumptio.4 hold, the ergodic mean irL(Q) as represented by B) can be approximated ior
using derivative information from standard perturbatieng, in (6)—evaluated at the determin-

istic steady state and the given finite moments of the exogedroving force.

12



Proof. See appendiA.5. O

Discarding terms of order higher than two B8} and evaluating at = 1 give an approximation
of the ergodic mean that captures theeets of the first two moments of the exogenous processes
(i.e., that of the variance of the mean zero growth shockisemtodel of sectiod)
(24) V(@) = +7, (0) + 57,2 0) + O)
In terms of the derivatives of the standard perturbatiorhatdeterministic steady stat&)),(and

moments ok, the ergodic mean is give out to second order by the following

Corollary 3.4. Second Ordeo- Approximation of the Ergodic Mean

The ergodic mean inl@) can be approximated to second ordemwtras
_ _ 1 -1 -1
(25) Y=Y+ 5 (In - ) (goz * (gez + (g — g5) ?m) E [8?[2]])
Proof. See appendiA.6. |

The value reported ir26) is identical to the value reported in Lan and Meyer-Gohdd.8a) us-
ing a second nonlinear moving average and in Andreasenafr@ez-Villaverde, and Rubio-Ramirez

(2013) using a second order pruned state space approxmiétio
3.2 Risky First Derivatives

Given a risky point from above, | need only to calculate thst fiterivatives with respect to states
and shocks in order to complete the construction of the fisiear approximation inX7).
The first derivatives with respect to states and shocks drauisky pointy(c) from above, are

given by

Definition 3.5. First Derivatives at ar Adjusted Point

83ee also Kim, Kim, Schaumburg, and Sims (2008) for seconergnaining and Lombardo (2010) for a theoretical
justification of state space pruning. Lan and Meyer-Goh@& 8D) provide an overview and comparison of pruning in
the literature.
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The derivatives ofywith respect to y; ande; at a risky pointy(o-) are

(26) W(o) = 6,(¥(0).0,0),  Ve(o) = g:(¥(0). 0, 0)

The first derivatives are- dependent functions, both directly and indirectly throdigé risky
point of approximationy(c), chosen. Hereg = 1 gives the first derivatives at the risky point of
approximation andr = O at the deterministic steady state. Taylor expansiong(of) andyz (o)

around ther = 0 deterministic steady state can be written as

@7) W)= D 1 O (@) = Y 19, (O

As was the case with the t\l/jc)) risky points considerelcioabovetim derivatives at these points
depend only on standard output from perturbation algosthderivatives of the policy function at
the deterministic steady state and the moments (througtidheatives of the risky ergodic mean)

of the exogenous shocks, as | summarize in the following

Proposition 3.6. o- Approximation of the First Derivatives
The first derivatives in26) can be approximated ior using only derivative information from stan-
dard perturbations—g,: in (6)—evaluated at the deterministic steady state and the alivey in-

formation ino- from the chosen risky point of approximation.

Proof. See appendiA.8. |

Approximating out to second order inas above for the risky points of approximation to adjust
the first derivatives for the first two moments of the the distion of the exogenous shoclks, and
evaluating at- = 1 gives the following
(28)  F(0) =5+ 5 O+ 59 O+ 00", %o(0) =5 + 5, O) + 57,2 (0) + O
In terms of the derivatives of the standard perturbatiorhatdeterministic steady staté),(and
derivatives of the chosen risky point of approximation, firg& derivatives can be written to second

order as
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Corollary 3.7. Second Ordes- Approximation of the First Derivatives

The first derivatives inZ6) can be approximated to second ordewiras

_ 1 _ _ 1 _
(29) B0~ +5(0 (0@ ln) +8ry). D)0+ 5 (0 To2(0)® In) +Goz)
Proof. See appendiA.8. |

With the risky first derivatives in hand, the risky linear amgmation in (L7) can be constructed
by choosing either the approximation of the stochasticdstesiate or of the ergodic mean and
calculating the associated first derivatives. Before | taran application of the approximation in an

economic model, | will address the theoretical validity lné approximation.

3.2.1 Relation to Perturbation First Derivatives

Here, | examine the relationship of the risky points and esogerived above with standard perturba-
tion output. | show that the risky first derivatives corrgatcover the first derivatives of the Taylor
series evaluated at the risky points above out to a giverr imde.'® These derivatives tfer from
those used in Andreasen, Fernandez-Villaverde, and Rréioirez’s (2013) pruning algorithm,
which give risky derivatives evaluated at the deterministeady state.

Differentiate the Taylor series representation of the staritdrbation in §) with respect to

the state vectar, to yield

|@-2 e,

ZA

i=0

M-j
1 1 ,
. —0Qsigi 0"
= (j— 1) [Z i!
M-1 1

(30) <) J_l'

Ozi+1y o'

. (@~ el,|

j=0 i=0
Evaluated at the deterministic steady state; z, the foregoing collapses to
M-1
1 .
(31 2RI

i=0
For M = 3, the first derivative from a third order perturbation apqmmation, settingr to one and

BWhen the risky point is the stochastic steady state, thed@svatives recover the risky derivatives used in Lan and
Meyer-Gohde’s (2013b) recursive formulation of Lan and kre§gohde’s (2013c) nonlinear moving average.
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recalling that terms first order in are zerd® is

(32) DY ~ Gr + 1gmz
The last termg,,, is the time varying risk correction that enters at thirdesroh the pruning algo-
rithm of Andreasen, Fernandez-Villaverde, and Rubio-Rem(2013) and matched perturbation of
Lombardo (2010%*

Of primary interest here are the derivatives at the riskyn{goof interest derived in sectich

Recall, @9) and @3), that the risky points can be expressed as Taylor seriesii.,

_ o 1
(33) V@) = ) % O
1=
settingy; = Y(0) andeg; = 0, in the first derivative of the Taylor series representatibthe policy

function from @0) yields
M-1

M-j-1 _ <1l
(34) ‘@Ztyt ~ Z ]_]; [ Z %gzj*lo'io-i] ([y(o-())_ yl ® Inz)

j=0 i—0
For a second order ior approximations of the points of interest derived exphcitl section2, this

expression becomes

M—1 [M—j—1 ) — eljl
1 1 1y , (0) o2
gztyt ~ Z F |_' J+10-|0' ([zy(r (() )0- ] ® |nz)
= | i=0
M- [M—j-1 ®l]] o
@) ST M B0 oo
=0 i=0 ' L

0

Discarding terms i of orde hlghert an two in order to obtain a second order approximation

of the matrix of first derivatives at the risky point of intetgives

o)

or in terms of derivatives with respectyp; ande, separately

(36) DY ~ Oz +

1
gmz + 0z (

1 _ _
B7) Ay~ o+ 5[0 +0e (Ve ®ln)]. Zayixg+ [ng + Oy (V2 ® In.)]
which are identical to the results presented in secBi@ The risky derivatives derived in section

3.2 with my implicit risk adjustment procedure provide the emtrderivatives at the chosen risky

20See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004)LLan and Meyer-Gohde (Forthcoming).
21See Lan and Meyer-Gohde (2013b) for a detailed comparistimesé and other pruning algorithms.
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point of interest up to the chosen ordefin

4 Long Run Risk and the Real Business Cycle

| will examine a canonical real business cycle model in thiets Kydland and Prescott (1982) with
two differentiating features to emphasize the role of risk: regassior risk-sensitive—preferences
and long run risk. I follow Epstein and Zin (1989), Weil (199@nd others by replacing the con-
tinuation value of household utility with a power certairguivalent to introduce risk sensitivity
and to disentangle risk aversion and the inverse elasti¢itytertemporal substitution. | confront
agents with long run real risk in the form of stochastic teimiproductivity?? which adds risk to the
growth of consumption, making the stochastic driving fastemodel welfare relevant in the sense of
Lucas (1987). My choice of model is very similar to the mod&tdi in the numerical study of Cal-
dara, Fernandez-Villaverde, Rubio-Ramirez, and YadZ20where | have replaced their stochastic
volatility with long run risk?3

The social planner maximizes the expected discountedhtiéetitility of a representative house-

hold given recursivekf by

0
1- T

(38) U= |- (€ (- 1) 7 +p (B UL

whereC, is consumptionl; labor, 3 € (0, 1) the discount factory a labor supply parametey,

governs risk aversiof?,and

1-vy
(39) 0=1"7
v

wherey is the elasticity of intertemporal substitution (IES). Bhthese recursive preferences dis-

22See, e.g., Bansal and Yaron (2004) in an endowment and Rseiebnd Swanson (2012) in a production model.

23As | will be examining linear approximations, | would only bble to capture the precautionafjegts or average
effects of stochastic volatility and would miss the time vagygffects of changes in conditional heteroskedasticity.
One could conceivably move the approximation towards thelitimnally normal one used in Justiniano and Primiceri
(2008), to retain some of the advantages of linearity, higtithbeyond the scope of this paper.

%4See Epstein and Zin (1989) and Weil (1990). Backus, Rougledgd Zin (2005) provide a detailed overview of
these and other preferences that deviate from standardtexidility.

25In the presence on an adjustable labor margin, the standeagure of risk aversion does not directly apply, see
Swanson (2012a). Swanson (2012b) presents measures afeision under recursive preferences in the presence of a
labor margin. | maintain the misnomer of referringytas risk aversion for expositional ease.
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entangle the IES and risk aversion. The social planner fdeesesource constraint
(40) Co+ K = KE, (L) +(1-6) Kis
with K; being capital¢ its output elasticity and its depreciation rate, ang a random walk with
drift productivity process given by
41 a=2Z-2Z_,=a+o0s, &~N(01)
with o the standard deviation af anda the drift.

The first order conditions are the intratemporal condition

1-v G

(42) IoL (1- &) e 92K L*

and the intertemporal condition
(43) 1= Et [Mt+1 (fth_l (ezt+1 Lt+1)1_§ +1- 5)]

where the pricing kernel is given by

1y
[

v -V — 1

(44) w2 00oC G (G- L)) [ Ued ) “
t+1 = = = —

+ AU/ 9C Cti1 (Ctv (1- Lt)l—v)lT E: [Ut+1]1 7

The presence dfl;,; in the pricing kernel necessitates the inclusion of theealunction evaluated

at the optimum, where | recycle the notatidp

(45) U, = [(1 -p)(Cr (- Lt)l—V)l% +B(E [u};{])%ry

along with the first order conditions, the resource constr@iO), and the exogenous driving force
(41) to characterize an equilibrium. With the stochastic trenthe model, | detrend all variables
(apart fromL, and M,) with x, = X;/€*; the value function is detrended slightlyfidirently, u, =
U,/e%.25 | reexpress all macroeconomic variables through a log foamstionX; = In(x,) so that
deviations in these variables from any given value can leFpnéted as percentage deviations and a

linear approximation ok gives a log linear approximaticii.

Additionally, 1 will examine two conditional asset pricingariables to measure shifts in the

26See appendiA. 1 for the detrended model.
2’See, e.g., Uhlig (1999).
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pricing of risk. First, the ex ante risk premium

(46) erp = E [r{‘+1 - rtf]
where the risk-free ratetf, IS given byrtf = m and the return on capitalf, is given byrtf =

gKf_‘ll (eZt Lt)l_g + 1 - ¢6; and second, the (squared) conditional market price of risk
Et [(Mt+1 - Et [Mt+l])2]
Et [Mt+1]2
| will take the square of the usual conditional market pri€eisk—conditional standard deviation

(47) cmpk =

over conditional mean—to maintainftérentiability at the deterministic steady state, necesear
the application of the perturbation methods to which | wilirt to later. Finally, I will include the ex
post risk premium

(48) rpe=ri-r,

as an observable counterpart to the ex ante version above.

5 Accuracy of the Risky Linear Approximation

| now apply the risky linear approximation to two calibrateersions of the neoclassical growth
model of sectior. | begin by assessing the accuracy of the risky linear appraon by examining
the Euler equation errors and comparing the results to atdrithear and higher order perturbation

solutions.
5.1 Calibration

In tablel, | report the parameter values common to both calibrati@esisider here. The calibration
for these parameters largely follows Caldara, Fernandiéeverde, Rubio-Ramirez, and Yao (2012)
and reflects standard observations on the post war US ecorfosiget to match the labor share of
national incomep to reflect an annual interest rate of aboli 3o; the value o¥ induces work to
occupy roughly one third of the time endowment; @aradigns the model in the deterministic steady

state to the investment output ratio. The valu@a$ set to match the average postwar growth rate
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of output.
[Table 1 about here.]

In table2, | report the baseline calibration in the first three colunthare, | set risk aversiory,
to 5, following the baseline parameterization of Caldamxngndez-Villaverde, Rubio-Ramirez, and
Yao (2012). The elasticity of intertemporal substitutitieS) and the standard deviation of technol-
ogy growth shocks are set to match the standard deviatiolog @onsumption and output growth
for the third order nonlinear moving average perturbatiginton of the modef® This value for the
IES lies in the range of .8 to 15 examined in Caldara, Fernandez-Villaverde, Rubio-Remand

Yao (2012), reflecting conservative bounds on the paramaetgcated in the literature.
[Table 2 about here.]

The extreme calibration can be found in the last three cotuainiable2. Risk aversiony, is
equal to 40, following Caldara, Fernandez-VillaverdebReRamirez, and Yao (2012). The IES and
the standard deviation of technology growth shocks arenaggtito match the standard deviations
of log consumption and output growth for the third order imtpebation solution of the model.
When calibrating to the two macro data sets, the values ®iHES$ and the standard deviation of
technology growth shocks remain virtually unchanged, ctfig the well known result—see, e.g.,

Tallarini (2000)—that macro series are driven primarilytbg IES and not risk aversion.
5.2 Euler Equation Errors

Following Judd and Guu (1997) and Judd (1998), | use thefregt-Euler equation residuals as a
measure of accurady.| will assess the accuracy of the risky linear approximatiothe approxi-

mated stochastic steady stéte.

28Thus, this nonlinear moving average representation asssupio the state space representation of the policy func-
tion admits closed form calculation of the theoretical matsgsee Lan and Meyer-Gohde (2013a).

29See also Aruoba, Fernandez-Villaverde, and Rubio-Raam(2006) and Caldara, Fernandez-Villaverde, Rubio-
Ramirez, and Yao (2012) for applications of this measueesgess the accuracy of varying solution methods.

30The results are virtually unchanged with the alternative grgodic mean.
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The Euler equation error expressed as a fraction of tinmsumption is given by
(49)

[N

1—

=

v -1

:D‘

Ly . /1 (11 iy \177 ~
E, [,8 e 7 (552) T (gfedny) (ke @ L)t + 1—6)]
Gt
Here, the value of, say,EL— 2 implies a $1 mistake for each $100 spent and the valudeof B

EEE(kt—l,St) = -1
implies a $1 mistake for each $1000 and so forth. This is atfonof the statek;_; and shockeg;.
In figure 1, | plot the Euler equation errors with the current shock segero and examine how this

error depends on the endogenous state,

[Figure 1 about here.]

In figure 1a the Euler equation errors for the baseline calibration lsarfound. The risky
linear approximation uniformly improves on the linear appmation, while lagging behind the
second and third order perturbation. In general, higheeroperturbations improve the accuracy of
the approximation. In the vicinity of the steady statethis improvement is more than one order
of magnitude. In sum, the risky linear approximation, wtstél linear in states and shocks, is
uniformly more accurate than the standard linear approana

The Euler equation errors for the extreme calibration apgatied in figurelb. As the impor-
tance of risk in the underlying nonlinear system is incrdaseough the increase in risk aversion
in the extreme calibration, so does the relative perforraariche risky linear approximation. Now
the risky linear approximation is two orders of magnituderenaccurate than the standard linear
approximation over a broad vicinity surrounding the stestlyes’? Furthermore, the risky linear
approximation is roughly comparable to higher order appnaxions despite its linearity in states
and shocks.

Thus, for small shock realizations and values of the staigital, close to the stochastic steady

3lunder the baseline calibration, the stochastic and detésitic steady states are nearly the same.

32Now the diference between the stochastic and deterministic steatdys stan be discerned visually, with the min-
imum of the risky linear approximation, the stochastic dyestate, to the right of the minimum of the standard linear
approximation, the deterministic steady state.
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state, | conclude that the risky linear approximation ofghevious sections outperforms the standard

linear approximation and performs favorably compared Wwitiher order perturbations.
5.3 Impulse Response Analysis

Having established the satisfactory accuracy of the rislealr approximation, | will turn to its struc-
tural predictions in the form of impulse response functiohsignificant advantage of the linearity
in states and shocks of the approximation is that an impelsganse is a straightforward concept.
Whereas nonlinear methods must take a stance regardingeb#ic assumptions regarding a gen-
eralized impulse respong&the risky linear approximation and its standard linear agipnation

require no such discussion.
[Figure 2 about here.]

In figure 2, the impulses of selected macroeconomic and financial blagawith respect to a
one standard deviation shock to the growth rate of techiyodwg plotted. Figur@a contains the
impulses of consumption and capital to a growth rate shockpulse responses from the risky
linear (here the stochastic steady state version), stdrohear, and third order nonlinear moving
average approximations are indistinguishable up to nwakerdounding. Consumption and capital,
both detrended, fall in response to the shock as the capitek &nd consumption catch up to the
accelerated growth path. Figudd contains the impulses of the expected risk premium and the
conditional market price of risk. The standard linear agpration fails to capture the movementin
these conditional asset pricing variables, while the rigkgar approximation put forth in previous
sections here matches, up to numerical rounding, the irmp@enerated by the full nonlinear third

order moving average approximation of Lan and Meyer-GoR6é& 3c).

33See Lan and Meyer-Gohde (2013c) and Andreasen, Fernafitlezerde, and Rubio-Ramirez (2013) and the spe-
cific assumptions therein.
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6 Estimation using Risky Linear Approximations

| begin by exploring the properties of the likelihood furctifor the risky linear approximation
in a Monte Carlo experiment and then turn to the Bayesiamesion of risk aversion and the
standard deviation of technology growth rate shocks usi8gUst war data. | find the risky linear
approximation using the Kalman filter meets or exceeds thgpcbationally intensive particle filter
routines for third-order state space and nonlinear mowegage perturbations while successfully
identifying risk aversion. | find that the posterior of theky linear approximation using US post
war data on consumption and output growth and the excess rells for higher risk aversion that
posited by the prior, whereas the likelihood function fargtard linear approximation is entirely
flat in the dimension of risk aversion and the likelihood ftioie for the third order perturbations

sufer suficiently from sampling variation to prevent reliable infece.
6.1 Monte Carlo Study of Estimation Properties

Here, | study the ability of the risky linear approximatiandstimate deep parameters beyond the
reach of standard linear approximations and comparefffegemcy with which it is able to do such
with perturbation-based patrticle filters that enjoy rekatsolution éiciency advantages over al-
ternative nonlinear methods—see, e.g., Aruoba, Ferr@axdiaverde, and Rubio-Ramirez (2006),
though Fernandez-Villaverde and Rubio-Ramirez (20@i¢ mhat perturbation is neither required
for nor necessarily the preferred method for taking evergehto the particle filter.

For the estimation exercise, | generate twoQD period series of, one for each calibration in
section5.1, using a third order nonlinear moving average. | then esarparameters one at a time,
holding all other parameters constant, usingedent solution methods. The methods | will compare
are the risky linear method, conventional linearizatidwirck order state space perturbation, and the
third order nonlinear moving average used to generate ttee davill present the results for risk

aversion;y, and the standard deviation of growth shocks,
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The risky linear method maintains linearity in states anatc&l, which, given the assumed nor-
mality of growth rate shocks, enables the use of the Kalmgear.fiHere, | choose the ergodic mean
of section3.1.2as the risky point so that the mean of the risky linear appnaxion coincides with
the approximation, iwr, of the ergodic mean of the true nonlinear model. The stahlidegarization
is also estimated with the Kalman filter. The standard apgrder the two nonlinear perturbations,
nonlinear moving average and standard state space, isrt@éstising a sequential importance sam-
pler with resampling, i.e., the particle filter, see FenhérzVillaverde and Rubio-Ramirez (2007),
which simulates the entire distributions of the unobsderabates.Unfortunately, the particle filter
can be very demanding computationally, precluding its useeatly in many policy relevant mod-
els3* | set the number of particles in the filter to be, 800 and add measurement noise accounting
for 1% of the variance of; to operationalize a version of the particle filter followjregg. Bidder

and Smith (2012).

[Figure 3 about here.]

In figure 3 the likelihood function, normalized relative to the maximiikelihood value for each
method, of risk aversiory, and the standard deviation of technology growth shagksye plotted
for the baseline calibration. The standard linear appratiom is a certainty equivalent approxi-
mation and changes in risk aversion, fig@ag have no &ect on the approximation: the likelihood
function is entirely flat in this dimension. The risky lineapproximation advocated in previous
sections, however, is not certainty equivalent and cdgreadtimates the level of risk aversion in
figure3a Both of the patrticle filter based policy functions corrg@ktimate the degree of risk aver-
sion, but as can be seen in figlda there is clearly sampling variation and the number of plasi
would clearly need to be increased past@D to operationalizes a numerical maximization rou-

tine. As can be gathered from the scale ofylaxis in figure3a though, risk aversion of this small

34van Binsbergen, Fernandez-Villaverde, Koijen, and RiuRéonirez (2012) provides a notable exception, yet due
to the demands of the patrticle filter, they model inflationgemously and are primarily concerned with the estimation
exercise itself.
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degree is only very weakly identified, placing high demanashe particle filters; the risky linear
approximation, however, has noffitulties with this weak identification. All four of the methed
correctly estimate the standard deviation of growth shoaksan be seen in figugb. The likeli-
hood cuts for both of the particle filter estimated pertudyet coincide and the risky and standard

linear approximations display slightly more dispersioarthhe perturbation methods.

[Figure 4 about here.]

The likelihood cuts, expressed relative to the maximum ikeglihood value for each method, of
risk aversion,y, and the standard deviation of technology growth shogksgre plotted in figure
4 for the extreme calibration. Again, the standard linearrapimation is a certainty equivalent
approximation and changes in risk aversion havefteceon the approximation as can be garnered
from the entirely flat likelihood function figurda Once again, the risky linear approximation
advocated in previous sections, however, is not certampiyvalent and correctly estimates the level
of risk aversion, albeit with slightly more dispersion tela to the particle based filters. Both of the
particle filter based policy functions correctly estimdte tevel of risk aversion and nearly coincide
in figured4a Note that sampling variation in the particle filters is notioeable in figureta, as risk
aversion s clearly more strongly identified as can be gadhfsom the scale of the y-axis. Turningto
the standard deviation of growth shocks in figdbethe standard linear approximation clearly fails
to correctly estimate this parameter. As the standarddirei@on does not capture risk aversion, it
attributes the increase in risk sensitivity to an increasesk itself. The risky linear approximation
and the two patrticle filter based perturbations correctiyreste the standard deviation, with the
risky linear approximation likelihood contour coincidimgth that of the data-generating-process,
the nonlinear moving average.

Figures5 and 6 display likelihood cuts under the baseline calibration datput growth—
log(Y;) — log(Y;_1)—and for the ex post risk premiumdg). Output growth is an observable series,

yet, as figurebaindicates, this series is unable to reveal the degree ofaiigksion. Risk in this
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model is constant, as opposed to a model with say time vamotagility, and first diferencing re-
moves the constant correction for risk in the policy funetipeliminating the role for risk in the

observable, as all approximations reflect with their flaglitkood surfaces.

[Figure 5 about here.]

The story is diferent with data generated by the ex post risk premium. Thaaglentirely
driven by precautionary motives as is the unobservable gxr&k premium, this measure reveals
significant information on the level of risk aversion, asigaded by the curvature of the likelihood
function in6a With the dfect of increased risk sensitivity incorporated, all measinut the standard
linear approximation agree upon a relative reduction ofgtierce of constant risk, the standard

deviation of growth shocks—see figusb.

[Figure 6 about here.]

In table3 the diferent computation costs, measured in terms of computatienger likelihood
evaluation®® As can be seen, the risky linear was negligibly slower thanstiandard linear with
the additional costs coming from the need to calculate tive thrder perturbation that delivers
the higher order derivatives used to correct the linear $donrisk. Compared to the perturbation
solutions that use the particle filter, theéfdrence is striking. The risky linear method of the previous
sections is four orders of magnitude faster than the partikér based methods. This despite their
similar performance in estimating the parameters and,eagréfssence of sampling variation implies,

the choice of the number of particles appears to have beeseoative.

[Table 3 about here.]

The estimation exercise provides strong evidence in faf/thieorisky linear approximation for

use in estimation. It is meets or exceeds, when accountingd@ntial sampling variability with

35Comparisons computed on an Intel Xeon E5-2690 with 16 cdr2€9@ GHz on Matlab R2013b. Approximately
61% of the processor resources were used by the particlediltay given pointin time during the calculations.

26



particle filters, higher order perturbation methods in tdfgimg nonlinear parameters, like risk aver-
sion, that standard linear approximations cannot idemtifife simultaneously maintaining the com-

putational éiciency provided by the linear in state and shock framework.
6.2 US Post-War Estimation of Risk and Risk Sensitivity

| now turn to the estimation of risk and risk sensitivity ugimost war US data. While estimating, |
take a Bayesian perspective following standard practiteérDSGE literaturé® Taking the results
of the previous section into account, | shall include ex pis$t premium along with consumption
and output growth in the data stl find that the risky linear approximation introduced hertisca
for more risk and risk aversion as is to be expected with thkigion of the ex post risk premium in
the data set. The particle filter based methodEesd@rom sampling variation close to the posterior

mode, which makes estimation with my relatively flat pridiessible.
[Table 4 about here.]

Table4 contains the priors of the standard deviation of growth Ee@mnd risk aversion. Both
priors are relatively loose, with the prior on risk aversicentered roughly in between the two
values of the calibrated model. The standard deviation@ftiowth shock has its prior mean and
mode below the calibrated values but assigns substantibbpility mass to the region around that
value. Tabled contains point estimates from the posterior from the rishgt aonventional linear
approximations. The risky linear approximation favors endsk aversion and more risk than the
standard linear approximation, whose estimate of risksweiis entirely prior driven with prior and

posterior modes coinciding and the likelihood functionirety flat along this dimension.

[Figure 7 about here.]

36See Smets and Wouters (2003) and Smets and Wouters (20@#pfainent and Del Negro, Schorfheide, Smets,
and Wouters (2007) and An and Schorfheide (2007) for inBtmiexamples of Bayesian estimation of DSGE models.
37See appendiR.9 for details on the data series.
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Figure7 depicts the posterior as well as the likelihood using theyrimear approximation. The
likelihood function, figure7b, indicates that the data is informative in both dimensiosisagithe
risky linear approximation. While the likelihood and poste figure 7a both favor a similar value
for the standard deviation of growth rate shocis,they dtter substantially over the parameter
controlling risk aversiony. As discussed also by, e.g., Tallarini (2000), productiardeis with
recursive utility can match the slope of the market line (arket price of risk) but require exorbitant
levels of risk aversion to come close to the average risk prensee tabl®. The posterior tempers

this tendency, yielding a modest outward shift in the disttion of risk aversion relative to the prior.

[Figure 8 about here.]

In figure 7, the posterior and likelihood using the standard linear@gmation can be found.
As was to be expected from the results of the preceding segtibe likelihood is flat along the
dimension of the parameter controlling risk aversion. Imeotwords, the precautionary component
of the risk premium in the data is entirely ignored and ris&raion is completely prior driven.

The posteriors and likelihoods for the nonlinear movingrage perturbation can be found in
figure 9.3 As was the case for two of the four sets of synthetic data fieencalibrated models,
sampling variation in the particle filter is visible here wthe post war US data set with the dimen-
sion in the risk aversion parametgrbeing most obviously impactéd This is not surprising, as the
likelihood surface for the risky linear approximation iodies that this dimension of the likelihood
function is nearly flat, especially for values of the standdeviation of growth shockss, close to
the mode. Nonetheless, for larger valuesoh clear upward slope for larger valuesyotmerges,

consistent with the model requiring more risk aversion toease the risk premium.

[Figure 9 about here.]

38The results for the standard perturbation were essentralgame and have been omitted for brevity.
3%For the figures here, | increased the number of particles @000, which improved but as is clear from the figure
did not eliminate the sampling variation of the particlesfi#.
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Table 5 gives the asset pricing variable momefftsAs discussed above, the model does not
match the magnitude of the empirical risk premium. The rikkgar approximation is, however,
able to bring the market price of risk from the pricing ker(st(m)/E[m]) and the Sharpe ratio
from the excess return on risky capita&[(f — r]/stdik — r")) close to the empirical market price
of risk as measured by the NYSE value weighted portfolio tkersecondary market rate for three
month Treasury bilf! As the standard linear approximation does not generaté angésnium at all,
its Sharpe ratio is zero, and the standard linear approiomptoduces a market price of risk that is

half the size as generated by the risky linear approximation
[Table 5 about here.]

Informing the estimation with the empirical risk premiunoiad with consumption and output
growth leads the posterior with the risky linear approximato favor a higher level of risk aversion
than under the prior. The conventional linear approxinmaisanvariant to the level of risk aversion
and so the likelihood function is unable to inform the pasterAs the likelihood function is rather
flat in the dimension of risk aversion, full nonlinear esttioa is infeasible as the particle filter
sufers from a sampling variation large enough to mask the cureah the likelihood function.
Under the posterior mode estimates, the model's predtadithe market price of risk and the
Sharpe ratio are brought closer to the observed market pfidsk for the NYSE value weighted

portfolio.

7 Conclusion

| have derived and analyzed a risky linear approximatiornefgolicy function for DSGE models.

The method solves linear equations in standard perturbatitput, requiring neither fixed point nor

49The macroeconomic variables remain essentially unchaaged the risk aversion has been changed substantially
and it is known, see Tallarini (2000) for example, that macanomic variables are virtually invariant to the level of
risk aversion, holding the intertemporal elasticity of stiiition constant. Tables with empirical as well as thet@asr
model based business cycle measures have thusly beenteelégappendiA.10.

41A description of the post war US data used for the empiricklescan be found in appendi9
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other recursive methods, by operating implicitly with the&known policy function instead of the

equilibrium conditions of the model. This direct approatdng with the minimal costs associated
with standard perturbation methods allow me provide a t#gtanon equivalent method suitable
for the estimation and analysis of policy relevant DSGEgpolinder risk without needed to turn to
the particle filter or alternate algorithms with unknown wergence properties that correct for risk.
Finally, the method presented is able to provide a risk cbecklinear approximation around the
ergodic mean as well as the stochastic steady state.

In the chosen application, a risk-sensitive real busingskeanodel with long run risk, | find
that the risky linear approximation is a uniform improvermever the standard linear approxima-
tion and, as risk becomes more important in the the modekd¢hbaracy of the algorithm becomes
comparable to second and third perturbations in the vicioitthe stochastic steady state despite
being linear in states and shocks. The method produces s@pesponses identical to those gen-
erated by a third order nonlinear moving average and is alteadel the responses of conditional
asset pricing variables to shocks, which are beyond théhreastandard linear approximations.
Finally, in a estimation exercise, | show that the risky éin@pproximation estimated using the
Kalman filter correctly identifies risk and risk aversioni@ediferent from the inverse elasticity of
intertemporal substitution due to the recursive prefegghalong with the particle filter estimations
of standard perturbation and nonlinear moving averageoxppation. Thus, the risky linear ap-
proximation combines theféciency in estimation (with the Kalman filter here being fouders of
magnitude faster than the particle filter) of linear forntigias with the information from nonlinear
approximations needed to identify parameters such as thee®f risk aversion that are beyond
the reach of standard linear approximations. Indeed, irapi@ication to post war US data, the
likelihood function is entirely flat in the dimension of riskersion for a standard linear approxima-
tion and stficiently flat for third order perturbations using the pasitilter that sampling variation

precludes reliable inference.
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The method here could be extended using the change of \atiarisformations studied by
Fernandez-Villaverde and Rubio-Ramirez (2006) to méeéchthe accuracy of the risky linear ap-
proximation. Likewise conditional linear approximatioas applied by Justiniano and Primiceri
(2008) to study volatility shifts in post war US data couldrlsk adjusted to capture the precaution-
ary dfects neglected in their work. Finally, the method developea could be applied to policy
relevant models that require capturing risk, e.g., to métancial market date, but whose size pre-
cludes the application of alternative nonlinear methods, éhe computational costs of the particle
filter are too burdensome. In work in progress, Kliem and Md&yehde (2013) apply the risky
linear method developed here to estimate and analyzeffibet® of monetary policy in a medium

scale DSGE macro finance model of the nominal term structure.
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A Appendix

A.1 Detrended Model

Detrending withx, = X;/€* (u; = U,/€"%) gives

S

(A'l) U = [(1 _,B) (C{ (1 _ Lt)l—v)% +,B(Et [(uﬁleva{)l—y])%]l Y
) otk =K L -k
(A'3) 1= Et [Mt 1 (é‘:e(l f)a{+li§ Ll 3 +1-— 6)]
(A-4) My = 8 (Ct+1ea‘ )V_ ) (1 Lt+l)(l ey )
t+1 C 1-L E, [(queyaHl)l—y]
1 B —_,
(A-5) Vﬁ =(1-9 e—fatktf_lLt 3

A.2 Matrix Derivatives

That is
( s et [0\
(A-6) Qoo = 7" Y0 2)) = ([azli_l ) ®(5) W
elil( 0
(A7) [l w2 )en

where the second line follows asis a scalar. The termEZ‘”MOJ Il,yzjg.a] in (6) collect all the

codficients associated with thgth fold Kronecker product of the state vectog € 2). Higher
orders ofo in g, correct the Taylor series cfiients for uncertainty by successively opening the
codficients to higher moments in the distribution of future sres@kl will take the availability of
these standard perturbation Taylor series as ¢i¥en.

With f andy both being vector-valued functions that take vectors agraents, their partial
derivatives form hypercubes. | use the method of Lan and Mé&gihde (2013c) that fferentiates

conformably with the Kronecker product, allowing us to main standard linear algebraic struc-

42/ similar interpretation can be found in Judd and Mertend @dor univariate expansions and in Lan and Meyer-
Gohde (2013c) for expansions in infinite sequences of inthmva

43See Jin and Judd (2002) and Lan and Meyer-Gohde (Forthcdrfingnore on whether these dtieients can
indeed be recovered by standard DSGE perturbations.
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tures to derive our results.

Definition A.1. Matrix Derivatives

Let A(B) : R®! — RP* be a matrix-valued function that maps ar $ vector B into an x g matrix
A(B), the derivative structure of (8) with respect to B is defined as

(A-8) Ao = ZaiAL = [ ... a|®A

where b denotes i'th row of vector B; n’'th derivatives are

: ) poi
(A-9) A = Tl = ([ - ] )@ A

Details of the associated calculus that generalizes fanthain and product rules as well as
Taylor approximations to multidimensional settings caricaad in Lan and Meyer-Gohde (2013c)

and Lan and Meyer-Gohde (Forthcoming).
A.3 Proof of Proposition 3.1

Successive dierentiation of 18) yields equations recursively linear y): taking as given lower
order terms of the forrii,; and derivatives of) with respect to;_; ando. For solvability, following
the implicit function theorem, the matrgy, the first derivative of the policy function at the deter-
ministic steady state with respect to endogenous variaiest have all eigenvalues inside the unit

circle; this holds under local saddle stability &j.(
A.4 Proof of Corollary 3.2

For a second-order (i) approximation of the stochastic steady statfedentiatey (o) = g(y (o), 0, o)

ato = 0 once for

(A-10) Y0 =gy (©)+g =(1-g) g =0

and twice for

(A-11) Y'(0) = 0¥ (01 + 29,5, +6¥'(0)+ 9z = (1 — g,) gy
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Thus, up to second order in the stochastic steady state is

—stoch _ 1 -1
(A-12) ey (l-g) o

as claimed in corollarg.2
A.5 Proof of Proposition 3.3

Successive dierentiation of 2) with respect tar evaluated at the deterministic steady state gives
recursive equations,.y; that depend on lower order derivatives @f.y;,** derivatives of they
function evaluated at the deterministic steady state, h@@xogenous vectat. Successive dlier-
entiation of @2) yields equations recursively linear ¥} taking as given lower order terms of the
formy ., derivatives of they function evaluated at the deterministic steady state, apdatations

of terms involvingZ,y; ande;. For solvability both of the expectations 6f,y; and of derivatives

of (22), following the implicit function theorem, the matrg, the first derivative of the policy func-
tion at the deterministic steady state with respect to eedogs variables, must have all eigenvalues
inside the unit circle; this holds under local saddle sighdf (1). Under this condition and if the
moments ok, exists and are finite, the terms involving expectations aedlerivatives 0f2),y .,

can be solved uniquely from the given momentgc@nd derivative information of thg function

evaluated at the deterministic steady state.
A.6 Proof of Corollary 3.4
For a second-order (i) approximation of the ergodic meanfldirentiatey (o) = E [0(Vt-1, &, 0) ]

aty;_ ; = y(0) ando = 0 once for

(A-13) Y(0) = E[g,Zlyia) + Geee + 00| = (1 - gy) g, =0

and twice for

(A_14) 7”(0) =E [gy-@o'z{yt—l} + gyz-@rr{yt—l}@[Z] + 2gyegt ® -@U{yt—l}

449 iy denotes theé'th order derivative ofy; with respect toc. The alternative notationy,., refers to thei’th
derivative ofy; with respect to its third argument, i.e., the “direct” dative with respect ter, neglecting derivatives
involving o that enter through the termg; that are included in the notatias,: ;.

37



(A-15) +20y Dr(Yit) + 20ersr + Gebr D + G|

(A-16) =(1-9) (92E[Zoly )] + g2E[s5?] + g,2)

(A-17) = (1= 9)) " (o2 + (g + (15— 65™) " g2 ) E [

where the last ine follows fror [ 7,y *? | = E (6, 7ol 1) + Qe + 6) | = PE [ Zulye 1)@+

g?PE [£7¥| Thus, up to second order in the ¢ = 1) ergodic mean is

725 L1y ) (e (00 (1 - ) ) s

as claimed in corollarg.4.

A.7 Proof of Proposition 3.6

Successive diierentiation of 26) yieldsy, andy,: as functions of derivatives @f with respect to

Vi-1 ando- as well as derivatives of the chosen risky point of approxiomay(o).

A.8 Proof of Corollary 3.7

For a second-order (ior) approximation ofy (o), differentiatey, (o) = g,(Y(c). 0, o) once for
(A-18) %'(0)=09:Y(0)®In, + 9oy =0
and twice for
(A-19) ¥ (0) =6 (7'(0) @ In,) + Gy
Thus, up to second order in the - = 1) derivative iny is
B0~ 0+ 5 (07 (7' O)2 1) + 05

as was claimed in corolla.7. Analogous derivations follow for; (o) ~ Y¥;(0)+Y, (0)o+ %%”(O)crz.
A.9 Data

| use post-war US macroeconomic and asset pricing data itorai@ the model in sectidhand to
estimate risk aversion and the standard deviation of tdogga@rowth shocks in sectiof

All series are quarterly. Investment is defined as the surhe@National Income and Product
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Accounts (NIPA) measures of Personal Consumption Experediton Durable Goods, Private Non-
residential Fixed Investment, and Private Residentiakéibnvestment; Consumption as the sum
of the NIPA measures of Personal Consumption Expenditurdsamdurable Goods and Services;
Output is Gross Domestic Product (GDP) expressed at an hrateaHours are measured by Hours
Worked by Full-Time and Part-Time Employees, interpolat®@ quarterly series by the growth
rate of Civilian Noninstitutional Population series. Istment, Consumption, and Output are ex-
pressed in real per capita terms by deflating by the CivilianiNstitutional Population series and
the chain-type GDP deflator.

The risky return is the return on the NYSE value weightedfpba from the CRSP dataset and
the risk-free return is secondary market rate for the threatmTreasury bill. Both returns have
been deflated by the implicit deflator of the Personal CongiamExpenditures Nondurables and

Services series.

A.10 Business Cycle Tables

Table6 summarizes the first two moments of output, consumptiorstmaent, and hours.
[Table 6 about here.]

Table7 summarizes the first two moments of output, consumptioresimient, and hours from

the model of sectiod evaluated at the posterior mode with the risky linear apipnaxion.

[Table 7 about here.]
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Table 1: Common Calibration

Parameter a 0 v B 3
Value 0.46% 0.0196 0.357 0.991 0.3
a—1948:3-2013:2 average output growth

Remaining values from Caldara, Fernandez-
Villaverde, Rubio-Ramirez, and Yao (2012)

Table 2: Baseline and Extreme Calibration

Baseline Extreme
Parameter| y W o 0% /4 o

Value |5 1.008 1.12625% 40 1.0085 1.1269%

v and p—Caldara, Fernandez-Villaverde, Rubio-Ramirez, and
Yao’s (2012) baseline and extreme values

o andy—1948:3-2013:2 average output and consumption growth
volatilities

Table 3: Computational Costs: Monte Carlo Estimation

Method Linear Risky Linear 3rd Order Pert. 3rd Order Pentuiied)

Evaluation Time 0.44 0.47 430 690

in seconds, per likelihood evaluation

Table 4: Priors and Posteriors

0% o
Priors
Type Shifted Gamma Inverse Gamma
Mean 20 0.22%
Mode 14.737 0.11%
Standard Deviation 10 0.6%
Domain (1, 00) (0, 0)
Posteriors
Risky Linear Mode 29.296 1.0032%
Standard Linear Mode 14.737 0.9911%
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Table 5: Asset Return Properties

Empirical Risky Linear Standard Linear
Return Mean Std. Dev. Mean Std. Dev.
rk 2.14 8.25 0.5003 0.0801 0.5502 0.0758
rf 0.26 0.62 0.4980 0.0767 0.5502 0.0726
rk—rf 1.88 8.25 0.0023 0.0212 0.000 0.0217
Market Price of Risk 02283 0.2004 0.1049
Sharpe Ratio ' 0.1072 0.0000

All returns are measured as real quarterly percentagensetur

A description of the post war US data used for the empiricilag can be found in
appendixA.9.

The model based numbers were derived using the posterioe finmeh the risky linear
model, see tablé

Table 6: Business Cycle Data, 1948:2-2013:2

. Relative Autocorrelations Cross Corr.
Variable Mean  Std. Dev. Std. Dev. 1 5 3 winy,
AlInY; 0.458 0.988 1.000 0.381 0.266 0.046 1.000
AInC; 0.497 0.565 0.572 0.257 0.205 0.074 0.531
Alnl; 0.420 2.527 2.558 0.335 0.249 0.043 0.662
Aln N 0.328 1.188 1.202 -0.020 -0.010 -0.008 0.388
In N; 119.993 2.786 2.820 0.999 0.998 0.997 -0.141
InC,-InY; — 5.956 6.029 0.990 0.979 0.965 -0.173
Inl; —InY, — 7.328 7.418 0.962 0.911 0.843 0.129

All data was retrieved from the Federal Reserve Economia [(FRRED) database of the Fed-
eral Reserve Bank of St. Louis.

Table 7: Business Cycle Properties, Posterior Mode

. Relative Autocorrelations Cross Corr.
Variable Mean Std. Dev. Std. Dev. 1 5 3 winY,
AlnY; 0.46 0.863 1.000 0.0083 0.0080 0.0078 1.000
AInC, 0.46 0.515 0.596 0.0665 0.0641 0.0619 0.992
Alnl, 0.46 1.712 1.983 -0.0156 -0.0150 -0.0145 0.996
Aln N 0 0.231 0.268 -0.0237 -0.0229 -0.0221 0.984
In N; -1.035 0.864 1.001 0.9643 0.9303 0.8980 0.308
INnC; - InY; — 1.341 1.553 0.9643 0.9303 0.8980 -0.308
Inly —InY, — 3.203 3.710 0.9643 0.9303 0.8980 0.308

Compare with the empirical moments in table
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Figure 1: Euler Equation Errors
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