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aDepartment of Mathematics, Humbold-Universität Berlin

bDepartment of Statistics and Econometrics, Freie Universität Berlin

16.07.2014

Abstract

We introduce a statistical test for simultaneous jumps in the price of a financial asset and its
volatility process. The proposed test is based on high-frequency tick-data and is robust to market
microstructure frictions. To localize volatility jumps, we design and analyze a nonparametric
spectral estimator of the spot volatility process. A simulation study and an empirical example with
NASDAQ order book data demonstrate the practicability of the proposed methods and highlight
the important role played by price volatility co-jumps.

Keywords: high-frequency data; microstructure noise; nonparametric volatility estimation; volatility

jumps.

JEL classification: E58, C14

1 Introduction

In recent years the broad availability of high-frequency intraday financial data has spurred a consider-

able collection of works dedicated to statistical modeling and inference for such data. Itô semimartin-

gales constitute a prominent class of stochastic processes to describe dynamics of intraday log-prices.

They comply with fundamental economic hypotheses as exclusion of arbitrage and provide a general

and flexible class of processes allowing for stochastic volatility, jumps and leverage. Due to the mar-

ket microstructure of most high-frequency financial data, as effects of transaction costs and bid-ask

bounce, log-prices are not directly well fitted by semimartingales, but should be considered within

a noisy observation setup as a suitable model. Taking microstructure frictions into account radically

changes statistical properties and involved mathematical concepts of estimators.

One core research topic in statistics, finance and econometrics of high-frequency data is inference on

the (integrated) volatility, bringing forth the seminal contributions by Andersen and Bollerslev (1998),
∗Financial support from the Deutsche Forschungsgemeinschaft via SFB 649 ‘Ökonomisches Risiko’, Humboldt-

Universität zu Berlin, is gratefully acknowledged.
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Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Aı̈t-Sahalia et al. (2005) and much

more literature devoted to this aspect. Reliable estimates of volatility are of key importance in the

decision making process of portfolio and risk managers, see e.g. Andersen et al. (2007), as well as

policy makers, see Dewachter et al. (2014). As the volatility takes a key role in the model, a pros-

perous research field strives to set up accurate stochastic volatility models, see Eraker et al. (2003)

among others. Uncertainty and risk in the evolution of intraday prices is usually ascribed to two

distinct sources: First, the volatility process of the continuous semimartingale part that permanently

influences observed returns and, second, occasional jumps in prices. The latter reflect updates of mar-

kets’ expectations in response to firm specific news, macro or monetary policy events. An important

question, often left unaddressed in the literature, is if one should incorporate jumps also in the volatil-

ity process. First studies by Eraker (2004) and Tauchen and Todorov (2011) suggest to do so and

highlight the important implications especially for asset pricing. A natural question arises, if prices

and their volatilities jump at common times concertedly stimulated by the same events, or not.

This article offers a statistical test to decide whether intraday log-prices exhibit common price and

volatility jumps. The main contribution is to complement the pioneering works by Jacod and Todorov

(2010) and Bandi and Renò (2013) and to provide an approach for an observation model that accounts

for market microstructure in order to efficiently exploit information from high-frequency data. The

methods particularly build upon the theory by Jacod and Todorov (2010), but smoothing out noise per-

turbations leads to materially different concepts and asymptotic results. The development of a test that

can cope with noise is of high relevance and importance as Jacod and Todorov (2010) already remark

in their empirical application that “presence of microstructure noise in the prices is nonnegligible”

and “an extension of our tests, while building on the theoretical results here, asks for a significantly

more involved mathematical approach which goes beyond the scope of the current paper and is thus

left for future work”.

Jumps in prices and the volatility are of very different nature. Large price jumps are apparent and

become visible through large returns. More precisely, in a high-frequency context truncation tech-

niques as suggested by Mancini (2009), Lee and Mykland (2008) and Jacod (2008) can be used to

identify returns that involve jumps. Up to some subtle changes due to dilution by microstructure,

this remains valid also in the noisy setup, see Aı̈t-Sahalia et al. (2012) , Li (2013) and Bibinger and

Winkelmann (2013) for an extended theory. Contrarily, volatility jumps are latent and not as obvious

as price jumps due to the fact that we can not observe the volatility path. We thus infer on the latent

volatility of an efficient log-price process from indirect observations of these efficient log-prices di-

luted by microstructure noise. Our key element to determine volatility jumps even so, will be reliable

estimates of the instantaneous volatility from observed prices.

Our approach relies on a spectral Fourier method stimulated by Reiß (2011) and Bibinger et al. (2014a)

for estimating quadratic (co-)variation. These methods attain lower variance bounds for integrated

volatility estimation from noisy observations and are, compared to simple smoothing methods and

especially sparse sampling at lower frequency, much more efficient. Price jumps are recovered using
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a truncation procedure which can be adapted to the local magnitude and intraday shape of volatility.

With this estimation approach at hand, we construct a test, comparing estimated local volatilities and

their left limits at the estimated jump times of the price. An asymptotic distribution free test with

a fast convergence rate based on second order asymptotics of the estimator is suggested. While the

overarching strategy follows Jacod and Todorov (2010), the specific test function and construction in

the noisy observation case are crucially different. The test statistic is self-scaling in the local volatility

which is possible by the simple variance structure of the spectral volatility estimates. Using differ-

ent estimation techniques to smooth noise as realized kernels motivated by Barndorff-Nielsen et al.

(2008), or pre-averaging by Jacod et al. (2009), such a construction, if possible at all, will be more

cumbersome. The Monte Carlo study demonstrates the high precision of the methods in finite sam-

ples. Our data study shows that price volatility co-jumps occur and are practically relevant.

The rest of this paper is organized as follows. The upcoming Section 2 introduces the notation and

technical setup and gives the assumptions imposed on the model. We also review the elements of

spectral volatility estimation within Section 2. The main part is Section 3 where we first construct the

local spot volatility estimators which then serve as one main ingredient for our tests derived hereafter.

Practical guidance and a Monte Carlo analysis are pursued in Section 4. In Section 5 the methods are

used to analyze price and volatility jumps in NASDAQ high-frequency intraday trading data, recon-

structed from the order book. Section 6 concludes. Proofs are delegated to the Appendix.

2 Model, assumptions and background on spectral volatility estimation

2.1 Statistical model and assumptions

We suppose an underlying latent log-price process X follows an Itô semimartingale which is defined

on a filtered probability space (Ω,F , (Ft),P). Then, X is of the form

Xt = X0 +

∫ t

0
bs ds+

∫ t

0

√
cs dWs +

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|≤1}(µ− ν)(ds, dx) (1)

+

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}µ(ds, dx) ,

with W an (Ft)-adapted standard Brownian motion, µ a Poisson random measure on R+ × R with

R+ = [0,∞) and an intensity measure (predictable compensator of µ) of the form ν(ds, dx) =

λ(dx)⊗ds for a given σ-finite measure λ. Regularity assumptions on the drift process bs, the squared

volatility process cs, and the predictable function δ are gathered in Assumption (H-r) below.

We consider discrete observation times i/n, i = 0, . . . , n, on the time span [0, 1]. For financial data

this corresponds to a tick-time clock. A transfer between tick and non-equispaced calendar-time

sampling in case that the latter obeys some mild regularity restrictions is routine and discussed in

Bibinger et al. (2014a). As shown there, locally different observation frequencies may be treated

as locally varying noise variance, where having locally less frequent observations corresponds to

3



a locally increased noise variance. Since the mapping between both schemes does not affect our

methods and only leads to a slight modification of the variances of non-normalized statistics, we

stick to the first setting. The prevalent model capturing market microstructure effects which interfere

the evolution of an underlying semimartingale log-price process at high frequencies is an indirect

observation model with observational errors:

Yi = Xi/n + εi , i = 0, . . . , n . (2)

Regularity conditions on the price and volatility process are stated in the following structural hypoth-

esis.

Assumption (H-r). We assume that supω,x |δ(t, x)|/γ(x) is locally bounded for a non-negative de-

terministic function γ satisfying
∫
R

(γr(x)∧1)λ(dx) <∞. The drift bt is locally bounded and almost

surely Hölder continuous with some order ι > 0, i.e. |bt − bs| ≤ L|t − s|ι for some L < ∞ and all

t, s ∈ [0, 1]. The volatility process σt =
√
ct is càdlàg and neither σt nor σt− vanish. The noise

(εi)1≤i≤n is a discrete-time process, independent of X , and has finite eighth moments and a constant

noise level

η =
m∑

l=−m
Cov(εi, εi+l) , i ∈ {m, . . . , n−m},

with Cov(εi, εi+l) = 0, for all l > 2m,m ∈ N finite and fixed. When Cov(εi, εi+l) = 0 for all l 6= 0

we set η = Var(εi). Necessarily η is non-negative and we impose η > 0. This includes, but is not

limited to, the classical i.i.d. modeling.

For the volatility process, our target of inference, we consider the following very general and

flexible smoothness condition with smoothness parameter α ∈ (0, 1].

Assumption (σ-α). The process σt =
√
ct satisfies σt = f

(
Z

(1)
t , Z

(2)
t

)
with some function f : R2 →

R, continuously differentiable in both coordinates, and two (Ft)-adapted processes Z(1), Z(2), where

• Z(1) is an Itô semimartingale:

Z
(1)
t = σ0 +

∫ t

0
b̃s ds+

∫ t

0

√
c̃1
s dWs +

∫ t

0

√
c̃2
s dW

′
s (3)

+

∫ t

0

∫
R

δ̃(s, x)1{|δ̃(s,x)|≤1}(µ̃− ν̃)(ds, dx) +

∫ t

0

∫
R

δ̃(s, x)1{|δ̃(s,x)|>1}µ̃(ds, dx) ,

with an (Ft)-Brownian motion W ′ independent of W and a random variable σ0, satisfying (H-

2) for α ≤ 1/2. For α > 1/2 the continuous martingale part of Z(1) vanishes and Z(1) satisfies

(H-α−1).

• Z(2) lies in a Hölder ball of order α almost surely, i.e.
∣∣Z(2)

t − Z
(2)
s

∣∣ ≤ L|t − s|α, for all

t, s ∈ [0, 1] and a random variable L for which at least fourth moments exist.
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The smaller α the less restrictive is Assumption (σ-α). It is natural to develop results for general

α ∈ (0, 1] to cover a broad framework and preserve some freedom in the model. This is particularly

important, since the precision of nonparametrically estimating a process (or function) foremost hinges

on its smoothness. The composition of the volatility as proposed by Assumption (σ-α) allows to

incorporate recent volatility models and to realistically describe spot volatility dynamics. For instance,

Z(2) can portray a non-random volatility seasonality function while Z(1) models a random fluctuation

around Z(2).

2.2 Spectral volatility estimation in a nutshell

Consider the sine basis

Φjk(t) =

(√
2hnn sin

(
jπ

2nhn

))−1

sin
(
jπh−1

n (t− khn)
)
1[khn,(k+1)hn](t) , (4)

of L2-orthogonal functions (Φjk)1≤j≤Jn for spectral frequencies 1 ≤ j ≤ Jn in the Fourier domain

up to a spectral cut-off Jn ≤ nhn. The indicator functions localize the sine functions to bins k =

0, . . . , h−1
n −1 of a sequence of equispaced partitions of the considered time span [0, 1]. One key idea

of spectral volatility estimation is to perform optimal parametric estimation procedures localized on

the bins. These localized estimates provide the fundament to build estimators for the instantaneous and

the integrated squared volatility. For this purpose, as has been introduced in Reiß (2011), local linear

combinations of the noisy data are used with local weights obtained by evaluating the functions (4)

on the discrete grid of observation times i/n, i = 0, . . . , n. This strategy corresponds to performing a

discrete sine transformation on the observed returns, similarly as proposed in Curci and Corsi (2012),

but localized over all bins.

We use the notion of empirical scalar products and norms for functions f, g as follows:

〈f, g〉n :=
1

n

n∑
l=1

f

(
l

n

)
g

(
l

n

)
and ‖f‖2n :=

1

n

n∑
l=1

f2

(
l

n

)
= 〈f, f〉n . (5)

The empirical norms of the sine functions above give for all bins k = 0, . . . , h−1
n − 1:

‖Φjk‖2n =
(
4n2 sin2 (jπ/(2nhn))

)−1
, (6)

and we have the discrete orthogonality relations

〈Φjk,Φrk〉n = ‖Φjk‖2n δjr , j, r ∈ {1, . . . , nhn} , k = 0, . . . , h−1
n − 1 , (7)
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where δjr = 1{j=r} is Kronecker’s delta.

The central building blocks of spectral volatility estimation are the spectral statistics

Sjk = ‖Φjk‖−1
n

n∑
i=1

∆n
i Y Φjk

( i
n

)
j = 1, . . . , Jn, k = 0, . . . , h−1

n − 1 , (8)

in which observed returns ∆n
i Y = Yi/n − Y(i−1)/n, i = 1, . . . , n, are smoothed by bin-wise linear

combinations with weights from the local discrete sine transformations. In absence of price jumps,

bin-wise estimates for the squared volatility ckhn , k = 0, . . . , h−1
n −1, are provided by weighted sums

of bias-corrected squared spectral statistics:

ζadk (Y ) =

Jn∑
j=1

ŵjk

(
S2
jk − ‖Φjk‖−2

n
η̂
n

)
. (9)

The integrated volatility estimator of Bibinger et al. (2014a) is simply the average
∑h−1

n −1
k=0 hn ζ

ad
k (Y ).

Our notation allows to distinguish the fully adaptive estimates from the ones with the oracle optimal

weights by writing ζadk (Y ) and ζk(Y ), respectively. The oracle optimal weights

wjk = I−1
k Ijk =

(
ckhn + ‖Φjk‖−2

n
η
n

)−2

∑Jn
m=1

(
ckhn + ‖Φmk‖−2

n
η
n

)−2 , (10)

with Ik =
∑Jn

j=1 Ijk, Ijk = 1
2(ckhn + ‖Φjk|−2η/n)−2, follow from minimization of the variance

under the constraint of unbiasedness. For a fully adaptive approach we apply a two-stage method

as presented in Section 3.1 below. We will, furthermore, use the notation ζadk (Z) and ζk(Z), for

different processes Z, meaning that we insert in (9) spectral statistics (8) computed from the sequence

Zi/n, i = 0, . . . , n, especially ζadk (X) for the statistics based on the unobserved signal.

The noise level is estimated from the observations. If the noise is i.i.d., we may use

η̂ =
1

2n

n∑
i=1

(
∆n
i Y
)2

= η +OP
(
n−

1/2
)
,

as suggested and analyzed in Zhang et al. (2005). In case of non-zero autocorrelations in the noise,

the estimation based on the empirical autocovariances of the returns is more elaborate. As described

in Bibinger et al. (2014b)∗ we still have η̂ = η +OP
(
n−1/2

)
in this case.

Remark 1. Note that spectral statistics have a close relation to pre-averages as used by Jacod et al.

(2009). A main difference is that bins are fixed here as for histograms and bin-wise we smooth noisy

observations in the Fourier domain by taking linear combinations on each bin along different spectral

frequencies 1 ≤ j ≤ Jn. It is of pivotal importance that the statistics (8) de-correlate the data
∗available soon
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for different frequencies and form their local principal components. This is key to the asymptotic

efficiency attained by the spectral estimators as shown in Reiß (2011) and Bibinger et al. (2014a).

The latter means that the estimator’s asymptotic variance coincides with the minimum asymptotic

variance among all asymptotically unbiased estimators. The efficiency theory is so far restricted to

models with deterministic volatility, without drift and Gaussian noise and it is conjectured that the

analogous asymptotic variance, which is determined in Altmeyer and Bibinger (2014) for the general

model, constitutes the general lower bound.

3 Testing for price and volatility co-jumps

3.1 Spot squared volatility estimators

In this subsection we show that the methods considered in Section 2 are eligible to estimate the in-

stantaneous squared volatility ct, t ∈ [0, 1], and its left limit ct− = lims→0 ct−s.

The spectral volatility estimation methodology intrinsically provides local estimates (9) for the squared

volatility ckhn , k = 0, . . . , h−1
n − 1. However, we should not rely on ζadk (Y )1[khn,(k+1)hn](t) on [0, 1]

directly as an estimator for (ct)t∈[0,1] because it will not be consistent as the variance does not de-

crease when n gets large. Instead, we employ a smoothing method, as typical for function estimation

in nonparametric statistics. For this reason, to estimate cs at some fix time s, consider a local window

around s of length (r−1
n hn) → 0 as n → ∞, slowly enough to ensure r−1

n → ∞. In the presence of

jumps in (1), truncation disentangles bin-wise statistics (9) which involve jumps from all others. In

particular if hn|ζadk (Y )| > un for a threshold sequence un = c hτn, τ ∈ (0, 1) with some constant c,

the quadratic variation increment is of a magnitude that can not come from the continuous part and

is evoked by a jump. In order to estimate the volatility, we truncate ζadk (Y ) for these k. For a simple

notation suppose nhn ∈ N and r−1
n ∈ N, such that on each bin we enclose nhn noisy observations

and on each window we enclose r−1
n bins. In order to estimate the squared volatility and its left limit at

a certain time s, we choose two disjoint windows located to the right and to the left of s, respectively.

In particular the window is not centered around s. Since the optimal weights (10) per se hinge on the

unknown squared volatility, we proceed with a two-step estimation approach.

First, select a pilot spectral cut-off Jpin � nhn, and build pilot estimators for the squared volatility

right-hand side: ĉrn,pilots (Y ) =

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn

Jpin∑
j=1

(Jpin )−1
(
S2
jk − ‖Φjk‖−2

n
η̂
n

)
(11a)

× 1{
hn

∣∣∑J
pi
n
j=1(Jpin )−1

(
S2
jk−‖Φjk‖

−2
n

η̂
n

)∣∣≤un} ,

left-hand side: ĉrn,pilots− (Y ) =

bsh−1
n c−1∑

k=bsh−1
n c−r−1

n

rn

Jpin∑
j=1

(Jpin )−1
(
S2
jk − ‖Φjk‖−2

n
η̂
n

)
(11b)
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× 1{
hn

∣∣∑J
pi
n
j=1(Jpin )−1

(
S2
jk−‖Φjk‖

−2
n

η̂
n

)∣∣≤un} ,
for s ∈ [r−1

n hn, 1 − r−1
n hn). At the borders we shrink one window length accordingly. The pilot

estimators are hence averages over r−1
n bins and Jpin spectral frequencies. In the second step, these

pilot estimators are plugged in (10) to determine the adaptive weights for the final estimators. With

those at hand, we can evaluate the spectral estimators of the squared instantaneous volatility at time s

and its left limit:

right-hand side: ĉrns (Y ) =

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn

Jn∑
j=1

ŵjk
(
S2
jk − ‖Φjk‖−2

n
η̂
n

)
1{hn|ζadk (Y )|≤un} , (12a)

left-hand side: ĉrns−(Y ) =

bsh−1
n c−1∑

k=bsh−1
n c−r−1

n

rn

Jn∑
j=1

ŵjk
(
S2
jk − ‖Φjk‖−2

n
η̂
n

)
1{hn|ζadk (Y )|≤un} , (12b)

for s ∈ [r−1
n hn, 1−r−1

n hn). Estimates (12a) and (12b) are thus local averages of the truncated bin-wise

statistics (9). This nonparametric spot volatility estimation is closely related to a usual kernel density

estimator when the statistics (9) take the role of de-noised observations which are smoothed over local

windows. The approach entails several tuning parameters whose practical choice is discussed below

in Section 4. If the aim is to obtain a nonparametric spot squared volatility estimator, one can take

((ĉrns (Y ) + ĉrns−(Y ))/2)s∈[0,1] as an estimator. This estimator is a hybrid approach combining the

spectral volatility estimation with truncation as considered in Bibinger and Winkelmann (2013) for

integrated covariances.

For our test derived in the next subsection, starting from times where jumps of X are identified via

thresholding we will estimate the volatility before and after these jump times. Moreover, inference

for any model incorporating joint price-volatility jumps relies on this estimation technique. At this

stage, let us state our first main result on the spot squared volatility estimators and their asymptotic

distribution.

Theorem 1. Suppose the structural hypothesis (H-r) with some r < 2 and smoothness Assumption

(σ-α), α ∈ (0, 1]. Fix a time s ∈ (0, 1), at which we want to estimate cs and cs− via (12a) and (12b),

respectively. Set hn = κ1n
−1/2 log(n) and rn = κ2n

−β log(n) with constants κ1, κ2 and Jn →∞ as

n→∞. Then, as n→∞ and if

0 < β <

(
α

2α+ 1
∧ τ

(
1− r

2

))
, (13)

with τ the truncation exponent in the sequence un in (11a), (11b), (12a) and (12b), the estimators
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satisfy the stable central limit theorems:

n
β/2
(
ĉrns − cs

) (st)−→MN
(
0, 8c

3/2
s η

1/2
)
, (14a)

n
β/2
(
ĉrns− − cs−

) (st)−→MN
(
0, 8c

3/2
s−η

1/2
)
. (14b)

Most interesting is the case when α ≤ 1/2. In this case, for r < 3/2 in Assumption (H-r),

we can choose β = 1/4 − ε for any ε > 0. In fact, we can almost grasp the optimal rate for

estimation which is n1/8 in this case. Balancing bias and variance for β = 1/4 guarantees that the

estimators (12a) and (12b) attain this rate. For a central limit theorem we avoid an asymptotic bias

by slightly undersmoothing. In case that α > 1/2 we obtain faster convergence rates. We point out

that the restriction r < 3/2 on the jump activity, to come close to the optimal convergence rate, is less

restrictive than the one obtained for integrated squared volatility estimation, r < 1, see Bibinger and

Winkelmann (2013).

The limit variables in (14a) and (14b) are mixed normal which we denote by MN and defined on

a product space of the original probability space (on which X is defined) and an orthogonal space

independent of F and the noise. The convergence is stable in law, marked (st), a stronger mode of

weak convergence which is equivalent to joint weak convergence with every F-measurable bounded

random variable. We refer to Jacod (2012) for background information on this typical kind of limit

theorems arising in volatility estimation. Stability of weak convergence then allows for a so-called

feasible version of the limit theorem (14a):

r−
1/2

n Î
1/2

bsh−1
n c+1

(
ĉrns − cs

) d−→ N(0, 1) , (15)

with Îbsh−1
n c+1 the estimate of Ibsh−1

n c+1, as defined in the weights (10), obtained by inserting the pilot

estimator and η̂ under the conditions of Theorem 1, but also for any Jn fixed as n → ∞. This works

analogously for (14b) for which we self-normalize with Î
1/2

bsh−1
n c−1

instead. This feasible limit theorem

directly allows for confidence sets of estimates in practice. The estimators developed in this section

provide a main building block for our test constructed below, but are moreover of interest of their own

as efficient spot squared volatility estimators in presence of (possible) volatility-price co-jumps.

3.2 The test for common price and volatility jumps

Let (Sp)p≥1 be a sequence of stopping times exhausting the jumps of X . We concentrate on the

following hypothesis: No common jump of volatility and price on [0, 1]:

H[0,1] :
∑
Sp≤1

(cSp − cSp−) = 0 , (16)

9



against the alternative that there is at least one jump in the volatility at a jump-time of X . The test

(16) investigates if price and volatility co-jumps occur. We specify the test hypothesis more precisely

by focusing on jumps of X with absolute values |∆XSp | > a for a ≥ 0 and call this H(a)[0,1]. The

reason for this is that a suitable test statistic and associated limit theory forH(a)[0,1] with a > 0 works

under a much more general setup with jumps of infinite variation while testing H(0)[0,1] requires

Assumption (H-0) to hold. In both cases, we concentrate only on a finite number of jumps of X on

[0, 1] in the hypothesis. This specification is also reasonable from an applied point of view, since we

are interested in testing for volatility movements at finitely many price jumps associated with news

that initiate updates of market participants’ expectations. Note that Jacod and Todorov (2010) restrict

hypotheses in the same fashion for the theory without noise. In the sequel consider τ1, . . . , τNt , a finite

collection of jump times of X on [0, t], t ∈ [0, 1], with |∆Xτi | > a for all i. Denote by g : R2
+ → R

a test function with g(x, x) = 0 for all x. Let us now state the general form of our test statistics:

T0(hn, rn, g) =

h−1
n −r−1

n −1∑
k=r−1

n

g
(
ĉrnkhn , ĉ

rn
khn−

)
1{

hn|ζadk (Y )|> (un∨a2)
} . (17)

Under some mild regularity assumptions on g in terms of differentiability in both coordinates limit

theorems for (17) can be proved. We mainly concentrate on testingH(a)[0,1] and consider two specific

test functions in the following. Adjustments of the test (16) for sub-intervals of [0, 1] are readily

obtained by ignoring all jumps elsewhere.

Theorem 2. Assume (H-r), r < 2, and insert estimates from (12a) and (12b) with hn = κ1n
−1/2 log n,

rn = κ2n
−β log n, where 0 < β <

(
α(2α + 1)−1 ∧ τ(1 − r/2)

)
, Jn → ∞, in (17) with the test

function

g(x1, x2) = 2

√
x1 + x2

2
−
√
x1 −

√
x2 . (18)

Under H(a)[0,1], if either a > 0 and we impose the condition that the Lévy measure of X does not

have an atom in {a}, or r = 0, the following asymptotic distribution of the test statistics applies:

nβ η̂−1/2 T0(hn, rn, g)
d−→ χ2

N1
. (19)

Therefore, we obtain an asymptotic distribution free test by the asymptotic χ2-distribution with N1

degrees of freedom. On the alternative
(
Ω \H(a)[0,1]

)
, T0(hn, rn, g)

P−→
∑N1

i=1 g(cτi , cτi−), and the

left-hand side in (19) is hence of order nβ . The test with critical regions

Cn =
{
nβ η̂−1/2 T0(hn, rn, g) > qα(χ2

N1
)} , (20)

where qα(χ2
N1

) denotes the α-quantile of the χ2
N1

-distribution, has asymptotic level α and asymptotic

power 1.

10



The result is valid when we instead of the unobserved number of jumps with absolute value larger

than a insert the estimated number of jumps via thresholding. A naive approach based on the asymp-

totic normality results (14a) and (14b) with test function g̃(x1, x2) = (x1 − x2) yields as well an

asymptotic distribution free test:

r−1/2
n

(
2

N1∑
i=1

Î−1

bh−1
n τic+1

)−1/2

T0(hn, rn, g̃)
d−→ N(0, 1) , (21)

on the hypothesisH(a)[0,1]. Apparently, by the slower rate nβ/2, close to n1/8 for α ≤ 1/2, compared

to (19) the above test in Theorem 2 is preferable. Here it is particularly beneficial that the convergence

rate in (19) is much faster than in (14a) based on second-order asymptotics. For instance, if α ≈ 1/2,

we come close to a n1/4 rate.

We can also consider the following kind of hypotheses with the same methods in a multiple testing

framework. Not all jumps of the price are accompanied by volatility jumps:⋃
p≥1

HSp with HSp : (cSp − cSp−) = 0 , (22)

against alternative that there is each time a jump in the volatility for any jump-time of X . The test

(22) helps to discriminate events that induce simultaneous jumps in price and volatility from events

that only lead to price jumps and have no influence on the volatility.

For the construction of a test procedure we consider a finite set of N̂1 statistics by
(
g(ĉτi , ĉτi−)

)
i

=

{g(ĉrnkhn , ĉ
rn
khn−); k ∈ {0, . . . , h−1

n − 1} with hn|ζadk (Y )| > un ∨ a2}, namely with τi, i = 1, . . . , N̂1,

exhausting the estimated jumps in X .

Corollary 3.1. On the assumptions of Theorem 2, we obtain with the test function (18) for all i =

1, . . . , N̂1:

nβ η̂−1/2 g(ĉτi , ĉτi−)
d−→ χ2

1 , (23)

i.e. an asymptotic χ2-distribution with one degree of freedom. The multiple test with critical regions

Cn,i =
{
nβ η̂−1/2 g(ĉτi , ĉτi−) > q

1−(1−α)1/N̂1
(χ2

1)} , (24)

for all i = 1, . . . , N̂1, where qα(χ2
1) denotes the α-quantile of the χ2

1-distribution, controls the asymp-

totic level α for the familywise error rate.

We use the Šidák correction for the critical regions, since the single tests are almost surely asymp-

totically independent. Other concepts of multiple testing theory can be used, but note that contrarily

to usual multiple comparisons in our setup N̂1 will be typically rather small.

11



4 Implementation and numerical study

4.1 Practical guidance

In the sequel, we provide some information and advice on practical aspects for applying the methods

from Section 3. In the two-step squared volatility estimation procedure some tuning parameters are

involved which have to be specified in practice. In the upcoming discussion we point out that only

few crucially effect the overall performance and give instructions how to fix parameters. We address

the parameters in order of appearance when implementing the method.

The bin-width hn � n−1/2 log n balances the number of observations on bins nhn, which should be

large enough to smooth out noise, and the discretization error of the local parametric model. Con-

sequently, the smoother the underlying volatility process the smaller the discretization error which

allows to involve larger bins. On the other hand, the lower the noise level the smaller the bins can

be chosen. The bin-width also influences the frontiers in disentangling small jumps from continuous

motion. Smaller bins allow to detect smaller jumps. For this reason we do not give a universal rule to

fix the proportionality constant for hn, as the scope of the study and stylized facts of the data should

be taken into account. Also, it is possible to employ locally different bin widths, for instance, if the

volatility is supposed to be higher at opening we may take smaller bins for a first time period and

larger ones for a later period. Within a reasonable range the estimator is quite robust to modifications

of hn. We advise to select hn such that the number of observations on bins is ca. 100 for typical signal-

to-noise ratios and at most 1000 when high noise pollution is indicated. This results in ca. 30-100 bins

per trading day. It is important that different choices of hn do not cause any finite-sample bias. Note

that the local adaptivity of the method is driven by the adapted weights in the spectral domain and not

the bin-width.

For the local parametric squared volatility estimation with (12a) and (12b) and the pre-estimation step

with (11a) and (11b), we choose spectral cut-offs Jn and Jpin , respectively. For the oracle spectral es-

timator, the highest possible cut-off Jn = nhn − 1 provides maximal information. Since the weights

(10) decay exponentially for j &
√
nhn � log n, the addends with j large become negligible. Tak-

ing also computational efficiency into account, it suffices to choose Jn � log n. The proportionality

constant should be larger than 1, we take values between 3 and 12, a larger factor for large sample

sizes, but as long as Jn & log n, higher cut-offs can only slightly increase the performance. The pilot

estimator relies on an average over frequencies j = 1, . . . , Jpin . Constant weights are a good proxy

for the oracle weights up to a moderately small Jpin (not larger than logarithmic in n). We thus use

here Jpin � log n with proportionality factor smaller than for Jn. The crucial difference in the choice

of Jpin compared to Jn is that if Jpin will be chosen much larger the efficiency of the pilot estimator

does not increase, contrarily it becomes less accurate.

The threshold un on local quadratic variation estimates ζadk (Y ), k = 1, . . . , h−1
n from (9) disentangles

the ones which are ascribed to jumps from all others. For the asymptotic theory un � hτn works with

any τ ∈ (0, 1). Since in absence of jumps local estimates ζadk (Y ) are of order hn and the maximum

12



over all bins of order 2 log (h−1
n )hn, a simple global truncation rule is to set un = hn2 log (h−1

n ).

This threshold is used below for the pre-estimation step of our two-stage method. We incorporate in

the finite-sample setup also the magnitude and intraday shape of volatilities. The mean of ζadk (Y )

is ckhnhn in absence of jumps and based on the pre-estimation step we employ in the second step a

time-varying adaptive truncation methodology, see Bibinger and Winkelmann (2013) for a thorough

introduction. Since this truncation principle detects a finite collection of estimated jump times we do

not consider some additional a > 0 in (17). When one is interested in jumps above a certain level

only, this can be done by setting a > 0 in the test statistic.

The most influential tuning parameter for the estimators (12a) and (12b) is the smoothing window

rn � n−β log n. If we choose rn larger, the final estimates become smoother. To cope with edge

effects, we take for the first and last r−1
n bins estimates at time t which rely only on the bins on [0, t]

and [t, 1], respectively. In simulations below, we first use a large r−1
n in a constant volatility setting. In

the complex simulation study and the empirical example, we take r−1
n rather small instead. Note that

we conduct local averaging of the parametric bin-wise estimates and one could as well use a kernel

filter – however the effects are rather small.

4.2 Monte Carlo study

This Monte Carlo study examines the finite-sample performance of the proposed methods in two

implemented models:

• Yi/n =

∫ i
n

0
dBt +

∫ i
n

0

∫
R

xµ(dt, dx) + εi ,

with compensator ν(dt, dx) = dtΠ(dx) and Π the measure of a normal distribution Π ∼
N(H,H/100), such that H acts as parameter to trigger the average size of jumps, εi

iid∼
N(0, η2) and B a standard Brownian motion. Here we examine the test statistic under the

hypothesis of no common jumps and for a constant volatility, in particular without any volatil-

ity jumps.

• Yi/n =

∫ i
n

0
ϕt
√
ct dBt +

∫ i
n

0

∫
R

xµ(dt, dx, dy) + εi ,

with ν(dt, dx, dy) = λ dtΠ(dx)Π(dy) where again Π ∼ N(H,H/100), εi
iid∼

N(0, η2
( ∫ 1

0 ϕ
4
t c

2
t )

1/4
)
. The jump measure has a second real argument to incorporate instanta-

neous arrivals of volatility jumps. ϕt is a model for a deterministic volatility seasonality motion:

ϕt = 1− 3
5 t

1/2 + 1
10 t

2, and ct a random stochastic volatility fluctuation including leverage:

dct = 6(1− ct) dt+
√
ctdB̃t + dJt .

B and B̃ are two standard Brownian motions with d[B, B̃]t = ρ dt and we fix ρ = 0.2. The
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Table 1: Parameter specification for Monte Carlo.

Scenario n λ H η h−1
n J Jpi r−1

n in (12a) r−1
n in (11a)

I 300000 1 0.25 0.001 300 50 25 100 10
II 30000 2 0.25 0.005 60 40 25 3 5
III 30000 2 0.25 0.05 60 40 25 3 5
IV 30000 2 0.05 0.005 60 40 25 3 5
V 5000 2 0.25 0.005 10 30 20 3 3
VI 5000 2 0.25 0.05 10 30 20 3 3
VII 5000 2 0.05 0.005 10 30 20 3 3
VIII 30000 2 0.25 0.005 60 40 25 3 5
IX 5000 2 0.25 0.005 10 30 20 3 3

volatility jump component is of the form

Jt = γ

∫ t

0

∫
R

yµ(dt, dx, dy) +

∫ t

0

∫
R

zµ̃(dt, dz)

with a ∈ R and ν̃(dt, dz) = dtΠ(dz) again.

We consider the first constant volatility model with n = 300000 observations as idealized setup in

scenario I to investigate the accuracy of our asymptotic results. The second model serves as more

realistic setting to mimic dynamics of typical financial high-frequency data. We consider scenarios

II-VII setting γ = 0 above, which means the hypothesis is valid. Two scenarios VIII and IX are

simulated under the alternative with γ = 1. In scenario IX we modify the jump measure of the

volatility slightly by having with probability 1/2 no jump and with 1/2 normally distributed jumps

as above. The parameter configurations used in the Monte Carlo study for different scenarios are

summarized in Table 1. The window lengths r−1
n for (12b) and (11b) are set equal to the ones for

(12a) and (11a). We take smoothing window widths in (12a) rather large for the constant volatility

case and use quite small windows in the stochastic volatility setup.

The results of the Monte Carlo study of scenario I are illustrated in Figures 1 and 2 by comparisons

of the empirical Monte Carlo distribution of test statistics under H[0,1] and the theoretical asymptotic

distribution. For these illustrations, we have selected 1000 runs with each of them having realized

N1 = 1 jumps in X and compare to a χ2
1 distribution. Left-hand the plots for the test from Theorem

2 and an asymptotic χ2
1-distribution are depicted, right-hand for the test from (21) and an asymptotic

normal distribution. The density estimates and the QQ-plots for the test from Theorem 2 demonstrate

that the empirical statistics are well-predicted by our asymptotic distribution theory. Most importantly

the large percentiles very closely track their theoretical counterparts what guarantees the accuracy of

the decision method. For the naive decision rule relying on the asymptotics of the spot estimators in

(21), the empirical quantities also fit the asymptotic distribution remarkably well even though the rate

of convergence is very slow. Only the tails are a bit heavier than Gaussian in our realizations.
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Figure 1: Empirical distributions of normalized test statistics of 1000 runs in scenario I for the test
from Theorem 2 (left-hand) and the test from (21) (right-hand). The plots display histograms and
kernel density estimates (solid lines), based on the standard R setup with Silverman’s bandwidth
selection rule of thumb, and the theoretical asymptotic χ2

1 and standard Gaussian densities (dashed
lines).

Figure 2: QQ-plots of MC results in scenario I for Theorem 2 (left-hand) and the test from (21)
(right-hand).

Let us proceed with the more relevant setup of the stochastic volatility model and scenarios II-VII

under the hypothesis and scenarios VIII and IX when the alternative is true. Although we may report
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Scenario II Scenario III Scenario IV Scenario VIII

Scenario V Scenario VI Scenario VII Scenario IX

Figure 3: Empirical size and power of test in Monte Carlo for iterations with one jump in realized path.
Nominal level on x-axis (shows percentiles of theoretical asymptotic distribution) against empirical
amount of realizations smaller or equal those percentiles (y-axis). Number of observations is n =
30000 for scenarios II-IV, VIII, upper line, n = 5000 for scenarios V-VII, IX, bottom line. Right
column, scenarios VIII and IX under alternative, others under hypothesis.

from our simulations that the naive test from (21) still gives reasonable results, we shall concentrate

now on our proposed test from Theorem 2. In scenario II we consider a setup which mimics a realistic

situation. The volatility process inherits a very wiggly continuous semimartingale random component

and the sample size n = 30000 is ca. the number of trades over one single day for typical high-

frequency traded assets (testing intervals we have in mind are one day or longer periods). The signal-

to-noise ratio is relatively large. The jump sizes are rather large compared to continuous increments

which makes the detection via truncation quite precise, also in the presence of high noise dilution.

This also reflects a typical real data situation where we focus on relevant price adjustments.

Scenarios III-VII aggravate different difficulties of the setting to analyze the method’s reaction. In

scenarios V-VII we reduce the sample size to n = 5000, while in scenarios IV and VII we have

smaller average jump sizes and in scenarios III and VI a tremendously high noise variance. Scenarios

VIII and IX are counterparts to scenarios II and V when the alternative holds true.

Results from 2000 Monte Carlo iterations for the ones with one realized jump inX which is recovered

by truncation are shown in Figures 3 and 4. Figure 3 visualizes the empirical size and power of the

test by plotting percentiles against theoretical asymptotical ones for all considered scenarios. Figure

4 gives density estimates of rescaled test statistics. Results for a different number of realized jumps

look very similarly for those with enough realizations. Altogether, the test in Theorem 2 performs
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Scenario II Scenario III Scenario IV Scenario VIII

Scenario V Scenario VI Scenario VII Scenario IX

Figure 4: Kernel density estimates of empirical distributions from Monte Carlo of standardized test
statistics from Theorem 2 rescaled with realized number of jumps N−1

1 .

very satisfactorily in practice. For the realistic scenario 2 the theoretical asymptotic distribution still

explains very well the empirical outcomes. In case of very noisy data the plots for scenarios III and

VI reveal a slight under-rejection of the test. For scenarios IV and VII the depicted graph looks a bit

wobbly what is explained by the fact that the number of detected jumps by truncation decreases here

such that the fit by the realizations gets less accurate. The power realized in scenario VIII is very

good, in scenario IX we can not achieve a power close to one, but still reasonable power is attained.

5 Data study

To provide evidence about the practical relevance of price-volatility co-jumps and to study the per-

formance of our estimators and test in a real-world data environment, we apply our methodology to

stocks traded at the exchange platform NASDAQ. The data study is based on limit order book data

taken from the online data tool LOBSTER†. The example refers to stocks of the online and technology

companies Amazon.com Inc. (AMZN), Apple Inc. (AAPL), Facebook Inc. (FB), Intel Corp. (INTC)

and Microsoft Corp. (MSFT). We focus on transaction prices of 252 trading days in the year 2013.

A trading day spans from 9:30 to 16:00 EDT and includes for a single stock a minimum of 4,267

(AMZN 2013-07-03) up to a maximum of 210,812 (FB 2013-10-31) transactions. One benefit of

our estimator and test is that we can directly plug-in traded log-prices, reconstructed from the order

†LOBSTER academic data- LOBSTER.wiwi.hu-berlin.de, powered by NASDAQ OMX
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Table 2: Testing for disjoint price and volatility jumps in NASDAQ order book data.

Stocks
% days with
price jumps

Rejection rate
(common jumps)

Sample Averages
(whole year)

α = 5% α = 10% n ˆIV

Amazon.com Inc. 9.13% 60.87% 60.87% 10,924 1.33× 10−4

Apple Inc. 7.94% 75.0% 80.0% 36,947 1.19× 10−4

Facebook Inc. 11.5% 51.7% 58.6% 41,354 2.55× 10−4

Intel Corp. 46.8% 36.4% 47.8% 18,535 6.52× 10−5

Microsoft Corp. 23.8% 40.0% 53.3% 28,052 9.89× 10−5

Notes: Estimation and Test executed for each day separately. n indicates the number of observed trades per
trading day, ˆIV the spectral estimate of the integrated squared volatility. Sample period from 2nd Jan. 2013
until 31st Dec. 2013 (252 days).

book, without considering any skip-sampling or synchronization procedures. Since the method is ro-

bust against market microstructure noise and non-regular spaced observations, we efficiently take into

account all information stored in the data.

To highlight characteristics of the price processes across the five stocks, we fix the bin-width h

of our estimators for all stocks at the same values. Estimates and tests refer to spectral statistics cal-

culated for h−1 = 39 bins, i.e. one trading day is partitioned into 10 minutes intervals. On each 10

minute interval de-noised variation estimates are determined from all available information on the

interval using the spectral smoothing methodology. This allows for high efficiency gains compared to

simple smoothing techniques as using returns sampled at lower frequency. For the present examples,

results are found to be very robust when further shrinking bin-width towards 5 minutes. Therefore, and

to keep the example tractable, we do not adjust the bind-width based on the number of particular ob-

servations n for each asset and day. We include J = 30, Jpi = 15 spectral frequencies in (11a), (11b),

(12a) and (12b). Jumps in prices are detected by the locally adaptive threshold ûk = 2 log(h−1)hσ̂2
k,

with σ̂2
k the pilot estimator of the spot squared volatility. We fix the window lengths to r−1 = 6 neigh-

bored bins. The test of jumps in volatility then refers to a two hour interval around a detected jump in

prices. Thus, we evaluate the squared spot volatility and its left limit by comparing the volatility one

hour before the occurrence of the price jump with the volatility one hour after the price jump. Surely

r−1 determines a crucial parameter which can be studied to learn about the persistence or live-time

of a break in spot volatility. We apply the test to each day separately. Thereby, we do not focus

on overnight price and volatility movements which are systematically present. Price and volatility

co-jumps are detected in a 10:30 to 15:00 EDT interval as the considered trading period is 9:30 to

16:00 EDT. This includes in particular arrivals of important news announcements, for instance unem-

ployment rates and news reports by the companies which can evoke jumps. Open and closing period

with systematically elevated volatilities at the beginning and end of a trading day are excluded in our
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Figure 5: Examples of common price and volatility jumps. Upper figures indicate price processes
as functions of trading hours. Lower figures display the related spectral statistics on 39 10 minute
partitions of the trading day. 2013-08-13: n = 87445, estimated quadratic variation Q̂V = 3.5×10−4,
estimated integrated volatility ˆIV = 6.05 × 10−5. 2013-05-14: n = 40707, Q̂V = 2.29 × 10−4,
ˆIV = 5.86× 10−5.

analysis. We also need a strategy to deal with situations when price jumps occur with less than two

hours in between. However, for the current example this turned out to be of minor relevance as we

do not find many days where this is the case. We propose to group several succeeding jumps together

and analyze if one volatility jump has occurred by looking at windows left and right of the series of

jumps.

Table 2 reports the rejection rates for the 5% and 10% significance levels. Results indicate that

on a 5% significance level 36% (INTC) up to 75% (AAPL) of jumps in prices are accompanied

by jumps in volatility. For Amazon we find 14 price-volatility jumps with respect to the 5% and

identically with respect to the 10% significance level. In comparison with detected price jumps, it

appears that the rejection rate decreases in the percentage of price jumps. This leads to relatively

stable frequencies of price volatility co-jumps over time across the considered stocks. Referring again

to the 5% significance level, the Apple stock price displays with around 6% of the trading days the
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lowest frequency of common price and volatility jumps. With around 17% of trading days Intel has

the largest number of common jumps.

Figure 5 illustrates the mechanisms behind the test for common price and volatility jumps. Left

hand plots show an upward jump in prices (bin k = 30), whereas right hand plots show a downward

jump in prices (bin k = 27). Both price jumps are associated with a significant contemporaneous

upward jump in spot volatility – indicated by the black horizontal lines. The p-value in both examples

chases 0.00. On the first example date 08/13/2013 Carl Icahn has taken a large stake of AAPL stocks.

On May 14th, the downward jump example date, figures of mobile phone sales have been reported.

We find evidence for frequent occurrences of simultaneous jumps in price and volatility. Yet, by

far not all detected price jumps are accompanied by volatility jumps. Even large adjustments can

take place without influencing the volatility much. For instance, on January 28th we find one jump for

INTC and the p-value of the test is ca. 0.4. That day Intel Corp. announced that its board promoted five

corporate officers and elected three new corporate vice presidents. On 23rd July, when Intel revealed

information on forthcoming Atom processors C2000, we detect one price jump for INTC and a p-

value of ca. 0.98 which indicates no contemporaneous volatility jump. We find similar examples for

several days and all considered stocks.

6 Conclusion

We present a new test for the presence of contemporaneous jumps of price and volatility based on

high-frequency data. The test transfers the methodology of Jacod and Todorov (2010) to a setup

accounting for microstructure noise by employing a spectral estimation of the spot volatility and an

accurate test function. The nonparametric spot volatility estimator shows appealing asymptotic and

finite-sample qualities and is of interest beyond the scope of this article. The estimation of the un-

derlying spot volatility opens up several new ways for inference in models of high-frequency data

with noise. Our data study reveals cogent significance of price and volatility co-jumps in NASDAQ

high-frequency data. This has consequences for the future modeling of price and volatility. Inves-

tigating why many price jumps are accompanied by volatility adjustments, but others not, appears

important through the lenses of economic theory of information processing and surprise elements.

The presented methods can be generalized in various directions. For instance, our methods guide the

way how a test for correlation of price and volatility jumps, as presented by Jacod et al. (2013) for a

non-noisy observation design, can be constructed.
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A Proofs

A.1 Preliminaries

On the finite time horizon [0, 1], we may augment local boundedness to uniform boundedness in

Assumption (H-r), such that we can assume that there exists a constant Λ with

max {|bs(ω)|, |cs(ω)|, |Xs(ω)|, |δω(s, x)|/γ(x)} ≤ Λ ,

for all (ω, s, x) ∈ (Ω,R+,R). This standard procedure can be found in Jacod (2012), Lemma 6. 6

in Section 6. 3. Throughout the proofs K is a generic constant and Kp a constant and emphasizing

dependence on p. We decompose the semimartingale X in the continuous part

Ct = X0 +

∫ t

0
bs ds+

∫ t

0

√
cs dWs ,

and the jumps

Jt =

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|≤1}(µ− ν)(ds, dx) +

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}µ(ds, dx) .

The process

C̃t =

∫ t

0

√
cbsh−1

n chn dWs (25)

serves as an approximation of Ct by a simplified process without drift and with locally constant

volatility. We separate jumps with absolute value bounded from above by some ε < 1 and larger

jumps:

Jt = J(ε)t +

∫ t

0

∫
R\Aε

δ(s, x)1{|δ(s,x)|≤1}(µ− ν)(ds, dx) +

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}µ(ds, dx) ,

with Aε = {z ∈ R|γ(z) ≤ ε} and later let ε→ 0. Let us recall some usual estimates on Assumption

(H-r) which are crucial for the following proofs. For the continuous semimartingale part we have

∀p ≥ 1, s, t ≥ 0 : E
[
|Cs+t − Cs|p

∣∣Fs] ≤ Kpt
p/2 . (26a)

For given 0 < ε < 1, for J(ε) the estimate

∀p ≥ 1, ∀s, t ≥ 0 : E
[
|J(ε)s+t − J(ε)s|p

∣∣Fs] ≤ Kp E
[( ∫ (s+t)

s

∫
Aε

(γ2(x) ∧ 1)µ(dτ, dx)
) p

2
]

≤ Kpt
( p
2
∧1)γ

( p
2
∧1)

ε , (26b)
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holds with γε =
∫
Aε

(
γ2(x) ∧ 1

)
λ(dx) ≤ Kε(2−r).

The continuous semimartingale increments satisfy a local Gaussianity in the sense that

∀p ≥ 1, s, t ≥ 0 : E
[
|Cs+t−Cs−(

√
cs(Ws+t−Ws))|p

∣∣Fs] ≤ Kp E
[( ∫ s+t

s
|στ − σs|2 dτ

) p
2
∣∣Fs]

≤ Kp t
p
2 E
[

sup
τ∈[s,s+t]

(|στ − σs|p)
∣∣Fs]

≤ Kpt
p
2 (1+(2α∨1)). (26c)

Large jumps occur seldom what precisely means that the expectation of jumps with absolute value

larger than ε is bounded by:

∀s, t ≥ 0 : E
[
|Js+t − Js − (J(ε)s+t − J(ε)s) |

∣∣Fs] ≤ Ktε−r . (26d)

On Assumption (H-r) with r ≥ 1, the jumps satisfy

∀s, t ≥ 0 : E
[
|Jt − Js|p

∣∣Fs] ≤ Kp E
[( ∫ t

s

∫
R

(γr(x) ∧ 1)λ(dx)ds
)1/r]

≤ Kp|t− s|(1/r) , (26e)

and with the same reasoning for r = 2, we can conclude that the volatility under (σ-α) satisfies

E[|ct − cs| |Fs] = |t − s|(α∨1/2). Proofs of these bounds by routine stochastic calculus can be found

in Jacod (2012), among others. Recall the definition of the weights (10). The magnitude of these

weights is

wjk ≤ Ijk =
(
ckhn + η

n‖Φjk‖−2
n

)−2
= O

((
1 +

j2

nh2
n

)−2)
=

O(1) for j ≤
√
nhn

O(j−4n2h4
n) for j >

√
nhn

, (27)

with ‖Φjk‖−2
n ≈ π2j2h−2

n =
( ∫ 1

0 Φ2
jk(t) dt

)−1
= ‖Φjk‖−2.

A.2 Stable convergence of the spot squared volatility estimators

We shall establish stable central limit theorems for the estimators (12a) and (12b). Since we may con-

sider the continuous martingale part of X time-reversed, the mathematical analysis for both follows

the same arguments and principles and we restrict ourselves to treat the right-limit case explicitly. The

proof takes several steps according to the following decomposition:

n
β/2
(
ĉrns − cs

)
= n

β/2

(( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rnζ
ad
k (Y )1{hn|ζadk (Y )|≤un}

)
− cs

)
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= n
β/2

(( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rnζk(C̃ + ε)

)
− cs

)

+ n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn
(
ζk(C + ε)− ζk(C̃ + ε)

))

+ n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn

(
ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)

))

+ n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn

(
ζadk (Y )1{hn|ζadk (Y )|≤un} − ζk(Y )1{hn|ζk(Y )|≤un}

))
.

In the first step we establish the stable CLT for the spectral estimator built from observations of the

process C̃ in the simplified model with noise:

Step 1 : n
β/2

(( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rnζk(C̃ + ε)

)
− cs

)
(st)−→MN(0, 8c

3/2
s η

1/2) . (28)

Proof of Step 1: In order to establish a point-wise central limit theorem we verify three conditions:

one addressing the expectation, one the variance and one Lindeberg-type criterion. Additionally we

have to show that the weak convergence holds stably in law.

Recall the summation by parts identity for spectral statistics from Altmeyer and Bibinger (2014):

Sjk = ‖Φjk‖−2
n

(
n∑
i=1

∆n
i XΦjk

(
i
n

)
−

n∑
i=1

εi ϕjk

( i+ 1/2

n

) 1

n

)
,

with ϕjk(t) =
√

2h
−1/2
n cos

(
jπh−1

n (t− khn)
)
1[khn,(k+1)hn](t). Thereby unbiasedness of the local

estimates (9) follows from an elementary calculation, analogously as in Altmeyer and Bibinger (2014):

E[ζk(C̃ + ε)] = ckhn for all k. Altmeyer and Bibinger (2014) have worked under i.i.d. noise, the

generalization to serially dependent noise relies on Lemma 1 of Bibinger et al. (2014b). For the

expectation of the left-hand side in (28), we deduce that

n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rnE[ζk(C̃ + ε)− cs|Fkhn ]

)
= n

β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn(ckhn − cs)

)

= OP

(
n
β/2rn

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

(khn)(α∨1/2)

)
= OP

(
n
β/2(hn/rn)(α∨1/2)

)
= OP

(
nβ((α∨1/2)+1/2)n−1/2(α∨1/2) log(α∨1/2)(n)

)
= OP(1) ,
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because α > 0 and β < α(2α+ 1)−1 for any α implying β < 1/4 for α < 1/2.

For the sum of conditional variances of the left-hand side of (28) we obtain

nβ
bsh−1

n c+r−1
n∑

k=bsh−1
n c+1

r2
nVar

(
ζk(C̃ + ε)|Fkhn

)
= nβrn

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

Jn∑
j=1

rnw
2
jkI
−1
jk + OP(1)

)

= log (n)I−1
(
cbsh−1

n chn

)
+Rn .

The remainder in the first equality is due to fourth moments of the noise when the noise is non-

Gaussian and handled as in Altmeyer and Bibinger (2014). Here we write wjk, Ijk, Ik as functions of

the squared volatility: Ij(c) = 1
2

(
c+ ‖Φjk‖−2

n
η̂
n

)−2, I(c) =
∑Jn

j=1 Ij(c) and wj(c) = (I(c))−1Ij(c).

Note that ‖Φjk‖−2
n is equal for all k such that time-dependence of I, Ij , wj is solely through the

squared volatility c. We exploit the bound on the derivative of the weights w.r.t. c:

w′j(c) = O
(
wj(c) log2 (n)

)
, (29)

here and several times below. The bound is proved in Altmeyer and Bibinger (2014) on page 40.

Observe that by the chain and product differentiation rule

d

dc

(
w2
j (c)(Ij(c))

−1
)

= 2wj(c)w
′
j(c)(Ij(c))

−1 + w2
j (c)4

(
c+ ‖Φjk‖−2

n
η̂
n

)
.

Thus we can find an upper bound for the remainder Rn using

Jn∑
j=1

(
1 ∨ ‖Φjk‖−2

n n−1
)(

1 ∧ ‖Φjk‖8nn4
)

= O

( b√nhnc∑
j=1

1 +

Jn∑
j=1

‖Φjk‖6nn3

)
= O(log6 (n))

⇒ Rn = OP

(
nβr2

n

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

log6 (n)
(
ckhn − cbsh−1

n chn

))
= OP

(
log7 (n)(hn/rn)(α∨1/2)

)

with (27), which tends to zero as n → ∞ because α > 0 and β < 1/2. The Lindeberg condition is

proved by the Lyapunov criterion considering fourth moments:

n2β

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

r4
n E

[
ζ4
k(C̃ + ε)

∣∣Fkhn]≤ n2β

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

r4
n

(
Jn∑
j=1

wjk

(
E
[(
S̃2
jk −

η̂
n‖Φjk‖−2

n

)4
])1

4
)4

= O
(
n−β log11(n)

)
= O(1) ,

using Jensen’s and Minkowski’s inequalities with S̃jk being the spectral statistics (8) based on obser-

vations of (C̃ + ε). The order of the term readily follows with E[S̃pjk] ≤ Kp

(
1 + n−p/2‖Φjk‖−pn

)
,

what is shown by equations (48) and (49) in Altmeyer and Bibinger (2014). Equation (48) carries

over and the proof of equation (49) can easily be adapted along the same lines including finitely many
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autocovariances of the noise. We obtain the variance in (28), since the bin-wise Fisher informations

Ik =
1

2

Jn∑
j=1

(
ckhn + ‖Φjk‖−2

n

η

n

)−2

satisfy the following convergences (see Altmeyer and Bibinger (2014) for a detailed proof for the

integrated version):

1

log (n)
Ik −→

∫ ∞
0

1

2

(
ckhn + ηπ2x2

)−2
dx =

(
8 c

3/2
khn

η
1/2
)−1

, (30)

and the reciprocal right-hand side thus constitutes the asymptotic variance of the spot squared volatil-

ity estimator in Theorem 1.

Finally, stability of the weak convergence is proved similarly as in Proposition 8.2 of Jacod and

Todorov (2010). For later use, let us consider a collection of times where we consider estimates

of the spot volatilities. In particular, for our test, we shall focus on finitely many jumps of X with

absolute value larger than some constant. Consider a finite set (Sp)1≤p≤P with fix P <∞ of ordered

stopping times exhausting those jump arrivals of X on [0, 1]. The restriction of Ω to

Ωn =
{
ω ∈ Ω|S1 > r−1

n hn, SP < 1− r−1
n hn,∀p : (Sp − Sp−1) > 2r−1

n hn
}

(31)

satisfies P(Ωn)→ 1 as n→∞. We aim at establishing for

αn =
(
n
β/2
(
ĉrnSp − cSp

)
, n

β/2
(
ĉrnSp− − cSp−

))
1≤p≤P

(32)

that E[Zg(αn)]→ E[Zg(α)] withα =
(
2
√

2c
3/4
Sp
η1/4Up, 2

√
2c

3/4
Sp−η

1/4U ′p
)

1≤p≤P for anyF-measurable

bounded random variable Z and continuous bounded function g and for (Up, U
′
p) a sequence of stan-

dard normals defined on an exogenous space being independent of F . This is the definition of the

claimed stable convergence. Denote by
(
Drn
Sp−, D

rn
Sp

)
1≤p≤P statistics calculated in the same way

as our spot estimators (12a), (12b), but when the local volatility is fixed equal to 1. Then, the(
Drn
Sp−, D

rn
Sp

)
1≤p≤P are local means of bin-wise spectral statistics

∑Jn
j=1wjk

(
(S∗jk)

2 − ‖Φjk‖−2
n

η̂
n

)
,

where

S∗jk = ‖Φjk‖−1
n

n∑
i=1

(
∆n
iW + εi − εi−1

)
Φjk

( i
n

)
.

From the above considerations for the point-wise clt, we obtain that

n
β/2
(
ĉrnSp − c

3/4
Sp
Drn
Sp

) P−→ 0 , (33)

and analogously for ĉrnSp−. Therefore, we are left to prove that for

α̃n =
(
n
β/2
(
Drn
Sp
− 1
)
, n

β/2
(
Drn
Sp− − 1

))
1≤p≤P
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the condition E[Zg(α̃n)] → E[Zg(α̃)] = E[Z]E[g(α̃)] with α̃ =
(
2
√

2η1/4Up, 2
√

2η1/4U ′p
)

1≤p≤P
and (Up, U

′
p) a sequence of exogenous standard normals independent of F is valid. The strategy is to

exclude intervals on which the spot estimators are built and conditioning. Thereto, define

Bn =

P⋃
p=1

[(Sp − (r−1
n + 1)hn) ∨ 0, (Sp + (r−1

n + 1)hn) ∧ 1]

and Gnt as the smallest filtration to which W is adapted and such that the σ-field generated by the

Poisson measure which determines S1, . . . , SP lies in Gn0 . Then each α̃n is Gn1 -measurable. The

following decomposition of W is well-defined:

W (n)t =

∫ t

0
1Bn(s) dWs , W̄ (n)t = Wt −W (n)t .

It is enough to consider Z being G1-measurable, as we can simply substitute with E[Z|G1] otherwise.

WhenHn is the σ-field generated by Gn0 and W̄ (n)t,
(
Hn
)
n

is an isotonic sequence and
∨
nHn = Gn1 .

Since E[Z|Hn]→ Z in L1(P), it is enough to show

E[Z1Ωng(α̃n)]→ E[Z]E[g(α̃)] (34)

for Z Hq-measurable for some q. Restricted to Ωn the vector α̃n includes only increments ∆n
iW

from W (n)t and independent of W̄ (n)t. Then for all n ≥ q, conditional on Hq, the vector α̃n has

a law independent of W̄ (n)t such that E[Z1Ωng(α̃n)] = E[Z1Ωn ]E[g(α̃n)], n ≥ q, and the ordinary

central limit theorem implies the claimed convergence. We have verified all conditions and infer the

stable limit theorem (28).

To prove that the same CLT as (28) is valid for nβ/2
(
ĉrns − cs

)
, we show for the other addends

above that they converge to zero in probability for all s ∈ (0, 1). We proceed with

Step 2 : n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn

(
ζk(C + ε)− ζk(C̃ + ε)

))
= OP(1) . (35)

This remainder due to approximating C by the simplified process C̃ has exactly the same structure

as the one for the integrated squared volatility examined in paragraph 6.3 of Altmeyer and Bibinger

(2014). We incorporate the additional jump component in the volatility using (26e). Then, repeating

the proof along the same lines, only changing the mean over all bins to the mean over local windows

of size r−1
n hn, renders with β < 1/2 the order:

ζk(C + ε)− ζk(C̃ + ε) = OP
(
h(α∨1/2)
n

)
= OP

(
n−

β/2
)
,
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uniformly for all k. For this remainder the Hölder smoothness of the drift is needed because hn
is chosen a logarithmic factor larger than the usual order n−1/2 of band-widths in related works as

Barndorff-Nielsen et al. (2008) and Jacod et al. (2009).

Step 3 : n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn
(
ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)

))
= OP(1) . (36)

Proof of Step 3: It suffices to prove that uniformly for all k:

|ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)| = OP
(
n−

β/2
)
.

We distinguish between two disjoint subsets of Ω according to whether hn|ζk(C + ε)| > ρun = cρhτn

for some fixed ρ ∈ (0, 1), or not. Consider first the subset on which hn|ζk(C + ε)| > ρun. If we

choose N0 ∈ N, such that hN0(1−τ)
n = O(n−β/2−ε) for some ε > 0, we have

|ζk(C + ε)| ≤ |ζk(C + ε)|N0+1(ρc )−N0hN0(1−τ)
n = OP

(
log2N0+2(n)hN0(1−τ)

n

)
= OP

(
n−

β/2
)
,

|ζk(Y )− ζk(C + ε)| ≤ |ζk(Y ) + ζk(C + ε)||ζk(C + ε)|N0(ρc )−N0hN0(1−τ)
n

= OP
(

log2N0+2(n)hN0(1−τ)
n

)
= OP

(
n−

β/2
)
.

We use bounds for the moments of |ζk(C+ε)|p = OP(log2p(n)), p ≥ 2, which follow by the moment

bounds for S̃jk with Minkowski’s and Jensen’s inequalities as for fourth moments in Step 1 above

and with Step 2. Note that these bounds are not sharp, as can be seen for the second moment which

increases logarithmically, but sufficient for the proofs. The first bound in case of truncation on bin k

and the second one analogously in case of non-truncation imply (36).

Next, consider the subset of Ω on which hn|ζk(C + ε)| ≤ ρun. We have the decomposition

ζk(Y )= ζk(C + ε)+

Jn∑
j=1

wjk‖Φjk‖−2
n

((
n∑
i=1

∆n
i JΦjk

(
i
n

))2

+2

n∑
i=1

∆n
i JΦjk

(
i
n

) n∑
v=1

∆n
vCΦjk

(
v
n

))
,

neglecting cross terms of jumps and noise. All cross terms can be bounded using Cauchy-Schwarz.

We focus in the sequel on the addend with jump increments ∆n
i J . The bounds (26b) and (26d) for the

probability of jumps above a certain magnitude occurring on different time instants show that cross

terms of the squared sum are asymptotically negligible. Therefore, using Jensen’s inequality twice we

find that

E

∣∣∣∣∣
Jn∑
j=1

wjk‖Φjk‖−2
n

( n∑
i=1

∆n
i JΦjk

(
i
n

))2
∣∣∣∣∣
p

≤
Jn∑
j=1

wjkE

[( n∑
i=1

‖Φjk‖−2
n (∆n

i J)2Φ2
jk

(
i
n

))p]
+ O(1)

≤
Jn∑
j=1

wjk

n∑
i=1

‖Φjk‖−2
n

Φ2
jk

(
i
n

)
n

npE
[
|∆n

i J |2p
]

+ O(1) = O(1) .
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With these moment bounds at hand, we obtain in case of truncation, which means

hn|ζk(Y )| > un ⇒ hn

∣∣∣ Jn∑
j=1

wjk‖Φjk‖−2
n

( n∑
i=1

∆n
i JΦjk

(
i
n

))2∣∣∣ > ρ̃un

for some ρ̃ > 0, the following bound:

|ζk(C + ε)| ≤ |ζk(C + ε)|hN0(1−τ)
n

(ρ̃/c)N0

∣∣∣ Jn∑
j=1

wjk‖Φjk‖−2
n

( n∑
i=1

∆n
i JΦjk

(
i
n

))2∣∣∣N0

= OP
(
n
β/2
)
.

In case of non-truncation, hn|ζk(Y )| ≤ un, we derive

E
[∣∣∣ Jn∑

j=1

wjk‖Φjk‖−2
n

n∑
i=1

(
∆n
i J ∧

√
un
)2

Φ2
jk

(
i
n

)∣∣∣] = O
(
u1−r/2
n

)
,

and hence if we can ensure that hτ(1−r/2)
n = O(n−β/2):

|ζk(Y )− ζk(C + ε)| ≤ K
∣∣∣ Jn∑
j=1

wjk‖Φjk‖−2
n

n∑
i=1

(
∆n
i J ∧

√
un
)2

Φ2
jk

(
i
n

)∣∣∣+OP(n−β/2)= OP
(
n−

β/2
)
.

The conditions β < τ(1− r/2) as well as r < 2 is exactly what we need here to guarantee (36).

Step 4 : n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn
(
ζadk (Y )1{hn|ζadk (Y )|≤un} − ζk(Y )1{hn|ζp(Y )|≤un}

))
= OP(1) .

(37)

Proof of Step 4: In Step 3 we have not used the specific form of the oracle weights (10) and the proof

analogously extends to

n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn
(
ζadk (Y )1{hn|ζadk (Y )|≤un} − ζ

ad
k (C + ε)

))
= OP(1) . (38)

Thus it suffices to prove that

n
β/2

( bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

rn
(
ζadk (C + ε)− ζk(C + ε)

))
= OP(1) . (39)

We decompose this remainder as follows. First, consider the difference of pre-estimated and oracle
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weights, when the pilot estimator is the same for the whole window:

∣∣∣∣∣
bsh−1

n c+r−1
n∑

k=bsh−1
n c+1

rn

Jn∑
j=1

(
wj

(
ĉrn,pilotbsh−1

n chn

)
− wj

(
cbsh−1

n chn

))(
S2
jk −

η̂
n‖Φjk‖−2

n − ckhn
)∣∣∣∣∣

≤ rn
Jn∑
j=1

∣∣∣wj(ĉrn,pilotbsh−1
n chn

)
− wj

(
cbsh−1

n chn

)∣∣∣
∣∣∣∣∣∣
bsh−1

n c+r−1
n∑

k=bsh−1
n c+1

(
S2
jk −

η̂
n‖Φjk‖−2

n − ckhn
)∣∣∣∣∣∣

= OP

r1/2n Jn∑
j=1

(
1 + ‖Φjk‖−2

n n−1
)
wj

(
cbsh−1

n chn

)
log (n)δn

 = OP
(
n−

β/2
)
.

Here we have used that the expectation of the difference is zero and that the weights do not hinge on

k. We have bounded the variance using the derivative bound (29) on the weights and that covariances

of the S2
jk over different bins tend to zero. Finally, we denote the rate of the pilot estimator δn here

and since r
1/2
n = n−β/2

√
log (n) some δn < n−ε for any ε > 0 is enough here, while we actually

attain δn = n−β/2. It remains to bound

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

r2
nVar

 Jn∑
j=1

(
wj

(
ĉrn,pilotkhn

)
− wj

(
ĉrn,pilotbsh−1

n chn

))(
S2
jk −

η̂
n‖Φjk‖−2

n − ckhn
)

+

bsh−1
n c+r−1

n∑
k=bsh−1

n c+1

r2
nVar

 Jn∑
j=1

(
wj
(
ckhn

)
− wj

(
cbsh−1

n chn

))(
S2
jk −

η̂
n‖Φjk‖−2

n − ckhn
)

= O
(
rn log5 (n)

(
n−β ∨ (r−1

n hn)2α
))

= O
(
n−β

)
.

This proves (37) and completes the proof of Theorem 1.

A.3 Asymptotics of the test statistics

For test functions which are twice continuously differentiable with bounded second derivatives, Tay-

lor’s formula yields

g(x1, x2)− g(a1, a2) =
∂g

∂x1
(a1, a2)(x1 − a1) +

∂g

∂x2
(a1, a2)(x2 − a2) +

∂2g

2 ∂x2
1

(a1, a2)(x1 − a1)2

+
∂2g

2 ∂x2
2

(a1, a2)(x2 − a2)2 +
∂2g

∂x1∂x2
(a1, a2)(x1 − a1)(x2 − a2)

+ O
(

max
(
(x1 − a1)2, (x2 − a2)2

))
.

We apply a generalized ∆-method and set (a1, a2) = (cs, cs−) and the random vector (x1, x2) =

(ĉrns , ĉ
rn
s−) with estimators (12a) and (12b).

Denote by {τ1, . . . , τN1} a sequence of stopping times exhausting the jumps of X on [0, 1] with
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|∆Xτi | > a for all i and some a ∈ R+ and the Lévy measure of X does not have an atom in {a}. We

shall prove that

T0(rn, hn, g)
P−→

N1∑
i=1

g(cτi , cτi−) , (40)

and, furthermore, establish a limit distribution theory underH(a)[0,1], when the right-hand side above

equals zero. We restrict ourselves to prove a stable limit theorem for the test statistic in case that we

only consider jumps with |∆Xτi | > a. More general limit theorems in the vein of Jacod and Todorov

(2010) may also apply, but a proof is beyond our scope here. For our purpose the point-wise stable

limit theorems of the spot squared volatility estimators together with some standard considerations

suffice. We are a bit sketchy at this stage where we use similar reasoning as before. The core point is

that we may restrict to a subset of Ω again on which |τi+1 − τi| > 2r−1
n hn for all i = 1, . . . , N1 − 1,

and also τ1 > r−1
n hn, τN1 < 1 − r−1

n hn. The asymptotic distribution of the test statistic is derived

with the following three convergences:

n
β/2
(
ĉrnbτih−1

n chn
− cτi

)
(st)−→MN

(
0, 8c3/2

τi η
1/2
)
,

n
β/2
(
ĉrnbτih−1

n chn−
− cτi−

)
(st)−→MN

(
0, 8c

3/2
τi−η

1/2
)
,

nβ

(
h−1
n −r−1

n −1∑
k=r−1

n

1{hn|ζadk (Y )|>un∨a2} −
∑
s≤1

1{|∆Xs|>a}

)
P−→ 0 ,

which hold jointly. The stable limit theorems of the spot volatility estimators are given in Theorem

1. The convergence of the set of bin-wise statistics (9) above the threshold to the set of N1 jumps

is also clear from above. Concerning joint convergence of the spot estimates, note that on the con-

sidered subset of Ω all spot squared volatility estimates are computed from disjoint data subsets. In

particular this applies to left and right-hand estimates at a particular jump time τi. Therefore, covari-

ations between all estimates converge to zero in probability which is enough to conclude joint weak

convergence. Cramér-Wold’s theorem gives equivalence to weak convergence of linear combinations.

Stability of the convergence of the vector readily follows by stability (joint weak convergence with

any measurable bounded random variable) of the single estimates.

Next, focus on the test function (18) in Theorem 2. It holds that

∂g

∂x1
(cτi , cτi) =

∂g

∂x2
(cτi , cτi) = g(cτi , cτi) = 0 .
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The second order term comes into play and the equalities

∂2g

∂x2
1

(cτi , cτi) =
∂2g

∂x2
2

(cτi , cτi) = − ∂2g

∂x1∂x2
(cτi , cτi) =

1

8
c−3/2
τi .

Under H(a)[0,1] when cτi = cτi− for all i, the limit of nβT0(hn, rn, g) can be described by a random

variable

N1∑
i=1

(
∂2g

2 ∂x2
1

(cτi , cτi)Z
2
i +

∂2g

2 ∂x2
2

(cτi , cτi)Z̃
2
i +

∂2g

∂x1∂x2
(cτi , cτi)ZiZ̃i

)
8c3/2
τi η

1/2 ,

where Zi and Z̃i, i = 1, . . . , N1, are two independent collections of i.i.d. standard normals defined on

the orthogonal extension of (Ω,F ,P) in the product space that accommodates all random variables

throughout our analysis. Since (1/
√

2)(Zi − Z̃i) are i.i.d. standard normals the χ2 distribution with

N1 degrees of freedom appears as limiting distribution. The claim of Theorem 2 follows from bino-

mial formula, the second derivatives of the test function (18) and the fact that we have an estimator

η̂1/2 = η1/2 +OP(n−1/2). Even though the limit above could depend on the particular choice of stop-

ping times its F-conditional law does not. Corollary 3.1 readily follows from the above asymptotic

considerations.

If we consider g̃(x1, x2) = (x1 − x2), the asymptotic normality results (14a) and (14b) and that

covariations between left and right estimates tend to zero in probability give rise to the convergence:

n
β/2 T0(rn, hn, g̃)

(st)−→
N1∑
i=1

(
Zi − Z̃i

)(
8c3/2
τi η

1/2
)1/2

,

on H(a)[0,1], when cτi = cτi− for all i = 1, . . . , N1, where again (Zi, Z̃i)1≤i≤N1 is a collection of

i.i.d. standard normals accommodated on the orthogonal extension of the probability space. Standard-

ization with the pre-estimated Fisher informations readily yields the feasible limit theorem in (21).
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