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Abstract

Using a local adaptive Forward Intensities Approach (FIA) we investigate multiperiod
corporate defaults and other delisting schemes. The proposed approach is fully data-
driven and is based on local adaptive estimation and the selection of optimal estimation
windows. Time-dependent model parameters are derived by a sequential testing proce-
dure that yields adapted predictions at every time point. Applying the proposed method
to monthly data on 2000 U.S. public firms over a sample period from 1991 to 2011, we
estimate default probabilities over various prediction horizons. The prediction perfor-
mance is evaluated against the global FIA that employs all past observations. For the
six months prediction horizon, the local adaptive FIA performs with the same accuracy
as the benchmark. The default prediction power is improved for the longer horizon (one
to three years). Our local adaptive method can be applied to any other specifications of
forward intensities.
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1 INTRODUCTION

Credit risk analysis plays an essential role in finance in order to measure default risk that

can put stakeholders on financial complication. As a consequence of Basel’s proposed

capital requirement on credit asset, bank and financial institution have to develope their

internal credit risk system. Two key elements for the internal credit rating are (Härdle

and Prastyo, 2014): (i) compute probability of default (PD) and (ii) estimate the loss

given default (LGD). The PD is the probability of failing to pay debt in full over a

particular time horizon. The LGD is the percentage of loss over the total exposure upon

default that can be estimated by identifying its distribution on defaulters with similar

attributes. This paper employs a corporate PD prediction methodology.

Many stochastic models and statistical techniques have been developed to measure the

likelihood that a debtor will fail to service its obligation in full. One of the techniques for

default prediction is discriminant analysis. This and also classification settings such as

support vector machines (Härdle et al. (2009); Chen et al. (2011); Härdle et al. (2014))

though fall short when the interest is in a time varying context. Logit and probit regres-

sion are designed to estimate PD directly but have rarely been employed in a time series

setting. Recently, the implementation of hazard rate models has received much atten-

tion, see Shumway (2001); Chava and Jarrow (2004); Campbell et al. (2008); Bharath and

Shumway (2008). A general fitting problem though remains: one disregards companies

delist for reason other than that of defaults. This negligence results in censoring biases.

One such issue is addressed in intensity based models e.g. Duffie et al. (2007) that treats

both default and other exit events of the delisted companies.

An advanced default analysis views individual defaults along with their state predictors:

the default (non-default) companies are tagged with common risk factors and firm-specific

attributes. Duffie et al. (2009) accommodated unobservable common factors as frailty
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factor. Duan et al. (2012) modeled the dynamic data panel by using a forward-intensity

specification. It models the default term structure by a new reduced form approach

that takes into account both default and other type of exits from companies that are

delisted from the market. The PD for different horizon is then computed as a function

of different input variables. The advantage of this specification is that one does not need

to bother about modeling the high-dimensional state variable process. It contrasts the

spot intensity model (Duffie et al., 2007) which requires specification and estimation of

the time series of state variables. This may be quite challenging for a high dimensional

set of variables.

The forward intensity approach specifies a parametric form that is per se constant al-

though varies over time as depicted by Figure 1. In addition, Figure 2 and 3 exhibit

parameters estimates of forward intensities specification that are sensitive to the length

of estimation windows. This is where a time varying approach comes into play. More

precisely, in this paper a time varying parameter model is approximated by a local con-

stant parametric form. The aim is to implement and localise such parameters for forward

intensities. The technique presented selects a data-driven estimation window that allows

for flexible forecasts. The key idea is to employ a sequential testing procedure to identify

this time interval of constant parameters. Corporate PDs are then computed based on

this data interval. By controlling the risk of false alarm, i.e. the algorithm stops ear-

lier than an oracle interval, the algorithm selects the longest possible window for which

parameter constancy cannot be rejected.

The proposed framework builds on the local parametric approach (LPA) proposed by

Spokoiny (1998). LPA involves processes that are stationary only locally: (i) consider

only recent data, (ii) imply sub setting of data using some localisation scheme. Methods

developed in this LPA framework are local change point (LCP) (Mercurio and Spokoiny,

2004), local model selection (Katkovnik and Spokoiny, 2008), and stagewise aggregation
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(Belomestny and Spokoiny, 2007). The studies done by Chen et al. (2008); Giacomini

et al. (2009); Chen et al. (2010); and Chen and Niu (2014) showed that LCP work well

in practice.

The contribution of this paper is to introduce an adaptive calibration technique for for-

ward intensities in a multiperiod corporate default setting motivated by our preliminary

analysis (Figure 1, 2 and 3). We apply LCP as in Chen and Niu (2014) to the forward

intensity model of Duan et al. (2012) to detect the largest interval of homogeneity, i.e.

the interval where a local constant parametric form describes the data well, and to pro-

vide an adaptive estimate as the one associated with the interval found. The proposed

method tests the null hypothesis of homogeneous interval with no change points against

the alternative hypothesis of at least one change point being present.

Our empirical analysis uses 2000 U.S. public firms for the period from 1991 to 2011. There

are two macroeconomic factors which act as common variables and ten firm-specific vari-

ables. The empirical implementation indicates that the parameter estimate of one-year

simple return of S&P500 index is sensitive to the length of estimation interval. The pa-

rameter estimate of another macroeconomic factor, i.e. 3-month US Treasury bill interest

rate, varies less for different calibration window length. The volatility-adjusted leverage

(measured as distance-to-default), company size, market-to-book ratio, and idiosyncratic

volatility are robust to the estimation interval length whereas the remaining firm-specific

attributes that represent liquidity and profitability are not. We estimate default proba-

bilities over various prediction horizons: one month, three months, six months, one year,

two years, and three years. The prediction performance is evaluated against the global

forward intensities approach that employs all past observations. For the six months pre-

diction horizon, both the global and the local forward intensities approaches perform with

the same accuracy. The default prediction power is improved for the longer horizon (one

to three years).
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The remainder of the paper is structured as follows. The forward intensity approach and

the LPA are introduced in Section 2 and 3, respectively. The data and empirical findings

on PD prediction are provided in Section 4. Section 5 concludes this study.

2 LOCALISING FORWARD INTENSITIES

2.1 Forward Intensities Approach (FIA)

Time of default for the i-th firm is denoted by τDi. We first describe FIA in the pure

default case then move on to combined exits for horizon τ . In the following sections we

drop index i for simplicity. For known default intensity λs, the survival probability in

[t, t+ τ ] is:

P (τD > t+ τ) = exp

(
−
∫ t+τ

t

λs ds

)
. (1)

It is reasonable to assume that the intensity λs is driven by time dependent state variables

Xs, Xs ∈ Rp, of which their future evolution is unknown. Hence, given a model for

the dynamics of Xs one may obtain λs = λ(Xs) by forecasting the path of Xs. The

state variables typically contain common factors W and firm-specific attributes U , Xt =

(Wt, Ut). Consider conditioning on a filtration {Ft : t ≥ 0}, where Ft is generated by:

{(Us, Ds) : s ≤ min(t, τD)} ∪ {Ws : s ≤ t},

with Ds a Poisson process for default with intensity λ(Xs).

Given that from time t one would like to understand the default occurance until t + τ

one needs therefore to simulate the future path of Xs. Following the idea of Duffie et al.

(2007) technique, i.e. λs = λ(Xs; θt), θt is a vector of parameters obtained based on Xt,
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the survival probability (1) reads now as:

P (τD > t+ s |Ft )
def
= E

[
exp

{
−
∫ t+s

t

λ(Xu; θt) du

}
|Xt

]
. (2)

Forecasting the time series of Xs is quite challenging though particularly when the di-

mension p is high. An alternative solution is to specify a forward default intensity:

λt(s)
def
= lim

∆t→0

P (t+ s < τD ≤ t+ s+ ∆t |τD ≥ t+ s)

∆t
, (3)

as a function of Xt alone, λt(s) = λ(Xt, s). Duan et al. (2012) proposed λt(s) = λ(θs;Xt)

that directly employs Xt instead of using an imposed dynamic of Xs. In this paper, we

generalise this idea via time varying parameters, λt(s) = λ(θs,t;Xt). Table 1 summarizes

the specification of intensity at time s.

Table 1: The specifications of the default intensity.

λs = λ(Xs; θt) , Duffie et al. (2007)
λt(s) = λ(θs;Xt) , Duan et al. (2012)
λt(s) = λ(θs,t;Xt) , Our approach

The idea behind the FIA in the pure default case is as follows. One observes firm i,

i = 1, . . . , N , over an entire sample period [0, T ] and records its default time τDi and

state variables Xit. At any time t, 0 < t ≤ t + s ≤ T , the PD can be predicted for

next s period using information Xt and evaluated against the true one. This predicted

PD is derived by an estimate of the forward default intensity λ̂t(s) = λ(θ̂s;Xt). The

θ̂s is calibrated by maximizing corresponding likelihood function over [0, t] that will be

presented in (24). The forward default intensity specifies an explicit dependence of default

intensity in the future, λs, to the values of state variables at the time of prediction t.
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Denote the (differentiable) conditional cdf of τD evaluated at s:

Ft(s) = 1− P (τD > t+ s |Ft ) , (4)

with the conditional survival probability:

P (τD > t+ s |Ft ) = E

{
exp

(
−
∫ t+s

t

λu du

)
|Xt

}
. (5)

The hazard rate is the event rate at time t conditional on survival time t or later. The

forward intensity is a hazard function where the survival time is evaluated at a fixed

horizon of interest. Hence, the forward default intensity (3) can be rewritten as:

λt(s) =
F ′t(s)

1− Ft(s)
= ψt(s) + ψ′t(s)s, (6)

with ψt(s) defined as:

ψt(s)
def
= − log {1− Ft(s)}

s
,

= −
log E

{
exp

(
−
∫ t+s
t

λu du
)
|Xt

}
s

. (7)

Thus, ψt(s)s =
∫ s

0
λt(u) du is the cumulative forward default intensity and exp{−ψt(s)s}

is the survival probability. The proof is given in Appendix A. The forward default inten-

sity λt(s) as defined in (3) is then formulated as:

λt(s) = exp {−ψt(s)s} lim
∆t→0

E
{∫ t+s+∆t

t+s
exp

(
−
∫ t+u
t

λv dv
)
λu du |τD ≥ t+ s

}
∆t

. (8)
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The conditional probabilities to survive (9) and to default (10) now are, respectively:

P (τD > t+ s|Ft) = exp

{
−
∫ t+s

t

λt(u) du

}
= exp {−ψt(s)s} (9)

P (τD ≤ t+ s|Ft) =

∫ t+s

t

exp

{
−
∫ t+u

t

λt(v) dv

}
λt(u) du. (10)

A company traded in a stock exchange can be delisted because of a default event or other

reasons, such as merger or aquisition operations. Duffie et al. (2007) modelled these

two events via a doubly stochastic process driven by two independent mechanisms with

intensities λt and φt. Denote τO as the time of other exit. Recall λs = λ(Xs; θt) and

specify φs = φ(Xs; θt), by law of iterated expectation and conditional on filtration Ft,

the probability to survive (11) and to default (12) over [t, t+ τ ] are:

P (τD, τO > t+ s, |Ft)
def
= E

[
exp

{
−
∫ t+s

t

(λu + φu) du

}
|Xt

]
, (11)

P (τD, τO ≤ t+ s, |Ft)
def
= E

[∫ t+s

t

exp

{
−
∫ t+u

t

(λv + φv) dv

}
λu du |Xt

]
. (12)

A default event cannot happen after a company exited from the market. Thus these two

events are competing and not fully independent. The independency assumption of the

two processes will blur the distinction between competing and independent risk. Duan

et al. (2012) proposed a forward intensity approach that enables us to work in a more

convenient way.

Time of default and other exits together, hereinafter called combined exit, is denoted by

τC , with τC ≤ τD. Applying the same procedure as in estimating forward default intensity

from the pure default process, denote the (differentiable)

Gt(s) = 1− P (τC > t+ s |Ft ) (13)
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as the conditional cdf of τC evaluated at s with conditional survival probability:

P (τC > t+ s |Ft ) = E

{
exp

(
−
∫ t+s

t

gu du

)
|Xt

}
. (14)

The forward combined exit intensity gt(s):

gt(s)
def
= lim

∆t→0

P (t+ s < τC ≤ t+ s+ ∆t |τC ≥ t+ s)

∆t
(15)

can be rewritten as:

gt(s) =
G′t(s)

1−Gt(s)
= ψt(s) + ψ′t(s)s. (16)

The ψt(s) in (7) is rewritten in term of gu. Thus, ψt(s)s =
∫ s

0
gt(u) du and the conditional

survival probability (14) is given by:

P (τC > t+ s |Ft ) = exp {−ψt(s)s} . (17)

The instantaneous default intensity at horizon t+s (forward default intensity from doubly

Poisson processes) is defined as:

ft(s)
def
= exp {−ψt(s)s} lim

∆t→0

P (t+ s < τD = τC ≤ t+ s+ ∆t |Q)

∆t
, (18)

= exp {−ψt(s)s} lim
∆t→0

E
{∫ t+s+∆t

t+s
exp

(
−
∫ u
t
gv dv

)
λu du |Q

}
∆t

, (19)

with Q the event that τD = τC ≥ t+ s. The default probability over [t, t+ s] is

P (τC ≤ t+ s |Ft ) =

∫ t+s

t

exp

{
−
∫ t+u

t

gt(v) dv

}
ft(u) du. (20)

Duan et al. (2012) deal with fit(s) and git(s) as functions of state variables Xit for firm
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i, with fit(s) > 0 and git(s) ≥ fit(s). More precisely, with fit(s) = fit(θs;Xit) and

git(s) = git(θs;Xit):

fit(s) = exp
{
α>(s)Xit

}
, (21)

git(s) = fit(s) + exp
{
β>(s)Xit

}
, (22)

with Xit = (1, xit,1, xit,2, . . . , xit,p)
> that include macroeconomic factors (Wt) as com-

mon factors and firm-specific attributes (Uit). The survival and default probabilities are

assumed to depend only upon W and U such that different firms are Ft-conditionally

independent among themselves. If it is not the case, the dependency must arise from

their sharing of W and/or any correlation among U . This conditional independence as-

sumption is in essence similar to the doubly stochastic assumption. Therefore, one firm’s

exit neither feedback to the state variables nor influence the exit probabilities of other

firms. This approach is identical to the spot intensity formulation of Duffie et al. (2007)

when s = 0.

0 5 10 15 20 25 30 35

−
10

−
5

0
5

window (6 y)

α̂ 1
2(1

2)
,  

β̂ 1
2(1

2)

0 5 10 15 20 25 30 35

−
10

−
5

0
5

τ

α̂ 1
2(τ

), 
 β̂

12
(τ

)

Figure 1: The α̂j(τ) = α̂12(12) (solid) and β̂j(τ) = β̂12(12) (dashed) for idiosyncratic
volatility. Left: fixed τ = 12 over 35 rolling windows (length: 6 years). Right: The 35-th
window with time end December 2011, τ = 0, 1, . . . , 36. Solid circles represent the same
estimates.
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2.2 Local Parametric Dynamics

As can be deduced from Figure 1, the parameters in (21) and (22) may vary over time,

i.e. αjt(τ) and βjt(τ), j = 1, . . . , p, are time local parameters. Time varying coefficients

are typically assumed as: (i) smooth functions of time (Cai et al. (2000); Fan and Zhang

(2008)) or (ii) piecewise constant functions (Bai and Perron, 1998). In contrast to these

approaches that aim at establishing a time varying model for the whole sample period,

our approach is local and data-driven. It is focused on an instantenous calibration of

(20).

The LPA (Local Parametric Approach) aims at finding a balance between parameter

variability (precision) and modelling bias by taking into account the past information

which is statistically identified as being relevant. In fact one determines time localized

parameters: for any particular time point t, there exists a past suitable window over

which the time varying parameters in (21) and (22) are approximately constant. This is

in fact the basic idea of the LPA, that is to select a window that guarantees a localised

stable model. This is realised by a sequential test based on comparing the increase of the

log likelihood process relative to critical values (Spokoiny, 2009).

Denote an interval I = [t−m, t] as a right-end fixed interval of m observation at time t.

Suppose that our sample has period [0, T ] for each interval I. Then, the local likelihood

(for the horizon τ) based on (21)(22) in interval I:

LI,τ (α, β) =
N∏
i=1

T−1∏
t=0
t∈I

Lτ,i,t (α, β) , (23)
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where N is the number of companies at t and

α =



α0(0) α0(1) · · · α0(τ − 1)

α1(0) α1(1) · · · α1(τ − 1)

...
...

. . .
...

αp(0) αp(1) · · · αp(τ − 1)


; β =



β0(0) β0(1) · · · β0(τ − 1)

β1(0) β1(1) · · · β1(τ − 1)

...
...

. . .
...

βp(0) βp(1) · · · βp(τ − 1)


.

Let t0i be the first time that firm i appeared in the sample. If the firm does not appear

in sample in t or is already delisted before t, i.e. t0i > t or τCi ≤ t, then the likelihood is

set to 1 and is transformed to 0 in log-likelihood such that

Lτ,i,t (α, β) = 1{t0i≤t, τCi>t+τ}Pt(τCi > t+ τ) (24)

+1{t0i≤t, τDi=τCi≤t+τ}Pt(τCi; τDi = τCi ≤ t+ τ)

+1{t0i≤t,τDi 6=τCi,τCi≤t+τ}Pt(τCi; τDi 6= τCi&τCi ≤ t+ τ)

+1{t0i>t} + 1{τCi≤t},

with Pt(τCi) = P(τCi|Ft).

For numerical application, (14),(17) are approximated by:

Pt (τCi > t+ τ) = exp

{
−

τ−1∑
s=0

git(s)∆t

}
, (25)

with ∆t = 1/12 to represent that prediction horizon is measured in month. Therefore,
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the probability of exit due to default and other reasons, respectively:

Pt (τCi; τDi = τCi ≤ t+ τ) (26)

=


1− exp {−fit(0)∆t} if τCi = t+ 1,

exp
{
−
∑τCi−t−2

s=0 git(s)∆t
}
× [1− exp {−fit (τCi − t− 1) ∆t}]

if t+ 1 < τCi ≤ t+ τ,

Pt (τCi; τDi 6= τCi&τCi ≤ t+ τ) (27)

=



exp {−fit(0)∆t} − exp {−git(0)∆t} if τCi = t+ 1,

exp
{
−
∑τCi−t−2

s=0 git(s)∆t
}
×

[exp {−fit (τCi − t− 1) ∆t} − exp {−git (τCi − t− 1) ∆t}]

if t+ 1 < τCi ≤ t+ τ,

The forward intensities in the discretized version, i.e. fit(τ) and git(τ), should be under-

stood as at time t for the period [t + τ, t + τ + 1] because horizon index s in (25)-(27)

starts from zero. Forward intensity is basically spot intensity for one month ahead. Duan

et al. (2012) derived the large sample properties of the likelihood (23) constructed from

overlapped periods. This likelihood can be numerically maximized to obtain α̂ and β̂.

The log likelihood of (23) separates into a sum of terms involving α and β. We can

maximize its two components individually to obtain α̂ and β̂. In addition, the likelihood

for α or β can be decomposed to terms involving α(τ) or β(τ) only. This property enables

us to estimate α and β without performing estimation sequentially from shorter to longer
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prediction horizon. Thus for horizon s = 0, 1, . . . , τ − 1,

α̂(s) = max
α(s)

logL{α(s)} = max
α(s)

log

[
n∑
i=1

T−s−1∑
t=0

Li,t{α(s)}

]
, (28)

β̂(s) = max
β(s)

logL{β(s)} = max
β(s)

log

[
n∑
i=1

T−s−1∑
t=0

Li,t{β(s)}

]
, (29)

with

Li,t {α(s)} = 1{t0i≤t, τCi>t+s+1} exp {−fit(s)∆t}

+1{t0i≤t, τDi=τCi≤t+s+1} [1− exp {−fit(s)∆t}]

+1{t0i≤t,τDi 6=τCi,τCi≤t+s+1} exp {−fit(s)∆t}

+1{t0i>t} + 1{τCi≤t+s+1}, (30)

Li,t {β(s)} = 1{t0i≤t, τCi>t+s+1} exp {− [git(s)− fit(s)] ∆t}

+1{t0i≤t, τDi=τCi≤t+s+1}

+1{t0i≤t,τDi 6=τCi,τCi≤t+s+1} [1− exp {− [git(s)− fit(s)] ∆t}]

+1{t0i>t} + 1{τCi≤t+s+1}, (31)

where git(s)− fit(s) = exp {β0(s) + β1(s)xit,1 + . . .+ βp(s)xit,p}.

All the firm-month observations are classified into following categoriesX0 =
(
x0

1, . . . , x
0
N0

)>
,

X1 =
(
x1

1, . . . , x
1
N1

)>
, and X2 =

(
x2

1, . . . , x
2
N2

)>
, where X0, X1, and X2 contain all firm-

month observations that survive, default, and exit due to other reasons, respectively. The

N0, N1, and N2 are number of observations in each category. Therefore, we can express
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the horizon-specific log-likelihood:

logL{α(s)} = −
N0∑
i=1

exp(x0
iα)∆t+

N1∑
i=1

log
[
1− exp{− exp(x1

iα)∆t}
]

−
N2∑
i=1

exp(x2
iα)∆t, (32)

logL{β(s)} = −
N0∑
i=1

exp(x0
iβ)∆t+

N1∑
i=1

log
[
1− exp{− exp(x1

iβ)∆t}
]
. (33)

In LPA, the maximum likelihood estimates (MLE) of θ = {α, β} over horizon τ in the

data interval I is maximizing (23):

θ̃I = arg max
θ∈Θ

LI,τ (α, β). (34)

The interval I controls the estimation quality and addresses the tradeoff between esti-

mation efficiency and local flexibility. The quality of θ̃I as the estimator of the true time

varying parameter vector θ∗t is assessed by Kullback-Leibler (KL) divergence. Discarding

the time subscript and keep an asterisk (∗) for notational convenience, the KL diver-

gence of approximate distribution Pθ̃I from the true distribution Pθ∗ is KI,τ{θ̃I , θ∗} =

Eθ∗
{

log(Pθ∗/Pθ̃I )
}

. Let NI is number of observations in interval I, the KL divergence

of distributions that belong to exponential family can be represented in term of (local)

likelihood:

KI,τ{θ̃I , θ∗} = N−1
I

{
LI,τ (θ̃I)− LI,τ (θ∗)

}
(35)

that measures the expectation (under Pθ∗) of the information lost when Pθ̃I is used to

approximate Pθ∗ . By introducing the r-th power of that likelihood difference, define a
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loss function:

LI,τ (θ̃I , θ
∗)

def
=
∣∣∣LI,τ (θ̃I)− LI,τ (θ∗)∣∣∣ (36)

that obeys a parametric risk bound:

Eθ∗
∣∣∣LI,τ (θ̃I , θ∗)∣∣∣r ≤ Rr (θ∗) , (37)

where Rr (θ∗) denotes a constant depending on r > 0 and θ∗, see Spokoiny (2009). In

the exponential family set up, the parametric risk bound is parameter invariant, i.e.

Rr (θ∗) = Rr. Different values of r lead to different risk bounds (37), critical values and

adaptive estimates. Higher values of r lead to selection of longer intervals of homogeneity.

We follow the recommendation of Č́ıžek et al. (2009) and consider r = 0.5 and r = 1.

3 LOCAL PARAMETRIC FRAMEWORK

In practice, the interval of homogeneity is unknown and needs to be selected among a

finite set of K candidates. The aim is to well approximate the time varying parameter θt

model by a locally constant parametric model. The approximation quality is measured

by the KL divergence (35). Denote ∆Ik,τ (θ) =
∑

t∈Ik KIk,τ{µt, µt(θ)} as a measure of

discrepancy between the true (unknown) data generating process µt and the parametric

model µt(θ) with intensities (21) and (22) for intervals Ik. Let for some θ ∈ Θ,

E {∆Ik(θ)} ≤ ∆, (38)

where ∆ ≥ 0 denotes a small modelling bias (SMB) for interval Ik. Consider (K + 1)

nested intervals (with fixed right-end point t) Ik = [t−mk, t] of length |Ik| = mk for
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any particular time t, IK ⊃ · · · ⊃ Ik ⊃ · · · ⊃ I1 ⊃ I0. The oracle, i.e. theoretically

optimal, choice Ik∗ of the interval sequence is defined as the largest interval for which the

SMB condition (38) holds. In practice of course ∆Ik is unknown and therefore the oracle

choice of k∗ cannot be implemented directly. One therefore mimics the oracle choice via

sequential testing for k ideal situation, where k = 1, . . . , K (Spokoiny, 2009).

3.1 Homogeneity Interval Test for Fixed τ

The interval selection algorithm chooses the (optimal) length of interval where at each

Ik, it tests the null hypothesis on parameter homogeneity against the alternative of a

change point within Ik. We write θ̃k instead of θ̃Ik as estimates obtained at interval Ik.

The adaptive estimates θ̂k is the MLE at the interval of homogeneity, i.e. θ̂k = θ̃k̂. For I0,

one puts θ̂0 = θ̃0. One iteratively extends the subsets and sequentially tests for possible

change points in the next longer interval. For a fixed horizon, a likelihood ratio test

(LRT) is employed at each Ik with test statistic (Chen and Niu, 2014):

Tk,τ =
∣∣∣LIk(θ̃k)− LIk(θ̂k−1)

∣∣∣r , k = 1, . . . , K. (39)

Assume parameter homogeneity in Ik−1 has been established at a given time point t, the

hypothetical homogeneity in interval Ik is tested by measuring the difference between

their corresponding estimates.

Once a set of critical values z1,τ , . . . , zK,τ is generated via a Monte Carlo simulation,

the sequential testing procedure is accomplished. If Tk,τ > zk,τ , then the procedure

terminates and selects interval Ik−1 such that θ̂k = θ̂k−1 = θ̃k−1. Otherwise, the interval

Ik is accepted as homogeneous and one continues to update the estimate θ̂k = θ̃k. The

adaptive estimation is done through comparing the test statistic (39) at every step k

with the corresponding critical value zk,τ . One then searches for the longest interval of
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homogeneity Ik̂ for which the null hypothesis is not rejected:

θ̂ = θ̃k̂, k̂ = max
k≤K
{k : T`,τ ≤ z`,τ , ` ≤ k} . (40)

The smallest interval is always considered to be homogeneous. If the null is rejected at

the first step, then θ̂ = θ̃0. Otherwise, we sequentially repeat this test until we find a

change point at k, accordingly θ̂ = θ̃k̂, or exhaust all interval such that θ̂ = θ̃K .

3.2 Critical Values for Fixed τ

Under the hypothesis of parameter homogeneity, the correct choice of interval is the

largest one, IK . The critical values are chosen in a way such that the probability of

selecting k < K, ”false alarm”, is minimized. For a fixed τ , in case k is selected (instead

of K) and thus θ̂ = θ̃k instead of θ̃K , the loss as defined in (36) is LIK (θ̃K , θ̂) = LIK (θ̃K)−

LIK (θ̂) and stochastically bounded by

Eθ∗
∣∣∣LIK (θ̃K)− LIK (θ̂)

∣∣∣r ≤ ρ Rr (θ∗) , (41)

with parametric risk bound generated from (true) simulated parameter θ∗:

Rr (θ∗) = Eθ∗
∣∣∣LIK (θ̃K)− LIK (θ∗)

∣∣∣r . (42)

The Rr (θ∗) is finite (see Appendix B) and can be numerically computed with the knowl-

edge of θ∗.

Critical values must ensure that the loss associated with false alarm is at most a ρ-fraction

of the parametric risk bound, Rr (θ∗), of the oracle estimate θ̃K . The ρ can be interpreted
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as the false alarm rate probability for r → 0. Accordingly, an estimate θ̂k should satisfy

Eθ∗
∣∣∣LIk(θ̃k)− LIk(θ̂k)∣∣∣r ≤ ρ k

K
Rr (θ∗) . (43)

Comparing test statistics (39) with critical values, if Tk,τ > zk,τ one accepts θ̂k = θ̂k−1 =

θ̃k−1, otherwise θ̂k = θ̃k. In general, θ̃k differs from θ̂k only if a change point is detected

at the first k steps.

The critical values zk that satisfy (43) are found numerically by Monte Carlo simulation

because the sampling distribution of the test statistic is unknown even asymptotically.

Relatively large critical values lead to a higher probability of selecting subintervals every-

where, resulting in selecting longer intervals of homogeneity. On the other hand, small

critical values lead to favor shorter intervals, discarding useful observations in the past

and increasing modelling bias. The optimal critical values are the minimum values to

just accept the parametric risk bound at each interval.

4 DATA AND EMPIRICAL FINDINGS

Following the notation that was introduced in section 2.1, the state variable for firm i at

time t is Xi = (W,Ui), where a vector W is common to all firms in the same economy

and a firm-specific vector Ui is observable from the date of firm’s financial statement is

firstly released until the month before the firm exits (if it does). Our data is a subset of

dataset used by Duan et al. (2012) consisting of 2000 U.S. public firms over the period

from 1991 to 2011 obtained from CRI database. There are two common variables and

ten firm-specific variables.

Common variables (Wt) are: (i) trailing one-year simple return on S&P500 index (ii)

3-month U.S. Treasury bill rate, hence W ∈ R2. Firm-specific variables (Uit) are: (i)
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Table 2: State variable.

Xj

X1 : Index return X7, X8 : (NI/TA)level, (NI/TA)trend
X2 : Interest rate X9, X10 : SIZElevel, SIZEtrend

X3, X4 : DTDlevel, DTDtrend X11 : M/B
X5, X6 : (CASH/TA)level, (CASH/TA)trend X12 : IdV
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Figure 2: Box-plots of parameters estimates corresponding to macroeconomic factors
of 12 months forward default (two left) and other exit (two right) intensities over 35
windows. Each box-plot represents estimation interval length 5, 6, . . . , 15 years.

volatility-adjusted leverage; measured as distance-to-default (DTD) in a Merton-type

model which are adjusted as in Duan et al. (2012), (ii) liquidity; measured as a ratio of

cash and short term investment to total assets, (iii) profitability; measured as a ratio of

net income to total assets, (iv) relative size; measured as the logarithm of the ratio of

market capitalization to the economy’s average market capitalization, (v) market-to-book

asset ratio, and (vi) idiosyncratic volatility. The first four characteristics are transformed

into level and trend. The level is computed as the one-year average of the measure. The

trend is computed as the current value of the measure minus the one-year average of the

measure. By doing this transformation, two firms with the same current value for all
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Figure 3: Box-plots of parameters estimates corresponding to Xj, j = 5, 6, 7, 8, of 12
months forward default (upper) and other exit (bottom) intensities over 35 windows.
Each box-plot represents estimation interval length 5, 6, . . . , 15 years.

measures may have different PD. The state variables are summarized in Table 2.

4.1 Robustness on Estimation Window Length

The estimates of parameters that determine the forward intensities, θ = {α, β}, depend

on the length of estimation intervals. Figure 2 displays box-plots for the estimates of αj(τ)

and βj(τ), where horizon τ = 12 months, that correspond to macroeconomic factors: (i)

index return and (ii) interest rate. We explore the estimates for the different horizons,

but we do not document them here, whereas the information extracted are similar to

one year outlook. The estimate of one-year simple return of S&P500 index is sensitive

to the length of estimation interval, particularly for default scheme. It contrasts to
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parameter estimate of 3-months U.S. Treasury bill rate that exhibits more robustness

to the calibration windows length. This finding is in line with Duan et al. (2012) that

showed the standard error of α1(τ) is much larger than α2(τ)’s as well as that for β1(τ)

and β2(τ).

Figure 3 exhibits the estimates corresponding to liquidity and profitability, both for

level and trend measures, that are sensitive to the length of estimation windows. The

sensitivity increases for default events rather than other exits. The idiosyncratic volatility

estimate has similar behavior as showed in Figure (1). This is also true for the intercept

estimates, that empirically have negative values. This confirms the Duan et al. (2012)’s

empirical result that showed the standard errors of aforestated covariates are much larger

than those of the remaining covariates. Thus, DTD, company size, and market-to-book

ratio are robust to the estimation interval length.

4.2 Set-up for Homogeneity Intervals Test

The complete localising analysis includes two main steps: (a) design the set-up of the

procedure and (b) data-driven search for the longest interval of homogeneity, the in-

terval where a local constant parametric form describes the data well. At the first

step, the delisting process is approximated by forward intensity approach with for-

ward intensities as in (21) and (22). Next, select the interval candidates {I0, . . . , I5} =

{60, 72, 96, 120, 144, 180} months, equivalently {5, 6, 8, 10, 12, 15} years, and compute test

statistic Tk,τ in (39). The likelihood ratio LIk,τ (θ̃Ik , θ̂Ik) in (43) should be divided by an

effective sample size of the corresponding interval because different firms have different

life time observation. Therefore, the corresponding term (k/K) can be discarded. The

critical values (40) are computed using Monte Carlo simulation. The parametric risk

bound (42) is computed based on the true parameter generated from the average of es-
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timates over 35 moving windows of the longest interval (15 years). Our set up considers

generating true parameter based on the grand average of estimates over interval Ik and

over rolling windows at each interval. Though the risk bound is fulfilled under the sim-

ulated interval of homogeneity, it is parameter-invariant. The critical values depend on

hyperparameters r and ρ that are counterparts of the usual significant level. We set two

model risk levels r = {0.5, 1} to represent modest and conservative, respectively, and two

significance levels ρ = {0.5, 0.75}. The conservative risk level lead to, theoretically, a se-

lection of longer intervals of homogeneity that yield more precise estimates, but increase

the modelling bias. Fortunately, this effect can be controlled according to (37).

At the second step, the smallest tested interval I0 is initially assumed to be homogeneous.

If Ik−1 is negatively tested on the presence of a change point, one continues with Ik by

employing (39) to detect a potential change point in Ik. If no change point is found,

then Ik is accepted as time-homogeneous. We sequentially repeat these tests until we

find a change point or exhaust all interval. The latest (longest) interval accepted as

time-homogeneous is used for estimation. The whole search and estimation in second

step is repeated at different end time point T without reiterating the first step because

the critical values zk,τ , for fixed τ , depend only on the approximating parametric model

and interval length mk = |Ik|, not on the time point T .

Figure 4 and 5 depict the estimated length of interval of homogeneity over recent 35 win-

dows at each horizon τ = {1, 3, 6, 12, 24, 36}months. The 35-th window has time-end T at

December 2011. The preceding windows are one month back-shifting. Therefore the time-

end T of the {1-st, 2-nd, . . . , 35-th} windows are at {28.02.2009, 31.03.2009, . . . , 31.12.2011}.

As expected, the selected intervals of homogeneity are shorter in the modest risk level

(r = 0.5) than in the conservative risk level (r = 1). Particularly for conservative case,

the test procedure apparently selects longer estimation period at recent windows. This

result may happens because we employ the most recent state variable data in Monte Carlo
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Figure 4: Estimated length of interval of homogeneity (in years) for 35 last windows in
case of a modest (r = 0.5, blue) and conservative (r = 1, red) modelling risk level, with
K = 5 and ρ = 0.50.

simulation to obtain the critical values. This leads to select longer interval such that we

can employ more observations to obtain the consistent estimators from the overlapped

likelihood.
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Figure 5: Estimated length of interval of homogeneity (in years) for 35 last windows in
case of a modest (r = 0.5, blue) and conservative (r = 1, red) modelling risk level, with
K = 5 and ρ = 0.75.

4.3 Measures of Accuracy

Figure 6 shows accuracy ratio (AR) computed from cumulative accuracy profile (CAP)

(Sobehart et al., 2001), also known as power curve, over windows for a fixed horizon. The

CAP evaluates the performance of a model based on default risk ranking. The higher
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Figure 6: Accuracy ratios over windows. The first row: r = 0.5, ρ = 0.5 (left) and
r = 0.5, ρ = 0.75 (right). The second row: r = 1, ρ = 0.5 (left) and r = 1, ρ = 0.75
(right).

PD implies the higher risk. The model discriminates well between healthy and distressed

firms if the defaulting firms are assigned among the highest PD of all firms before they

default. This leads to higher values of AR. The PD are taken to be non-overlapping. The

one-year AR is based on PDs computed on, for example, 31.12.2001, 31.12.2002, . . . and

firms that default within one year of those dates whereas the three-years AR is based on

PDs computed on 31.12.2001, 31.12.2004, . . . and firms that default within three years of

those dates.
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Table 3: Accuracy-ratio-based performance comparison for horizon 1, 3, and 6 months.

window
τ = 1 τ = 3 τ = 6

global
local

global
local

global
local

r
=

0
.5
,ρ

=
0
.5

r
=

0
.5
,ρ

=
0
.7

5

r
=

1
,ρ

=
0
.5

r
=

1
,ρ

=
0
.7

5

r
=

0
.5
,ρ

=
0
.5

r
=

0
.5
,ρ

=
0
.7

5

r
=

1
,ρ

=
0
.5

r
=

1
,ρ

=
0
.7

5

r
=

0
.5
,ρ

=
0
.5

r
=

0
.5
,ρ

=
0
.7

5

r
=

1
,ρ

=
0
.5

r
=

1
,ρ

=
0
.7

5

1
√ √ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √ √ √ √ √

4
√ √ √ √ √

5
√ √ √ √ √

6
√ √ √ √ √

7
√ √ √ √ √

8
√ √ √

9
√ √ √

10
√ √ √

11 ? ?
√ √

12 ? ?
√ √

13
√ √ √

14 ? ?
√ √

15 ? ?
√ √

16
√ √ √

17 ? ?
√ √

18 ? ?
√

? ?
19 ? ?

√
? ?

20 ? ?
√

? ?
21 ? ?

√
? ?

22 ? ?
√

? ?
23 ? ?

√ √

24
√ √ √

25
√ √ √

26
√ √ √

27
√ √ √

28 ? ?
√ √

29 ? ?
√ √

30 ? ?
√ √

31
√ √ √

32
√ √

? ?
33

√ √
? ?

34
√ √

? ?
35

√ √
? ?

NOTE: The check mark (
√

) denotes the corresponding approach results in higher AR whereas the star (?) implies both
the global and local FIA perform with the same accuracy. For one month horizon, the global FIA does better than the
local FIA in 14 out of 35 windows, whereas our the local approach yields higher AR than those of the global approach
for 7 windows. In the rest windows these two methods perform equally well. For three months horizon, the global FIA
shows superiorty over our local adaptive method. Both approaches perform with the same accuracy for six months horizon
prediction.

The local adaptive approach results in very high AR at the first, second, and third

windows particularly for one month horizon (about 95%). The ARs drop significantly
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Table 4: Accuracy-ratio-based performance comparison for horizon 12, 24, and 36 months.

window
τ = 12 τ = 24 τ = 36

global
local

global
local

global
local

r
=

0
.5
,ρ

=
0
.5

r
=

0
.5
,ρ

=
0
.7

5

r
=

1
,ρ

=
0
.5

r
=

1
,ρ

=
0
.7

5

r
=

0
.5
,ρ

=
0
.5

r
=

0
.5
,ρ

=
0
.7

5

r
=

1
,ρ

=
0
.5

r
=

1
,ρ

=
0
.7

5

r
=

0
.5
,ρ

=
0
.5

r
=

0
.5
,ρ

=
0
.7

5

r
=

1
,ρ

=
0
.5

r
=

1
,ρ

=
0
.7

5

1
√ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √

4
√ √ √ √

5
√ √ √ √

6
√ √ √ √ √ √ √ √

7
√ √ √ √ √

8
√ √ √ √ √ √

9
√ √ √ √ √ √

10
√ √ √ √ √ √

11
√ √ √ √ √ √

12
√ √ √ √ √ √

13
√ √ √ √ √ √

14
√ √ √ √ √ √ √

15
√ √ √ √ √ √ √

16
√ √ √ √ √ √ √ √

17
√ √ √ √ √ √ √ √

18
√ √ √ √ √ √

19
√

? ?
√

20
√ √ √

21
√ √ √

22
√ √ √ √

23
√ √ √ √ √ √

24
√ √ √ √ √ √

25
√ √ √ √ √ √ √ √ √ √

26
√ √ √ √ √ √

? ? ? ? ?
27

√ √ √ √ √ √ √ √ √ √

28
√ √ √ √ √ √ √ √ √ √

29
√ √ √ √ √ √

30
√ √ √ √ √ √

? ? ?
31

√ √ √ √ √ √
? ? ?

32
√ √ √ √ √

? ? ?
33

√ √ √ √
? ? ?

34
√ √ √ √

? ? ?
35

√ √
? ? ?

√ √

NOTE: The check mark (
√

) denotes the corresponding approach results in higher AR whereas the star (?) implies both
the global and local FIA perform with the same accuracy. For 12 months horizon, the local FIA outperforms the global
FIA in 18 out of 35 windows, whereas the local FIA yields higher AR in the rest windows. The local adaptive method
shows superiorty over the global FIA for 24 months horizon (in 24 out of 35 windows). For 36 months horizon prediction,
the local FIA method performs much better than the benchmark in 26 out of 35 windows.

at certain windows as exhibited in Figure 6. The proposed approach is able to generate

accurate predictions, about 90%, for one month horizon. When the prediction horizon

is extended to three and six months, the AR is still above 86% and 83%, respectively.
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The one year prediction horizon drops the AR to the 75%− 80% range. For conservative

modelling risk level (r = 1) the accuracies are still above 60% for both two and three

years horizon. We evaluate the performance of local adaptive approach againts the global

FIA that employs all past observations. This comparison is summarized in Table 3

and 4. The global FIA performs better than the localising algorithm for short outlook:

one and three months horizon. Both two methods perform equally well for six months

horizon prediction. Our local adaptive technique outperforms the benchmark for one

year or longer horizon. This finding shows the accuracy prediction for long horizon can

be increased by localising the time varying forward intensities and safely approximating

them with constant.

5 CONCLUSION

In this paper we extend the idea of adaptive pointwise estimation to forward intensities

calibration for multiperiod corporate default prediction. The FIA itself has simplicity

substantially from the fact that no state variable forecasting model is required. Our

approach addresses the inhomogeneity of parameters over time by optimally selecting

the sample period over which parameters are approximately constant. The sequential

LPA procedure provides an interval of homogeneity, the interval where a local constant

parametric form describes the data well, that is used for modelling and prediction.

Applying the proposed method to monthly data on 2000 U.S. public firms over a sam-

ple period from 1991 to 2011, we estimate default probabilities over various prediction

horizons. The default prediction performance is evaluated against the global FIA that

employs all past observations. We utilize accuracy ratio from CAP curve to evaluate

the performance of models based on default risk ranking. For the six months prediction

horizon, the local adaptive approach performs with the same accuracy as the benchmark.
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We show empirical evidence of increase in default prediction power for the longer horizon

(one to three years).

The general framework of the FIA allows adjustments on forward intensities specification

for future research. Our local adaptive method is data-driven and can be applied to

those other specifications with different covariates, either macroeconomic or firm-specific

drivers.

APPENDIX A: CUMULATIVE FORWARD

DEFAULT INTENSITY

This part shows the relationship between forward intensities and its cumulative. Denote

a differentiable Ft(s), the conditional cdf of τD evaluated at t+ s.

Ft(s) = 1− exp {−ψt(s)s}

F ′t(s) = − exp {−ψt(s)s} {−ψ′t(s)s− ψt(s)}

= exp {−ψt(s)s}ψ′t(s)s+ exp {−ψt(s)s}ψt(s).

Therefore

λt(s) =
F ′t(s)

1− Ft(s)

=
exp {−ψt(s)s}ψt(s) + exp {−ψt(s)s}ψ′t(s)s

exp {−ψt(s)s}
= ψt(s) + ψ′t(s)s.
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This shows (6) and consequently:

∫ s

0

λt(u) du =

∫ s

0

ψt(u)du+

∫ s

0

ψ′t(u)u du

=

∫ s

0

ψt(u)du+ ψt(s)s−
∫ s

0

ψt(u)du

= ψt(s)s.

APPENDIX B: PARAMETRIC RISK BOUND

This part proves the parametric risk bound is finite.

Define E(z)
def
=
{
θ∗ : LK(θ̃K)− LK(θ∗) ≤ z

}
, the parametric risk bound:

Rr (θ∗) = Eθ∗
∣∣∣LK(θ̃K , θ

∗)
∣∣∣r

= −
∫
z≥0

zrdPθ∗
{∣∣∣LK(θ̃K , θ

∗)
∣∣∣ > z

}
= r

∫ ∞
0

zr−1Pθ∗
{∣∣∣LK(θ̃K , θ

∗)
∣∣∣ > z

}
dz

= r

∫ ∞
0

zr−1Pθ∗
{∣∣∣LK(θ̃K , θ

∗)
∣∣∣ > z, θ̃K ∈ E(z)

}
dz

+ r

∫ ∞
0

zr−1Pθ∗
{∣∣∣LK(θ̃K , θ

∗)
∣∣∣ > z, θ̃K /∈ E(z)

}
dz

≤ 2r

∫ ∞
0

zr−1e−zdz

< ∞
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