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Portfolio Decisions and Brain Reactions via the

CEAD method*

Piotr Majer! Peter N.C. Mohr! Hauke R. Heekeren?

Wolfgang K. Hardle?

Abstract

Decision making can be a complex process requiring the integration of several attributes
of choice options. Understanding the neural processes underlying (uncertain) investment
decisions is an important topic in neuroeconomics. We analyzed functional magnetic reso-
nance imaging (fMRI) data from an investment decision (ID) study for ID-related effects.
We propose a new technique for identifying activated brain regions: Cluster, Estimation,
Activation and Decision (CEAD) method. Our analysis is focused on clusters of voxels
rather than voxel units. Thus, we achieve a higher signal to noise ratio within the unit
tested and a smaller number of hypothesis tests compared with the often used General Lin-
ear Model (GLM). We propose to first conduct the brain parcellation by applying spatially
constrained NCUT spectral clustering. The information within each cluster can then be
extracted by the flexible DSFM dimension reduction technique and finally be tested for
differences in activation between conditions. This sequence of Cluster, Estimation, Acti-
vation and Decision admits a model-free analysis of the local BOLD signal. Applying a

GLM on the DSFM-based time series resulted in a significant correlation between the risk
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of choice options and changes in fMRI signal in the anterior insula (aINS) and DMPFC.
Additionally, individual differences in decision-related reactions within the DSFM time se-
ries predicted individual differences in risk attitudes as modeled with the framework of the

mean-variance model.

Keywords: risk, risk attitude, fMRI, decision making, neuroeconomics, semiparametric
model, factor structure, brain imaging, spatial clustering, inference on clusters, CEAD
method

JEL classification: C3, C6, C9, C14, D8

1 Introduction

Economic decision making takes place when, for example, an individual buys beverages
in a supermarket, purchases a car or chooses an investment fund. Some of these choices
are made when the outcome is uncertain and hard to anticipate, which is particularly true
for an investment decision. The decision-making process builds on different mechanisms
such as representation and integration of relevant evidence for and a comparison process
of different choice options. This mechanism has attracted considerable attention in many
different fields, from cognitive psychology, behavioral economics, to neuroscience, see,
e.g., Glimcher and Fehr|(2013)). Economic decisions are usually explained in a value-based
scheme, where different choice options are evaluated and the option with the highest value
is chosen. The values attributed to different incarnations of options may be generated
by a nonobservable utility function. It was first formalised by Bernoulli (1738) and
further developed by von Neumann and Morgenstern! (1953) and [Kahneman and Tversky
(1979) to address the uncertainty of outcomes. In this case individual risk preferences are
attributed to the curvature of the utility function. Alternatively, decision making can be
explained in a framework of risk-return models, which incorporate the risk attitude as a

weighting factor, see, e.g., Weber and Milliman| (1997)).

Research in the field of Decision Neuroscience (as well as its sub-field Neuroeconomics) at-



tempts to address human economic behavior (i.e., decisions) by looking at neural systems
that underlie decision making (e.g., |Camerer (2007); Heekeren et al.| (2008)). In practice
one measures changes in brain activity using methods such as electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI), see, e.g., Ruff and Huettel
(2013). FMRI is based on measuring the blood-oxygen-level-dependent (BOLD) sig-
nal and captures parameters related to changes in blood flow and blood oxygenation.
FMRI data are recorded over time, for example during multiple investment decisions.
The captured changes in fMRI BOLD signal are indirectly related to neural firing rates
(Logothetis, [2008). The acquired images are high-dimensional and detecting stimulus-
related effects is a non-trivial task. Changes in brain activation in response to decision
making may be of a modest size (i.e., in comparison to reactions to visual or auditorial
stimuli) and possible hemodynamic responses may be subtle and hardly detectable in the
BOLD signal. It poses a genuine challenge to all existing methods and may require some

extraordinary techniques.

A benchmark method to detect brain regions activated by the stimulus is the general
linear model (GLM). GLM is a single-voxel technique which tests each voxel separately
and results in a 3-D map of changes in fMRI signal. The test is done in a linear regression
setup, where the voxel time series are modeled according to the hypothesized and pre-
defined regressors (design matrix), which correspond to the experimental paradigm and
potential confounds. This simple methodology has proved to be extremely successful in
practice and has led to a wealth of important findings (e.g., Kable and Glimcher] (2007)),
also regarding investment decisions (Mohr, Biele, Krugel, Li and Heekeren, 2010; [Mohr,
Biele and Heekeren), 2010). Nevertheless, it has several limitations. Firstly, all neural ac-
tivity not predefined in the design is neglected and cannot be identified by the model. In
contrast to this model-based approach, recently introduced model-free approaches (Beck-
mann and Smith|, [2005; van Bommel et al., 2013)) offer to identify effects without any a
priori hypothesis. Secondly, possible information reflected in variability and higher mo-
ments of the BOLD signal (Mohr and Nagel, 2010; Garrett et al.; 2013) is disregarded by

the GLM approach. Moreover, activation maps derived by the single-voxel approach may



by "inherently limited" by a typically low signal to noise ratio of individual voxel data,
as reported by |Heller et al.| (2006). Alternatively, a simultaneous analysis of multi-voxel
data that co-vary with the experimental design may increase the signal without adding

noise.

To overcome these shortcomings we follow the idea of |Heller et al.| (2006) and focus our
analysis on the cluster rather than voxel unit. This leads in fact to an alternative tech-
nique for analyzing fMRI data, where the brain parcellation serves as a starting point.
The fMRI clustering is done by the normalized cut spectral algorithm (Shi and Malik,
2000)) which became very popular in neuroscience, see, e.g., (Craddock et al.| (2012). The
algorithm makes use of a correlation between neighboring voxels which defines their prox-
imity. Thus, a possible co-movement (i.e., simultaneous hemodynamic response) plays a
key role in defining a homogeneous cluster. The shape and spatial structure is data-driven
and clusters are contiguous volumes of voxels, ensuring interpretability. After functional
connectivity maps are constructed one needs to investigate neural activity displayed by
the cluster unit. Our approach is model-free, the signal carried within a cluster is ex-
tracted by the dynamic semiparametric factor model (DSFM). The DSFM, proposed by
Park et al.| (2009), is employed here as a dimension reduction technique (van Bommel
et al. 2013). It filters the noise and extracts only the common temporal information
(i.e., joint reaction by neighboring voxels to the stimulus). The resulting simple, de-
noised temporal representation of cluster dynamics may be tested for activation within
the GLM framework or using a model-free approach. Our technique: Cluster, Estima-
tion, Activation and Decision (CEAD) method combines parcellation based on functional
connectivity and DSFM. Thus, it greatly simplifies the complexity of the data while pre-
serving the high accuracy of the representation. Particularly this high spatiotemporal
accuracy is of great importance, when stimulus related effects may be subtle and local

(such as in investment decisions under risk).

The presented methodology is applied to investigate a possible relationship between in-

dividual differences in risk preferences and dynamics in the BOLD response. In the



first step the extracted temporal information from clusters is tested for changes in brain
activation. These, possibly few, activated clusters correlated with risk are further in-
vestigated with respect to risk attitudes estimated from subject responses to ID tasks.
Here, we establish a link between changes in BOLD signal and individuals’ risk weights
in a risk-return model. Based on this analysis we identify bilateral anterior insula (aINS)
activity as a correlate of risk (standard deviation). The risk attitudes, derived from the
subject’s investment decisions are successfully predicted based only on underlying brain

activity in aINS.

In the upcoming section we describe the experimental procedures, our methodology
and derivation of risk attitudes. At the end of that part a short simulation study of
testing performance is shown. In the next section our modeling parameters and
empirical findings are reported. We show and exploit the relation between risk preferences
and temporal information extracted from clusters. Our conclusions are detailed in the

discussion section.

2 Materials and Methods

In this section our experimental and fMRI data acquisition setup is presented. In the
next step we describe our methodology and employed statistical tools. It begins with an
introduction to the normalized cut spectral clustering (NCUT). Secondly, the advanced
dimension reduction technique: DSFM is discussed. It shows how to extract a temporal
information (i.e., hemodynamic reponse) from entire clusters. We briefly sketch our
activation testing procedure which is similar to the voxelvise GLM approach. The testing
performance is evaluated in a simulation study. Finally, we introduce the risk-return

model and estimate the subjects’ risk attitudes based on their investment decisions.



2.1 Experimental Procedures

Subjects, I = 19, performed an adjusted version of the Risk Perception in Investment
Decisions (RPID) Task (Mohr, Biele, Krugel, Li and Heekeren|, 2010). In this task subjects
see past returns of either one single investment or two investments that form a portfolio
(50% of the money invested in each). While they see the past returns they have to make
a choice between, if they would prefer to invest in a bond with 5% fixed return or the
investment that is displayed (either single risky investment or risky portfolio). The choice
situations differed in three within-subject conditions: (A) choices between 5% fixed return
and a single risky investment, (B) choices between 5% fixed return and a risky portfolio of
2 single investments with perfectly (p = 1) correlated returns, and (C) choices between 5%
fixed return and a risky portfolio of 2 single investments with uncorrelated returns (p = 0).
Importantly, the return history of the risky options (either single investment or portfolio)
was exactly the same in all 3 conditions. All displayed returns were gaussian with different
set of parameters p and o, where u = 5%, 7%, 9%, 11% and o = 2%, 4%, 6%, 8%. Each of
the choices regarding single investments was repeated once to hold the number of choices
between the bond and a single investment and the bond and a portfolio constant. In total
subjects made 256 choices in two blocks of 128 choices each. Subjects had a maximum of
7 seconds to enter their choices via a response box with two buttons. The location of the
choice options on the screen was counterbalanced between left and right to avoid order

effects.

2.2 fMRI Data

MRI data were acquired on a 3 T scanner (Trio; Siemens) using a 12-channel head coil.
Functional images were acquired with a gradient echo T2*-weighted echo-planar sequence
(TR = 2000 ms, TE = 30 ms, flip angle = 70, 64 x 64 matrix, field of view = 192 mm,
voxel size = 3 x 3 x 3 mm?). A total of 37 axial slices (3 mm thick, no gap) were sampled

for whole-brain coverage. Imaging data were acquired in two functional runs with 695 and



705 volumes respectively. A high-resolution T2-weighted anatomical scan of the whole

brain was acquired (256 x 256 matrix, voxel size = 2 X 2 X 2 mm?).

The data was initially pre-processed with FSL 4.0 (FMRIB’s Software Library). Pre-
processing included motion correction and slice-time correction. Additionally, images
were normalized into a standard stereotaxic space (Montreal Neurological Institute (MNT),

Montreal, Quebec, Canada). As a result high-dimensional data was obtained 91 x 109 x

91 x 1400, where t = 1,...,1400 for each subject : = 1,...,19.

2.3 fMRI Analysis

The key idea of this study is to use data-driven, contiguous clusters as the units of the
analysis. The clustering is done by a Spatially Constrained Spectral Clustering algorithm
which became extremely successful in neuroscience, see, e.g., Craddock et al.|(2012)). In
the second step, temporal information contained in each cluster is extracted by the DSFM
approach, as am alternative to averaging over voxels in the clusters proposed by Heller
et al| (2006). Comparison with the latter approach is presented in a simulation study
(see section and our empirical results. After the cluster temporal information is

extracted, activated regions of interest (ROIs) are found by the GLM testing procedure.

2.3.1 Spatially Constrained Spectral Clustering

The brain parcellation results from normalized cut spectral clustering (NCUT). This
technique, first proposed by [Shi and Malik| (2000), is reported to be robust to outliers
(Luxburg, 2007) and computationally efficient. It also allows for a simple incorporation
of constraints, i.e., a spatial contiguousness, which can be exploited in the human brain
mapping. The method was introduced to the field of cognitive neuroscience by [van den
Heuvel et al| (2008)); [Shen et al.| (2010); Craddock et al. (2012). |Shen et al. (2010)
reported that task-related fMRI data may be analyzed with this algorithm and that the

resulting brain parcellation is highly consistent with the resting-state fMRI. The NCUT



approach is closely related to the graph theoretic formulation of clustering. The set of
voxels Y = (Y3,...,Y)) is represented as a weighted undirected graph, where the nodes
of the graph are the voxels and an edge is given between every pair of voxels Y; and
Y. The weight on each edge, denoted by w(7, j'), is a proximity measure between voxels

(nodes) j and j’, and is defined as in the previous paper:

o, max {Corry(Y},Y;),0} , for || X; — Xy < d,
w(j,j') = (1)
0 , otherwise,
where [|-|| denotes the Euclidean norm in R? space, X; € R? are j-th voxel coordinates.
The radius d is selected in such a way that only the 26 nearest neighbors (face and edge
touching; 3-D neighborhood of a single voxel) are included. Such a constraint ensures
a contiguous shape of each cluster (Xu et al., 2005; Kamvar et al., 2003). Moreover,

the similarity matrix W = {w(j, ')} ; (of size J x J) derived by is sparse

G4 =1
and thus computational complexity is reduced. The similarity between voxels in 3-D
neighborhood is given by correlation coefficient of the voxels time series with a threshold
to make it non-negative. By applying the correlation as a similarity measure we ensure
the temporal homogeneity within a cluster, which is further exploited in the next section
. Once a proximity measure is chosen, a group-building algorithm for creating a
functional connectivity map needs to be specified. The NCUT algorithm is a hierarchical
procedure, it starts with the coarsest partition possible: one cluster contains all of the
voxels. It proceeds by splitting the single cluster up into smaller sized clusters until a
pre-specified number of groups C' is achieved. The partition of an initial set is done such
that the similarity between voxels within the proposed group is greater than the similarity

between voxels in different groups. For example, for two disjoint groups P and (), one

computes the normalized cut cost by:

ZYjEP,Yj/GQ w(g, j") . ZvjEP,Yj/GQ w(g, j")

NC’LL (P) Q) = . . . . )
' ZYjeP,Yj/eRw(]J/) ZXQEQ,Y]-/ERw(]a]/>



where R = () + P is the initial set that has to be partitioned. The denominators in
the formula may be seen as a sum of all similarities between sets P and () that
are neglected in this division. The nominators stand for all the similarities between the
proposed groups (P and ) and the initial set R, thus a size of a group has an influence
on the normalized cut cost. Finding an optimal division of set R might be found by

minimizing the normalized cut criterion:

(P*,@") = arg mmin Now(P, Q). 3)

Therefore we ensure that, simultaneously, similarities within each cluster are maximized
and similarities between clusters are minimized. This approach leads to balanced sizes
of clusters and reduces the likelihood of obtaining singletons as a result. [Shi and Malik
(2000) showed that minimizing is equivalent to minimizing the Rayleigh quotient

denoted by:
y' Ly )
y' Dy’

Qly) =

under the constraint that y is a piecewise (discrete) vector J x 1 and y' diag(D)1; = 0.
Matrix diag(D) is defined by D = (ds, ..., d;) a degree vector, d; = Z}-f,zl w(j,7') and £

is the Laplacian of the graph given by:

dj ) ] = j,>
L3, = ~w(i, i), w(i.j) >0, (5)
0 , elsewhere.

Minimizing the formula is closely related to spectral clustering, where the first non-
trivial eigenvector of the graph Lapacian matrix £ is used. The authors showed that the

problem is NP-complete, an approximate discrete solution can be found efficiently.



2.3.2 Dynamic Semiparametric Factor Model

The clusters are constructed to maximize the temporal homogeneity between voxels.
Their similar time evolution (i.e., reflected in joint hemodynamic response after stimuli)
explicitly suggest possible low-dimensional representation of the multidimensional time
series. The temporal variability in the cluster series, that may be related to investment
decisions and possibly individual differences in risk attitude, is captured by a dynamic
semiparametric factor model (DSFM), proposed by [Park et al.| (2009). DSFM serves here
as a dimension reduction technique, which is able to extract temporal dynamics from the
functional connectivity brain maps by corresponding low dimensional time series (factor
loadings) in only one estimation step. Due to a subject-specific spatial structure of the

brain functional connectivity maps, we model each cluster separately.

The BOLD signal of all voxels in a single cluster ¢, ¢ = 1,...,C during the entire
experiment is a multi-dimensional time series. The stated below DSFM is designed to

model such high-dimensional time series:

L
Y;g’j = TTL(](XtJ‘) + ZZU ml(Xt,j) + 8157]‘, 1 S j S JC, 1 S t S T
=1
def *
= ZtTm(Xt,j) + &tj = ZtTA \IJtJ- + €t (6)
where Z; = (1,Z;1,...,Z )" is a latent (L + 1)-dimensional stochastic process and m
is an (L + 1)-tuple (my,...,my) of unknown real-valued functions m;. More precisely,

the voxel’s coordinates (z1,z2,73) € R* that belongs to an analyzed cluster ¢ is the
covariate X, ; (in this setup it is time-invariant X;; = X;) and the normalized BOLD
signal is the dependent variable Y; ;; 7 =1,...,J,; t = 1,...,T. We assume ¢,; 17, ;,
Ee; = 0 and E¢}; < oo. The functions m; are given as a linear combination of space
basis functions W, ; = [¢1(Xy;), ..., ¥x(X;;)]" and corresponding (L + 1) x K matrix
of unknown coefficients A*. In our setup, [1(Xy;),...,¥x(X;;)]" are quadratic tensor

B-splines on K equidistant knots. To find the estimates of Z,” and A* one solves:

10



T J
(Z:, A*) = arg min SN Y — ZL A ;) (7)

B =1 j=1
A solution to the problem stated in may be found by the Newton-Raphson method.

Time dynamics are represented by Z, while A* captures the smooth, nonparametrically

estimated spatial structure of clusters.

In the formula @ the time frame is constant over all clusters and equals T = 1400.
Due to varying spatial structure and size of each cluster ¢, c = 1,...,C, we denote the
dimension .J, as the ¢ cluster size. The statistical inference of the each cluster is then
based on the low-dimensional time series analysis for Z;. As shown by Park et al.[ (2009),
the inference based on the estimates Z,” holds for “true” unobserved time series Z,', as

the difference between Z,' and ZtT is asymptotically negligible.

2.3.3 General Linear Model and Testing Procedure

In practice, the analysis of BOLD fMRI data is conducted using voxelwise general linear
model (GLM), see, e.g, Friston et al. (1994) and Worsley et al. (2002), where the magnetic

resonance signal at voxel j is modeled by:
Y; =X, +ej, (8)

where X denotes the T' x p design matrix, §; is the p X 1 vector of regression coefficients
and e; is a (often serially correlated) measurement error. The matrix X is constructed
as a convolution of hemodynamic response function (HRF) h(t) and the stimulus time
signal and might also incorporate additional elements (i.e., temporal derivatives) when
required by a specific experiment setup. It is common practice to model the HRF by a
difference of two gamma functions, i.e.,

t

B(t) = (=25 exp {—(t — 5.4)/0.9)} — 035(155

5.4 )2 exp {—(t — 10.8)/0.9}

11



see, e.g., Worsley et al.| (2002). Inference focuses on the estimates Bj and the hypothesis
Hy : B = 0 is tested voxelwise (first-level analysis). Bj being significantly different from
0 is interpreted as activation at the voxel 5. Group analysis is usually done in the mixed-
effects framework, where the activation pattern for ¢ subject at j voxel B; serves as an
input for the model (higher-level analysis). This standard technique implemented in FSL’s
FLAME (FMRIB’s local analysis of mixed effects) is used here to test whether regression
coefficients are significant and activation can be reported at the group level. The region of
interest is reported to be significantly activated for clusters reaching uncorrected threshold
of Z-score > 3.09 and consisting of at least 20 neighboring voxels. For more details we
refer here to the technical reports of the FMRIB Analysis Group, see, e.g., Beckmann
et al.| (2003) and Beckmann and Smith| (2004]).

2.3.4 Cluster, Estimation, Activation and Decision (CEAD) Method

The resulting cluster representation by ZtT serves as the unit of analysis for the relevant
signals related to the ID tasks and decisions. Profiting from higher signal-to-noise ratio
present on the group level (Heller et al., 2006) clusters are tested for activation. For anal-
ysis of all participated subjects i = 1,..., I, our multivariate scheme may be summarized

in the following steps:

1. Cluster-step: for each subject ¢ construct the brain parcellation into C' groups using

spectral clustering NCUT algorithm.

2. Estimation-step: given the subject-specific clustering results, for subject 7 take the
¢ cluster and fit the DSFM, given in (@ Repeat this estimation procedure for all
clusters ¢ = 1...,C and all subjects ¢ = 1,...,I. The DSFM approach is thus

applied C' x I times separately.

3. Activation-step: representing (i,c), i = 1,...,I, ¢ = 1...,C cluster dynamics by

low-dimensional representation Zt(i’c) test the time series activation in the GLM

12



framework. Select the activated clusters that are related to neural processes under-

lying (risky) investment decisions.

4. Decision-step: investigate the activated factor loadings Zt(i’c). Is the subjects invest-
ment behavior represented in any of the activated clusters? Is there any relation

between the risk attitude and the low-dimensional time series?

2.4 Simulation Study

| | | | |
0 200 400 600 800 1000

Hl RN J\I‘I I I ilAd 1 \‘ H‘H\ml ‘u“

-2 -

|
1200 1400

| | | | |
0 200 400 600 800 1000 1200 1400

Figure 1: Setup (a): the simulated (1, 1,1) voxel Y;; (top) and the estimated Z; (bottom)
plotted against time (each 2 seconds); red dots denote stimulus; Corr(Z;, stimulus) =
0.98.

This part of our study is designed to investigate the performance of the proposed method
in a simulation study. Our approach is evaluated against the benchmark, voxelwise GLM
and the averaging technique introduced by |Heller et al.| (2006 (in each cluster take
average over voxels and test for activation). We simulated data at one, exemplary cluster
on the 6 x 7 x 6 grid that mimics the average cluster obtained in our empirical analysis:
Y, = Z!m(X) + &;, where Y; is a 6 x 7 x 6 x 1400 BOLD signal, m(X) = m(z,y,z) =
|(z,y,2) — (6,8,6)] is a smooth spatial structure, Z; is a (perfect) stimulus time series
(HRF x64, see Figure[L0)) and &, is noise. The (single) factor m(-) is a smooth, non-linear
function that decreases in the direction of the point (6,8,6), that is not present on the
grid, thus m(-) > 0. The Z; is the simplest design matrix (here 1 x 1400) from GLM
setup and in this case stands for all stimuli corresponding to the correlated portfolio from

our experiment. Therefore, we assume that only one true neural process is present in

13
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Figure 2: Setup (b): the simulated (1,1,1) voxel Y;; (top) and the estimated Z; (bottom)
plotted against time (each 2 seconds); red dots denote stimulus; Corr(Z;, stimulus) =
0.60.

this cluster. We investigate two possible cases for g, (6 x 7 x 6 x 1400): (a) & is i.i.d.
Gaussian and (b) &, is spatially correlated Gaussian; ¢ = 0 and o = 1. The spatially
correlated noise time series €., is derived (independently at each ¢, t = 1,...,1400) as
a convolution of i.i.d. Gaussian noise from (a) with a spatial Gaussian kernel (FWHM
8 mm) and depicted in Figure . Examples of simulated BOLD signals are shown in
Figures [1] and The performance for all three techniques: DSFM with L = 1, GLM
(pre-smoothed with FWHM 8 mm) and averaging over voxel in the cluster (with and
without pre-smoothing) for the setup (a) is remarkably good and all statistics are higher
than 100. The (b) study is summarized in Table . Firstly, all investigated techniques
discover a significant activation and yield similar results. Secondly, the maximum Z-score
in the GLM approach is the highest test statistics in all cases. When the Z-scores are
averaged over all voxels, the DSFM approach yield the best result. Moreover, the simple
averaging approach is outperformed by the DSFM. We conclude, that DSFM might serve
as an interesting alternative to the benchmark GLM method, especially if the analysis
goes beyond an identification of activation patterns (i.e., higher moments, time series

analysis of voxels in a neighborhood).

14



GLM DSFM Average(s) Average
max Z-score 30.54 27.96 27.14 27.48
mean Z-score 26.34 27.96 27.14 27.48

Table 1: Test statistics Z-scores derived in simulation setup (b) for GLM, DSFM, aver-
aging and averaging for smoothed (FHWM 8mm) data denoted by Average(s).

2.5 Behavioral Modeling

The subject specific risk attitudes can be directly derived from subject responses to ID
tasks. Following Markowitz (1952); (Caraco| (1981) we apply the benchmark - mean-

variance model to reflect the subjects decision making process:

Vi(z) =7 — ¢:5(x), (9)

where V;(x) is the value a subject i assigns to an investment x, T is an empirical mean
and represents the ezpected return, S(x) stands for a standard deviation and represents
the subject’s risk, and ¢; is the individual risk weight: risk attitude. Therefore, in line
with the portfolio theory introduced by Markowitz| (1952)), we follow the common mean-

variance approach.

The risk attitude can be estimated based on subject responses (risky choice vs. sure, 5%

return) by the logistic model:

1
1 +exp{T — ¢S(x) — 5}

P {risky choice|z} = (10)

Negative values of ggz indicate a risk seeking behavior, (EZ ~ 0 relates to risk-neutrality
and ggz > 0 to risk aversion. The estimated risk attitudes are shown in Figure |3 and
additional analysis in Figures[I2|and [I3] For simplicity of presentation, in the subsequent
part of the analysis we show data for two most extreme subjects: 19-th, risk-seeking: risk

weight=—0.0699 and 1-st, risk-averse: risk weight=1.092.
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Figure 3: Risk attitudes of 19 subjects (indexed on z-axis) derived by the .

3 Results

Choice of the model parameters is described and the clustering results together with
the estimated factor loadings are presented. This 2-step dimension reduction technique
simplifies the brain dynamics into C'—dimensional time series. The activated clusters are
selected in the Activation-step and the subjects’ risk aversion is modeled and predicted

based only on the fMRI data.

3.1 Model Parameters

Selection of the number of clusters plays of course a role in our analysis. Choosing only few
regions of interest (ROIs) (i.e., 50 parellations) leads to over-generalized and condensed
regions that are anatomically distinctive, see, e.g., |[Craddock et al.| (2012). Increasing
the division into 200 clusters is reflecting the anatomical brain atlases (Talairach and
Tournoux, 1988; Desikan et al., 2006) and an approach based on the brain identified
atlas zones is often used. When a more precise parcellation is called for, practitioners
then select 1000 clusters as discussed by |Craddock et al.| (2012). Our study aims to
find activated brain regions related to the investment decisions, where the possible HRF

may be subtle. Moreover, a successful implementation of the dynamic semiparametric
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factor model and conducted testing procedure requires highly accurate and homogenous
inputs, we thus select C' = 1000 clusters and ensure thereby the high accuracy of the
representation. In the next step each (homogenous) cluster is represented by the DSFM
technique with 1 dynamic factor, L = 1 for all cluster ¢ = 1,...,1000. Inclusion of higher

number, though yielding a better fit, does not allow for a simple interpretation.

The parcellation technique is based on (1)) as a proximity measure. In order to check
stability of over the entire experiment we conduct a moving window exercise. Figure
shows the correlation between 3 neighboring voxels derived by a rolling window exercise
(for past 250 ~ 8 min and 500 ~ 17 min). One observes a stable, stationary behavior

over time which stands in favor of our modelling setup.

3.2 Clustering Results

Clustering results are illustrated in Figure [d The subject-specific parcellation, though
computationally extensive, addresses inter-subject functional variability. Therefore, we
derive spatially coherent regions of homogenous functional connectivity, that are present
at a voxel scale. The clusters are contiguous sets of neighboring voxels and a distinction
between network nodes and large-scale network of nodes is ensured, see Smith et al.
(2009). The neuroscientific interpretability is preserved and further elaborated on in the
modelling and testing part of our study. An average cluster is of a size 207 voxels, which
might be compared to a 6 x 6 x 6 = 216 (12 mm) cube. The smallest cluster is a singleton
and the largest consist of 353 voxels. Clusters have a data-driven shape and vary with

respect to the size and spatial structure as shown in Figure [15]

3.3 Factor Loadings Z;

The clustering spatial maps serve as a basis for further exploratory analysis. The informa-

tion carried in time evolution of the derived clusters is extracted by the DSFM technique.
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Figure 4: Illustration of the clustering results for subject 1 derived by the NCUT algo-
rithm, C' = 1000. The parcellation is represented as an orthogonal view and color-coding

is arbitrarily used to capture the clusters’ boundaries.

More precisely, all voxels belonging to cluster ¢ of subject i: chl, .

. ,chJg, where J! is the
size of ¢ cluster for subject i, are jointly modeled by @ For simplicity of representation
and as a natural consequence of cluster (homogenous) construction we employ the DSFM
with L = 1. Thus, each cluster’s dynamics are captured by the univariate time series Zf “,
i1=1,...,1; c=1,...,1000, and the complete brain representation consist of 1000 pro-
cesses. The derived brain model significantly simplifies the complexity of the data, while
ensuring the interpretability and a good quality fit. For a demonstration two extreme
subjects: 1 (with the smallest risk attitude) and 19 (with the largest risk attitude) are
selected, see Figure . Figure [5|shows the estimated Z} and Z}° for anterior insula (aINS;
left and right) and dorsomedial prefrontal cortex (DMPFC) clusters. All factor loadings
exhibits stationary behavior, high persitency and a high fluctuation around their mean

value (see Figure and Table [3]), which may be related to the underlying investment

decision stimulus.

3.4 Activation Results Z

The derived low-dimensional representation of each cluster 7, serves as a principal unit of
this study and is tested for activation. We compare our method with both, the standard
voxelwise GLM technique and the approach proposed by Heller et al.| (2006) (average
over voxels and use it as a cluster temporal representation). Four separate analyses were

conducted (single, correlated and uncorrelated, jointly all types of portfolio). For each
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middle lower panel) for risk averse subject 1 (top) and weakly risk seeking subject 19
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type of investment we reported the same activation pattern, thus only the joint analysis

(all portfolios) is reported here.

Figure 6: Results of the higher-level analysis (mixed-effects model) associated with deci-

sion making; Z-scores> 3.09. Upper panel: the bilateral aINS, lower panel: DMPFC.

Figure [6] presents significant brain correlates of the ID task: aINS and DMPFC associated
with decision making. These activation results are in line with findings by Mohr, Biele,
Krugel, Li and Heekeren| (2010)); Mohr, Biele and Heekeren| (2010)) and contribute to the
neural foundations of risk-return model. Altogether 9 activated clusters were detected
which survived statistical tresholding at Z-scores> 3.09 and had a cluster size of at
least 20 voxels. Besides aINS and DMPFC factors corresponding to decision making, we
identified other brain regions previously associated with visual perception and motoric
responses. These factors are most likely not connected to the decision making process but
confirm the activity of regions which were necessary to give the answer by pushing the
button. Average reactions to the ID stimuli over all 19 subjects are depicted in Figure [7]
Reported maximum Z-scores for aINS and DMPFC are shown in Table 4] One observes
that all approaches yield very similar results, though the highest maximum Z-score is
achieved by the GLM technique for all 3 ROIs. Secondly, the DSFM outperforms the
simple averaging over voxels. The non-parametric estimation pays off in terms of the

quality of the representation.
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Figure 7: Average reaction to the ID stimulus over all 19 subjects for bilateral aINS and
DMPFC regions plotted against time (from -4 seconds before the stimuli up to 16 seconds

afterwards).

4 Risk Attitude \ Stimulus Response
The key goal in neuroeconomics is to "(...) ground economic theory in detailed neu-
ral mechanisms which are expressed mathematically and make behavioral predictions."
as (Camerer| (2007, 2013)) states. Motivated by that, we investigated a connection be-
tween the neural processes underlying decision making and risk perception. Without
prior knowledge of the subjects’ answers, based only on the activated cluster dynamics,
represented by 7, a simple model is proposed to predict the risk attitude ¢;. As described
in section three activated (see Table |4]) clusters are associated with decision making
under risk. Therefore only cluster dynamics of bilateral aINS and DMPFC are considered
here as regressors for the risk attitude ¢;. These loadings (brain regions) respond to the
stimulus and thus mimic neural processes present in a whole cluster during investment
decisions under risk in our study. The hemodynamic response function usually peaks
around 6 seconds after the stimulus. Therefore, we focus on an average reaction to r,

r = 1,...,256, stimulus for the i-th subject: AZ: = 1y Zi  — Zi. AZ covers

T
a period up to 8 seconds afterwards and ensures that the HRF maximum is captured.
An average reaction to all stimuli (entire experiment) for a single cluster is defined as

ANZi = ﬁ > 256 AZ& Our model-free methodology closely follows the statistics proposed

by van Bommel et al.| (2013); Brown et al.| (2014)).

Understanding which among the variables: AN, NS(l)s N NS(r)s ANZpuprc are related
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to the ¢ and an exploration of the forms of these relationships is done via regression

analysis. More precisely:
¢ = o+ o1 AZpyppe + 'ZZZJNS(Z) + a3 'ZZéINS(r) +&, (11)

where o is an intercept, a = (a1, as,a3)" is a vector of regression coefficients and &
stands for the error term. In other words, (spatially constrained, local) information

extracted from the BOLD signal serves as regressors for the subject’s risk weights.

Estimate SE  t-statistic p-value
ag 0.097 0.115  0.861  0.403
AZpupre 0851 0526 1619  0.126
AZunsey —1506 0550 —2.737  0.015
AZunsq —1126 0379 —2.967  0.001

Table 2: Risk attitude regressed on the average response for all 19 subjects; R? = 0.47,
adjusted R? = 0.36.

Summary statistics of the model defined in are reported in Table . Surprisingly, we
report that the DMPFC factor, though significantly activated, does not carry explanatory
power for risk preferences. This finding, among others, goes far beyond classical fMRI
analysis done within the GLM framework and highlights the flexibility and advantages of
our approach. Furthermore, the aINS, both left and right regions, are picked up by the
model and reported p-values are remarkably smaller than 0.05. Overall, the explanatory
power is satisfactory despite the simplicity of linear relation and the noisy nature of the
studied panel data (for both, BOLD signal and risk weights). We obtain R? = 0.47 and
adjusted R?> = 0.36. The regression fit is depicted in Figure [S| Dropping out of the
insignificant terms in yields:

Gi = 'ZZéINS(l) + a3 'ZZéINS(r) +&' (12)

The simplified model achieves R? = 0.37, adjusted R* = 0.30 and the p-values are 0.03

and 0.02 for ZZQINS(T) and ZZQINS(Z), respectively. Figure [§ shows the regression fit. In
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Figure 8: Added variable plot for models given in left, right panel, respectively.

Horizontal axis denotes the (rescaled) best linear combination of regressors AZ that fit

o.

this setup subject risk aversion depends only on the average reaction to the stimulus in
the aINS regions. This setup, consisting only of activated (see Table |4) and significant

BOLD cluster statistics is kept in the reminder of the analysis.

4.1 Risk Attitude Forecasting

The regression results presented in Table [2| indicate that the DMPFC factor is not signif-
icant and does not carry explanatory power for ¢;. Thus, the regression setup, stated in
(12)) is used to predict the subject risk attitude based only on the information extracted
from BOLD signal in aINS. For each subject ¢ = 1,...,19 its information is excluded
from the regression analysis and the model is re-estimated. Plugging-in the neural
low-dimensional representation: ZZ@ ins@) and ZZ@ NS to the new model predicts the
risk weight ¢; and the out-of-sample performance is shown in Figure [9] Seven predicted
risk attitudes, out of 19, lie out of 95% prediction confidence intervals and the absolute
average forecasting error is 0.257. One could expect that the proposed statistics AZ is not
the best univariate projection of the hemodynamic response to the stimulus. To overcome
some possible deviations in the HRF peak’s location we apply the weighted average reac-
tion to the stimulus denoted by a weighted average reaction: A, Z! = 4w, (Z! 4y ~ 71,

with Zﬁzl w,; = 1. Thus, observations after stiumuls are weighted with unknown weights
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Figure 9: Predicted risk preferences by the model given in for the average AZ and
the weighted average NoZ: left, right panel, respectively. Information extracted from
the aINS BOLD signal; w = (0.38,0.41,0.16,0.05) .

wy. The procedure introduced before is repeated for AwZi = flﬁ ?5:61 Awa and the

weights are found by minimizing the absolute average forecasting error. The optimal
weights w = (0.38,0.41,0.16,0.05)" are derived by Monte Carlo simulation with 10000
iterations and the new absolute average prediction error is 0.202. The prediction fit is
reported in Figure |§| In this setup the first 3 observations (up to 6 seconds after stimuli)

exhibit a remarkably higher impact than the 4-th one.

The neural predictions of risk attitudes, though satisfactory, do not perfectly match risk
weights derived from subjects’ investment decisions. A plausible explanation from a sta-
tistical point of view would be the simplicity of linear relation, inhomogeneity of studied
subjects and above all, the noisy nature of the data. Nevertheless, we are convinced, that
the neural processes underlying investment decisions and corresponding risk preferences
are a far more complex phenomenon and go beyond the aINS and DMPFC only. Our sta-
tistical methodology is constrained here by the experiment setup that, naturally, cannot
capture all brain reactions and allows only to estimate a proxy of "true" risk preferences
by risk-return model. Though the activation is reported by the benchmark testing pro-
cedure, we suspect additional brain regions to contribute to investment decisions (e.g.,
Mohr, Biele and Heekeren (2010)) not identified in this fMRI study. This goes beyond

the scope of this paper and deserves further research.
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5 Discussion

We have presented a novel method for analyzing fMRI data based on cluster units: CEAD.
In the first step the clusters are derived via the NCUT algorithm as contiguous groups of
voxels and there are no further constraints concerning the shape and spatial structure.
This data-driven approach makes use of the correlation between neighboring voxels and
therefore ensures a co-movement of the BOLD signals within cluster. This property of
"anatomic' homogeneity pays off when temporal information carried by each cluster has
to be extracted. Derived functional connectivity maps are a starting point of analysis.
In the estimation-step the DSFM method is applied on each cluster and serves here as
a dimension reduction technique. It serves as a filter of the noise and only extracts the
common temporal information: the signal (i.e., joint reaction to the stimulus). This semi-
parametric approach can handle various specifications of noise observed at the voxel level
and yields favorable results in comparison to simple averaging over voxels (Heller et al.,
2006)). It is a model-free technique that derives complete spatiotemporal information from
brain regions. In the activation-step, the extracted signal is further studied for experi-
mental responses. Our local-dynamic representation yields similar results as traditional
GLM analyses. The high accuracy of the model plays an important role when possible
task-related effects are subtle and local. Our approach ensures a simplicity of neural
interpretation and addresses the key limitations of the benchmark method GLM. In the
decision step the CEAD method allows for any model-free analysis of spatiotemporal

ROJI’s information.

We apply the CEAD methodology to study neural systems that underlie decision making
under risk. In particular, investment decision is a complex process of valuation and
comparison of possible choices with unknown outcomes. Risk attitude is a crucial metric
that influences the subjective value of investment. In this paper we analyzed an fMRI
experiment with 19 subjects. Each subject was scanned during multiple RPID tasks
and a series of 1400 images of 91 x 109 x 91 voxels are investigated here. Using our

methodology we decomposed individual brains into sets of 1000 spatially disjoint factors
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and factor loadings Zf’c, 1 =1,...,19 and ¢ = 1,...,1000. Derived spatiotemporal
representation is subject-specific and possible variations in functional brain structure
are addressed. Therefore we ensure high accuracy and interpretability of the results.
Extracted Z; are tested for activation in the GLM (mixed-effects model) framework. For
the studied population we detect significant activation at aINS and DMPFC regions as
correlates for risk, already reported in Mohr, Biele and Heekeren| (2010). Our approach

yields similar results to the benchmark and is complimentary.

To deepen our understanding of changes in neural activity underlying risk preferences we
conducted a model-free analysis. The focus is on those ROIs that show ID-related effects:
aINS (left and right) and DMPFC (see Table [4)) which have previously been associated
with decision making. More precisely, we explore the relation between average reaction
to the stimulus in subject-specific loadings Z, representing selected regions. Following
Brown et al.| (2014) we construct simple, model-free statistics that capture the peak of
HRF: ZZIINS(Z), ZZQINS(T), ANZpupre and explore their explanatory power on the risk
attitude ¢;. The resulting regression model with brain dynamics as regressors achieves
R2 = 0.47. Changes in brain activity represented by AZpyrpre did not carry informative
power for risk attitude. Simultaneously, both aINS regions are picked up to be statistically
significant and reported p-values are ~ 0.01. We conclude that DMPFC, though activated
by the risk of the investment, is not significantly correlated to risk attitudes. Dropping
off all irrelevant terms and reestimating the regression model yields R? = 0.37.
This parsimonious and informative setup is used to predict the risk attitudes based only
on fMRI information. The analysis is further refined adjusting for possible variation
of hemodynamic response by adding the weights to the sequence of observations after

stimulus.

We report, that neural predictions of risk attitudes, though satisfactory, do not mimic
perfectly risk weights derived from subject investment decisions. One may claim that
the applied mean-variance model does not reflect true risk attitudes adequately well

and additional measures for subjective expected returns and perceived risk than mean
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and standard deviation should be introduced. Secondly, the risk preferences and neural
responses identified in this study may not cover all the effects and brain reactions. Risk
attitude is far more complex and may not be only localized in aINS. Therefore we plan to

apply our methodology to a wide spectrum of similar studies for further investigations.
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6 Appendix

6.1 Simulation Study

| | | | | |
0 200 400 600 800 1000 1200 1400

Figure 10: Stimulus time series derived as a convolution of double Gamma hemodynamic
response function and uncorrelated portfolio stimulus x64 plotted against time (each 2

seconds).

| | | | |
0 200 400 600 800 1000 1200 1400

Figure 11: Simulated spatially correlated Gaussian noise for 2 vertical neighbor voxels

(red and blue) plotted against time (each 2 seconds); Corry(e1,¢€12) = 0.97 .

6.2 Clustering and Sensitivity Analysis
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Figure 12: Sensitivity analysis of the risk attitude ¢: estimates (Ei,i =1,...,19 with 95%

confidence intervals.
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Figure 13: The derived risk attitude of subject 1 in a rolling window exercise ((El estimated

from past 100 ID answers).
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Figure 14: Time series of the correlation coefficient derived by the rolling window (250
top, 500 bottom) for the center voxel and: horizontal, vertical diagonal neighboring voxel
for aINS(right) of subject 1.
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Figure 15: Contour plots of derived aINS(left), aINS(right) and DMPFC (upper, middle
lower panel) clusters for subjects 1 (left) and 19 (right), respectively; derived by the
NCUT algorithm with C' = 1000. z-, y- z-axis denote the 3D space given in millimeters.
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6.3 Factor Loadings
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Figure 16: Sample autocorrelation function of aINS(left), aINS(right) and DMPFC Z,

(top left, top right, bottom panel, respectively) for subjects 1 (top) and 19 (bottom),
respectively.

aINS(I) aINS(r) DMPFC aINS(I) aINS(r) DMPFC
KPSS| 0035 0063 0038 | 0044 0051  0.044
ADF | —0.128 —0.137 —0.110 | —0.185 —0.207 —0.159

Table 3: KPSS, ADF test statistics for estimated factor loadings aINS(left), aINS(right)
and DMPFC Z;; subject 1 (left panel), subject 19 (right panel) (KPSS: Hy: weak sta-
tionarity, critical values at 0.10, 0.05, 0.01 are 0.119, 0.146 and 0.216; ADF: Hy: unit
root, critical values at 0.01, 0.05, 0.10 are —1.61, —1.94 and —2.58).
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DSFM Average GLM
(—34,18,—8) | (—36,18,—-8) | (32,22, —12)
aINS(1) 4.13 4.08 4.58
3x 1074 4 x 1074 3x 1073
(34,24, —4) | (36,18,—6) | (40,22, —16)
aINS(r) 4.39 4.21 5.24
6 x 1076 6 x 1077 3x 1077
(6,24,42) (4,24,42) (4,24, 24)
DMPFC 4.43 3.88 4.56
2 x 107 1x10°8 3x 1077

Table 4: The position of the cluster local maximum, denoted in the MNI (Montreal
Neurological Institute) standard at 2mm resolution, corresponding Z-score (middle) and
p-value (bottom) of activated "risk" clusters during the ID stimuli. Average stands for a
mean value over voxels in each cluster (results of the NCUT parcellation with C' = 1000).
Analysis done in the FSL (FEAT/FLAME) software.
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