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Designing an Index for Assessing Wind
Energy Potential*

Matthias Rittera** Zhiwei Shena Brenda López Cabrerab
Martin Odeninga Lars Deckertc

September 23, 2014

To meet the increasing global demand for renewable energy such as wind
energy, more and more new wind parks are installed worldwide. Finding a
suitable location, however, requires a detailed and often costly analysis of
the local wind conditions. Plain average wind speed maps cannot provide a
precise forecast of wind power because of the non-linear relationship between
wind speed and production. In this paper, we suggest a new approach of
assessing the local wind energy potential: Meteorological reanalysis data are
applied to obtain long-term low-scale wind speed data at turbine location and
hub height; then, with actual high-frequency production data, the relation
between wind data and energy production is determined via a five parameter
logistic function. The resulting wind energy index allows for a turbine-specific
estimation of the expected wind power at an unobserved location. A map of
wind power potential for whole Germany exemplifies the approach.

Keywords: Wind power, energy production, renewable energy, onshore wind, MERRA
JEL classification: Q42, Q47

1 Introduction
Because of increasing energy demand worldwide and the willingness to reduce greenhouse
gas emissions, renewable energies such as wind energy are rapidly growing: The global
cumulative installed capacity of wind energy increased from 6GW in 1996 to 318GW in
2013 and is expected to reach 596GW in 2018 (GWEC, 2014).
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Statistics, Spandauer Straße 1, 10178 Berlin, Germany
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Planning a new wind farm starts with the search for a suitable location. Besides the
question of constructible surface and legal aspects, the geographical wind conditions and
timing play an important role. Timing sustainably influences the financial success of
a wind farm project because revenues generated from renewable energies are generally
based on a regulated country-specific feed-in tariff system. The compensation paid to
the operators decreases on an annual basis depending on the date of commissioning to
reduce governmental subsidies. Therefore, delaying a project increases the costs and the
uncertainty of the expected outcome.
Finding a suitable position by measuring the wind speed at different locations and

heights is very time-consuming and costly. Hence, the expected energy production at
possible locations has to be derived in a different manner.
Many studies deal with deriving detailed long-term wind speed maps for individual

countries (e.g., USA (Archer and Jacobson, 2003), Spain (Gastón et al., 2008), Germany
(Deutscher Wetterdienst, 2009), or Greece (Kotroni et al., 2014)), continents (e.g., Europe
(Troen and Petersen, 1989)) or even the world (e.g. Archer and Jacobson, 2005). These
maps are a rough indicator for the average local wind conditions, but for deriving the
expected wind energy production, long-term average wind speeds are inadequate. The
reason is the non-linear relationship between wind speed and production: It is possible
that a stable wind speed of around 3m/s over the year, which is smaller than the typical
cut-in speed where the turbines start, leads to zero production. A wind speed with high
fluctuations around the mean of 3m/s, however, leads to a much higher production.
To overcome this problem, a long record of high-frequency wind speed at the turbine

location and hub height is needed. Then, the wind power production can be estimated
by transforming the high-frequency wind speed to the wind power production via a wind
power curve (e.g. Brown et al., 1984; Sanchez, 2006). However, from the perspective
of installing a turbine at a new location, the requirement of long-term high-frequency
wind data can hardly be fulfilled. The wind power curve given by the turbine producer
requires instantaneous mast wind speed to derive the production, which in most cases,
are not recorded. Hence, the wind production cannot be estimated via the wind power
curve, and the linkage between wind speed at a higher scale (e.g., hourly averages) and
the true production deserves further investigation.
In this paper, we propose a new way to estimate the long-term wind energy potential

of a new location by applying an index, which mainly consists of two steps: First, we
derive lower scale wind speed data at the turbine location at hub height by processing
meteorological reanalysis data. These data are available all over the world at low spatial
and temporal scales, so that our approach is globally feasible. Second, we estimate an
analytic production function based on real production data, which converts the meteo-
rological reanalysis data into production data. Based on local wind speed data derived
for an unobserved location, this production function gives an estimate of the low-scale
energy production. By aggregating the estimated production to a larger time scale and
long-term historical data, the proposed wind energy index is able to assess the long-term
wind energy potential for any location.
The paper is organized as follows. In the next section, we describe in detail how the

wind speed at the turbine location is derived, how the production function is estimated,
and how the wind energy index is constructed. In Section 3, we apply our approach to
data for Germany and evaluate it. This section concludes with an energy production
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map of Germany, which estimates the long-term wind energy potential of each location.
Section 4, finally, provides further discussion and conclusions.

2 Methods
2.1 Framework
To measure the potential of wind power production at a specific location, we develop
a quantitative and objective wind energy index that represents the actual wind energy
production of a certain turbine type. To obtain such an index, some steps have to be
conducted.
First, the type of database has to be chosen, which is used to calculate the wind energy

index. One possibility is energy production data from wind farms in the neighbourhood
with similar wind conditions and turbine characteristics. Alternatively, wind speed data
can be applied directly. When selecting wind speed data as the database, they have to
be transferred to the wind turbine position as they are usually not available for every
location. This means that the data have to be horizontally interpolated to the turbine
location and vertically extrapolated to the turbine height. The most crucial decision is
then how to transform local wind speed data to a wind energy index that reflects the
actual wind energy production.
The aforementioned steps are described in greater detail in the following sections.

2.2 Database
In principle, the analysis can be built on production data or wind speed data. Production
data of nearby wind farms have the advantage that they reflect the true fluctuations and
no transformation, which might cause an estimation bias, is needed. Nevertheless, equal
geographical and technical conditions have to be assumed.1
Another way of analyzing the energy potential is deriving a wind energy index based

on wind speed data, which are better available than production data. The most common
dataset used in the analysis of wind resource is weather station data because it objectively
measures the actual wind speed at certain locations. Using weather station data for this
aim, however, comes under criticism: the availability of such data is often limited; the
historical data records might not be complete; weather stations are not located at realistic
locations of wind farms; the time series record of weather station data is frequently no
more than 25 years (Kubik et al., 2013a). In Germany, free wind speed data are available
since 1996 for 64 weather stations with three measurements per day (6 am, 12 am, 18 pm)
from DWD2. The data, however, are measured in Beaufort unit, which is a very rough
scale.
An alternative dataset that has been recommended in the wind power analysis is reanal-

ysis data, such as the Modern-Era Retrospective Analysis for Research and Applications

1In Germany, the BDB (Betreiber-Datenbasis) index is used to measure monthly fluctuations of wind
energy production in 25 regions. It is, however, often criticized because of its in-transparency and
unreliability as the wind conditions are not homogeneous in the 25 regions. Moreover, it remains
unclear how this index can be used to estimate the potential of an unobserved location. For more
details, we refer to Betreiber-Datenbasis (2011) and Bundesverband WindEnergie (2013).

2DWD: German Meteorological Service, www.dwd.de
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(MERRA) data provided by NASA (Carta et al., 2013; Kubik et al., 2013a; Staffell and
Green, 2014). MERRA reanalysis data reconstruct the atmospheric state by integrating
data from different sources such as conventional and satellite data (Rienecker et al., 2011;
Gunturu and Schlosser, 2012). They offer a complete worldwide grid of wind data at a
spatial resolution of 1/2◦ latitude and 2/3◦ longitude (around 45 km × 54 km in Germany)
and an hourly temporal resolution since 1979. The wind data consist of a northward and
an eastward wind component at three different heights (2m, 10m, 50m above ground),
which are helpful to derive the wind speed and wind direction at turbine height. Thus,
reanalysis data could mitigate the problems that plague available weather station data.
Alternative reanalysis data sources such as NCEP/NCAR (National Center for Environ-

mental Prediction/National Center for Atmospheric Research), ERA-Interim (European
Centre for Medium-Range Weather Forecasts Re-Analysis, or CFSR (Climate Forecast
System Reanalysis) are also possible, but so far, there is no consensus on the superiority
of one particular reanalysis model (Liléo and Petrik, 2011; Jimenez et al., 2012; Carvalho
et al., 2014). Further comparisons among these candidates are needed to determine the
correct wind power potential. In the following, we apply MERRA data to obtain wind
speed data at an unobserved location.

2.3 Horizontal interpolation
Every location lies within a rectangular spanned by the four nearest MERRA grid points.
The wind speeds at these four points, i.e., the eastward and northward components uh and
vh in 2m, 10m, and 50m, are interpolated to the turbine’s location weighted by their hor-
izontal distance (inverse distance weighting). This approach assumes that the influence
decreases with increasing distance. Given the rather short distances (maximum distance
to the nearest grid point is around 35 km) and the regular pattern of the MERRA grid,
inverse distance weighting is a reasonable candidate. Nevertheless, alternative interpola-
tion methods such as Kriging, polynomial, or spline interpolation are possible (Luo et al.,
2008).
After interpolating, the two components for each height are combined to obtain ab-

solute values of the wind speed at the turbine’s location at the three heights using the
Pythagorean theorem:

Vh =
√
u2
h + v2

h, h = 2, 10, 50. (1)

At this point, it is still possible to calculate the wind direction at height h, ϕVh
, at the

turbine’s location by the following equation:

ϕVh
= tan−1

(
vh
uh

)
. (2)

Because most wind turbines can rotate towards the wind direction (Caporin and Preś,
2012), we neglect the wind direction in the following analyses and focus only on the wind
speed.
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2.4 Vertical extrapolation
The hub height of a typical wind turbine is much higher than 2m, 10m, and 50m, where
wind speeds are provided by MERRA. Hence, the available wind speeds at height h need
to be extrapolated to the turbine height z.
One extrapolating method is given by the power law (e.g. Brown et al., 1984; Jung

et al., 2013; Kubik et al., 2013b):

Vz = Vh

(
z

h

)α
, (3)

where Vz and Vh denote the wind speeds at heights z and h, respectively. The wind shear
coefficient α depends on the stability of the atmosphere and can be derived empirically,
but the results are very sensitive to a correct modelling and the right assumptions (Fırtın
et al., 2011). The power law gives a “reasonable first approximation” (Brown et al., 1984,
p. 1190). However, the procedure commonly used in the literature and applied in this
study is the log wind profile (e.g., Stull, 1988; Gunturu and Schlosser, 2012):

Vz =
(
u∗
κ

)
log

[
(z − d)
z0

]
, (4)

where Vz denotes the wind speed at height z, u∗ the friction velocity, κ the von Kármán
constant (∼0.41) used for fluid modelling, d the displacement height, and z0 the surface
roughness. The three unknown parameters u∗, d, and z0, can be calculated by solving
the three dimensional equation system for the wind speeds at 2m, 10m, and 50m.3 By
plugging in the turbine height for z, the desired wind speed at turbine height z, Vz, can
be obtained.

2.5 Conversion of wind speed to production
When the wind speed at the turbine position is derived, the most crucial step is the
conversion into produced energy. One way is applying a physical transformation such
as the wind power density (WPD), which describes how much of the kinetic energy of
the wind per area can be transformed into energy production (Hennessey Jr, 1977). It is
defined as

WPD = 1
2 ρ CP V 3

z , (5)

where Vz denotes the wind speed at turbine height z, ρ the air density, and CP the Betz
limit (=16/27), which describes the maximum amount of energy a turbine can theoreti-
cally extract from the wind. The unit of the WPD is W/m2. By multiplying the WPD
with the circular area spanned by the rotor blades (= diameter × π), the wind power
potential for a turbine can be achieved. Empirical evidence shows, however, that WPD
overestimates the real on-site production and is only an illustrative point (Gunturu and
Schlosser, 2012).

3A very efficient way of solving this equation system is the Newton-Raphson method described under
http://www.met.reading.ac.uk/~marc/it/wind/.

5

http://www.met.reading.ac.uk/~marc/it/wind/


Another approach is to estimate a wind energy production function. For every turbine
type, the producer offers a power curve which describes the amount of energy that can be
produced depending on the current wind speed. Unfortunately, this power curve cannot be
used for our purpose for two reasons: First, data for instantaneous wind is not available,
only hourly average wind. Because of the non-linear relation between wind speed and
energy production, the hourly wind production cannot be generated by inserting hourly
average wind speed into the power curve (Brown et al., 1984; Sinden, 2007). Second,
the power curve captures the relation between true mast wind speed and production.
However, processed MERRA data and mast wind data are different and cannot simply
replace each other. For these reasons, a new production function linking hourly MERRA
wind speed data and production data is needed.
In this paper, we examine the relation between the observed wind speed and the re-

sulting production from a statistical point of view and estimate the underlying function.
A natural candidate is a 3rd order polynomial (cf. Llombart et al., 2006) because of
the cubic relation between wind speed and energy production (compare the wind power
density in Eq. (5)):

f(x; a, b, c, d) = ax3 + bx2 + cx+ d, (6)

where a, b, c, d ∈ R. This function, however, is unbounded whereas production data
is bounded by zero and the maximal production C depending on the rated capacity.
Hence, a second candidate is a piecewise defined function which bounds the 3rd order
polynomial at the thresholds x1 and x2, 0 ≤ x1 ≤ x2 (Chang et al., 2003):

f(x; a, b, c, d, x1, x2, C) =


0 0 ≤ x < x1

ax3 + bx2 + cx+ d x1 ≤ x ≤ x2

C x > x2

(7)

To smooth the transitions at the thresholds for a more realistic shape, we additionally
assume continuity and differentiability, i.e., f(x1) = 0, f(x2) = C, f ′(x1) = 0, and
f ′(x2) = 0. The thresholds x1 and x2 are estimated from the data.
Both aforementioned functions imply that the relation between wind speed and pro-

duction is point symmetric. Another function type capturing the boundedness and the
typical “S” shape of the production function is the class of logistic functions. A special
type of logistic function also allowing for asymmetry is the five parameter logistic
(5PL) function (Gottschalk and Dunn, 2005):

f(x; a, b, c, d, g) = d+ a− d(
1 + (x

c
)b
)g (8)

with a, b, d ∈ R and c, g ∈ R+. The parameters d and a describe the lower and upper
bounds, respectively, and are set to the minimal and maximal production. The parameters
b, c and g determine the slope of the function, where g particularly controls the asymmetry
(symmetric for g = 1).
When the best function type is determined and fitted to the available production data,

it can be used to estimate the production at a new location where only wind speed data
are available.
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2.6 Wind energy index
The index we suggest to estimate the production potential at a certain location translates
the derived wind speed at this location into the expected wind energy is defined as follows:

I(τ1, τ2) =
τ2∑
t=τ1

f(Vz(t)), (9)

where Vz(t) indicates the hourly wind speed at turbine location and turbine height ob-
tained according to Sections 2.2–2.4 and f(·) is the best fitting function from Section 2.5.
τ1 and τ2 denote the start and the end date of the index accumulation. The estimated
hourly production can be summed up for different time horizons such as daily, monthly, or
yearly, depending on the aim and the data availability. For the yearly index, for example,
the time t changes in hourly steps, i.e., t = 1, . . . , 8760 for a common year. To estimate
the long-term potential of a location, we average the values of the yearly index over an
adequately long period.

2.7 Validation
To evaluate the performance of our models, we compare the simulated production from
Eq. (9) with the true production on different aggregation levels. First, we calculate
Pearson’s correlation coefficient to examine their dependency. Second, we measure the
estimation accuracy by the root-mean-square error (RMSE) defined as:

RMSEMτ =

√√√√ 1
N
·
N∑
i=1

(
ÎMτi − IMτi

)2
, (10)

where ÎMτi and IMτi are the estimated and the true productions for time period i, respec-
tively. Mτ indicates the level of aggregation, i.e., hourly, daily, or monthly, and N the
number of observations on this aggregation level. Because our production data record is
not long enough, we do not compare the results on a yearly scale.
When the production function for a certain turbine type is estimated based on all

data available, we assume that it is valid for all locations with the same turbine type
in Germany. To test if this assumption holds true, we perform a leave-one-out cross
validation (e.g. Arlot and Celisse, 2010): Instead of using all n locations for fitting the
production function, we take only n − 1 locations. The left-out location then simulates
a new, unobserved location and is used to test the estimated function. This procedure is
repeated n times so that each location is once the left-out location.

3 Empirical analysis
3.1 Wind farm data
We use data for wind energy production at seven German wind parks A–G summarized
in Table 1.4 The wind parks are situated in different regions of Germany (see Fig. 11) and

4The production data are provided by 4inita GmbH.
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Wind park # Turb. Height Start End
A 1 140 15.11.2011 30.06.2014
B 4 79 25.07.2012 30.06.2014
C 6 138 01.01.2013 30.06.2014
D 3 138 01.01.2013 30.06.2014
E 6 138 16.01.2012 30.06.2014
F 5 108 01.01.2013 30.06.2014
G 8 138 20.12.2011 30.06.2014

Table 1: List of available production data

consist of a different number of turbines, which all have the same type and a capacity of
2.3 MW.5 The data are reported in an interval of 10 minutes and last minimum 1.5 years.
We cleaned the data according to the error code provided by each turbine, i.e., the

10 min production is set to “NaN” in case of an error. By this procedure, we manage
to estimate the true relation between wind speed and production regardless of technical
issues. When summing up the 10 min data to hourly production, we allow for 1/3 missing
values until we set the hourly value to “NaN”. The same rule is applied for aggregating
to daily and monthly scales.
The number of turbines varies from 1 to 8 among the wind parks (see Table 1). Be-

cause the turbines influence each other’s wind conditions and efficiency, we average the
production of all turbines in a wind park to obtain a time series representative for the
whole park. Table 2 shows the average production for each wind park’s average turbine on
different time scales. The average monthly production ranges from 280MWh to 492MWh
indicating different topographical wind conditions. Moreover, the share of missing values
lies between 0% and 4% for the monthly production data.
As an example, a month with typical hourly production is shown in Fig. 1, as well as

the corresponding hourly wind speed at turbine height. This so-called mast wind speed is
also provided for each turbine in steps of 10 minutes. Fig. 2 depicts the relation between
the hourly average mast wind and the hourly total production for a certain turbine of
wind park A. The typical “S” shape known from power curves is also visible here: The
production is zero for low wind speeds; then, the production increases up to the capacity.
After the capacity is reached, the production stays constant with increasing wind. For very
high wind speeds, the production even decreases because the turbine is disconnected to
prevent damages. The points further away from the curve might come from measurement
errors of the wind speeds or technical problems not captured by the error code. As we
later fit the production function to the MERRA wind speed, we do not further investigate
the outliers of the mast wind data.

3.2 MERRA data
The MERRA data used in this study come from the “MERRA IAU 2d atmosperic single
level diagnostics (AT1NXSLV)” and are available at times 0:30, 1:30, 2:30, . . . for each day
since 1979 (Lucchesi, 2012). We use the variables U2M, V2M, U10M, V10M, U50M, and V50M,

5The names and exact locations of the wind parks are concealed here for confidentiality reasons.
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Hourly Daily Monthly
Mean NaN Mean NaN Mean NaN

A 0.67 0.22% 16.06 0.10% 492.29 3.13%
B 0.38 0.83% 9.21 1.13% 279.87 4.17%
C 0.58 3.01% 13.91 3.48% 421.84 0.00%
D 0.50 0.64% 11.94 0.73% 362.04 0.00%
E 0.53 1.90% 12.55 2.68% 383.11 3.33%
F 0.50 0.39% 11.94 0.37% 361.82 0.00%
G 0.43 2.20% 10.41 3.14% 313.23 3.23%

Table 2: Mean production values (in MWh) and share of missing values on different time
scales
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Figure 1: Hourly production and hourly average wind speed (mast and MERRA) for an
exemplary month of wind park A
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Figure 2: Hourly average mast wind compared with hourly production

which indicate the eastward and northward wind speeds measured in m/s at heights of
2m, 10m, and 50m above surface. To cover whole Germany, all grid points with latitude
between 5.33◦ E and 16◦ E and longitude between 47◦N and 56◦N are used. The grid
points in Germany are depicted in Fig. 11.

3.2.1 Wind speed and direction

The eastward and northward wind components uz and vz at height z, respectively, allow
for deriving the wind speed and the wind direction. Fig. 3 (left) depicts the histogram of
the wind speeds at 2m height at the MERRA grid point 13.3◦ E/52.5◦ N, which is located
in Berlin, for 2004–2013. It shows that wind speeds around 3 m/s are most common
at this location. Moreover, the wind speed follows a Weibull distribution, which is the
standard distribution for modelling wind speeds (e.g. Hennessey Jr, 1977; Gunturu and
Schlosser, 2012). Fig. 3 (right) depicts an angle histogram of the wind direction in Berlin
in 2004–2013. It shows that most of the wind comes from west in Berlin (180◦).6

3.2.2 MERRA wind vs. mast wind

The wind speeds derived from MERRA data are used to replace the mast wind speeds
which are not available for new locations, at least at an early planning stage. However, we
can compare the mast wind speeds available in our dataset with the MERRA wind speeds
for the same location. Fig. 4 and Table 3 illustrate the relationship between the hourly
average mast and MERRA wind speeds. The correlation is always higher than 0.81 at

6This information can be used to adjust a new wind park so that turbulences are minimized and the
efficiency is maximized for the main wind direction.
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A B C D E F G
Correlation 0.8515 0.8338 0.8621 0.8127 0.8471 0.8142 0.8547

Table 3: Correlation between mast wind and MERRA wind

all wind parks which indicates that MERRA data is a suitable substitute for local wind
data. The figure for wind park A, however, also reveals that there might be a systematic
bias, i.e., that the processed MERRA wind speeds generally overestimate the mast wind
speeds, which can also be conjectured from Fig. 1. By multiplying the MERRA data with
a location-dependant factor, this bias could be mitigated, but this factor is unavailable
for an unobserved location. Nevertheless, we can disregard this problem as we directly
estimate the relation between the production and the MERRA data and not the mast
wind data.

3.3 Relation between MERRA wind and production
3.3.1 MERRA wind production function

In this section, we compare the different functions types introduced in Section 2.5 to de-
scribe the relationship between average hourly MERRA wind speed and the true hourly
energy production. Fig. 5 (left) reveals the weakness of the 3rd order polynomial ex-
emplarily for wind park A: The overall fitting is good, but the shape at the boundaries
does not reflect the traits of wind power production because the production does neither
increase for very low wind nor fall immediately after the maximum. These drawbacks are
overcome by the piecewise defined function in Fig. 5 (right), but despite the additional
assumptions, the overall fitting does not improve (see Table 4). The 5PL function (Fig. 6)
reflects best the actual behaviour of production data. It allows for asymmetry, is easy
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Figure 4: Comparison of hourly MERRA wind speed with hourly mast wind speed

R2 A B C D E F G
3rd order polynomial 0.698 0.758 0.709 0.656 0.708 0.681 0.734
Piecewise function 0.697 0.751 0.709 0.654 0.706 0.680 0.732
5 parameter logistic 0.698 0.760 0.710 0.656 0.708 0.683 0.735

Table 4: Goodness of fit (measured by R2) for different functions

to calibrate and shows the best fit among the considered candidates (see Table 4). For
these reasons, we continue with using the 5PL function for the wind energy index. The
estimated parameters for each wind park are given in Table 5. It can be seen that the
parameter g is not equal to 1, hence the functions are asymmetric. The parameter a
indicates the maximal production in MWh, d the minimal production (0).

3.3.2 In-sample estimation

When plugging in the MERRA wind speeds into the fitted 5PL function, we obtain
estimated values for the hourly production, which we call hourly “MERRA production”.
Figures 7–9 compare the MERRA production with the true production for wind park A
on the hourly, daily, and monthly scale. It can be seen that the fit becomes better for
higher scales, which is also confirmed by an increase of the correlation from 0.82 (hourly)
to 0.92 (daily) and 0.98 (monthly) (see Table 6). This can be explained by an averaging
effect of estimation errors. The RMSE increases from 0.39 (hourly) to 5.2 (daily) and
38.5 (monthly), but this increase results from different magnitudes of the production on
different time scales: The RMSE for hourly production for wind park A corresponds to
57% of the hourly production (0.39/0.69), whereas the RMSEs for the daily and monthly

12
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Figure 5: Fitting the hourly production for hourly MERRA wind speed using the 3rd
order polynomial (left) and the piecewise function (right)
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Figure 6: Fitting the hourly production for hourly MERRA wind speed using the 5PL
function
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a b c d g

A 2.365 -7.219 15.200 0 0.306
B 2.361 -15.855 18.247 0 0.144
C 2.363 -6.039 16.718 0 0.377
D 2.264 -6.691 16.519 0 0.334
E 2.364 -7.229 15.052 0 0.340
F 2.361 -7.112 12.956 0 0.383
G 2.360 -6.315 17.020 0 0.370
All 2.365 -6.627 15.945 0 0.351

Table 5: Estimated parameters of the 5PL function

Hourly Daily Monthly
Mean Corr. RMSE Mean Corr. RMSE Mean Corr. RMSE

A 0.69 0.82 0.39 16.48 0.92 5.18 500.73 0.98 38.46
B 0.38 0.87 0.21 9.14 0.96 2.42 273.10 0.98 18.49
C 0.57 0.84 0.31 13.77 0.94 3.74 417.59 0.97 30.38
D 0.51 0.81 0.32 12.17 0.93 4.06 369.27 0.95 49.49
E 0.54 0.83 0.34 12.93 0.94 4.28 396.47 0.97 36.61
F 0.51 0.82 0.35 12.16 0.89 5.64 368.90 0.95 57.39
G 0.44 0.84 0.26 10.49 0.94 3.26 322.60 0.96 33.06

Table 6: Results of in-sample estimation

production correspond to 31% (5.18/16.48) and 8% (38.46/500.73) of the total average
production in these periods. The good fit on the monthly scale is also visible from Fig. 10
where the monthly true and MERRA productions are depicted for more than 2.5 years
for wind park A.
The average ratio of the RMSE to the monthly production for all wind parks lies

around 10%. Because of the better results on higher time scales, we conjecture that the
yearly scale, which we use to assess the wind energy potential, leads to an even better
approximation.

3.3.3 Out-of-sample estimation

In this section, we evaluate the performance of our approach in estimating the production
at an unobserved location (out-of-sample) by conducting a leave-one-out cross validation.
To obtain the estimated production at one location, the parameters of the MERRA wind
production function (Eq. (8)) are estimated using a training dataset of six out of seven
wind parks.7 Instead of a joint estimation for all six wind parks, one could also estimate
the production function of the nearest neighbour only. Given different geographical con-

7We are aware that different lengths of the data record put different weights on the wind parks for the
joint estimation of the production function (see Table 1). Nevertheless, we prefer not to shorten the
data, but to use as many data as possible.
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Hourly Daily Monthly
Mean Corr. RMSE Mean Corr. RMSE Mean Corr. RMSE

A 0.57 0.82 0.41 13.71 0.92 5.88 416.63 0.98 83.51
B 0.50 0.87 0.26 12.03 0.95 4.15 359.47 0.98 92.99
C 0.63 0.84 0.32 15.10 0.94 4.00 458.16 0.97 48.23
D 0.55 0.81 0.33 13.11 0.93 4.18 397.91 0.95 58.08
E 0.50 0.83 0.34 11.98 0.94 4.57 367.40 0.97 45.10
F 0.38 0.81 0.39 9.09 0.89 7.22 275.85 0.94 116.98
G 0.52 0.84 0.29 12.47 0.94 4.12 383.24 0.96 74.66

Table 7: Results of out-of-sample estimation

ditions, however, this entails the risk of a misspecified production function. Therefore, we
use all available (training) data to estimate the average relationship.
With the estimated relation and local MERRA wind data, the MERRA production can

be derived for the left-out location and compared with the true out-of-sample production
data from the seventh location using again correlation and RMSE on different scales (see
Table 7). As expected, the RMSE for the out-of sample estimation increases compared to
in-sample estimation. The change is also observable in the means. The higher errors for
the wind parks B and F on the monthly scale can possibly be explained by the turbine
heights, which differ from those in the other wind parks (see Table 1). Moreover, the
in-sample fitting for wind park F was already rather poor and wind park B is situated
further away from the other wind parks. Opposite to the RMSE, the correlation remains
almost equal compared to in-sample estimation because the wind speed is the main driver
of direction of variation regardless of the production function.

3.4 Wind energy potential in Germany
The main advantage of MERRA data is the availability of long-term wind speed data
on a global grid. With these data and the aforementioned approach, we can estimate
the wind energy potential for every location in Germany by averaging the yearly wind
energy index based on historical wind speed data. The adequate length of times series
is widely discussed in the literature and ranges from minimum ten years (Jimenez et al.,
2012) over 15–20 years (Liléo et al., 2013) to 25 years (Brower et al., 2013) to balance
large fluctuations and not to be biased by structural breaks in the wind speed data due
to climate change or reanalysis data developments.
In this context, we choose a time horizon of twenty years, i.e., 1994–2013. Rather

stationary wind conditions can be anticipated for this period: The estimated yearly pro-
duction shows a significant trend only for 30% of the grid points at the 5% significance
level according to the Mann-Kendall test. When assessing the potential of a specific
location, however, it has to be investigated if a trend has to be considered.
Fig. 11 (left) shows a map of the averaged yearly index, i.e., the expected yearly pro-

duction, for each MERRA grid point and their interpolation.8 It depicts a rather low
8Our approach allows for calculating MERRA production at an arbitrary resolution. To decrease the
computational effort, we refrain from that and interpolate between the grid points using Natural
Neighbour interpolation in ArcGIS 10.2.
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potential in southern Germany, but a high potential near the sea. Of course, this map
describes only the production potential depending on the wind speed. The geographical
and structural situation such as the existence of cities or lakes has to be considered as
well for the actual planning. Moreover, the map is turbine-specific, hence we assume the
same technology as used in the wind parks under consideration. Opposite to classical
wind maps, it provides the estimated amount of energy that can be produced under the
local wind conditions.
Fig. 11 (right) depicts the coefficient of variation, i.e., the standard deviation of each

location normalized by the location’s mean. This value is an important indicator for
the (model) risk involved in installing a new wind park. It follows that the risk is much
lower near the coast with fluctuations around 5% compared to the south with fluctuations
around 10%.

4 Discussion and conclusion
In this paper, we provide a novel and transparent approach to estimate the long-term wind
energy potential at an unobserved location by applying a newly developed wind energy
index. The production data available for a certain turbine type is used to estimate a
general production function which can then be applied to wind data at any new location.
The wind energy index provides the expected long-term energy production for this location
and a certain turbine type. The resulting wind energy production map for Germany is
useful for governments, practitioners, or investors who are involved the value chain of a
wind farm investment.
Therefore, our approach could meet the following needs: First, it allows a pre-assess-

ment of the suitability of potential location at no costs before analyzing the production
potential in greater detail by means of site-specific wind measurements. Second, it could
fill the gap of missing standards of assessing the wind energy potential from a legal point
of view. Third, it could assist in creating a transparent approach for the valuation of
wind production derivatives.
However, to achieve any of the aforementioned potentials, this approach has to be

adapted to other turbine types, which is possible as long as real production data for this
type is available at least at one other location. Moreover, it can be transferred to other
regions in the world as MERRA data are globally available.
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