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1 Introduction and Motivation 
After stagnating for decades, the demand for steel 
products has grown since the mid-90s. A similar 
increase in demand took place for the non-ferrous 
alloys. In particular, the high-quality product seg-
ments were characterized by supply deficits (Thys-
senKrupp 2006). Figure 1 reflects the developments 
of the worldwide manufactured quantities of high-
quality products based on nickel alloys and the de-
mand for primary nickel. Both time series exhibit a 
positive trend over the last 15 years. With a con-
sumption of 240 kilotons, the market reached its 
hitherto peak in 2006.  
If the demand exceeds manufacturing capacity on a 
regular basis, companies are confronted with the 
challenge to optimize order acceptance (Spengler, 
Rehkopf, and Volling 2007). The objective is to 
maximize the overall profit by adequately selecting 

the best orders. Thus, companies are confronted 
with the decision to dynamically control the inflow 
of orders. This constitutes a classical environment 
for employing the techniques of RM, capacity con-
trol in particular. By quantitatively assessing the 
opportunity costs of an order, RM provides support 
for order acceptance decisions. 
The airline industry is the most familiar application 
of RM and its techniques have been effectively ap-
plied to many areas of the service industry. Many 
common characteristics between order-driven 
manufacturing and traditional RM industries make 
manufacturing industries in general, and make-to-
order steel manufacturing in particular, promising 
environments for the application of RM. Since re-
search in this area is still in its infancy (Chiang, 
Chen, and Xu 2007), this paper’s objective is to 
contribute to the understanding by sharing expe-
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riences in terms of the potential, current success, 
and difficulties when investigating a planned im-
plementation of RM at a worldwide leading manu-
facturer of high-performance alloys, operating a 
make-to-order (m-t-o) production. 

Figure 1: Development of demand for 
primary nickel and products on the basis of 
nickel alloys 

 

2 Make-to-Order Steel 
Manufacturing 

ThyssenKrupp is one of the world's largest technol-
ogy groups. Worldwide, more than 190,000 em-
ployees work in the group's main areas of steel, 
capital goods and services, realizing sales of more 
than 53 billion EUR in the 2007/2008 fiscal year. 

The ThyssenKrupp Stainless segment is the world’s 
market leader in flat-rolled stainless products and 
holds leading positions in high-performance ma-
terial markets. In the ThyssenKrupp Stainless seg-
ment eight business units in stainless-steel products 
are concentrated, two of which serve the market for 
high-performance alloys: ThyssenKrupp Titanium 
and ThyssenKrupp VDM.  
ThyssenKrupp VDM is a leading international sup-
plier of high-performance nickel alloys, cobalt al-
loys, and special stainless steels. The company sup-
plies these products in the form of sheet, strip, bar, 
and wire to customers mainly in the energy, oil, gas, 
plant construction, aerospace, and electronics sec-
tors. Products of high-performance alloys are used 
whenever extreme conditions are faced, for instance 
in fuel cells, turbine blades or high-precision molds. 
With about 1,800 employees, ThyssenKrupp VDM 
accounts for shipments of 36,100 metric tons, and 
sales of 1,177 million EUR in the 2007/2008 fiscal 
year. 
The company’s manufacturing streams of its four 
product segments are depicted in Figure 2. Starting 
with the melting and casting of the raw material in 
the common upstream melting plant, the material is 
distributed in the form of ingots into different man-
ufacturing streams. Thus, the production process 
can be described as a combination of process and 
discrete production.  
Within the above-described production process, the 
capacities of the finishing sections are the limiting 
factors. In particular, the sheet finishing section 
experiences a demand exceeding the capacity on a 
regular basis. For that reason, this paper will focus 
on the sheet finishing section. 
In this context, a product is defined as a specific set 

Figure 2: ThyssenKrupp VDM's manufacturing streams 
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of specifications ordered by the customer, including 
type of alloy, type of forming, quality norms, and 
geometric measurements. 
Sheet finishing begins with annealing, a heat treat-
ment in which the recrystallization is conducted. 
The duration of the annealing process depends on 
the type of alloy and the order-specific thickness of 
the sheet. Afterwards, the sheets are blasted to prize 
the layer of scales and leveled in order to assure 
quality in further processing. In addition, by leveling 
and blasting the sheet, the efficiency of the subse-
quent pickling is increased. The descaled sheet is 
then taken through the spray pickling to achieve an 
oxide-free surface. Subsequently, the sheets are 
washed and dried. Customer orders with a thin 
thickness are cold-rolled. This cyclical production 
path (Figure 3) is to be passed through several times 
depending on the alloy and customer specifications. 
If these customer specifications state a certain 
treatment of the surface by the dry or wet grinding 
production units, the sheet is led into a second cyc-
lical production path including the grinding units. 
The duration and number of utilizations of the 
grinding capacity depend on the type of alloy and 
the geometric measurements of the customer order. 
After being cut into the ordered measurements, the 
sheet is passed to quality inspection and eventually 
to shipping.  
Even if only the type of alloy is considered, Thys-
senKrupp VDM offers a variety of more than 50 
different alloys, which leads to additional complexi-
ty in (i) finding a good policy for material stock 
keeping and (ii) in the order flow and the resulting 
capacity utilization.  
Figure 4 illustrates the production routing of histor-
ic orders of two fiscal years, revealing the intense 
utilization of the first three production units and the 
optional utilization of the dry grinding. Out of 7,709 
produced orders the vast majority requires some 
amount of capacity at the annealing, blasting and 
leveling processes. 
The rest of the displayed production units are not 
frequented with as many orders as the above pro-
duction units, which is due to the multiple options 
in production routing as depicted in Figure 3. This 
also explains the decrease in numbers of orders 
requiring capacity and the increase in possible pro-
duction routes that include the production units 
spray pickling, cold-rolling, and dry grinding 
processes. Obviously, Figure 4 does not give infor-

mation about the capacity load, but serves only to 
illustrate the complexity of production routing.  
Depending on the specifications of the customer 
order, a resource might be occupied several times 
during the production process. For instance,  
whereas a hot-rolled sheet usually occupies the an-
nealing only once, a cold-rolled product occupies 
the annealing, blasting, and leveling several times 
(typically 2 to 4 times). Determinants are the or-
dered alloy and the thickness of the sheet. 

Figure 3: Production network in the sheet 
finishing section 

 

 
In addition to the order-specific production routing, 
the capacity requirements on a particular resource 
fluctuate heavily in relation to the ordered alloy and 
geometric specifications, i.e. length, width, and 
thickness. Interestingly, the capacity consumed on 
each production unit depends on different factors 
for each resource. For instance, the type of alloy and 
the sheet’s thickness influence the capacity con-
sumption at the annealing, resulting in a range of 
0.02 to 3.57 hours around a mean value of 0.47 
hours. On the other hand, the capacity consumed on 
the grinding machine constitutes for some products 
up to 19.46 hours with a mean value of 0.47 hours 
depending on alloy and square footage of the order. 
Combined with the findings of Figure 4, this results 
in high fluctuations of capacity loads as will be de-
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scribed in detail in section 5. As a consequence, the 
short-term bottlenecks in this production network 
depend on the accepted orders and switch in each 
demand scenario.  
For a complex production environment as the one 
described above, different approaches to cope with 
the complexity are discussed in literature. Dutta and 
Fourer (2001) provide an overview of typical plan-
ning problems, whereas Denton, Gupta, and Jawa-
hir (2003) discuss approaches to handle the in-
creasing product variety. A well-established ap-
proach to obtain a consistent production plan is the 
hierarchical production plan approach discussed in 
the steel industry context by Neureuther, Polak, and 
Sanders (2004), Lin and Moodie (1989), or Mohan-
ty and Singh (1992). Examples of the practical ap-
plication of planning models are provided by Tang 
and Liu (2007) and Tang, Liu, Rong, and Yang 
(2000).  
Starting in the mid-90’s, initial works of Balakrish-
nan, Sridharan, and Patterson (1996), Harris and 
Pinder (1995) and Patterson, Balakrishnan, and 
Sridharan (1997) investigate the application of RM 
methods to manufacturing environments in general. 
Models of capacity control in m-t-o environments, 
specifically, are later presented by Barut and Sridha-
ran (2005), Defregger and Kuhn (2007), Gallien, Le 
Tallec, and Schoenmeyr (2004), Gupta and Wang 
(2004) and Jalora (2006), all considering the se-
quential order acceptance for multiple offered prod-
ucts with exogenous delivery dates with respect to 
expected demand. Spengler, Rehkopf, and Volling 
(2007) extend the above list by additionally provid-
ing a detailed description of an observed production 
structure.  
As mentioned above, short-term bottlenecks in the 

production network depend on the accepted orders 
and switch in each demand scenario. This consti-
tutes a typical problem in m-t-o manufacturing, 
potentially causing tremendous inefficiencies in the 
interaction of order acceptance and production. 
Failure to consider the order’s capacity consump-
tion and resulting effects on the bottlenecks in the 
production stream may lead to losses in capacity 
and inefficient order acceptance decisions. In simi-
lar settings in the service industry, RM has signifi-
cantly contributed towards improved order accep-
tance decisions (Cross 1997; Metters, Queenan, 
Ferguson, Harrison, Higbie, Ward, Barfield, Farley, 
Kuyumcu, and Duggasani 2008; Geraghty and 
Johnson 1997). Hence, implementing RM in the 
above-described setting promises great potential 
which will be further explained with details from 
practice in section 4. 

3 The Potential of Revenue 
Management in Make-to-
Order Steel Manufacturing 

Most companies with m-t-o production possess 
characteristics that enable and motivate the usage of 
RM instruments. One of the common characteris-
tics of companies in traditional RM applications is 
the rigidity of available capacity (Kimes 1989). Al-
though capacity can be considered as flexible in the 
long term, increasing the capacity substantially in 
the short term is not possible. At ThyssenKrupp 
VDM the capacity of the majority of production 
units can only be expanded with substantial capital 
infusion, time lag, and downtime. Therefore, adapt-
ing available capacity to short-term fluctuations of 
demand is not practical (Harris and Pinder 1995). 

Figure 4: Order flow of two fiscal years (numbers modified due to data confidentiality) 
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Further, Barut and Sridharan (2005) observe that 
quickly adding capacity could lead to a glut and 
seriously jeopardize the health of a company in the 
long term. The requirement of a capacity shortage is 
interconnected with fixed capacity. With uncon-
strained capacity, demand will never exceed capaci-
ty and the decision of accepting an order can simply 
be made by comparing the marginal profit with the 
marginal costs of an order (Kniker and Burman 
2001). To generate this kind of decision, a RM sys-
tem is not necessary. 
In addition, for RM to be most effective, the produc-
tion capacity in m-t-o steel manufacturing should be 
considered as perishable inventory (Kimes 1989). 
The common perception is that manufacturers do 
not face the problem of perishability. However, a 
company employing m-t-o production relies on the 
knowledge of the relevant specifications of quality, 
quantity, and delivery date from the customer be-
fore production can begin. This knowledge therefore 
serves as the so-called external factor, which is a 
production factor required for the production of 
goods and services which cannot be controlled by 
the company. In the context of m-t-o manufactur-
ing, it is not the product itself that has to perish, 
only the capacity to produce it (Swann 1999).  
In order to apply RM in the order acceptance 
process, a company must have the ability to reject 
customer requests or to vary prices driven by its 
efforts to maximize the overall contribution margin. 
Obviously, decision-making requires an economical, 
legal and moral independency. In the case of Thys-
senKrupp VDM this independency is very pro-
nounced. On the one hand, this is due to a large 
amount of different customers, each of them with a 
limited economical impact to the overall results 
(ThyssenKrupp VDM’s database consists of several 
thousand customers). On the other hand, the major-
ity of ThyssenKrupp VDM’s production capacity is 
not bound by long-term contracts and thus, is avail-
able for short-term project business giving the com-
pany an additional degree of freedom in the selec-
tion of orders. 
Finally, for RM to be effective, it must be supported 
throughout the corporate culture and management 
of the company. At ThyssenKrupp VDM the intro-
duction of RM was initiated and is supported by the 
company’s top management, motivated by ineffi-
cient order acceptance decisions during times of 
excess demand and promising results of RM in 

similar settings (Spengler, Rehkopf, and Volling 
2007).  
Nevertheless, there are several characteristics dis-
tinguishing RM at a steel manufacturing facility 
from its counterparts in service industries. For in-
stance, Gallien, Le Tallec, and Schoenmeyr (2004) 
point out that the production capacity in manufac-
turing settings is allocated over an infinite horizon, 
as opposed to the finite seat allocation period end-
ing with a flight’s departure. Further, it is possible to 
start production at any time during the day, whereas 
seats on a plane can only be sold for a specific de-
parture time constrained by a reserved slot for take-
off. Most manufacturers are free to shift their pro-
duction activities in time, as long as the end-delivery 
date is met. In manufacturing it is not a pre-
specified production time that is sold, but rather the 
certainty that an appointed activity will be per-
formed somewhere within a specified period of time 
(Kniker and Burman 2001). This characteristic does 
not contradict the above-mentioned requirement of 
perishability. Despite the at-first-glance suspected 
additional degree of freedom, most customer orders 
are quoted for the soonest possible delivery date, 
which heavily relies on the upstream melting and 
casting routine. In addition, long lead times in pro-
duction and high material costs further restrict the 
suspected additional degree of freedom making the 
available production capacity a perishable resource.  
Also, as a characteristic of the m-t-o production, 
significant variable costs need to be considered, 
influencing the profitability of order acceptance. 
Since ThyssenKrupp VDM offers Nickel alloys, ma-
terial costs take up a large percentage of the final 
product price quoted to the customer. In contrast to 
the homogeneous capacity consumption faced by 
the airlines (one customer requires one seat on the 
airplane), the capacity consumption and number of 
required production units in a m-t-o environment 
differ from each other. Therefore, the assumption 
that an increase in revenues automatically results in 
an increase in profits is not necessarily true. The 
objective of capacity control in the service industry 
to maximize revenues needs to be replaced by the 
maximization of the overall contribution margin. 
One special characteristic of the order acceptance 
process of companies selling highly customized 
products is the iterative process of price negotia-
tions, which is explained in detail in the following 
section. Defregger and Kuhn (2007) show that in 
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order to effectively apply RM, a company needs to 
be able to segment the customers into classes of 
higher and lower price sensitivity. Due to the price 
negotiations between sales personnel and the cus-
tomers, not only the products are customized, but to 
a certain extent, the price as well. It can therefore be 
assumed that the sales personnel are able to skim 
the customer’s willingness to pay. 
In summary, despite the differences of service and 
manufacturing industries, the requirements for the 
effective implementation of RM techniques are met 
at ThyssenKrupp VDM. Nevertheless, to compre-
hend the decision support provided by RM tech-
niques, a detailed look at the order acceptance 
process is necessary. 

4 The Order Acceptance Process 
and Order Characteristics at 
ThyssenKrupp VDM 

The process of order acceptance in m-t-o companies 
differs from service industries. Usually, the custom-
er approaches ThyssenKrupp VDM either through 
one of the worldwide subsidiaries or directly con-
tacts the sales department in the headquarters 
(Figure 5). The sales agent uses the customer’s in-
formation about the desired alloy, specification and 
quantity to perform both the ATP and CTP checks. 
Hereby, the Available to Promise (ATP) identifies 
already-existing inventory that is available to fulfill 
the request. Due to the great product variability, no 

significant inventory of pre-products exists, increas-
ing the importance of the Capable to Promise (CTP) 
check in m-t-o manufacturing. The CTP check com-
pares the request’s specific capacity consumption 
with the available production capacity and thus, 
verifies if enough production capacity and material 
is available to fulfill the request, resulting in the 
soonest possible date of delivery. Afterwards, the 
profitability check results in a comparison of the 
lowest quotation price based on production costs 
and the customer’s willingness to pay. The request is 
accepted and the available production resources 
updated if the customer’s willingness to pay exceeds 
the lowest quotation price. If the customer’s willing-
ness to pay is exceeded by the lowest quotation 
price, the request is marked as not profitable. This 
information is used in further negotiations with the 
customer, resulting either in the customer’s accep-
tance of a price exceeding the lowest quotation 
price, the change of specifications (“new request”) 
or the rejection of the request. At this stage, the 
subsidiaries do not necessarily have to be included.  
The use of the terms "acceptance" and "rejection" in 
this context might suggest a situation where Thys-
senKrupp VDM’s only decision is to either accept or 
reject the customer’s terms. In practice, sales agents 
often take a more active role in the actual interac-
tion with the customer, which is frequently a 
process of iterative negotiation. 
The sales personnel at ThyssenKrupp VDM face a 
difficult task when classifying an incoming customer 

Figure 5: Interaction of sales agent and customer during order acceptance process 
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request as profitable to accept or not. Figure 6 de-
picts the high fluctuation in contribution margin per 
kg of an actual sequence of incoming customer or-
ders observed in one specific month. One can ob-
serve the high variance in specific contribution mar-
gin of the orders, fluctuating with a coefficient of 
variation of 0.495. No clear pattern of profitability 
in this sequence of orders can be observed. Since it 
is the policy of ThyssenKrupp VDM that every re-
quest for a quotation is answered within 24 hours, it 
is not possible for the sales agents to delay a re-
sponse for tactical reasons. 

Figure 6: High variance in specific 
contribution margin of customer orders 
within one month 

 

 
This observed high variance in contribution margin 
is mainly due to the large variety of products offered 
by ThyssenKrupp VDM and the price negotiations. 
The large offered variety of products results in a 
broad spectrum of contribution margins. Each alloy 
achieves different average contribution margins. As 
a rule of thumb, the highly customized alloys 
achieve higher average contribution margins than 
the volume-intense alloys. For instance, with a total 
amount of 51 offered alloys, only 15 alloys make up 
about 80% of the ordered quantity. Whereas the 28 
alloys representing only 5% of the total ordered 

quantity result in a contribution margin which is 
300% higher than the contribution margin of the 
volume-intense alloys. 
In addition to the different average contribution 
margins of the alloys, the achieved contribution 
margin differs for each order depending on the 
technical specifications (e.g., industry specific quali-
ty standard) and the price negotiations. 
Nevertheless, the volume is not a good indication of 
the resulting capacity consumption of an order. 
Even if the width, the length, and the type of alloy of 
two orders are identical, the capacity consumption 
of each order is heavily influenced by the specified 
thickness. For instance, a sheet with a thickness of 
less than 3mm needs to be cold-rolled and, thus, 
occupies the production units multiple times as 
mentioned previously in the description of the pro-
duction process. Obviously, a very thin, cold-rolled 
sheet is lighter than a thicker sheet, but requires 
more capacity during the production. 
Evaluating an order’s profitability regarding contri-
bution margin per kg, while failing to consider its 
capacity consumption, leads to erroneous informa-
tion during times of excess demand. To provide an 
example of the effect of considering the capacity 
consumption of an order when deciding about its 
profitability, Figure 7 on the left shows the same 
orders as Figure 6. Now however, the orders are 
sorted according to their contribution margin per kg 
relative to the average realized contribution margin 
of that particular month. On the right side of Figure 
7, the orders are sorted in the same manner as on 
the left side, but this time depicted according to the 
contribution margin per hour of annealing capacity 
consumed.  
Interestingly, an order that is classified better than 
average with respect to contribution margin per kg 
might not necessarily be better than average with 

Customer Orders

Figure 7: Customer orders depicted by EUR/kg and EUR/h 
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regard to contribution margin per annealing capaci-
ty consumed and vice versa. If annealing was the 
only bottleneck in the production network, evaluat-
ing the order regarding contribution margin per kg 
would have resulted in misleading information, as 
the correlation coefficient (Pearson) of EUR/kg and 
EUR/h in this specific case is only 0.459 (the values 
for the other production units are even lower). 
Even if the capacity consumption is taken into ac-
count when evaluating customer orders, in an m-t-o 
environment the bottleneck typically is not static. It 
switches depending on the specifications of other 
incoming customer orders. Therefore, in m-t-o steel 
manufacturing the bottlenecks cannot be defined 
ex-ante, causing a need for additional information 
and coordination between sales and production to 
master the complexity of the order acceptance deci-
sion. 
The negative results of not incorporating the result-
ing capacity consumption and the forecast of incom-
ing requests into the order acceptance process can 
be quantified using an ex-post analysis. The produc-
tion capacity of a certain period was systematically 
overloaded, meaning that more customer requests 
were coming in than production capacity was avail-
able. Hereby, the arrival of unconstrained demand 
was simulated using historic order information. 
Although no information about the lost orders was 
recorded at the time of the project, using historical 
actually produced orders to overload the capacity is 
eligible since all orders have the same probability of 
occurrence.  
Requests were accepted or declined according to 
current practice. As such, a first-come-first-served 
policy (FCFS) was applied, accepting all requests in 
the sequence of their arrival if (i) the request has a 
positive contribution margin and (ii) enough capaci-
ty is available to produce the request. 
To quantify the potential of RM, the ex-post opti-
mum was computed. Therefore, all generated re-
quests of an instance were given to a solver calculat-
ing the ex-post optimum by solving a relaxed knap-
sack problem as described in Spengler, Rehkopf, 
and Volling (2007). According to the sales depart-
ment, in times of full use of capacity, the incoming 
demand exceeds the capacity by about 5% to 20% 
depending on the specific period. Therefore, the 
focus of the studies was on demand/capacity ratios 
of 1.00 to 1.20.  
The necessary parameters for the simulation were 
derived from an extensive data analysis and vali-

dated in discussions with experts. Generally, de-
mand/capacity ratios are difficult to be generated in 
network environments. In the simulation, the avail-
able capacities of the production units were stan-
dardized to average capacity required to produce a 
demand volume at which the production network is 
considered as running “at full capacity”. This de-
mand volume was divided by the mean volume of 
the requests to calculate the average number of 
requests that needs to be generated to provide a 
100% capacity load across the production network. 
Based on this, the resource capacities were com-
puted by an ample number of simulation runs and 
are measured in hours.  
To create the particular demand/capacity ratios the 
number of requests to be generated was multiplied 
by an adjustment factor, while keeping the capaci-
ties of the production units fixed. For instance, to 
simulate a scenario in which the mean demand 
exceeds available capacity by 10%, the number of 
requests was multiplied by an adjustment factor of 
1.1. Thus, these ratios quantify the mean excess of 
demand compared to capacity. Based on this data, 
1,000 simulation runs for each demand/capacity 
ratio were conducted. The results are shown in Fig-
ure 8, revealing a potential of up to 19% in overall 
contribution margin relative to the results of a FCFS 
policy. 

Figure 8: Ex-post analysis 

 

 
Obviously, implementing additional decision sup-
port in order to fully estimate the economical effects 
of accepting or rejecting an incoming request prom-
ises great potential. Using contribution margin per 
kg as a simple reference might be misleading in 
bottleneck situations, since it does not include the 
resulting capacity consumption of the request (see 
Figure 7). Even if the capacity consumption is in-
cluded in the decision-making process, the prob-
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lem’s complexity is increased if multiple potential 
bottlenecks need to be considered. The reductions 
in expected future contribution from these capacity 
constraints resulting from accepting a request de-
fine the opportunity costs (associated with these 
constraints). Therefore, to fully estimate the profita-
bility of an incoming request, the associated oppor-
tunity costs need to be calculated based on the re-
sulting capacity consumption, the expected re-
quests, and the resulting value of the capacity con-
sumed in the production network. 

5 Developing a Bid Price Control 
As described in the previous sections, decisions 
made by the sales agent about whether to accept a 
customer request or not, might have a significant 
effect on the overall contribution margin of the 
company. Generally speaking, the objective of im-
plementing capacity control is to determine how to 
allocate the capacity of a given and limited resource 
to dynamically arriving requests, in order to maxim-
ize the profit.  
In steel manufacturing, capacity control can be used 
for an extended decision support for the sales de-
partment, when deciding whether to accept or de-
cline a request. Capacity control, in settings with 
only one resource, tries to allocate capacity to differ-
ent classes of customer orders, whereas network 
capacity control describes a capacity allocation 
problem, when customers require a bundle of re-
sources. In general, problems of network capacity 
control are of greater complexity since the order 
acceptance decision not only influences the utiliza-
tion of one resource, but has influence on the usage 
of several other resources as well.  
In this context, Talluri and van Ryzin (1998) point 
out that the usage of bid prices is an increasingly 
popular method for controlling the sale of inventory, 
e.g., seats on a flight or capacity in a production 
network. In a network bid price control the value of 

each resource’s capacity is calculated depicting a 
threshold value (or bid price). Hereby, the value of 
one capacity unit is quantified by its resource-
oriented opportunity cost, which is the expected loss 
in future contribution margin from using the capaci-
ty now instead of reserving it for future requests. A 
request (representing a specific path through a net-
work) therefore is only accepted if the contribution 
margin exceeds the product oriented opportunity 
costs. If bid price control is applied, the opportunity 
costs are approximated by the sum over the bid 
prices multiplied by the capacity consumption on 
the specific resource along the path.  
Figure 9 illustrates the calculation scheme of the 
threshold value. If a customer approaches Thyssen-
Krupp VDM with a quotation request, the threshold 
for the contribution margin for the requested prod-
uct is calculated in the following manner. Using a 
bid price to approximate the value of the resource’s 
capacity, the bid prices of each resource are multip-
lied with the request’s specific capacity consumption 
and summed up for all resources. This results in a 
threshold, specific for the forecasted demand scena-
rio and particular request. This threshold is the key 
information provided by the bid price control for the 
sales agent resulting in additional decision support 
for the profitability check as described in the itera-
tive price finding process in Figure 5.  
In the example, the three resources are valued with 
bid prices of 5000 €/h, 1000 €/h, and 750 €/h and 
when multiplied with the request-specific capacity 
consumption (derived from the existing work plan 
of the product) result in a threshold of 10 €/kg. 
Having this threshold at hand is an additional deci-
sion support for the sales agent during price negoti-
ations with the customers, instructing the sales 
agent not to quote a product price of less than 10 
€/kg contribution margin.  
Using a more general description, let the network 
consist of I resources and J products being offered. 

Figure 9: Calculation of the threshold value in a production network 
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If the resource �� � ��is used by product��� � �, let �	
  
be equal to the amount of the product’s demand of 
the resource and zero otherwise. Let the capacity 
consumption matrix be � � �	
� and cmj the con-
tribution margin of request j. The vector ctp indi-
cates the remaining capacity for each resource. Fur-
thermore, ������ denotes the maximum expected 
total contribution margin, given the remaining ca-
pacity ctp. Let �	 be the bid price for resource i. 
Thus, a request j is accepted, only if  
 

(1) ��
 � � �	����� � �	

�
	�  . 

Obviously, two factors influence the value of the 
contribution margin threshold: the request-specific 
capacity consumption and the value of the resource-
specific bid prices. The capacity consumption of the 
request can be derived from the available work 
plans, whereas the bid prices are computed in two 
steps. First, an optimization problem is solved to 
determine the optimal capacity allocation. The ob-
jective is to maximize the expected total revenue. 
The informational basis is given by the available 
capacity and the demand forecast. In a second step, 
the shadow prices of the capacity constraints are 
used as bid prices for the resources. 
Typically, in the above-described environment, a 
multi-period capacity allocation model is chosen, 
accounting for the varying product-specific lead 
times. Nevertheless, the request-specific capacity 
consumptions on the production network are very 
small compared to the considered length of produc-
tion periods. Thus, without loss of generality, it is a 
valid assumption that all requests with the same 
period of delivery are manufactured within the same 
period. Modarres and Sharifyazdi (2009) conclude 
that in this context, the problem can be formulated 
as a single-period model. Accordingly, a static, sin-
gle-period model is used. Each period consists of 
one week. 
The deterministic linear programming model 
(DLP), first introduced into the RM context by 
Smith and Penn (1988) and Williamson (1992), is a 
very widespread optimization model to calculate bid 
prices. For instance, let ��
�represent the historical 
average contribution margin that was realized from 
one unit of product j and cm its vector. Let 
!
�represent the forecasted total demand for prod-
uct j and D the demand vector. The decision va-

riables " � #$ % & % $'( denote the production quanti-
ty for product j.  
Using the above-described notation, the bid price 
control can be derived from the optimal solution of 
the following deterministic linear programming 
model: 
 
(2) �)*+����� � ��$��,-"  
(3) ./ �/ �" 0 ��� 
(4) 1 0 " 0 23� 

Using a DLP, the assumption is made in equation 
(4) that the demand is deterministic and equal to 
the mean demand depicted by E[D] as the vector of 
expected demand for all J products. Since the sto-
chastic demand information is reduced to expected 
demand, the approximation of the bid prices is ex-
pected to capture uncertainty in an insufficient 
manner. This is especially true, if the DLP is applied 
to the context of m-t-o manufacturing with a high 
variance in order-specific capacity consumptions. 
Further, practical examples for the difficulty of ap-
plying a deterministic model in m-t-o steel manu-
facturing are given in the following section.  
The DLP’s popularity in practical applications re-
sults from its efficient computational solving and 
that even though it is simple, it has a relatively good 
performance rating (compare the results of Metters, 
Queenan, Ferguson, Harrison, Higbie, Ward, Bar-
field, Farley, Kuyumcu, and Duggasani 2008). This 
is the case when frequent re-optimization is under-
taken (Talluri and van Ryzin 2004). 
A relatively simple modification of the model, where 
the stochastic demand is modeled explicitly, leads to 
the concept of randomized linear programming 
(RLP) as proposed by Smith and Penn (1988) and 
later investigated by Talluri and van Ryzin (1999). 
Solving the model for k simulated independent sce-
narios of the demand vector D results in k bid prices 
�����%3�4��, with 5 � 61% / / % 78. The remaining ca-
pacity ctp is assumed to be constant in every simu-
lated scenario. The bid price vector �RLP is finally 
received as mean of the bid prices of the different 
scenarios: 
 

(5) �9*+ �  

:
� �����%3�4��:
4�  
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Although not yet popular in the research communi-
ty or industry (Topaloglu 2009), this approach cap-
tures the situation at ThyssenKrupp VDM in a much 
better way than the simplifying assumptions of the 
DLP as will be explained in the following.  
First of all, Topaloglu (2009) gives a mathematical 
proof of the asymptotical optimality of the RLP and 
investigates the number of samples needed for the 
case of an airline network. Talluri and van Ryzin 
(1999) also conclude that in their investigated prob-
lem the RLP is barely subject to degeneracy.  
Second, the necessity of an approach based on mul-
tiple samples becomes obvious, when explaining the 
RLP approach in the context of the specific order 
characteristics at ThyssenKrupp VDM. In Figure 10 
the historic demand for a specific product is de-
picted for twelve periods. On the left-hand side, the 
mean value of the demand E[D] is shown by the 
dotted line, representing the input for the DLP. On 
the right-hand side, D(1) to D(8) represent eight de-
mand scenarios simulated by the RLP.  
In a demand environment of high volatility as expe-
rienced by ThyssenKrupp VDM the RLP is more 
advantageous and robust regarding forecasting 
errors, as will be elaborated further in the results 

section. Specifically, by increasing the number k of 
independent demand scenarios, the quality and 
complexity of the calculation can be varied allowing 
to better capture demand distributions in practice.  
Capturing a demand distribution in an m-t-o setting 
is challenging due to two reasons: In contrast to the 
airline industry, not only the customer’s demand 
(measured in tons per alloy) is of interest, but also 
the resulting capacity consumption on different 
resources. For this reason, the RLP offers the oppor-
tunity to consider a variety of scenarios with differ-
ent compositions of demand and associated capacity 
consumptions.  
Figure 11 exemplifies the fluctuation in capacity 
consumption for 500 demand scenarios for the 
annealing (left) and the dry grinding (right). Due to 
reasons of confidentiality, instead of publishing real 
data we chose to refer to simulation results inherit-
ing the characteristics of the actual data. Observe 
that although the generated demand volume was 
the same for each scenario, the stochastic composi-
tion of the demand with regard to type of alloy and 
different specifications results in fluctuating capaci-
ty consumptions. Interestingly, depending on the 
demand scenario, the capacity load of the annealing 

Figure 11: Ratio required capacity/available capacity of 500 demand scenarios at maximum
producible volume for annealing (left) and dry grinding (right) 

 

Figure 10: Approaches of DLP (left) and RLP (right) to consider demand fluctuations 
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varies between 75% and 140% whereas the capacity 
load varies between 40% and 170% for the dry 
grinding. This is due to the nature of the request 
flow at ThyssenKrupp VDM as depicted in Figure 4. 
The vast majority of incoming requests consumes 
capacity on the annealing, blasting and straighten-
ing, whereas the capacity consumption of the dry 
grinding depends on the request’s specifications and 
can be considered as an “option” which can be 
booked in addition to capacities on the main request 
flow. 
To further illustrate the fluctuation in capacity 
loads, the box plots of the simulation results for all 
five potential bottlenecks are illustrated in Fig-
ure 12. Observe that in 500 demand scenarios the 
annealing shows the highest median capacity load, 
turning it into a bottleneck in the majority of scena-
rios. Blasting, straightening and spray pickling have 
about the same low load, making them a bottleneck 
only in a small percentage of demand scenarios. The 
dry grinding also has a high median capacity load 
accompanied with the highest interquartile range 
and several outliers. Thus, it is to be investigated 
whether using a DLP with the assumption of a de-
terministic demand scenario captures the demand 
uncertainty faced by ThyssenKrupp VDM as well as 
running k independent demand scenarios with a 
RLP. The stochastic nature of demand faced by 
ThyssenKrupp VDM expresses itself in the uncer-
tainty of the volume ordered (measured in tons), the 
value of the order (measured in EUR/kg), and its 
associated capacity consumption (measured in 
hours). As shown above, an accurate forecast with 
regard to volume ordered might still lead to a varie-
ty of different scenarios of capacity consumption in 
the production network.  
 
Figure 12: Capacity loads of potential bottle-
necks at maximum producible volume 

 

6 Obstacles Encountered in 
Forecasting 

Having an accurate forecast is an essential element 
of any RM system (Weatherford and Kimes 2003). 
If the forecast of the amount and the value of the 
expected orders exceed the real amount of incoming 
requests, the computed bid prices and the resulting 
contribution margin threshold will be too high, 
resulting in the rejection of customer requests, 
which should have been accepted. On the other 
hand, if the forecast is too low, the bid prices and 
the resulting threshold will not be restrictive enough 
to ensure the selection of requests maximizing the 
overall contribution margin. Or as DeMiguel and 
Mishra (2008: 1) state, „The performance of a bid 
price policy depends crucially on the quality of the 
calculated bid prices”. 
In general, RM relies on accurate forecasts of capac-
ity, demand, and price. At ThyssenKrupp VDM, the 
capacity can be assumed as given, leaving demand 
and price to be forecasted, where demand is gener-
ally considered the most challenging one (Zaki 
2000). This is especially true when forecasting in an 
m-t-o environment. When trying to implement RM 
in practice, one encounters a certain amount of 
misunderstanding about RM forecasting among 
nontechnical analysts and managers being accus-
tomed to think about forecasting as generating point 
estimates. Similar experience is reported by Talluri 
and van Ryzin (2004). 

Figure 13: Demand fluctuation for a single 
alloy 

 

Nevertheless, at ThyssenKrupp VDM the hetero-
geneity of customer orders makes an accurate fore-
cast very difficult. For instance, during the period of 
two fiscal years, each order specification was pro-
duced only 2.8 times on average, which indicates a 
high variety. Figure 13 gives an example of the typi-
cal high fluctuation in demand for a specific alloy, 
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varying between 0 and 350 tons per month. Note 
that this is already the aggregated demand of an 
alloy, comprising many different order specifica-
tions. 

7  Resulting Benefits 
To quantify the benefits of implementing RM at 
ThyssenKrupp VDM, an abstract model of the order 
acceptance process was simulated. Simulation was 
used to incorporate the characteristics of the real-
world process in the best possible way. 
In the simulation, a production network consisting 
of five production units (annealing, blasting, leve-
ling, spray pickling, dry grinding) was modeled. This 
does not describe the production network of the 
sheet finishing section completely. However, all 
other units do not represent bottlenecks and can 
thus be excluded from the analysis. 
In order to generate input information for RM, his-
toric order information obtained from an extensive 
database were used. For the conducted studies, data 
of two fiscal years was available. The database con-
tained general information (e.g., type of customer, 
date of order, date of delivery), technical details 
(e.g., alloy, cold or hot-rolled, geometric dimen-
sions), information about production (e.g., start of 
production, production route, capacity consump-
tion, work plans, rework), and commercial informa-
tion (e.g., price, costs for sales, transport, material, 
and production) for each order. In addition, infor-
mation about the production network including the 
available capacity was used. 
The demand generation in the simulation is based 
on using historical orders characterized by specific 

volume, capacity requirements, and contribution 
margin. Sampling from historic data ensures that all 
correlations are included. The database, as de-
scribed in Table 1, consisted of 7,709 historical or-
ders produced in two fiscal years. It also included 
orders with a negative contribution margin as it 
consisted of actual instead of planning data. Interes-
tingly, whereas the annealing, blasting, leveling, and 
pickling units were occupied by at least 90% of the 
orders, only 37.23% occupied the grinding unit, 
respectively. Nevertheless, all five units are consi-
dered as potential bottlenecks as the grinding unit, 
for instance, reports the highest mean capacity con-
sumption of the orders and the highest coefficient of 
variation which explains the high fluctuation de-
picted in Figure 11.  
The structure of the simulation model is given in 
Figure 14. It comprises four components: demand 
generation, shadow price determination, order ac-
ceptance simulation, and statistics collection. They 
are described in detail in the following. 
The challenge of demand generation is the modeling 
of a stochastic process which replicates the charac-
teristics of the regarded industry setting. The infor-
mation which is available when applying RM com-
prises data/forecasts on the number of incoming 
customer requests and requested lead times. Here-
by, the lead time is defined as the difference be-
tween completion time and the time a request ar-
rives. Necessary to evaluate capacity control poli-
cies, however, is information on the requests’ capac-
ity requirements in their period of production. To 
generate this information, the following approach 
was chosen:  

Table 1: Statistical description of database available for simulation 

 

Number of orders 7,709 Number of fiscal years 2 

Contribution margin/kg (cv) 0.57 Occupied production units by order (μ/cv) 3.94/0.16 

Volume of average order (cv) 1.05 Number of same orders (μ) 2.8 

Number of different alloys 51   

 
 Annealing Blasting Leveling Pickling Grinding 

% of orders consuming capacity 90.02% 93.70% 93.91% 89.86% 37.23% 

Capacity consumption of order (μ/cv) 0.47h/ 1.42 0.35h/ 1.21 0.35h/1.20 0.40h/1.26 0.47h/3.37 

Consumption of total capacity (μ) << 0.5% << 0.5% << 0.5% << 0.5% << 0.5% 

Contribution margin/h of production unit (cv) 0.958 1.071 1.057 0.975 0.884 

μ: mean cv: coefficient of variation 
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1. In a first step the demand level was generated in 
terms of the incoming requests of each sales pe-
riod, being one week. Due to the large number of 
requests, the number of requests can be re-
garded as a suitable indicator for the demand 
level. In accordance with the literature, a Poisson 
distribution was used and fitted to the actual da-
ta. Different ratios of demand/capacity were ob-
tained by adjusting the Poisson parameter. 

2. Based on the number of requests in each sales 
period, information on the requested lead times 
was incorporated to transfer the sales data into 
production data. More specifically, for each re-
quest a product-group-specific lead time was 
drawn from a normal distribution, with parame-
ters ranging from �=17 weeks and �=4.2 weeks 
to μ=26 weeks and �=10.7 weeks. The request 
was then allocated to the corresponding period 
of production. 

3. In a third step, the database of historical orders 
was used to attribute each request with specific 
properties. A uniform distribution was applied to 
randomly draw request characteristics from the 
database. As a result a representative sequence 
of requests was created for each period of pro-
duction. To avoid any bias induced by the model 
initialization, the demand information of the 

first 48 periods was excluded from further analy-
sis. 

The bid prices are determined using input informa-
tion from the demand generation module. In case of 
the RLP, requests for 150 instances (consisting of 
one week of orders) were generated, which is an 
ample number with respect to the convergence of 
the bid price results. For each instance a linear pro-
gram was solved to calculate the shadow prices. To 
derive the bid prices to be applied in the order ac-
ceptance process, the mean of the 150 instances was 
computed according to (5).  
For the DLP a slightly modified demand generation 
procedure was applied. Having completed step 2, 
the mean number of requests in each period was 
computed. This number was used to generate a 
single sequence of requests as elaborated in step 3.  
The order acceptance simulation is based on request 
sequences for 5,000 periods computed by the de-
mand generation module. For each period the order 
acceptance process was simulated separately, yield-
ing 5,000 single-period problems. Plant Simulation 
8.1 by Tecnomatix was used for discrete event simu-
lation. Three different policies were analyzed: the 
FCFS policy, the DLP bid price policy, and the RLP 
bid price policy. 
The order acceptance policies only accept requests if  

Figure 14: Structure of the simulation model 
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the remaining production capacity is sufficient to 
produce the request (CTP check in Figure 5). Whe-
reas the FCFS policy accepts a request if the re-
quest’s contribution margin is positive, the DLP and 
RLP policy only accept requests if the requests’ con-
tribution margin exceeds the threshold calculated 
by the bid price control according to Figure 9. The 
available production capacity is considered as fixed 
and exogenous for the simulation defined as de-
scribed in section 4. Common random numbers are 
applied throughout all policies as variance reduction 
technique. The fourth component of the simulation 
is the collection of statistics and results as described 
in Figure 14.  
To point out the advantage of RM in different de-
mand scenarios, different ratios of demand to ca-
pacity were defined as described in section 4 and 
investigated. The simulation results of using a bid 
price control in the order acceptance process are 
promising. The results in yearly contribution mar-
gin relative to the results of a FCFS order selection 
policy are shown in Figure 15 (left side). Observe 
that depending on the demand/capacity ratio, an 
average increase of up to 13% in overall contribution 
margin is to be expected using the RLP exceeding 
the DLP in each demand/capacity ratio. The right 
side depicts the fluctuating gain of implementing a 
RLP bid price control compared to a FCFS policy. As 
expected, the gain increases with the overloading of 
capacity, whereas no negative gains could be ob-
served, proving the benefits of the capacity control 

in every possible demand scenario. 
At the same time, while increasing the yearly aver-
age contribution margin, ThyssenKrupp VDM is 
able to increase the produced quantity by up to 8% 
depending on the demand/capacity ratio. This is 
mainly due to the incorporation of the contribution 
margin per capacity consumption in the order ac-
ceptance process. 
One of the major questions of the sales department 
was the question about rejected customer requests. 
How many price negotiations with customers would 
be affected by the RM system and will there be more 
rejections of customer requests because of a high 
threshold for the contribution margin to be quoted? 
The exact opposite, in fact, is true. Taking a closer 
look at the reason why requests are rejected at both 
order acceptance policies, the consequences of not 
implementing forecasting into the order acceptance 
process is obvious. Exemplifying a ratio of demand 
to capacity of 1.2, the left part of Figure 16 illustrates 
that fewer requests are rejected with a RLP bid price 
control in absolute and relative numbers. Even if a 
request is rejected by the RLP bid price control, it is 
largely due to customer’s willingness to pay rather 
than a lack of available capacity. On the other hand, 
maintaining the current FCFS policy will lead to 
more rejected requests and mainly due to the lack of 
available capacity (note that in our simulation run, it 
was possible for the FCFS policy to reject requests 
due to low contribution margin since the database 
also contained orders with a low negative contribu-

Figure 15: Gain in contribution margin of DLP as well as RLP (left) and fluctuation of RLP-
gain (right) 
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tion margin). Obviously, the lower number of cus-
tomer requests rejected by the bid price control 
results in a higher acceptance rate. The right part of 
Figure 16 illustrates the gap between RLP, DLP and 
FCFS with an increasing ratio demand to capacity. 
Figure 17 displays the development of the resulting 
capacity load exemplified for the annealing unit. 
The RLP bid price control leads to a lower capacity 
load in every demand scenario, which is not to be 
interpreted as a too restrictive order acceptance 
policy. Much rather, combined with the above re-
sults it indicates the method’s good capability to 
select profitable requests leading to an efficient 
capacity utilization. The depicted capacity load of 
less than 100 percent results from averaging the 
results of several simulation runs.  

Figure 17: Capacity load of the annealing 
furnace 

 

Interestingly, the combined interpretation of the 
results of Figure 16 and Figure 17 indicates no direct 
correlation of the relative numbers of accepted re-
quests and the resulting capacity consumption. This 
is mainly due to the network environment and the 
bid price control’s tendency to choose requests with 

a high contribution margin and low capacity con-
sumption.  
Figure 18 contrasts the results of the ex-post-
analysis and the simulation results of the DLP and 
the RLP bid price controls regarding the overall 
contribution margin. Despite the impressive results 
of the RLP bid price control, the m-t-o production 
environment still offers room for further improve-
ments.  

Figure 18: Comparison of the results 

 

8 Conclusions 
Our presented approach of implementing linear 
programming for an order selection problem in steel 
manufacturing is a first attempt at introducing RM 
techniques. Several conclusions can be drawn from 
the RM project at ThyssenKrupp VDM. Generally 
speaking, the production environment of m-t-o steel 
manufacturing meets the necessary requirements 
for an effective usage of RM instruments. Further, 
the RLP bid price control  
(i) allows for an adequate consideration of the re-
quest’s capacity requirements in the order accep-
tance process, 
(ii) results in gains in contribution margin and 
quantity of up to 13% and 8%, respectively. Al-
though these numbers represent the mean values, 
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Figure 16: Rejected requests (left) and accepted orders (right) of different policies 
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the benefits of RM in every possible demand scena-
rio can be shown, 
(iii) leads to a lower number of rejected customer 
requests, resulting in a higher acceptance rate, 
(iv) leads to a lower capacity load compared to a 
FCFS policy in every demand scenario. 
Although the use of RLP bid prices leads to impres-
sive results and skims a large portion of the poten-
tial benefits, there is still room for improvements 
both in applied methods and their application. 
Further research and development in the methods 
of RM will focus mainly on two areas: First, research 
needs to be conducted in the area of updating fore-
cast and available capacity, as well as the resulting 
re-optimization. To the best of our knowledge, no 
systematic framework for updating and re-optimi-
zing in an m-t-o network setting currently exists. 
Secondly, recent approaches of dynamic bid prices 
based on simulation-based optimization show great 
potential for implementation at ThyssenKrupp 
VDM. Both research directions will be tackled in the 
ongoing project. 
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