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Abstract
Recently, Branzei, Dimitrov, and Tijs (2003) introduced cooperative interval-valued games. Among
other insights, the notion of an interval core has been coined and proposed as a solution concept for
interval-valued games. In this paper we will present a general mathematical programming algorithm
which can be applied to find an element in the interval core. As an example, we discuss lot sizing
with uncertain demand to provide an application for interval-valued games and to demonstrate how
interval core elements can be computed. Also, we reveal that pitfalls exist if interval core elements are
computed in a straightforward manner by considering the interval borders separately.
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1 A Primer on Cooperative
Interval-Valued Games

In the classical literature a cooperative game is
defined by a pair (N , c) where N = {1, . . . , n} is an
index set of players and c : 2N → IR is a charac-
teristic function which assigns to every coalition
S ∈ 2N a value c(S) (with c(∅) = 0). Let us assume
that c is a cost function (‘‘the lower the better’’),
but in settings where c is a benefit function the fol-
lowing material can be straightforwardly adapted.
A solution of the cooperative game (with transfer-
able utilities) is a distribution of the cost shares,
i.e. a cost allocation πi ∈ IR for every player i ∈ N .
One of the most prominent solution concepts was
introduced by Gillies (1959) and is known as the
core. The concept of the core defines cost alloca-
tions which are efficient and coalitionally rational
(stable). Formally, the set of core allocations can
be specified as follows:

(1) C(N , c) = {π ∈ IRn|
∑
i∈N

πi = c(N) and

∑
i∈S

πi ≤ c(S) for all S ⊂ N , S �= ∅}.

Branzei, Dimitrov, and Tijs (2003) have studied
bankruptcy situations and introduced cooperative
interval-valued games in this context. Interval-
valued games can be seen as a means to handle
uncertain outcomes. A theory of interval-valued
games was developed by Alparslan-Gök, Branzei,
and Tijs (2008a, 2008b) as well as by Alparslan-
Gök, Miquel, and Tijs (2009). See also Branzei,
Tijs, and Alparslan-Gök (2008) for a survey. A
cooperative interval-valued game is defined by a
pair (N , cI) where N is an index set of players as
before, and cI : 2N → I(IR) is a characteristic (cost)
function which assigns to every coalition S ∈ 2N a
closed interval cI(S) = [cI(S); c̄I(S)] (with cI(∅) =
[0;0]) where I(IR) is the set of all closed intervals in
IR. It is easy to see that classical cooperative games
are a special case of cooperative interval-valued
games where cI(S) = c̄I(S) for all coalitions S ⊆
N . It should also be remarked that vector-valued
games (see Fernandez, Hinojosa, and Puerto 2002)
are somewhat different to interval-valued games.
To define a core variant that applies to interval-
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valued games, the following notation turns out to
be helpful. The sum of two intervals I = [I; Ī] and
J = [J; J̄] is defined to be I + J = [I + J; Ī + J̄].
The interval I is called weakly better than interval
J (I 	 J or J 
 I), iff I ≤ J and Ī ≤ J̄.
Alparslan-Gök, Branzei, and Tijs (2008a) define
the interval core of a cooperative interval-valued
game as follows:
(2) CI(N , cI)

= {(I1, . . . , In) ∈ I(IR)n|
∑
i∈N

Ii = cI(N)

and
∑
i∈S

Ii 	 cI(S) for all S ⊂ N , S �= ∅}.

These authors, however, do not provide an algo-
rithm to compute a core element of interval-valued
games.
Now we have introduced the theoretical back-
ground that is necessary for understanding our
approach. Our contribution is an algorithm which
can be used to compute an interval core element.
Besides this, we discuss pitfalls when implement-
ing a more simple procedure based on an already
known algorithm for core element computation
in cases of independent determination of interval
borders. The rest of the paper is structured as fol-
lows. In Section 2 we specify the straightforward
procedure with separate interval border determi-
nation that aims to find an element in the interval
core (or detects that the interval core is empty).
Section 3 introduces a lot-sizing problem with un-
certain demand as an example for interval-valued
games. Section 4 reveals that some odd situations
may occur if the straightforward approach is ap-
plied and left and right interval borders are used
independently to compute interval core elements.
Thus, a modification of the proposed algorithm
will be presented to avoid such problems. A com-
putational study in Section 5 demonstrates that
this modified algorithm is necessary in many cases
and can indeed be successfully applied. Concluding
remarks in Section 6 finish the paper.

2 Computing Interval Core
Elements

To compute an element in the interval core, we
will make use of a procedure by Drechsel and
Kimms (2007) which computes a core element.
This procedure is employed as a subroutine. To
see how this works we start with a reformulation

of interval-valued games and the interval core. An
interval-valued game can be specified by a triple
(N , cI , c̄I) where the notation has the same meaning
as above. Two sets of extreme cost allocations can
then be defined as

(3) CI(N , cI)

= {π ∈ IRn|
∑
i∈N

πi = cI(N) and

∑
i∈S

πi ≤ cI(S) for all S ⊂ N , S �= ∅}

and

(4) C̄I(N , c̄I)

= {π ∈ IRn|
∑
i∈N

πi = c̄I(N) and

∑
i∈S

πi ≤ c̄I(S) for all S ⊂ N , S �= ∅}.

If we choose (I1, . . . , In) ∈ CI(N , c) and (Ī1, . . . ,
Īn) ∈ C̄I(N , c) then it follows immediately from
the definitions of cI , Ii and CI(N , cI) that ([I1; Ī1],
. . . , [In; Īn]) ∈ CI(N , cI) --- the reverse is true as
well. CI(N , cI) and C̄I(N , c̄I) define the cores of the
cooperative games (N , cI) and (N , c̄I), respectively.
This is along the lines of Remark 3.1 in the paper
by Alparslan-Gök, Branzei, and Tijs (2008a), who
state that the time complexity of algorithms for the
computation of elements of the interval core is the
same as the time complexity of related algorithms
for computing elements of the core of a traditional
game. This suggests that an element in the interval
core can be easily computed if one can compute an
element in the core.
The procedure of Drechsel and Kimms (2007) can
be applied to find core elements for the games
(N , cI) and (N , c̄I) separately. To be self-contained,
this procedure will be reviewed briefly. To ease the
notation, assume that a core element of a game
(N , c) shall be computed. The definition of the core
specifies a constraint-satisfaction problem where
the number of constraints is in the order of 2n.
Hence, Drechsel and Kimms (2007) suggested to
run a row-generation procedure.
The master problem is a linear program of the
following form where S is a (small) subset of
coalitions for which the core defining inequality
is explicitly taken into account.
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Master problem MP(S):

(5) min v

s.t.

(6)
∑
i∈N

πi = c(N)

(7)
∑
i∈S

πi − v ≤ c(S) S ∈ S

(8) πi ∈ IR i ∈ N

(9) v ≥ 0

The iterative row-generation procedure can be out-
lined as follows:

1. Define a small initial set S, e.g. S = {{1}, . . . ,
{n}}.

2. Solve the linear program MP(S) optimally.

3. If v > 0 then stop. The game instance has an
empty core.

4. Otherwise, find a coalition S′ �∈ S (S′ �= ∅)
such that

∑
i∈S′ πi > c(S′). Since S′ may not be

unique, we suggest looking for a coalition S′

that violates the core defining inequality most
(i.e.

∑
i∈S′ πi − c(S′) is maximized) --- subprob-

lem ŜP(π).

5. If no such coalition S′ can be found (ŜP(π)
has a non-positive optimum objective function
value) then stop. The current values πi define
a core allocation.

6. Otherwise, update S = S ∪ {S′}. Return to Step
2.

The subproblem to be solved in Step 4 of the
algorithm is the only problem-specific part in this
approach. In a subsequent section we will provide
the details of it by means of a specific application.
It should be noted that this procedure finds a
rather arbitrary element in the core (if the core
is not empty). Drechsel and Kimms (2007) have
discussed several modifications to the procedure
which yield core elements that can be considered
as more fair than an arbitrary core element. For the
sake of simplicity, we will not repeat these modifi-
cations here, but we would like to emphasize that
these modifications can be straightforwardly inte-
grated into the context of interval-valued games if
desired.

3 An Application:
Lot-Sizing with Uncertain
Demand

3.1 The Wagner-Whitin Problem

The starting point of our example is a well-known
lot-sizing problem which was introduced by Wag-
ner and Whitin (1958) and which can be described
as follows: A single decision maker has to make
order decisions for a single item. Given a planning
horizon of T time periods, a demand dt in period
t has to be met without backlogging and without
shortages. In order to meet the demand in period t
one may place an order in t or before. If the order
is placed before, the ordered items must be stored
in inventory. If a fixed cost st is incurred whenever
an order is placed in period t and a unit holding
cost ht is charged for every item in stock at the
end of period t, then we face the classical trade-off
between saving fixed costs versus saving holding
costs --- a lot-sizing problem occurs. In addition to
that a unit ordering cost pt may be incurred for
each item being ordered. The decision to be made
is qt, the quantity to be ordered in period t. De-
pending on the order quantities and the demand
we have Invt units of the item in stock at the end of
a period t (Inv0 is the initial stock --- a given value).
To formulate a mixed-integer program a further
decision variable xt may be used to indicate if an
order is placed in period t or not, and a parameter
M which represents a large number may be used
for technical reasons, as we see below:

(10) min
T∑

t=1

(stxt + htInvt + ptqt)

s.t.

(11) Invt = Invt−1 + qt − dt t = 1, . . . , T

(12) qt ≤ Mxt t = 1, . . . , T

(13) qt, Invt ≥ 0 t = 1, . . . , T

(14) xt ∈ {0,1} t = 1, . . . , T

The objective (10) is to minimize the sum of fixed
and quantity-dependent ordering costs and hold-
ing costs. The inventory balance (11) states that
at the end of a period we have in stock what was
there at the beginning of the period plus what was
ordered in that period minus period demand. If
the order quantity is positive in period t then the
indicator variable xt must be set to one as stated
by (12). The domain of the decision variables is
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specified in (13) and (14). Note that due to Invt ≥ 0
all demand must be fulfilled right on time.

3.2 A Cooperative Lot-Sizing Problem

Cooperative versions of the Wagner-Whitin-related
problem where several players (the set N) may act
together have been studied by Chen and Zhang
(2007), Drechsel and Kimms (2007), Guardiola,
Meca, and Puerto (2006), and Van den Heuvel,
Borm, and Hamers (2007). A model formulation
closely related to the single-player model shown
above can be given, simply by replacing the de-
mand value dt with the total demand of all players
dt(N) =

∑
i∈N dit where dit denotes the demand

of player i in period t. The characteristic function
value c(S) for S ⊆ N is defined to be the optimum
objective function value (10) using dt(S) as the
demand in (11).
As shown by Drechsel and Kimms (2007) one can
apply the row-generation procedure for finding a
core element in the game (N , c) to handle instances
with up to 150 players. The subproblem that has to
be solved in Step 4 of the procedure is the following
optimization problem.

Subproblem ŜP(π):

(15) max

(
−o +

∑
i∈N

πizi

)
s.t.

(16) Invt = Invt−1 + qt −
∑
i∈N

ditzi t = 1, . . . , T

(17) qt ≤ Mxt t = 1, . . . , T

(18) o =
T∑

t=1

(stxt + htInvt + ptqt)

(19) qt, Invt ≥ 0 t = 1, . . . , T

(20) xt ∈ {0,1} t = 1, . . . , T

(21) zi ∈ {0,1} i ∈ N

(22) o ≥ 0

Note that a coalition S′ to be considered in the
master problem is found if the optimum objective
function value of the subproblem is positive. S′ is
defined by the values of the zi variables (zi = 1 indi-
cates i ∈ S′) and c(S′) = o. Note also that Drechsel
and Kimms (2007) have tested other subproblem
formulations, and that selecting a coalition S′ by
means of subproblem ŜP(π) turned out to require
fewer iterations of the row-generation procedure

and less total computation time than other selec-
tion rules.
It should be emphasized that the proposed row-
generation approach to compute a core element
is very general and can be applied whenever the
characteristic function is implicitly given, i.e. char-
acteristic function values result from an optimiza-
tion problem. Drechsel and Kimms (2008), for
instance, have shown that for much more complex
lot-sizing situations with capacity constraints and
transshipments among the players basically the
very same approach is applicable. Only the sub-
problem needs to be reformulated, because this is
the problem-specific part of the algorithm. How to
formulate such subproblems for different applica-
tions cannot be specified in general, but it requires
no more skills than formulating the underlying
optimization problem as a mathematical program.
As a side remark, it should be emphasized that
many operations management planning problems
have to be solved repeatedly with a rolling hori-
zon. Lot sizing is one example. Our example is
therefore stylized by ignoring (uncertain demand)
data beyond the period T and we admit that our
focus is confined to interval-valued data. We also
do not consider the possibility to condition future
lot-sizing decisions on realized past demands like
in stochastic dynamic optimization procedures. To
the best of our knowledge, such simplifying as-
sumptions are also made by all authors who have
considered cost sharing based on multi-period op-
timization problems. Hence, one should be aware
of the fact that dynamic settings where uncertainty
is not revealed at once and the consequences on
cost sharing have not been studied yet.

3.3 Cooperative Lot-Sizing with
Uncertain Demand

A source for uncertainty in a lot-sizing problem
is the demand of a player. Let us assume that for
each player i the demand in a certain period is
specified by an interval [dit; d̄it] instead of a single
number dit. Consequently, the total demand dt(N)
in a period t falls into the interval [dt(N); d̄t(N)] =
[
∑

i∈N dit;
∑

i∈N d̄it]. From these interval borders
we can derive characteristic functions cI and c̄I

by inserting dt(S) and d̄t(S), respectively, into (11)
for S ⊆ N . With this in mind, we can compute
an element in the interval core as described in a
previous section.
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4 Phenomena of Interval Cores

4.1 ‘‘Pay Less for More’’

As some researchers have pointed out already (see,
e.g., Young 1985), core allocations are not mono-
tonic. This effect causes some problems in the
context of interval cores as we will show by means
of an example. Consider an example with n = 3 and
T = 6. Let the demand be dit = 10 and d̄it = 15,
respectively, for all i and t. Suppose the following
cost data: holding cost coefficients ht = 5 for all
t, setup cost coefficients st = 100 for all t, and
production cost coefficients pt = 1 for all t. The
characteristic functions cI and c̄I are provided in
Table 1.

Table 1: The Characteristic Functions of
the Interval-Valued Game

S ∅ {1} {2} {3}

cI(S) 0 510 510 510

c̄I(S) 0 615 615 615

S {1, 2} {1, 3} {2, 3} {1, 2, 3}

cI(S) 720 720 720 780

c̄I(S) 780 780 780 870

Apparently, we have c̄I(S) ≥ cI(S) in this exam-
ple. This, by the way, is always true for lot-sizing
problems (with non-negative cost data), because
additional demand cannot decrease the (total)
cost to fulfill the demand. Since the character-
istic functions c̄I and cI define core cost allo-
cations πi(c̄I) and πi(cI), respectively, we would
expect that πi(c̄I) ≥ πi(cI) is true for all players
i. In other words, we would expect that increas-
ing the demand of a player does not lead to a
lower cost assignment, i.e. the principle of mono-
tonicity holds. But this is not true in general. For
example, π(cI) = (210,510,60) is a core cost al-
location for the game (N , cI). On the other hand,
π(c̄I) = (165,615,90) is a core cost allocation for
the game (N , c̄I). As we can see, a lower cost share
would be assigned to player 1 (165 instead of 210)
although his demand increased from 10 to 15 in
every period.
Young (1985) has discussed the issue of mono-
tonicity and showed that the Shapley value is
the unique symmetric allocation procedure that
is (strongly) monotonic. But using the Shapley
value as an interval border is not consistent with
the idea of the interval core, because the Shapley

value need not be in the core if the game is not
concave (see Shapley 1971).
As a consequence of the phenomenon we may
observe intervals Ii = [Ii; Īi] with Ii > Īi. This,
by the way, is not valid for lot-sizing problems
only, but to all kinds of applications, because the
non-monotonicity of core allocations is problem
independent.

4.2 Pitfalls

It seems to be plausible to interpret an element
from the interval core as a promise to the players
such that if (I1, . . . , In) ∈ CI(N , cI) is chosen in
advance, an ex post (i.e. after the uncertainty has
been resolved) core cost allocation with πi ∈ Ii

can be found, because the two extreme scenarios
have been considered to define the interval core.
Hence, the problem of finding a core element ex
post seems to be of the following form:

(23) C|(I1,...,In)(N , c)

= {π ∈ IRn|
∑
i∈N

πi = c(N) and
∑
i∈S

πi ≤

c(S) for all S ⊂ N , S �= ∅ and πi ∈ Ii}.

Note that this interpretation is meaningful iff the
underlying (ex post) characteristic function c is
monotone over the interval defined by cI and co-
incides with cI and c̄I at the interval borders. This
interpretation, however, is wrong as we will show
be means of the example from Subsection 4.1.
Recall that in the example the following intervals
were computed: I1 = [210;165], I2 = [510;615],
and I3 = [60,90]. Assume that ex post the follow-
ing demand data can be observed: d1t = 15 for all
t, d2t = 10 for all t, and d3t = 15 for all t. As we
can see from Table 1, this leads to c({1}) = 615,
c({2}) = 510, and c({3}) = 615. The cost of the
grand coalition is c({1,2,3}) = 840. The defini-
tion of C|(I1,...,In)(N , c) requires π2 = 510. Hence,
π1 + π3 = 840 − 510 = 330. But this is not possi-
ble, because of π1 ≤ 210 and π3 ≤ 90. Hence, the
described approach leads to unreasonable results.

4.3 A Proper Definition of
Interval-Valued Cores

To avoid such problems with interval cores, we
need proper intervals, i.e. we need to compute in-
terval borders πi(cI) and πi(c̄I) such that πi(cI) ≤
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πi(c̄I) comes out. Such a result can be reached
be computing the values πi(cI) and πi(c̄I) simul-
taneously by solving a modified master problem
MPI(S, S̄):

(24) min v + v̄

s.t.

(25)
∑
i∈N

πi(cI) = cI(N)

(26)
∑
i∈S

πi(cI) − v ≤ cI(S) S ∈ S

(27)
∑
i∈N

πi(c̄I) = c̄I(N)

(28)
∑
i∈S

πi(c̄I) − v̄ ≤ c̄I(S) S ∈ S̄

(29) πi(cI) ≤ πi(c̄I) i ∈ N

(30) πi(cI), πi(c̄I) ∈ IR i ∈ N

(31) v, v̄ ≥ 0

This master problem can be solved by the iterative
row-generation algorithm as follows:

1. Define small initial sets S and S̄, e.g. S = S̄ =
{{1}, . . . , {n}}.

2. Solve the linear program MPI(S, S̄) optimally.

3. If v + v̄ > 0 then stop. The game instance has
an empty interval core.

4. Otherwise:

(a) Find a coalition S′ �∈ S (S′ �= ∅) such that∑
i∈S′ πi(cI) > cI(S′). Since S′ may not be

unique, we suggest looking for a coalition
S′ that violates the core defining inequality
most (i.e.

∑
i∈S′ πi(cI)−cI(S′) is maximized)

--- subproblem ŜP(π(cI)). Update S = S ∪
{S′}, if such a coalition S′ was found.

(b) Find a coalition S̄′ �∈ S̄ (S̄′ �= ∅) such that∑
i∈S̄′ πi(c̄I) > c̄I(S̄′). Since S̄′ may not be

unique, we suggest looking for a coalition
S̄′ that violates the core defining inequality
most (i.e.

∑
i∈S̄′ πi(c̄I)−c̄I(S̄′) is maximized)

--- subproblem ¯̂SP(π(c̄I)). Update S̄ = S̄ ∪
{S̄′}, if such a coalition S̄′ was found.

5. If neither S′ nor S̄′ can be found then stop.
The current values πi(cI) and πi(c̄I) define an
interval core element.

6. Return to Step 2.

Recall the numerical example from Section 4.1. The
presented algorithm yields the following allocation
in the interval-valued core: π(cI) = (210,60,510)
and π(cI) = (210,90,570).

5 Computational Study
To test the proposed algorithm from Section 4.3
we have implemented it with AMPL/CPLEX ver-
sion 10.0.0 on an Intel Celeron PC with 2 GHz.
We used random instances taken from Test Bed 1
in Drechsel and Kimms (2007) to define the game
(N , cI): random integers were drawn with uniform
distribution from certain intervals (dit ∈ [0,20],
st ∈ [0,200], ht ∈ [0,10], and pt ∈ [0,15]),
T = 6, and n ∈ {5,10,15,20,25,30}. For each
number of players, a total of 15 random instances
was constructed which gives a total of 6 × 15 = 90
instances. These instances are provided as an elec-
tronic companion to this paper as part of the online
version.1 The files are in ASCII format and can be
used by the commercial software CPLEX. The game
(N , c̄I) was constructed by copying the parameter
values from the corresponding game (N , cI). Only
demand values were chosen differently in the fol-
lowing way. Suppose dit is the chosen demand in
the corresponding game (N , cI). The demand dit

for the game (N , c̄I) is a random integer drawn
with uniform distribution from [dit,20].
The average number of iterations (as well as the
minimum/maximum number of iterations over 15
random instances) for the algorithm can be seen
in Table 2. The table presents the results regarding
number of iterations for the two subproblems ŜP

and ¯̂SP that are part of Step 4 of the algorithm.
The numbers differ for most of the instances --- of
course, the bigger number also denotes the total
number of needed iterations. Note that in the worst
case the number of iterations could have been in
the order of 2n which practically never happens
from our experience. The maximum computational
time (measured in CPU-seconds) to determine an
element in the interval-valued core was less than a
minute for all instances n ≤ 20 and not more than
five minutes for the larger instances.
To compare the computational burden with the
straightforward approach from Section 2 --- the

1 See www.business-research.org.
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Table 2: The Number of Iterations
Required to Find an Interval Core Element

n 5 10 15

ŜP
4.87

(4/7)

20.47

(14/40)

146.27

(25/293)

¯̂SP
4.73

(4/6)

21.27

(12/60)

146.27

(16/293)

n 20 25 30

ŜP
406.73

(110/1036)

1044.60

(165/2364)

1043.53

(30/3946)

¯̂SP
403.80

(110/1037)

1039.80

(165/2360)

1054.53

( 30/3941)

one which may lead to the problems discussed in
Section 4.2 --- we also provide the average num-
ber of iterations of the straightforward approach
in Table 3. As one can see the straightforward
approach terminates much faster on average (the
run-time effort was less than one minute for each
instance). Hence it might be worthwhile to run
the straightforward approach first and test if the
computed interval borders indeed show the odd
behaviour discussed in Section 4.2. If this is not
the case, then we have found an interval core ele-
ment. Otherwise, we need to run the algorithm
from Section 4.3 which is necessary in most cases
as we can see in Table 4. Table 4 shows the number
of instances in the test bed (a total of 15 instances
per value of n) where the algorithm from Section 2
yields an improper interval for at least one player.

Table 3: The Average Number of Iterations
Required by the Straightforward Approach
from Section 2

n 5 10 15

(N , cI) 4.0 10.5 15.3

(N , c̄I) 4.0 9.3 14.0

n 20 25 30

(N , cI) 61.8 29.5 50.0

(N , c̄I) 19.0 24.4 29.0

Table 4: The Number of Instances where
the Algorithm from Section 2 Yields
Improper Intervals

n 5 10 15 20 25 30

14 13 12 4 11 11

6 Conclusions
In recent years a new class of cooperative games,
namely interval-valued games, has been invented
to handle situations with an uncertain outcome.
The range of the outcome is specified by a closed
interval. A theory for interval-valued games has
been developed and solution concepts from classi-
cal cooperative game theory have been adapted to
this new setting. The core which is one of the most
prominent solution concepts in classical coopera-
tive game theory evolved to become the interval
core.
Remark 3.1 in a paper by Alparslan-Gök, Branzei,
and Tijs (2008a) states that the time complexity
of algorithms for computing elements of interval
cores equals the time complexity of corresponding
algorithms for computing core elements in a tradi-
tional game. This statement suggests to compute
an element in the interval core by making use of a
procedure to find a core element. However, such an
algorithm has not been provided by these authors.
Our contribution is to provide a general mathemat-
ical programming approach which can be used to
compute an element in the interval core by making
use of a procedure to find core elements proposed
by Drechsel and Kimms (2007) as a subroutine.
The approach is general, because the character-
istic function values which define the lower and
upper bounds of the outcome interval may result
from solving general optimization problems. We
have demonstrated that interval-valued games are
a consequence of uncertain parameter values of
the optimization problem where the uncertainty
of these parameter values is specified by inter-
vals. With the aid of a lot-sizing example we have
demonstrated the applicability of our approach by
means of a small computational study.
In addition to providing an algorithm we have
also contributed to the discussion of interval cores
by pointing to a pitfall. A phenomenon known as
non-monotonicity exists, i.e. players may be better
off in a cooperation, if their standalone situation
is getting worse (in terms of objective function
values). In the lot-sizing example, for instance,
we have demonstrated that a player with more
demand than before (increasing costs) may receive
a lower cost share than before. A straightforward
interpretation of an interval core element in the
sense of cost limits that will be assigned to certain
players is not possible if the interval core element is
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not selected with care. To get out of this problem,
we proposed a modified algorithm which yields
an element from the interval core without such
deficits.
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