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Coordinated Lot-sizing and Dynamic Pricing
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Sandra Transchel*, Department of Logistics, University of Mannheim, Email: sandra.transchel@bwl.uni-mannheim.de

Stefan Minner, Faculty of Business, Economics and Statistics, University of Vienna, Email: stefan.minner@univie.ac.at

Abstract
We consider an economic order quantity model where the supplier offers an all-units quantity
discount and a price sensitive customer demand. We compare a decentralized decision framework
where selling price and replenishment policy are determined independently to simultaneous decision
making. Constant and dynamic pricing are distinguished. We derive structural properties and develop
algorithms that determine the optimal pricing and replenishment policy and show how quantity
discounts not only influence the purchasing strategy but also the pricing policy. A sensitivity analysis
indicates the impact of the fixed-holding cost ratio, the discount policy, and the customers’ price
sensitivity on the optimal decisions.

Keywords: Dynamic Pricing, Economic Order Quantity, Quantity-Discount, Procurement-Inventory
Policies, Marketing-Operations Interface

1 Introduction
In recent years, the coordination of marketing
and operations decisions has received a lot of at-
tention. However, in practice these two decision
areas are usually still independent. Even when the
performance of marketing and operations is in-
dependently optimized in order to achieve their
respective best operating level, it may lead to sub-
optimal performance for the firm as a whole (Ghose
and Mukhopadhyay, 1993). In particular, the co-
ordination of pricing strategies and operations de-
cisions is still at an early stage and offers significant
opportunities for improving supply chain perfor-
mance. In this context, dynamic pricing strategies
use intertemporal price discrimination to achieve
a better match of supply with demand. On the
supply side, the order quantity is a function of cus-
tomer demand and fixed and variable purchasing
costs. On the sales side, demand depends on the
charged selling price. Therefore, determining the
optimal dynamic selling prices and optimal order
quantities is interdependent. It is common in prac-
tice that marketing determines the selling price
first without taking into consideration overhead

* Corresponding author, Tel.: +49-621-181-1656, Fax: +49-
621-181-1653

purchasing or a supplier quantity discount. Then,
given the selling price and the resulting demand
forecast, operations decides on order quantities.
However, due to the fact that marketing influences
demand by the charged price and operations is
responsible for satisfying this demand, price and
procurement decisions are strongly connected and
should be decided simultaneously. Fleischmann
et al. (2004) review the linkage between pricing
and operational decisions. They indicate different
drivers for dynamic pricing strategies like promo-
tions and other marketing-related instruments and
more operations-driven pricing strategies known
from supply chain coordination.
It is a common practice in that suppliers offer a dis-
count for large order quantities. For this kind of
price discrimination, a supplier designs a menu of
price-quantity pairs and customers select their op-
timal purchasing volume. Dolan (1987) and Wilcox
et al. (1987) provide several reasons for a firm to
offer quantity discounts from both a marketing
and an operations management point of view. If
the supplier faces high setup costs which lead to
a large lot-size and high holding costs, quantity
discounts may reduce the inventory level immedi-
ately after stocking due to larger customer orders.
Furthermore, suppliers offer quantity discounts
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for a better utilization of idle capacity in order
to achieve economies of scale in manufacturing.
From a marketing perspective, quantity discounts
are used to stimulate sales, e.g., Neslin et al. (1995).
From a financial point of view, the time value of
money is taken into consideration. Because of the
offered quantity discount, buyers decide to buy
earlier and a larger quantity. Therefore, revenues
are available earlier for possible reinvestment (Be-
ranek, 1967).
In this paper we consider an economic order quan-
tity (EOQ) model where the supplier offers an
all-units quantity discount (AQD). This model is
applicable to all goods that are purchased from
a supplier that offers a quantity discount, e.g.,
durable consumer or industrial goods. We com-
pare a decentralized decision framework where
first marketing determines the optimal pricing
strategy and then operations optimizes the replen-
ishment policy to coordinated decision making
where the retailer decides on pricing strategy and
replenishment policy simultaneously. Hereby, we
distinguish between two pricing strategies. In cases
of constant pricing, the retailer determines the op-
timal selling price that is constant over an infinite
planning horizon. In case of dynamic pricing the
retailer varies the selling price over time. If price
changes are free of charge, the optimal strategy is
to change the price continuously over time (Rajan
et al., 1992). If price changes are associated with
costs, a continuous price adjustment is not benefi-
cial. Therefore, there exists a finite optimal num-
ber of price changes. Netessine (2006) provides
a variety of practical situations which cause that
companies change prices only a limited number
of times throughout the sales period. We analyze
the benefits from coordinated dynamic pricing and
replenishment compared to coordinated constant
pricing and replenishment and to decentralized
decision making. We assume that the number of
price changes over an order cycle is given. How-
ever, in order to determine the optimal number
of price changes, the results of Transchel and
Minner (2005) can be used. They analyze a joint
dynamic pricing and EOQ lot-sizing model without
consideration of a supplier quantity discount and
show that the optimal number of price changes
and the optimal pricing and replenishment policy
can be optimized by a two-stage program. That is,
at the second stage, for a given number of price
changes, the retailer determines the optimal pur-

chasing and pricing strategy. At the first stage,
the number of price changes is optimized antici-
pating the optimal purchasing and pricing strat-
egy of the second stage. Transchel and Minner
(2005) show how dynamic pricing can enhance
operational efficiency by increasing the demand
rate when inventories are high. The benefits of
exploiting supply quantity discounts significantly
depend on whether variable purchasing price re-
ductions can offset additional holding costs from
ordering minimum required quantities. Therefore
it appears promising to use dynamic pricing here,
too, to reduce the impact of holding costs. Further-
more, we extend Eliashberg and Steinberg (1993)
who compare sequential and simultaneous opti-
mization of lot-size and (constant) selling price
without quantity discounts. They show that the
optimal selling price in the case of simultaneous
optimization is larger than in the case of sequen-
tial optimization which, in turn, results in a lower
order frequency. This property does not necessar-
ily hold if the supplier offers a quantity discount.
We develop optimization models for three differ-
ent decision frameworks: the decentralized frame-
work where marketing and operations optimize
independently, the coordinated-constant frame-
work where the retailer optimizes a constant price
and the order quantity simultaneously, and the
coordinated-dynamic framework where the re-
tailer employs a finite number of price changes over
an order cycle. We provide analytical properties of
the objective functions and present algorithms for
determining the optimal replenishment policy and
price strategy for the coordinated-constant and the
coordinated-dynamic framework, respectively.
The remainder of the paper is organized as follows.
After a literature review in Section 2, we introduce
the models and the underlying assumptions and
properties in Section 3. Section 4 compares the
three frameworks for the special case of a linear
price-response function. In a numerical example
presented in Section 5 we show the benefit of
coordinated decision making and in particular dy-
namic pricing compared to a decentralized deci-
sion framework. Furthermore, we show the im-
pact of changing fixed costs, discount policy, and
price sensitivity on the optimal decisions and the
resulting benefit of coordination. Finally, we con-
clude the results, discuss limitation of the model,
and indicate directions for further research in
Section 6.
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2 Literature review

Several contributions analyze joint pricing and
manufacturing situations. One of the earliest pa-
pers of integrated marketing/pricing and manu-
facturing decisions is by Whitin (1955) who shows
that simultaneous decision-making on a constant
price and ordering decision leads to significant
profit increases compared to decentralized deci-
sions. Eliashberg and Steinberg (1993) provide
a comprehensive review of problems at the inter-
face between marketing and operations. They com-
pare differences between a decentralized and a co-
ordinated optimization problem. In their overview,
Bitran and Caldentey (2003) summarize dynamic
pricing policies and their relation to revenue man-
agement. Elmaghraby and Keskinocak (2003)
provide a review of literature and current prac-
tices in dynamic (intertemporal) pricing. Chan
et al. (2004) review and classify papers according
to a number of characteristics, e.g., stochastic vs.
deterministic parameters and single vs. multiple
products.
Benton and Park (1996) and Munson and Rosen-
blatt (1998) provide literature reviews on quantity
discounts where they classify the literature under
several discount schemes, different perspectives
(buyer, supplier, joint), and other criteria like plan-
ning horizon and number of products. The impact
of quantity discounts on the economic ordering
decision has been investigated in several settings.
In the literature, the most common discount poli-
cies are the all-units and the incremental-units
discount policies. When the supplier offers an all-
units quantity discount (AQD), the reduced pur-
chasing price applies to the entire order quantity
once the order quantity reaches a critical break-
point. An incremental-units discount, however,
only applies to all units in excess of a partic-
ular breakpoint. Hadley and Whitin (1963) de-
velop a procedure for determining the optimal
economic order quantity for both all-units and in-
cremental units discount schemes. This approach
is included in almost every textbook on oper-
ations management and assumes that the de-
mand rate is known and constant over an infi-
nite planning horizon and that the decision maker
follows the objective to minimize average costs.
Gupta (1988) provides an improved procedure
for determining the optimal lot-size by consid-

ering an upper bound for the relevant cost and
Goyal and Gupta (1990) propose a further sim-
plification which requires only a few EOQ calcu-
lations for determining the optimal lot-size. In
Abad (1988a) and Abad (1988b) the simulta-
neous optimization of lot-size and selling price
when the supplier offers an all-units or an in-
cremental units discount is analyzed. He devel-
ops a procedure for determining the optimal lot-
size and the optimal selling price. Burewell et al.
(1991) extend the model of Abad (1988a) and al-
low for planned inventory shortages. They derive
a similar procedure as Abad (1988a) to deter-
mine the optimal lot-size and selling price for
two classes of demand functions, iso-elastic and
linear. More recently, discount pricing schedules
have received growing attention to improve the
coordination between vendors and buyers, see
e.g., Weng (1995), Rubin and Benton (2003), and
Wang (2005).
Inventory problems with simultaneous optimiza-
tion of the replenishment policy and a dynamic
pricing strategy where only a limited number of
price changes is allowed has been investigated less
frequently. The main motivation for considering
a limited number of price changes are organi-
zational costs associated with each price change.
Abad (1997) formulates a model where the reseller
responds to a temporary price reduction of the
supplier by an adjustment of the retailer’s own
selling price. Abad (1997) considers that the re-
seller is allowed to charge two selling prices in
each order cycle. The presented model optimizes
the first (discounted) selling price and fixes the
second selling price to the optimal constant price.
He presents a procedure where a temporarily re-
duced selling price yields a higher cycle profit than
in the case of a static selling price. As shown in
Transchel and Minner (2005), the majority of
benefits from dynamic pricing can be captured
by very few different price levels and, therefore,
a discrete number of changes balances benefits
and costs of price changes. Netessine (2006) an-
alyzes a pricing problem with a limited num-
ber of price changes in a dynamic, determinis-
tic environment and a capacity constraint. He
characterizes the impact of capacity constraints
on the optimal prices and the timing of price
changes and provides several comparative statics
results.
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3 Model

3.1 Assumptions

Consider a monopolistic retailer who is selling
a product on a single market over an infinite plan-
ning horizon. We assume that customer demand
follows a function of the selling price P and arrives
continuously at a rate of D(P) which is a differen-
tiable and strictly non-increasing function in P with
D(P) ≥ 0 and D′(P) < 0. Furthermore, let ε define
the price elasticity of D(P) with ε = − D′(P)

D(P) P which
is the percentage change in demand in response to
a percentage change in price. Based on the price
elasticity, we define a class of price-response func-
tions as follows:

Defintion 1 A price-response function D(P) has
an increasing price elasticity (IPE), if ∂ε

∂P ≥ 0.

The intuition behind the IPE property is that with
a price increase by a certain percentage demand
decreases by a larger percentage. At every point in
time, the demand rate depends only on the current
price, i.e., customers are willing to buy as soon
as the price is below their individual reservation
price. Let P̄ denote the market reservation price
with P̄ ≤ ∞. We assume that by charging a reduced
selling price at the beginning of an order cycle
customers do not behave strategically and buy in
expectation of future prices (forward buying and
postponement).
We follow the assumptions of the EOQ model.
With the release of any single order there is an
associated setup cost F . Furthermore, the supplier
has no capacity constraints and the overall order
quantity is delivered in one shipment without any
delay. Products delivered but not yet sold are kept
in inventory subject to holding cost per unit and
unit of time. The replenishment orders are placed
in batches of size Q every T periods over an infinite
planning horizon. Backorders are not permitted.
The supplier offers a regular purchasing price c0
per unit and an AQD schedule with l = 0, · · · , L
different purchasing price categories where the
discount is rl percent per unit if the order quantity
is larger than or equal to a breakpoint quantity Q̄l.
The AQD policy with multiple breakpoints is char-
acterized by a vector

{(r0, Q̄0), (r1, Q̄1), · · · , (rL, Q̄L)

| r0 < r1 < · · · < rL, Q̄0 < Q̄1 < · · · < Q̄L}

with r0 = Q̄0 = 0. Let cl := (1 − rl)c0 be the
reduced purchase price for a unit if the order
quantity Q ∈ [Q̄l, Q̄l+1) with c0 > c1 > · · · > cL and
Q̄L+1 = ∞. Inventory holding costs depend, among
others, on the cost of capital that, in turn, depends
on the purchase price cl and are denoted by hl per
unit and unit of time. We assume that hl is an
increasing function of cl.

3.2 Decentralized decisions

Assume that the selling price and the purchasing
strategy are determined by separated decision-
making units. First, marketing optimizes the sell-
ing price and generates customer demand. Then,
given this demand forecast, operations determines
the optimal replenishment policy taking into ac-
count the supplier’s quantity discount. Marketing
does not take into account fixed ordering costs and
does not anticipate purchasing price discounts as
a result of order quantities because the discount
that is actually applied is unknown until the op-
erations decision is taken. Marketing’s objective
function is as follows:

(1) Π̃(P) = (P − c0)D(P) .

The optimal selling price P̃* is obtained from the
first-order condition P + D(P)

D′(P) = c0. Given the de-

mand forecast D̃* = D(P̃*), operations minimizes
average costs of replenishment and inventory tak-
ing into account the supplier quantity discount.
Hadley and Whitin (1963) developed a two-stage
algorithm in order to determine the optimal re-
plenishment policy. A first stage iteratively calcu-
lates the constrained economic order quantity Q̃*

l
and the resulting costs starting from the highest
discount cL until the first index l0 is found where
the solution satisfies Q̃*

l0
≥ Q̄l0 and Q̃*

l < Q̄l for all
l > l0. Thus,

Q̃*
l0 =

√
2FD(P̃*)

hl0
≥ Q̄l0 and(2)

C̃*
l0 =

√
2Fhl0D(P̃*).

At a second stage, the cost of this inner solution C̃*
l0

is compared with the costs of all breakpoint quan-
tities larger than Q̃*

l0
, i.e., C̃l(Q̄l) for l = l0 + 1, ..., L

with

C̃l(Q̄l) = clD(P̃*) +
hl

2
Q̄l + F

D(P̃*)

Q̄l
.
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Thus, the optimal profit in the case of decentralized
decision making is as follows:

Π̃* = (P̃* − c0)D(P̃*)

− min{C̃*
l0 , C̃l(Q̄l) | l = l0+1, ..., L} .

3.3 Coordinated-constant decision

In case of coordinated decision making, we simul-
taneously optimize lot-size Q and selling price P.
The optimization problem for a particular purchas-
ing price cl is given by

Π*
l (P, Q) = max

P,Q

(
(P − cl)D(P)(3)

−
hl

2
Q − F

D(P)
Q

)
s.t. Q ≥ Q̄l .(4)

A relaxation of (4) and differentiating (3) with
respect to Q and P yields the necessary first-order
conditions for an inner solution (e.g., see Whitin
(1955) and Eliashberg and Steinberg (1993))

(5) Q*
l =

√
2FD(P*

l )

hl
and P*

l +
D(P*

l )

D′(P*
l )

= cl +
F
Q*

l

where the optimal selling price P*
l , conditional that

the purchasing price is cl, is represented as an
implicit function of the optimal order quantity.
For a particular purchasing price cl the optimal
order quantity is only feasible if Q̄l ≤ Q*

l . Given
this constraint, a transformation of Q*

l from (5)
yields that an inner solution P*

l is only feasible
if P*

l is lower than a break price P̄l for a given unit
purchasing cost cl:

(6) P*
l ≤ D−1

(
hlQ̄2l
2F

)
=: P̄l

where D−1(.) denotes the inverse of the price-
response function. The inverse function does exist
due to the fact that D(P) is a strictly monotone
function. Using this result, the AQD policy can be
characterized by

{(r0, P̄0), (r1, P̄1), · · · , (rL, P̄L)

| r0 < r1 < · · · < rL, P̄0 > P̄1 > · · · > P̄L}

where P̄0 = P̄. Substituting the optimal order quan-
tity into (3), the two-variable problem is reduced to
a single-variable problem that only depends on P:

Πl(P) = (P − cl)D(P) −
√
2FhlD(P) ,(7)

s.t. P ≤ P̄l .(8)

Properties of an optimal pricing and lot-
sizing policy

The following properties characterize the profit
function (7).

Property 1 For P ≥ 0, (7) is either a concave-
convex function or a strictly concave function of P
with lim

P→0
Πl(P) < 0 and lim

P→P̄
Πl(P) = 0.

The proof of Property 1 is given in Appendix A.1.
Abad (1988a) reduces (3) to a single-variable prob-
lem that only depends on the order quantity Q. He
shows that if the first-order condition with respect
to P yields a closed-form solution P*(Q), as it is
the case for linear and iso-elastic price-response
functions, the reduced profit function is a convex-
concave function of Q and develops a procedure
to determine the optimal price and lot-size. Based
on this result, Abad (1988a) gives an algorithm to
determine the overall optimal lot-size. Note that
we do not need the required condition of having
a closed-form solution for P*(Q).

Property 2 For an arbitrary fixed selling
price P, (7) is a strictly decreasing function of cl.
Therefore, the profit functions Πl and Πl′ for differ-
ent unit purchasing costs cl and cl′ do not intersect
and Πl(P) > Πl′(P) for all P and cl < cl′ .

From the partial derivative of (7) with respect to cl

and the assumption that hl increases in cl, it is easy
to verify that ∂Πl

∂cl
< 0. Implicitly, it follows that the

profit function Πl(P) > Πl′(P) for cl < cl′ .

Theorem 1 Let l0 be the largest index of a dis-
count where the local optimum Q*

l0
is feasible, i.e.,

Q̄l0 ≤ Q*
l0

and Q̄l > Q*
l for all l = l0 +1, · · · , L. Then

for all l < l0, Πl(P) < Πl0(P*
l0

) for all P.

The proof follows directly from Properties 1 and 2
with the implication that all discounts that are
lower than the discount rl0 can be omitted for the
determination of the optimal solution. If Πl(P*

l ) < 0
for all cl, then Q* = 0. To find the optimal value
of P, we have to find the profit maximizing price in
each interval (P̄l+1, P̄l] and compare these profits
to determine the global optimum.
For the following illustration we assume that the
supplier offers a single price break Q̄1. Then, there
are 3 cases for the optimal price P*.

1. The free local optimum P*
1

for the reduced
purchasing price c1 is a feasible solution, i.e.,
P*
1

≤ P̄1.
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Figure 1: Average Profit Curve Case 1
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Figure 2: Average Profit Curve Case 2
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2. The free local optimum P*
1

is infeasible and
the breakpoint profit (the retailer orders the
breakpoint quantity Q̄1 at the reduced pur-
chasing price c1) is larger than the optimal
profit given the regular purchasing price c0,
Π1(P̄1) > Π0(P*

0
).

3. The free local optimum P*
1

is infeasible and the
profit where the retailer orders the breakpoint
quantity is lower than the optimal profit for the
regular purchasing price, Π1(P̄1) < Π0(P*

0
).

In Case 1, as shown in Figure 1, the breakpoint
price P̄1 is large enough such that the optimal
selling price P*

1
is a feasible solution. Figures 2

and 3 illustrate Cases 2 and 3 where P*
1

is an in-
feasible solution. In Case 2 the breakpoint profit
is larger than the optimal profit for the regular
purchasing price c0 and in Case 3 the opposite
holds. If Π1(P̄1) = Π0(P*

0
), the retailer is indif-

ferent between ordering Q̄1 or Q*
0
. The bold lines

represent the feasible profit curves. Properties 1
and 2 and Theorem 1 allow the following algorithm
for calculating the optimal selling price.

Figure 3: Average Profit Curve Case 3
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Algorithm 1 for determining the optimal
price and lot-size

Set l := L,

REPEAT

Calculate the optimal selling price P*
l by

solving the first-order condition ∂Πl
∂P

!
= 0,

D(P)
D′(P)

+ P − cl −

√
Fhl

2D(P)
= 0,

calculate Π*
l := Πl(P̄l),

l := l − 1,

UNTIL P*
l < P̄l.

(The loop stops at the index l0, the largest index
for which P*

l0
≤ P̄l0 , i.e., the local optimum P*

l0
is an inner solution.)
Calculate Π*

l0
:= Πl0(P*

l0
).

The optimal profit is determined from

Π* =

⎧⎪⎪⎨⎪⎪⎩
max{Π*

l | l ∈ {l0, · · · , L}}

if at least one Π*
l ≥ 0

0 otherwise

Let l* := argmax{Π*
l }. Then the optimal price

and the optimal order quantity are given by

P* =

⎧⎨⎩argmax{Π*
l* (P)}} if Π* ≥ 0

P̄ otherwise
,

and

Q* =

⎧⎨⎩
√
2FD(P*)

hl*
, if P* = P*

l0

Q̄l, if P* = P̄l

.

END
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The important property for this algorithm to work
is that the profit curves do not intersect which
gives that the profit function for a discount rate rl

is located above of profit functions for discount
rates rl′ with l′ < l.

Impact of coordinated decision making on
price and purchasing policy

Now we compare decentralized (sequential) and
coordinated (simultaneous) decision making on
pricing and purchasing strategy. Eliashberg and
Steinberg (1993) analyze the sequential and coor-
dinated decision-making problem without a sup-
plier quantity discount. They show that decen-
tralized decision making, where marketing first
decides on the selling price without taking into
account operation’s overhead costs and then oper-
ations determines the optimal purchasing policy,
leads to an underestimated selling price and an
overestimated demand rate. This, in turn, leads to
larger lot-sizes than in case of coordinated decision
making. However, if the supplier offers a quantity
discount, these effects do not necessarily hold any-
more. For a particular discount rate rl, a compar-
ison of the first-order condition of decentralized
and coordinated decision making gives

D(P̃)

D′(P̃)
+ P̃ = c0 and(9)

D(P)
D′(P)

+ P = cl +
F
Q

for all l = 0, · · · , L .

Under decentralized decision making, the optimal
selling price P̃* is only based on the regular pur-
chasing costs c0. However, in the coordinated case,
the price P* takes into account both overhead costs
and an eventually used quantity discount.

Property 3 If D(P) has an increasing price elas-
ticity and the retailer does not use a quantity dis-
count (l = 0), then the optimal selling price in case
of decentralized decision making is lower than un-
der simultaneous optimization, i.e., P̃* < P* and
D(P̃*) > D(P*). If l > 0, the coordinated case yields
a higher price in comparison to the decentralized
system if the optimal coordinated selling price

satisfies P*
l > D−1

(
Fhl

2(c0−cl )2

)
.

The proof is given in Appendix A.2. The direction
of the price change is influenced by two effects: the
overhead cost effect and the discount effect. The
overhead cost effect describes the impact of coor-

dinated decision making. In the case of sequential
decision making, marketing does not take into ac-
count that operations uses a quantity discount.
Depending on the actually paid purchasing costs,
marketing either underestimates or overestimates
operations costs that additionally contain setup
cost and holding costs. The discount effect leads
to a decreasing selling price. Due to the increasing
lot-size by using the supplier quantity discount, the
retailer decreases the prices in order to increase
the demand and reduce holding costs. Whether
the optimal selling price increase or decrease com-
pared to the decentralized case depends on which
effect dominates.

3.4 Coordinated-dynamic decision

Let us assume that the retailer can change the
selling price N times at time ti, i = 0, · · · , N − 1
within each order cycle where each price change
is subject to administrative costs. κ(N ) defines
a non-decreasing function of N . At time t0 = 0, the
retailer places the order and sets the selling price P1
which holds until t1. At time t1, the retailer changes
the price to P2. We assume that over a time inter-
val [ti−1, ti), the retailer charges a price Pi. Let tN

denote the cycle length. The objective is to opti-
mize the purchasing and dynamic pricing strategy
which includes the determination of the optimal
prices and the optimal times where the price is ad-
justed. This problem can be solved by a two-stage
optimization approach: At the second stage, for
a given N , the retailer determines the optimal pur-
chasing and pricing strategy. At the first stage, the
optimal number of price changes N is optimized
anticipating the optimal purchasing and pricing
strategy of the second stage. For a simplified nota-
tion, let Di = D(Pi). The two-stage problem can be
formulated as follows:

(10) Π* = max
N

[
max

l,PN ,tN

{
Π(N )

l − κ(N )
}]

,

with

Π(N )
l =

1

tN

[
N∑

i=1

(Pi − cl)Di (ti − ti−1)(11)

−
hl

2

N∑
i=1

Di (ti − ti−1)2

− hl

N−1∑
i=1

⎛⎝(ti − ti−1)
N∑

j=i+1

Dj
(
tj − tj−1

)⎞⎠ − F

]
.
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s.t. Pi ≤ P̄ ∀ i = 1, · · · , N(12)
N∑

i=1

Di(ti − ti−1) ≥ Q̄l .(13)

Equation (11) represents the average retailer profit
given cl, a price vector PN = (P1, · · · , PN ) and
a timing vector tN = (t1, · · · , tN ). The first term
is the unit revenue minus direct purchasing cost
(when the retailer uses the discount rate rl) for
each interval multiplied by the respective demand
rate and the length of the interval. In the sec-
ond and third term we subtract inventory holding
costs. These consist (see Figure 5) of the average of
initial and final inventory in each interval (trian-
gles) and the inventory that has to be carried over
the entire interval [ti − ti−1) to cover the demand
of all subsequent intervals j = i + 1, · · · , N with

an amount of
N∑

j=i+1
Dj(tj − tj−1) (rectangles). Con-

straint (12) ensures that the selling price does not
exceed the reservation price and by constraint (13)
the lot-size must be larger than or equal to the
breakpoint Q̄l to ensure that the used unit price is
attained.
A detailed analysis of how to solve (11) is given in
Transchel and Minner (2005). The order quantity
can be determined as the sum over all intervals,
demand rates multiplied by the interval length and
therefore implicitly by the price decisions in all
subintervals of an order cycle

(14) Q =
N∑

i=1

Di(ti − ti−1) .

Properties of an optimal pricing and lot-
sizing policy

By algebraic manipulations (see Appendix A.3), we
can simplify (11) to

Π(N )
l =

1

tN

[
N∑

i=1

(
Pi − cl −

hl

2
(ti + ti−1)

)
(15)

× Di (ti − ti−1) − F

]
.

In order to maximize the average profit, we differ-
entiate (15) with respect to Pi and ti, i = 1, · · · , N .
The necessary first-order conditions with respect

to Pi give

∂Π(N )
l

∂Pi
=
1

tN

[
Di (ti − ti−1)(16)

+
(

Pi − cl −
hl

2
(ti + ti−1)

)
D′

i (ti − ti−1)

]
!
= 0 ,

⇔ Di

D′
i

+ Pi
!
= cl +

hl

2
(ti + ti−1) .

The optimal price P*
i in a particular time interval

[ti−1, ti) for i = 1, · · · , N must satisfy (16) and de-
pends on the initial and final point of this interval.
For price-response functions with a price-elasticity
that is non-decreasing in price, the optimal sell-
ing price P*

i is non-decreasing in i (see Transchel
and Minner (2005)). Figures 4 and 5 illustrate
the optimal pricing policy and the corresponding
inventory development for a certain N and cl. The
first-order condition of Π(N )

l with respect to ti for
i = 1, . . . , N − 1 gives

∂Π(N )
l

∂ti
=
1

tN

[
(Pi − cl)Di

− (Pi+1 − cl)Di+1 − hlti(Di − Di+1)

]
!
= 0 .

Figure 4: Illustration of the pricing policy
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Figure 5: Illustration of inventory level
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Therefore, the optimal times t*
i must satisfy

t*
i =

(P*
i − cl)Di − (P*

i+1 − cl)D*
i+1

hl(D*
i − D*

i+1)
(17)

i = 1, · · · , N − 1.

From (17) we find that the optimal time t*
i is a func-

tion of the optimal price P*
i of the current interval,

the optimal price P*
i+1 of the next interval, and the

corresponding optimal demand rates. Given the
results of (16) and (17), it is apparent that t*

i can
be represented as a function of its predecessor t*

i−1
and its successor t*

i+1. With the initial condition
t0 = 0 it follows that t*

1
is only a function of its

successor t*
2
. Furthermore, t*

2
is a function of t*

1

and t*
3
. By substituting t*

1
as a function of t*

2
and

some algebraic manipulations, the time t*
2

can be
represented as a single-variable function of t*

3
.

An iterative transformation and substitution gives
that from [t*

1
(t2), t*

2
(t1, t3), · · · , t*

N (tN−1)] follows
[t*
1
(t2), t*

2
(t3), · · · , t*

N−1(tN )]. Now, by backward in-
sertion, each optimal time where the selling price is
changed can be represented as a function t*

i (tN ) of
the cycle length. Therefore, the optimal prices and
the optimal demand rates can be reduced to func-
tions that only depend on the cycle length tN , e.g.,
(P*

i (tN ), D*
i (tN )), and the maximization problem

reduces to the following single-variable problem:

Π(N )
l (tN ) := Π(N )

l (P*
1(tN ), · · · ,(18)

P*
N (tN ), t*

1(tN ), · · · , t*
N−1(tN ), tN )

=
1

tN

[
N∑

i=1

(
P*

i (tN ) − cl −
hl

2
(t*

i (tN ) + t*
i−1(tN ))

)

× D*
i (tN )(t*

i (tN ) − t*
i−1(tN )) − F

]
.

In Section 4, we will show that for a linear price-
response function this iterative procedure yields
closed-form expression for P*

i (tN ) for all
i = 1, · · · , N . In the general case, the dependencies
have to be solved numerically. As for the static
pricing problem the profit function Π(N )

l (tN ) has to
possess some particular characteristics that enable
to find the optimal solution efficiently.

Conjecture 1 For an arbitrary feasible tN (0 ≤
P*

i (tN ) ≤ P̄, ∀i = 1, · · · , N ), (18) is a decreasing
function of cl. Therefore, if the profit function is
concave, quasi-concave, or concave-convex, then
Π(N )

l (tN ) and Π(N )
l′ (tN ) do not intersect for cl ≠ cl′ ,

i.e., Π(N )
l (tN ) > Π(N )

l−1 (tN ) for all l = 1, · · · , N − 1.

For general price-response functions the proof of
Conjecture 1 is analytically intractable. However, in
the next section we show for linear price-response
functions that Conjecture 1 holds. The shape of (18)
depends on the price-response function. If D(P)
is such that (18) is concave, quasi-concave, or
concave-convex, similar to the constant pricing
case, for a fixed cl, the following algorithm can be
applied to determine the optimal solution. Oth-
erwise a complete enumeration over all inner so-
lutions and breakpoints has to be used in order
to determine the optimal solution. Similar to the
results under static pricing, a simple algorithm can
be used to determine the optimal cycle tN for any cl.

Algorithm 2 to determine the optimal price
strategy and lot-size

Set l := L,

REPEAT

Solve the constrained optimization prob-
lem:

max
tN

{Π(N )
l (tN )}(19)

s.t. Pi(tN ) ≤ P̄ ∀i = 1, · · · , N .(20)

l := l − 1

UNTIL
N∑

i=1
D*

i (t*
N )(t*

i (tN ) − t*
i−1(tN )) ≥ Q̄l+1.

Let l0 be the largest index for which the free

optimum Q*
l0

=
N∑

i=1
D*

i (t*
N )(t*

i (t*
N ) − t*

i−1(t*
N )) is

a feasible solution, i.e., Q*
l0

≥ Q̄l0 . Calculate the
optimal profit

Π(N )*

l0
:=Π(N )

l0
[P*
1(t*

N ), · · · ,

P*
N (t*

N ), t*
1(t*

N ), · · · , t*
N−1(t*

N ), t*
N ]

and the breakpoint profits

Π(N )*

l := Π(N )
l [P*

1(tNl ), · · · ,

P*
N (tNl ), t*

1(tNl ), · · · , t*
N−1(tNl ), tNl ]

for all l from l0 + 1 to L where tNl denotes
the optimal cycle length given that the retailer
orders the breakpoint quantity Q̄l.

The optimal profit is determined from

Π(N )*

=

⎧⎪⎪⎨⎪⎪⎩
max{Π(N )*

l | l ∈ {l0, · · · , L}}

if at least one Π(N )*

l ≥ 0

0 otherwise

.
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Let l* = argmax{Π(N )*

l }. For the case Π(N )*
> 0,

the optimal cycle length t̂*
N is either t*

N if l* = l0
or tNl if l* > l0 and the optimal order quantity
is determined by

Q* =
N∑

i=1

D*
i (̂t*

N )(t*
i (̂t*

N ) − t*
i−1(̂t*

N )) .

Otherwise, it is not optimal to order, i.e.,
Q* = 0.

END

This procedure resembles the algorithm for the
classical EOQ average cost minimization problem
with an all-units quantity discount. It takes into
account the interdependencies of the determina-
tion of the optimal order quantity, the optimal
prices in the N time intervals, and the optimal
times where the price is adjusted. In Step 1 we
solve the constrained optimization problems back-
wards, starting with the highest discount rate rL

until an unconstrained solution is feasible for the
first time. In Step 2, we compare the various break-
point profits for L to l0 + 1 to the first free optimal
solution and identify the optimal discount rate r*

l
where the profit reaches the maximum. In Step 3
we determine the resulting optimal cycle length
and the optimal order quantity.

4 Linear price-response function
In this section, we detail the previous results for
the special case of a linear price-response function.
We show that for each discount rate rl both the op-
timal prices and the average profit can be uniquely
expressed as a closed-form single-variable func-
tion of tN , e.g., P*

i (tN ) for all i = 1, · · · , N and
Πl(tN ). The linear price-response function satisfies
all conditions of Section 3.1. We will show that
Πl(tN ) is a concave-convex function of tN and pro-
vide a detailed algorithm for determining the over-
all optimal decisions of the dynamic coordinated
selling price strategy and the lot-size. A detailed
analysis of the decentralized framework and the
coordinated-constant pricing framework for lin-
ear price-response functions is given in Eliashberg
and Steinberg (1993) and Abad (1988a). Let

(21) D = D(P) =

⎧⎨⎩a − bP if 0 ≤ P ≤ a
b

0 if P > a
b

where a represents the market potential and the
reservation price is P̄ = a

b .
Using the results of Transchel and Minner (2005),
the optimal times t*

i can be represented by func-
tions of tN

(22) t*
i (tN ) = i

tN

N
,

the optimal prices and demand rates are charac-
terized by

P*
i (tN ) =

1

2

(
a
b

+ cl +
hl

2
(2i − 1)

tN

N

)
(23)

⇒ D*
i (tN ) =

b
2

(
a
b

− cl −
hl

2
(2i − 1)

tN

N

)
(24)

and by inserting (22), (23), and (24) into (18), the
profit function for a given purchase price cl can be
transformed into the single-variable function

Π(N )
l (tN ) =

b
4

[(a
b

− cl

)(a
b

− cl − hltN

)
(25)

+
h2l t2N
12

(4N2 − 1)
N2

]
−

F
tN

.

For a detailed derivation of (25) see Appendix A.4.

Property 4 For an arbitrary tN , (25) is a de-
creasing function of cl. Therefore, the profit func-
tions Π(N )

l (tN ) and Π(N )
l′ (tN ) do not intersect for cl ≠

cl′ , i.e., Π(N )
l (tN ) > Π(N )

l−1 (tN ) for all l = 1, · · · , N −1.

Property 5 If D = D(P) is linear, the profit
function Π(N )

l (tN ) is a concave-convex function
of tN .

The proofs of Property 4 and 5 are given in Ap-
pendix A.5 and A.6. With the results of Properties 4
and 5, all requirements to use Algorithm 2 are sat-
isfied.

Algorithm:
Step (1):

Solve the constrained optimization problem
(19)--(20) from l = L until the largest index l0
is identified where Q̄l ≤ Q*

l0
< Q̄l0+1 by using the

Lagrangian Multiplier method. We introduce the
Lagrangian multipliers λ1 and λi

2
for i = 1, · · · , N

related to the minimum order quantity constraint
and the reservation price constraints for all charged
selling prices over an order cycle. The Lagrangian
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function Ll for a particular purchasing cost cl is
defined by:

Ll(P1, · · · , PN , tN , λ1, λi
2
)

=
1

tN

[
N∑

i=1

(
Pi − cl −

hl

2
(2i − 1)

tN

N

)

× (a − bPi)
tN

N
− F

]

+ λ1

[
tN

N

N∑
i=1

(a − bPi) − Q̄l

]

+
N∑

i=1

λi
2

[a
b

− Pi

]
,

with the Kuhn-Tucker conditions

∂Ll

∂Pi
≤ 0 , P*

i
∂Ll

∂Pi
= 0 , ∀i = 1, · · · , N

∂Ll

∂tN
≤ 0 , t*

N
∂Ll

∂tN
= 0 ,

∂Ll

∂λ1
≥ 0 , λ*

1

∂Ll

∂λ1
= 0 ,

∂Ll

∂λi
2

≥ 0 , λi*
2

∂Ll

∂λi
2

= 0 , ∀i = 1, · · · , N

λ1 ≥ 0, λi
2

≥ 0 , ∀i = 1, · · · , N .

We seek the price vector P*
1
, P*
2
, · · · , P*

N and the
cycle length t*

N that satisfy all these conditions.
The partial derivation with respect to Pi for all i =
1, · · · , N , and the partial derivation with respect to
tN gives

∂Ll

∂Pi
=
1

N

[
a − bPi +

(
Pi − cl −

hl

2
(2i − 1)

tN

N

)
(−b)

− λ1btN − λi
2
N

]
!
= 0

⇔ Pi(tN , λ1, λi
2
) =(26)

1

2

(
a
b

+ cl +
hl

2
(2i − 1)

tN

N
− λ1tN − λi

2
N

)
.

∂Ll

∂tN
=

F

t2N
−

hl

2

(
a −

b
N2

N∑
i=1

(Pi(2i − 1))

)

+ λ1

(
a −

b
N

N∑
i=1

Pi

)
!
= 0

⇔ tN (P1, · · · , PN , λ1) =(27)√√√√√ 2F

hl

(
a − b

N2

N∑
i=1

(Pi(2i − 1))
)

− 2λ1

(
a − b

N

N∑
i=1

Pi

) .

Subject to the complementary slackness condition,
we obtain the first-order condition

(28)
∂Ll

∂λ1
=

tN

N

N∑
i=1

(a − bPi) − Q̄l
!
≥ 0 .

The two constraints (28) and λ1 ≥ 0 are com-
plementary inequalities, i.e., ∂Ll

∂λ1
> 0 if and only

if λ1 = 0. Thus, if λ1 > 0, it must be satisfied
that ∂Ll

∂λ1
= 0. The value of λ1 can be interpreted

as shadow price that values a decrease of the
breakpoint quantity Q̄l by one unit. Equation (26)
indicates that if hl > 0 the optimal selling price
is strictly increasing over the order cycle. There-
fore, the reservation price constraints must not be
binding for i = 1, · · · , N − 1, that is, λi

2
= 0 for

i = 1, · · · , N − 1. The only reservation price that
may constrain the problem is for PN (tN ) ≤ P̄N :

(29)
∂Ll

∂λN
2

=
a
b

− PN
!
≥ 0.

A similar shadow price interpretation holds for λN
2

.
Here, (29) and λN

2
≥ 0 are complementary inequal-

ities, i.e., λN
2

> 0 if and only if PN = a
b . Substitut-

ing PN from (26) into (29) gives an upper bound
for the optimal cycle length

(30) tN ≤
a
b − cl + λN

2
N

hl(
2N−1

N − λ1)
= tNl .

For determining the optimal solution (P*
1
, · · · ,

P*
N , t*

N , λ*
1
, λN*

2
), we solve the system of equations

and inequalities (26), (27), (28), and (30) under
the condition λ*

1
≥ 0 and λN*

2
≥ 0.

Step (2) and Step (3) follow straight just as de-
scribed in Algorithm 2.

5 Numerical example
The following numerical example shows the benefit
of coordinated planning of price and order quantity
compared to a decentralized planning approach
and the impact of the ratio of fixed and holding cost,
price sensitivity of customers, and the suppliers
quantity discount. The demand follows the linear
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Table 1: Results of the base case (Parameter: b = 100, Q̄1 = 4000, r1 = 0.15)

QD F = 0 F = 500

Framework l Q*
l T*

l P*
l Π*

l Loss Q*
l T*

l P*
l Π*

l Loss

decentralized 0 0 0.0 7.5 625 0.8% 1414 5.6 7.5 448

1 4000 16.0 7.5 600 4000 16.0 7.5 568 3.9%

coordinated- 0 0 0.0 7.5 625 1361 5.8 7.7 451

constant 1 4000 13.9 7.1 627 0.5% 4000 14.2 7.1 588 0.5%

coordinated- 0 0 0.0 7.5 625 1374 (2.9,5.9) (7.6,7.8) 452

dynamic 1 4000 (7.0,14.0) (6.9,7.3) 630 4000 (7.1,14.2) (7.0,7.4) 591

Table 2: Impact of a decreasing minimum order quantity Q1 (Parameter: b = 100,
Q̄1 = 3000, r1 = 0.15)

QD F = 0 F = 500

Framework l Q*
l T*

l P*
l Π*

l Loss Q*
l T*

l P*
l Π*

l Loss

decentral 0 0 0.0 7.5 625 1414 5.6 7.5 448

1 3000 12.0 7.5 653 3.4% 3000 12.0 7.5 611 2.2%

coordinated- 0 0 0.0 7.5 625 1361 5.8 7.7 451

constant 1 3000 10.4 7.1 674 0.3% 3000 10.7 7.2 624 0.2%

coordinated- 0 0 0.0 (7.5,7.5) 625 1374 (2.9,5.9) (7.6,7.7) 452

dynamic 1 3000 (5.2,10.5) (6.9,7.3) 676 3000 (5.3,10.7) (7.0,7.4) 625

structure D(P) = a − bP. The parameters are set
to a := 1000, c0 := 5, and hl := 0.02cl. The
parameters F , Q̄1, r1, and b are varied in order to
show the impact on lot-sizing and pricing. In the
case of a dynamic pricing strategy, we assume that
the retailer changes the selling price twice in each
order cycle, i.e., N = 2.
As a base case, we consider that the price sensitivity
factor is b = 100 and the supplier discount is
r1 = 15% if Q ≥ 4000 =: Q̄1 units. Furthermore,
we distinguish F = 0 and F = 500. Due to the fact
that purchasing price and interest rate are fixed,
F = 0 represents the case of a low and F = 500
the case of a high fixed-holding cost ratio. Table 1
shows the optimal price and lot-sizing decision as
well as the optimal cycle length and the optimal
average profit for the three frameworks and both
purchasing options regular (l = 0) and discounted
(l = 1). Column ‘‘Loss’’ illustrates the loss of profit
compared to the coordinated-dynamic framework.
If F = 500 and the retailer does not use the quan-
tity discount (l = 0), we verify the findings of
Eliashberg and Steinberg (1993) that decentral-
ized decision making leads to an underestimation
of price and an overestimation of lot-size com-
pared to coordinated decision making (7.5 < 7.7
and 1414 > 1361). However, this is not neces-

sarily true if the supplier offers a quantity dis-
count. If the retailer uses the quantity discount
(l = 1), for both F = 0 and F = 500 it can be ob-
served that the optimal selling price decreases be-
tween the decentralized and coordinated-constant
framework (7.5 > 7.1) whereas the order-quantity
is equal. In case of decentralized decision and
F = 0, the optimal purchasing strategy is a just-in-
time strategy with the regular purchasing cost c0
(Π*
0

= 625 > 600 = Π*
1
) and an optimal selling

price P*
0

= 7.5. However, if the retailer optimizes
price and purchasing policy simultaneously, the
discount strategy becomes more profitable. That
is, the discount effect dominates the coordination
effect (see Section 3). It is optimal to accept ad-
ditional holding costs in order to save variable
purchasing costs. Due to the larger lot-size which
would result in higher holding costs, it becomes
more beneficial to decrease the selling pricing in
order to increase the demand rate. In case of
F = 500, the lot-sizing decision is equal for the
decentralized and coordinated framework. How-
ever, in the coordinated framework a lower selling
price leads to a higher order frequency (a higher
demand rate leads to a lower cycle length) which
results in reduced holding cost. Furthermore, it
can be seen that the benefit of dynamic pricing
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Table 3: Impact of a increasing discount rate r1 (Parameter: b = 100, Q̄1 = 4000,
r1 = 0.2)

QD F = 0 F = 500

Framework l Q*
l T*

l P*
l Π*

l Loss Q*
l T*

l P*
l Π*

l Loss

decentral 0 0 0.0 7.5 625 1414 5.6 7.5 448

1 4000 16.0 7.5 670 6.0% 4000 16.0 7.5 643 4.5%

coordinated- 0 0 0.0 7.5 625 1361 5.8 7.7 451

constant 1 4000 13.3 7.0 711 0.3% 4000 13.6 7.0 670 0.4%

coordinated- 0 0 0.0 (7.5,7.5) 625 1374 (2.9,5.9) (7.6,7.7) 452

dynamic 1 4000 (7.6,13.4) (6.9,7.1) 713 4000 (6.8,13.6) (6.9,7.3) 673

Table 4: Impact of an increasing price sensitivity of customers b (Parameter: b = 140,
Q̄1 = 4000, r1 = 0.15)

QD F = 0 F = 500

Framework l Q*
l T*

l P*
l Π*

l Loss Q*
l T*

l P*
l Π*

l Loss

decentral 0 0 0.0 6.0 161 0.0% 1095 7.3 6.0 23

1 4000 26.0 6.0 61 4000 26.0 6.0 42 55.8%

coordinated- 0 0 0.0 6.0 161 0.0% 951 8.4 6.3 32

constant 1 4000 19.0 5.7 118 4000 20.0 5.7 88 7.4%

coordinated- 0 0 0.0 (6.0,6.0) 161 987 (4.5,9.0) (6.2,6.5) 35

dynamic 1 4000 (10.0,20.0) (5.5,6.0) 124 4000 (11.0,21.0) (5.5,6.1) 95

compared to coordinated constant pricing for both
F = 0 and F = 500 is lower than 1%. The same
observation can be made when we compare the
dynamic-coordinated framework with the decen-
tralized framework for the case F = 0. If F = 0, the
benefit of coordinated-dynamic pricing increases
to4% per time unit. Tables 2 and 3 illustrate the im-
pact of the discount policy on the optimal solution.
Table 2 shows the results of a decreasing minimum
order quantity and Table 3 the results of an increas-
ing discount rate. Both changes yield an increas-
ing desirability of the quantity discount. While
the benefit of the coordinated-dynamic framework
compared to the coordinated-constant framework
remains low, the benefit compared to the decen-
tralized framework does increase. Compared to
the base case F = 0 where a JIT policy was opti-
mal, now the quantity discount is beneficial such
that the retailer orders the minimum order quan-
tity. Table 4 illustrates the impact of price sen-
sitivity on the optimal decision and the average
profit. Compared to the base case, an increasing
price sensitivity leads to a decreasing selling price
among all decision frameworks. For F = 0, across
all decision frameworks, it is optimal to follow
a JIT strategy. Therefore, decentralized decision

making yields the same performance as coordi-
nated decision making. But, in case of F = 500,
the application of coordinated-dynamic pricing is
highly beneficial compared to decentralized and
coordinated-constant decision making.

6 Conclusion
This paper considered an economic order quan-
tity (EOQ) model when the supplier offers an all-
units quantity discount (AQD) and the retailer
faces a price-dependent demand rate. We ana-
lyzed three different decision frameworks, a decen-
tralized decision-making strategy, a coordinated
strategy with a constant selling price, and a co-
ordinated strategy where the retailer is allowed
to implement a finite number of price adjustments
within each order cycle. For the coordinated frame-
works, we derived analytical properties used to
develop efficient algorithms in order to determine
the optimal price and lot-sizing strategy. These
algorithms are applicable to all concave, quasi-
concave, and concave-convex profit functions. In
a numerical example we showed the difference
in decision making between the decentralized,
the coordinated-constant, and the coordinated-
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dynamic framework. It could be observed that in
the case of low price sensitivity of the customers,
the benefit of dynamic pricing compared to con-
stant pricing is rather low. However, with increas-
ing price sensitivity, coordinated decision making
and in particular dynamic pricing becomes more
beneficial.
Without a supplier quantity discount, the coordi-
nated framework with a constant pricing strategy
yields a higher price, a lower demand rate, and
a lower order quantity compared to sequential
pricing and replenishment (see Eliashberg and
Steinberg (1993)). If the supplier offers an all-
units quantity discount, these properties do not
necessarily hold. In the discount case, two effects
influence the outcome of decision making. The first
effect is the overhead cost effect. In contrast to
decentralized decision-making, a central decision
maker takes into account all relevant costs (setup
cost and inventory holding cost). This yields an
increasing selling price, a decreasing demand rate,
and a decreasing lot-size. The second effect is the
discount effect. Here, under decentralized decision
making, marketing does not consider the quantity
discount schedule of the supplier and optimizes
the selling price only using the undiscounted pur-
chasing price. Thus, marketing overestimates the
cost which yields a higher selling price than in the
case of coordinated decision making. However, by
taking into account the supplier quantity discount
it might be optimal to order a larger lot-size at
a reduced purchasing price. Therefore, an increase
or decrease of the selling price, the demand rate,
and the order quantity depends on which effect
dominates, the overhead cost effect that yields an
underestimation of the average cost in the de-
centralized system, or the quantity discount effect
where the decentralized system overestimates the
average cost.
A weakness of the prescribed model is the de-
terministic and stationary environment based on
the EOQ assumptions. Furthermore, we disregard
strategic behavior of customers. Additional re-
search is needed to analyze the problem where
customers are willing to buy earlier (forward buy-
ing) or later (postponement) if prices vary over
time. A natural extension of the model would be to
consider a joint dynamic pricing and lot-sizing de-
termination problem where the supplier offers an
incremental units discount. An extension regard-
ing supply chain coordination is to investigate the

problem, how does the supplier design a quantity
discount schedule if it is anticipated that the re-
tailer employs decentralized decision making, co-
ordinated decision making with a constant price,
or coordinated decision making with a dynamic
pricing framework.

A Appendix

A.1 Proof of Property 1

Let C(P) :=
√
2FhlD(P). C(P) is a monotonically

decreasing function in P, i.e., ∂C
∂P ≤ 0. Furthermore,

∂2C
∂P2 =

√
Fhl
2D(P)

(
(D′(P))2

2D(P) − D′′(P)
)

. If D′′(P) ≤ 0,

then C(P) is a convex function in P, i.e., ∂C
∂P ≥ 0.

Therefore, −C(P) is a concave function in P. Be-
cause Π̃l is a concave function in P, Πl(P) is a con-
cave function. However, if D′′(P) > 0, then C(P)
is not uniquely convex or concave. For all P with
(D′(P))2

2D(P) − D′′(P) ≥ 0, C(P) is convex and it fol-
lows the same argumentation as above. For all P
where (D′(P))2

2D(P) − D′′(P) ≤ 0, C(P) is concave and
thus, −C(P) is convex. Due to the monotonicity,
Πl(P) is concave-convex. An analysis of the limit-
ing values gives lim

P→0
Πl(P) = −

√
2FhlD(0) ≤ 0 and

lim
P→P̄

Πl(P) = 0.

A.2 Proof of Property 3

Given the first-order conditions in (9), it follows

that we have to show that ∂
∂P

(
D(P)
D′(P) + P

)
≥ 0.

The optimal P has to satisfy D(P)
D′(P) + P ≥ 0 ⇔ ε =

− D′(P)
D(P) P ≥ 1. The IPE from Definition 1 gives that

∂ε
∂P

= −
∂

∂P

(
D′(P)
D(P)

P
)

≥ 0

⇔ −
∂

∂P

(
D′(P)
D(P)

)
P −

D′(P)
D(P)

≥ 0 .

Some algebraic transformations give

(31) −
D′′(P)
D′(P)

P ≤ 1 + ε .

Assume that ∂
∂P

(
D(P)
D′(P) + P

)
< 0. Thus ∂

∂P

(
D(P)
D′(P)

)
+

1 < 0⇔ 2 − D(P)D′′(P)
(D′(P))2 < 0. Then,

(32) −
D′′(P)
D′(P)

P > 2ε .

Because ε ≥ 1, inequality (31) and (32) can not

be valid simultaneously. Thus, ∂
∂P

(
D(P)
D′(P) + P

)
≥ 0.
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From c0 < c0 + F
Q*
0

and (9) we get that P̃* < P*.

However, it is not assured that c0 < cl + F
Q*

l
for

a quantity discount rl with l > 0. From the fact that
∂

∂P

(
D(P)
D′(P) + P

)
≥ 0, it follows that the selling price

in the coordinated system is higher if and only if

c0 < cl +
F
Q

with Q =
√
2FD(P)

hl
. The property follows from

c0 − cl <

√
Fhl

2D(P)
⇔ D(P) <

Fhl

2(c0 − cl)2

⇔ P*
l > D−1

(
Fhl

2(c0 − cl)2

)
.

A.3 Derivation of equation (15)

An expansion of the term

⎛⎝N−1∑
i=1

⎛⎝(ti − ti−1)
N∑

j=i+1

Dj
(
tj − tj−1

)⎞⎠⎞⎠
from equation (11) gives

⎛⎝N−1∑
i=1

ti

N∑
j=i+1

Dj
(
tj − tj−1

)⎞⎠
−

⎛⎝N−1∑
i=1

ti−1

N∑
j=i+1

Dj
(
tj − tj−1

)⎞⎠ .

With t0 = 0, we can renumber the indices

⎛⎝N−1∑
i=1

ti

N∑
j=i+1

Dj
(
tj − tj−1

)⎞⎠
−

⎛⎝N−1∑
i=1

ti

N∑
j=i+2

Dj
(
tj − tj−1

)⎞⎠
=

N−1∑
i=1

tiDi+1(ti+1 − ti)

=
N∑

i=1

ti−1Di(ti − ti−1) .

Therefore, (11) can be modified to

Π(N)
l =

1

tN

[
N∑

i=1

(Pi − cl)Di (ti − ti−1)

−
hl

2

N∑
i=1

Di (ti − ti−1)2

− hl

N∑
i=1

Diti−1 (ti − ti−1) − F

]

=
1

tN

[
N∑

i=1

(
Pi − cl −

hl

2
(ti + ti−1)

)

× Di (ti − ti−1) − F

]
.

A.4 Derivation of (25)

From (18) and (22)--(24) follows

Π(N )
l =

1

tN

N∑
i=1

[(
1

2

(
a
b

− cl +
hl

2
(2i − 1)

tN

N

)

−
hl

2
(2i − 1)

tN

N

)

×
b
2

(
a
b

− cl −
hl

2
(2i − 1)

tN

N

)
tN

N

]
−

F
tN

=
1

tN

N∑
i=1

[
b
4

tN

N

N∑
i=1

(
a
b

− cl

−
hl

2
(2i − 1)

tN

N

)2]
−

F
tN

=
1

tN

N∑
i=1

[
b
4

tN

N

[(a
b

− cl

)2
N −

(a
b

− cl

)
hltN N

+
h2l
4

t2N
N2

N∑
i=1

(2i − 1)2
]]

−
F
tN

.

Therefore,

Π(N )
l (tN ) =

b
4

[(a
b

− cl

)(a
b

− cl − hltN

)
+

h2l t2N
12

(4N2 − 1)
N2

]
−

F
tN

.
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A.5 Proof of Property 4

The partial derivation of (25) gives

∂Π(N )
l

∂cl
= −

(a
b

− cl − hltN

)
−
(a

b
− cl

)(
1 +

∂hl

∂cl
tN

)
+

hl

6

∂hl

∂cl

(4N2 − 1)
N2

t2N

= −2
(

a
b

− cl −
hl

2
tN

)
−
(a

b
− cl

) ∂hl

∂cl
tN +

hl

6

∂hl

∂cl

(4N2 − 1)
N2

t2N

= −2
(

a
b

− cl −
hl

2
tN

)
−

∂hl

∂cl

(
a
b

− cl −
hl

6

(4N2 − 1)
N2

tN

)
tN .

Using ∂hl
∂cl

≥ 0 and Di ≥ 0 for all i = 1, · · · , N with

DN =
b
2

(
a
b

− cl −
hl

2

(2i − 1)
N

tN

)
≥ 0

⇔ a
b

− cl −
hl

2

(2i − 1)
N

tN ≥ 0 ,

it follows

∂Π(N )
l

∂cl
= −2

(
a
b

− cl −
hl

2
tN

)
︸ ︷︷ ︸

≥0

−
∂hl

∂cl

(
a
b

− cl −
hl

6

(4N2 − 1)
N2

tN

)
︸ ︷︷ ︸

≥0

tN ≤ 0 .

A.6 Proof of Property 5

The first-order condition gives that Π(N )
l (tN ) has

three local extreme values. The limiting values in-
dicate that lim

tN→−∞
Π(N )

l (tN ) = +∞, lim
tN→0−

Π(N )
l (tN ) =

+∞. Thus, the function Π(N )
l (tN ) has a local mini-

mum for tN < 0 and a vertical asymptote at tN = 0.
Furthermore, we have lim

tN→+0
Π(N )

l (tN ) = −∞ and

lim
tN→+∞

Π(N )
l (tN ) = +∞. Therefore, for tN ≥ 0 the

profit function Π(N )
l (tN ) comes from −∞, has first

a local maximum, then a local minimum, and goes
to +∞, i.e., Π(N )

l (tN ) is a concave-convex function
for tN ≥ 0.
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